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Abstract. In this paper, a fast simulation of grain growth during directed energy deposition is presented.
Controlling the microstructure is indeed essential to obtain the desired macroscopic behavior. We present
a fast macroscopic simulation of temperature accounting for grain growth. The proposed approach re-
lies on the coupling of recent contributions presenting: (i) a simulation of temperature in DED, (ii) a
mesoscopic model of grain growth model based on Orientated Tessellation Updating Method, and (iii) a
macroscopic stochastic model of grain growth. The general strategy is to compute the temperature field
as a function of time during the entire process. The initial crystallization is not addressed in this contri-
bution, and an arbitrary initial microstructure are introduced to test the model. The stochastic evolution
of the grain structure due to thermal cycling is computed, and the final grain structure statistics is ob-
tained in the entire part. The proposed model is sufficiently fast to enable simulations of large parts and
parametric studies or optimization loops can be performed to adjust process parameters.

1 INTRODUCTION

In this paper, a fast simulation of grain growth during directed energy deposition (DED) is presented.
The model is derived for laser metal powder directed energy deposition (LMPDED), although it can
be simply adapted for other focused thermal energy (e.g., electron beam, or plasma arc). The analysis
of morphological and crystallographic textures obtained in such processes is a major issue in the lit-
erature. Indeed, controlling the microstructure is essential to obtain the desired macroscopic behavior.
Many studies focus on experimental characterization of the grain structure based on electron back-scatter
diffraction techniques (EBSD), which enables to relate process parameters and post-process microstruc-
tures. In addition, as the microstructure significantly depends on very local conditions of the melt pool,
many papers focus on very detailed simulations of the process, especially the hydrodynamic problem
determining the melt pool shape, and cooling and grain growth during crystallization [1–12]. Compre-
hensive but computationally costly mesoscale simulations include the spreading process of powder, the
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melting phase and grain growth during solidification. However, such comprehensive simulations implies
significant computation cost, which is not compatible with macroscopic simulation of the entire process
and hinders the development of parametric studies and optimization loops.

In this paper, we present a fast macroscopic simulation of temperature accounting for microstructure
evolution (i.e., grain growth). The proposed approach relies on the coupling of recent contributions
presenting: (i) a simulation of temperature in DED [13–15], (ii) a mesoscopic model of grain growth
model based on Orientated Tessellation Updating Method (OTUM) [16–20], and (iii) a macroscopic
stochastic model of grain growth [17, 21]. The general strategy is to compute the temperature field as
a function of time during the entire process. Then, the microstructure after the initial crystallization
is estimated from EBSD maps, as this problem is not addressed in this contribution. The stochastic
evolution of the grain structure due to thermal cycling is computed for different conditions. The final
grain structure statistics is obtained in the entire part. The proposed model is sufficiently fast to enable
simulations of large parts and parametric studies or optimization loops can be performed to adjust process
parameters.

The paper is organized as follows. The fast thermal analysis coupling heat conduction and phase tran-
sitions is broached in section 2. This model should take as inputs the process parameters and material
properties and gives as outputs the history of temperature field and phase mixture in the entire part.
Then, the fast mesoscopic model of grain growth is briefly presented in section 3. This model takes as
inputs the temperature history and the primary microstructure and gives as outputs the secondary mi-
crostructure after thermal cycling and grain growth. Since the detailed mesoscopic structure is a rich
information to be processed at each material point of the fabricated part, a macroscopic stochastic model
of grain growth is also presented in section 4. This model takes as inputs the primary microstructure
grain statistics and provides as outputs the stochastic evolution of the grain statistics. At the macroscopic
scale several mesoscopic polycrystalline arrangements correspond to the same macroscopic grain statis-
tics. Thus, the stochastic nature of such a macroscopic model is due to the loss of information between
the mesoscopic scale and the macroscopic scale, all the possible mesoscopic evolutions starting from a
single macroscopic state are considered. The coupling of the different models is broached and tested in
section 5 and conclusive remarks are given in section 6.

It should be noted that detailed phase transitions are not taken into account in the grain growth model,
even though phase proportions are considered in the thermal analysis.

2 MACROSCOPIC SIMULATION OF TEMPERATURE

The fast thermal analysis of the entire process [13], which couples heat conduction and phase transitions,
enables us to estimate the effect of various process parameters on temperature kinetics and final phase
mixture (e.g., for a multiphase steel austenite, ferrite, pearlite, bainite and martensite). In addition, the
model enables us to design additional temperature control devices and optimize the process parameters in
order to reach a targeted temperature field history and final phase mixture. In addition, during fabrication,
the material undergoes volume variations such as thermal expansion and phase transitions, which in turn
can be responsible for residual stresses leading to distortion, buckling or failure. Therefore, a fast thermal
analysis enables us to design fabrication strategies that minimize residual stresses related to the history
of the temperature field.
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The model [13] relies on analytical solutions of the heat equation coupled with numerical procedures to
deal with non-linearity of the source associated to phase transitions (liquid to solid and solid to solid).
Mathematical developments are not detailed in this paper and the reader is refereed to [13], however, the
main assumptions underlying the analytical solution are recalled here for the sake of clarity. The model
is adapted for thin-walled structures, and it typically applies to geometries constituted of simple paths in
2D denoted by χ and extruded along the vertical direction. The main assumption is to neglect heat fluxes
along the tangential direction to the laser path, which is the horizontal direction here. Indeed, excepted
in the the very localized melt pool region, heat fluxes along the vertical direction prevail, as shown in the
infrared picture presented in figure 1. The temperature mostly varies along the vertical direction and not
along the horizontal direction.

150.0 425.0 700.0

°C

(a) Infrared picture of the process where heat fluxes are
schematically represented by arrows

χ
Computation point

Multilayer
composite

(b) Multilayer composites and computation points

Figure 1: Principle of the modeling strategy

This assumption leads to discretize the path χ in several computation points, and this enables us to
consider the 3D heat conduction problem as several independent 2D problems in the (r,z) plane, where
r is the radial coordinate (thickness direction) and z the vertical coordinate. In figure 1b, each blue dot
represents a computation point, that is to say a 2D multilayer composite problem, which does not interact
with the neighboring computation point, as heat fluxes along the tangential direction are neglected. The
core analytical solution relies on a 2D problem, but pseudo-3D temperature fields can be reconstructed
by combining all the 2D solutions for all computation points.

In addition, for each computation point, the strategy consists in depositing liquid metal at the deposition
temperature, which is an adjustable parameter. Therefore, the powder spray and the melting process are
not modeled. The number of layers gradually increases as metal deposition goes on. Each computation
point is characterized by its radius of curvature, and the different times when metal is deposited. For
each computation point, the simulation strategy consists in approximating the coupled heat equation with
phase transitions on each time interval between successive depositions. The first layer is deposited on the
substrate and an analytic solution is obtained to compute the temperature history until the next deposition
on top of this layer. Then, a second analytic computation is performed to compute the temperature history
in the two layers structure until the next deposition. The initial condition of this structure is obtained from
the final condition of the previous computation and using the deposition temperature for the top layer.
This procedure is repeated until the final number of layers is reached. This strategy is summarized in
figure 2.
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It should be noted that the duration between successive depositions is known from the laser path and
process parameters, thus different 3D geometries, laser paths and dwell times can be simulated through
different radii of curvature, laser speeds and deposition times.

t
t1 t2 tnt2 tn+1t3

{Initial condition{Initial condition{Initial condition

{ 1st sub-computation { 2nd sub-computation { n-th sub-computation{Final condition {Final condition {Final condition

z

Rinf Rsup

Z(0)

Z(i)

Z(n)

Figure 2: Numerical strategy for each computation point (from [13])

The analytic solution and the numerical coupling with phase transitions obtained with simple Avrami’s
equations are not detailed in this contribution but the reader is refereed to [13]. However, for each
computation point, the 2D unsteady heat equation with sources in the multilayer composite is recalled
here for the sake of clarity.

∂2T (i)

∂r2 +
1
r

∂T (i)

∂r
+

∂2T (i)

∂z2 − 1
D(i)

∂T (i)

∂t
=−Q(i)(t)

λ(i)
(1)

Where the superscript (i) refers to the i-th layer, T (i) is the temperature, D(i) is the thermal diffusivity,
λ(i) the thermal conductivity and Q(i) is the source, which reads:

Q(i)(t) =
Nϕ

∑
ϕ=1

∆HϕẊ (i)
ϕ − 2σε

hr

([
T (i)

]4
−T 4

ext

)
+Q(i)

beam(t)−Q(i)
gas(t) (2)

Where Nϕ is the number of considered phases (e.g., liquid, austenite, ferrite, etc.), ∆Hϕ is the correspond-
ing latent heat and Ẋ (i)

ϕ is the phase proportion rate. In addition, Text is the external temperature, σ and ε
respectively stand for the Stefan-Boltzmann constant and the emissivity of the surface. The factor 2/hr

(where hr denotes the thickness) has been introduced in the radiative term to convert the power at the
inner and outer surfaces into a power per unit volume. In addition, Q(i)

beam is the volumetric heat due
to the laser, which depends explicitly on the laser speed Vbeam. Furthermore, Q(i)

gas(t) is the power per
unit volume associated to the gas flow carrying the powder, and it corresponds to a convection condition
localized around the laser.

For each layer at the inner and outer surfaces, boundary conditions consist in convection conditions with
the external temperature and a heat transfer coefficient. In addition, a convection condition at the top
surface of the last layer also holds, and a heat resistance between the part and the substrate is introduced.
Temperature and heat flux continuity is ensured between layers.

The solution proposed in [13] has been implemented and compared with in-situ measurements performed
with infrared pyrometers.
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3 MESOSCOPIC SIMULATION OF GRAIN GROWTH

A fast mesoscopic model of grain growth refereed as Orientated Tessellation Updating Method (OTUM)
as been proposed in [16]. For the sake of simplicity, the model has been derived for plane hexagonal
polycrystals. Misorientation between two neighboring grains (characterized by five parameters in 3D) is
characterized only by two parameters in 2D: the misorientation angle (denoted by ∆θ) and the orienta-
tion of the grain boundary plane (denoted by φ). This assumption is rather well adapted for thin-walled
structure such as those obtained by the DED process. This approach fully relies on Voronoi-Laguerre tes-
sellation techniques that are usually used to approximate polycrystals at the mesoscopic scale (i.e., scale
of the polycrystal). Crystal lattice orientation can also be specified for each grain, and the tessellation
equipped with such an orientation field is called an Orientated Tessellation (OT). One can approximate
the real evolution of the mesostructure as a succession of OT approximations. OTUM relies on the
idea that the evolution law of the mesostructure can be formulated directly by modifying the parameters
defining the OT. The state variables of the model are therefore not only the temperature but also the
parameters defining the OT denoted by α = (x,y,w,θ) (i.e., seeds coordinates denoted by (x,y), weights
denoted by w, which define the Voronoi-Laguerre tessellation, and the crystal orientations denoted by
θ). Therefore there are 4n state variables in the model (where n is the number of grains considered in
the polycrystalline structure). However, for the sake of simplicity only the weights w can evolve in this
model.

The evolution law of these state variables is formulated at the mesoscopic scale (i.e., for the entire
OT). Different energetic contributions are considered so that the evolution law relies on a physically
consistent basis. More precisely, the evolution law is obtained through the energy balance equation at the
mesoscopic scale, by specifying mechanisms at the microscopic scale: (i) the anisotropic grain boundary
(GB) energy, and (ii) the dissipated power through any GB virtual motion. The proposed energetic
framework enables to consider not only the driving force (associated to the GB energy) but also the
dissipated power as a resistive mechanism. The GB energy is estimated as a function of misorientation
by molecular dynamics computations at the atomic scale. In addition, the dissipated power associated to
GB motion is estimated by introducing a mobility of the GB, which depends on crystal misorientation.

The energetic principle to derive the evolution law for the state variables defining the OT is to compute
Emeso(T,α) the total (sum of all the contributions in the OT) GB energy, and Dmeso(T,α, ẇ∗) the total
(sum of all the contributions in the OT) dissipated power through any virtual motion of the GBs (where
ẇ∗ denotes a virtual evolution rates of the weights). The index meso refers to the fact that mesoscopic
quantities are needed to compute the associated variable. As mentioned above, these two functions
energetic are obtained from the analysis at the scale of the GB. Then the balance equation is written:

Dmeso(T,α, ẇ)+ Ėmeso(T,α) = 0 (3)

The evolution law for the weights w is obtained by maximizing the dissipated power under the constraint
of the balance equation (3) and mass conservation, which reads (M being the mass):

ẇmeso =



argmax
ẇ ∈ Rn

[Dmeso(T,α, ẇ)]

subjected to. Dmeso(T,α, ẇ)+ Ėmeso(T,α) = 0

Ṁ =
∂M
∂w

· ẇ = 0

(4)
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Analytic computations enables to solve this problem, which in turn can be numerically determined by
simply inverting matrices:

ẇmeso =−m(T )
L3

0
Mmeso(α) ·

∂Emeso(T,α)
∂w

(5)

where wmeso are the weights of the OT, Emeso is the total energy per unit depth in the RVE, m(T ) is a
scalar mobility (m4.J−1.s−1) that depends on temperature, and Mmeso is a dimensionless mobility second
order tensor of size n× n depending on the mesoscopic state α = (x,y,w,θ), and obtained analytically.
Technicalities are not addressed in this contribution and the reader is refereed to [16] for details. This
model has been successfully compared to experimental results on pure iron, but further comparisons with
experiments performed on longer durations are still needed.

4 MACROSCOPIC SIMULATION OF GRAIN GROWTH

Even though the mesoscopic model introduced in section 3 is relatively fast, a few minutes are necessary
to compute the evolution during the fabrication process of a single point in the domain. Therefore a
macroscopic stochastic model developed in [21] is also used in this contribution to compute much more
rapidly the evolution of grains statistics in the entire domain, instead of the detailed mesostructure.

The macroscopic model relies on state variables that are defined as a statistical description of the grain
structure. It is convenient to define dimensionless state variables so that all physical quantities are ex-
plicitly written as scaling factors in the dimensionless macroscopic evolution law. State variables are not
defined arbitrarily as the macroscopic energy should be a function of these variables. Each material point
of the macroscopic model should represent a polycrystalline structure whose energy is the sum of the sur-
face energies carried by the GBs multiplied by their respective length. Since the surface energy depends
on misorientation, it is expected that the total macroscopic energy at each material point depend on the
statistical distributions of GB lengths and misorientations. However, it is clear that complete statistical
distributions constitute a far too rich information to be reasonably processed at each material point of
the macroscopic domain. Thus, statistical descriptors (e.g., mean, standard deviation etc.) of length and
misorientation distributions should be considered instead of the complete statistical distributions. The
successive statistical moments of the misorientation distribution weighted by the GB lengths are cho-
sen. Since GB lengths continuously tend to zero when a grain disappear, they are used as weights in the
statistical moments so that they evolve continuously with respect to time. Thus, the weighted statistical
moments obtained from the mesoscopic state read:

µk = ∑
(i, j)∈I

li j∆θk
i j (6)

where I is the set of grain boundaries defined by the neighboring grains i and j, ∆θi j the misorientations,
and li j the dimensionless GB lengths (physical lengths are obtained by multiplying by a scaling factor
L0 (m)). In addition, k ∈ {0,1,2}, which is sufficient to accurately account for the total energy. The
statistical moments µk (k ∈ {0,1,2}) may be computed from the detailed mesoscopic structure by using
(6). These variables are denoted by µmeso = (µ0,µ1,µ2) and correspond to a reduction of the amount of
data with respect to the complete information needed to characterize the OT. Thus, µmeso is a function
of α (where α is the mesoscopic state). The vector µmeso provides a tool to define macroscopic state
variables. Indeed one can demonstrate with a large database of computations at the mesoscopic scale
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(using the model presented in section 3) that the total energy only depends on µmeso:

Emeso(T,α)≈ L0γS
G(T )
G(0)

f (µmeso) (7)

Where f (µmeso) is a deterministic function identified by using the database of computations at the meso-
scopic scale, γS = 1 J.m−2, and G(T ) is the temperature dependent shear modulus that captures the
temperature dependance of the GB energy.

From the definition (6), µ0/L0 is the GB length density (length per unit surface). In addition, the mean
of misorientations in the RVE denoted by µ̃1, and the square of the relative standard deviation, which is
the ratio of the standard deviation over the mean, denoted by µ̃2 read:

µ̃1 =
µ1

µ0
and µ̃2 =

µ2µ0

µ2
1

−1 (8)

The evolution law of µmeso is obtained from (5) and a simple derivation formula:

µ̇meso =−m(T )
L3

0

∂µmeso

∂w
·Mmeso ·

∂Emeso

∂w
(9)

One can demonstrate that there exists a second order mobility tensor Γmeso (α) of size 3×3 that depends
on the entire mesoscopic state α such as:

µ̇meso =−
(

γS m(T )
L2

0

G(T )
G(0)

)
Γmeso (α) ·

∂ f (µmeso)

∂µ
(10)

The macroscopic model is obtained by using the large database of computations at the mesoscopic
scale to determine a macroscopic second order tensor Γmacro (µmacro) such as Γmacro (µmacro)≈ Γmeso (α),
which does not depend on the mesoscopic state α but only on the reduced information µmacro without any
knowledge of the detailed mesoscopic state. The index macro has been used for µmacro instead of meso to
highlight the fact that the detailed mesoscopic state is unknown. The macroscopic evolution law reads:

µ̇macro =−
(

γS m(T )
L2

0

G(T )
G(0)

)
Γmacro (µmacro) ·

∂ f (µmacro)

∂µ
(11)

The mobility tensor Γmacro (µmacro) is determined on the basis of the database of computations at the
mesoscopic scale providing numerous estimations of Γmeso associated to µmeso. The identification is
probabilistic as there is an epistemic uncertainty due to the loss of information in the process of reducing
the amount of data by introducing the overall state µmeso. Bayesian inference techniques have been used
to estimate the posterior probability density function of Γmacro (µmacro).

For numerical applications, draws of the Bayesian model are used to generate Nstat = 500 macroscopic
evolutions whose means, medians and point-wise standard deviations are computed. This macroscopic
model has been compared to various mesoscopic evolutions as introduced in section 3, and a good agree-
ment is observed.

7



D. Weisz-Patrault, S. Sakout and A. Ehrlacher

Table 1: Coefficients for the mobility as a function of temperature

Molar volume of iron Vm = 7.09×103 (mm3.mol−1)
Grain boundary thickness δ = 10−6 (mm)
Burger vector b2 = 2.48×10−7 (mm)
Universal gaz constant R = 8.3144621 (J.mol1.K1)
Activation energy Q = 139000 (J.mol−1)
Diffusivity of Fe atoms D0 = 1.5×102 (mm2.s−1)

5 RESULTS

In this section, the thermal model presented in section 2 is used to simulate the evolution of the temper-
ature field during the entire fabrication process for a cylinder. Process parameters are fixed as in [13],
and the material is 316L stainless steel. Two computations have been performed, the first one allows the
substrate to heat up during the fabrication process starting from the room temperature, and the second
one assuming that there is a temperature control device associated to the substrate whose temperature is
fixed to 800 K. Then, for each material point temperature evolution is used to compute grain growth us-
ing both the mesoscopic model presented in section 3 and the macroscopic model presented in section 4.
Even though solidification is taken into account under the form of phase proportion in the thermal model
(heat source in the heat equation), there is no solidification model giving the primary microstructure
under the form of an OT just after solidification. Of course there are efficient models predicting crys-
tallization during solidification within the framework of additive manufacturing (e.g., [11]). However,
since this contribution is an attempt to simulate the entire fabrication process within short computation
time, a solidification model of the same nature as the grain growth model introduced in section 3 would
be required, which is still in development. Thus, in this contribution an arbitrary primary microstructure
that looks like classical microstructures observed in DED (e.g., [22]) is introduced to test the model.

The mobility m(T ) should be specified as a function of temperature. The following function has been
chosen as in [23]:

m(T ) =
DFe(T )Vmδ

b2 RT
(12)

where DFe(T ) follows an Arrhenius law DFe(T ) = D0 exp(−Q/RT ), where coefficients are listed in
table 1.

For the first condition (i.e., substrate initially at room temperature), the thermal cycling of one material
point is presented in figure 3 with the mesostructure computed with the mesoscopic model (presented
in section 3) at some times represented by red dots. It is clear that even though the grain boundary
mobility is very significant for high temperatures, the time spent with such high mobility is too short to
lead to significant evolution of the mesostructure. For the second condition (i.e., substrate temperature
fixed at 800 K), results are presented in figure 4. Even though the thermal cycling is similar to the
first condition, the overall temperature is bounded by the substrate temperature. Thus, the mobility is
sufficiently high during the first temperature peaks to enable rapid evolution the mesostructure during
the first few seconds after solidification (i.e., small grains at the inter-layers tend to growth or disappear).
Of course, this condition (substrate maintained at high temperature) also favors annealing if the process
lasts for several hours.

8



D. Weisz-Patrault, S. Sakout and A. Ehrlacher

0 10020 40 60 80 120 14010 30 50 70 90 110 130 1505 15 25 35 45 55 65 75 85 95 105 115 125 135 145

2 000

1 000

400

600

800

1 200

1 400

1 600

1 800

2 200

300

500

700

900

1 100

1 300

1 500

1 700

1 900

2 100

0

30

60

time (s)

~ 1 hour

Figure 3: Evolution of the mesostructure, and temperature cycling for the first condition
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Figure 4: Evolution of the mesostructure, and temperature cycling for the second condition

For the second condition, the evolution of some macroscopic variables (µ̃1, and µ̃2 in (8)) are presented
in figures 5 and 6 with the uncertainty given as an envelop representing more or less one standard devi-
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ation. Since this macroscopic model is very fast (only a few seconds for the entire evolution) one can
compute the evolution for all material points in the domain, and obtain the history of the fields of the
microstructure statistical descriptors with the associated uncertainty. Similarly to the mesoscopic model,
the first few temperature peaks are responsible for sudden variation of the grain statistics, and long term
annealing condition take place if the process lasts for several hours.

times (s)

More or less one standard deviation

Temperature peaks

0 2 000 4 0001 000 3 000500 1 500 2 500 3 500

0.3

0.22

0.24

0.26

0.28

0.32

0.34

0 102 4 6 8 12 14 16 18

0.3

0.32

0.34

0.31

0.33

0.35

0.295

0.305

0.315

0.325

0.335

0.345

times (s)

More or less one standard deviation

Figure 5: Average GB misorientation µ̃1 for the second condition
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Figure 6: Square of the relative standard deviation of GB misorientation µ̃2 for the second condition

6 CONCLUSION

This contribution is an attempt to combine several models that have been proposed recently in order to
obtain a fast simulation of temperature and grain growth in directed energy deposition at the scale of
the entire process. The proposed approach relies on the coupling of recent contributions. The evolution
of the grain structure at the mesoscopic scale is possible at few material points during the fabrication
process. In addition, the macroscopic statistical descriptors of the microstructure is sufficiently fast to be
computed in the entire part during the whole process. Results show that despite very high temperature
peaks when the matter is deposited, grain growth does not significantly make evolve the grain structure
because of very sharp cooling rates. However, if a temperature control device enables us to maintain the
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substrate temperature at a relatively high value (e.g., 800 K), grain growth takes place and the very small
grains located at the inter-layers tend to grow or disappear after the first crystallization. In addition, if
the process lasts for several hours in this condition, classical annealing conditions take place, which lead
to significant evolution of the grain structure.
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2020.

[18] Daniel Weisz-Patrault, Sofia Sakout, and Alain Ehrlacher. Fast simulation of grain growth based
on Orientated Tessellation Updating Method. In 24 ème Congrès Français de Mécanique, 2019.
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