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Abstract18

Turbulence or turbulence-like phenomena are ubiquitous in nature, often showing a power-19

law behavior of the fluctuations in either spatial or temporal domains. This power-law20

behavior is due to interactions among different scales of motion, and to the absence of21

characteristic scale. In this work, we consider the multiscale dynamics of China France22

Oceanography SATellite (CFOSAT) data as atmospheric and oceanic quantities influenced23

by turbulence. Fourier power spectra were estimated for the data provided by the CFOSAT24

via the Wiener-Khinchine theorem to extract multiscale information for both wind speed25

(WS) and significant wave-height (Hs). The WS data were collected from December 18,26

2018 to August 31, 2020, and the Hs data from July 29, 2019 to August 31, 2020. Fourier27

power spectra for both WS and Hs exhibit power-law features in the ranges of 100 km to28

3000 km with a scaling exponent β varying from 5/3 to 3. The global distributions and29

seasonal variations of β for both WS and Hs have also been considered. The results show30

that due to the energetic convective activities in the low-latitude zones, the scaling exponents31

β in these regions are closer to the value of 5/3. Concerning the seasonal variations, for32

most regions, the scaling exponents in winter are larger than those in summer for WS. The33

seasonal variations of β in low-latitudes are stronger than those in the mid-latitudes. Our34

preliminary results enrich the fundamental knowledge of ocean surface processes and also35

provide a benchmark for either oceanic or atmospheric models.36

Plain Language Summary37

The China France Oceanography SATellite (CFOSAT) can measure simultaneously38

wind and wave, providing a unique data set to assess the coupling of the wind and wave39

during the air-sea interactions. Here we show that the multiscale spatial statistics is relevant40

for both wind and wave fields. More precisely, spatial scaling behavior is found on the spatial41

scale range of 100 km to 3000 km, with a scaling exponent varying on different oceans and42

seasons. Furthermore, the dynamical coupling between the wind and wave is characterized43

by the Fourier-based co-spectrum and coherence function analysis. The results obtained in44

our study not only enrich our fundamental knowledge of ocean surface processes, but also45

provide a benchmark for either oceanic or atmospheric models.46

1 Introduction47

Ocean waves and wind play critical roles at various scales as they regulate the func-48

tioning of Earth’s climate and weather system (Bigg et al., 2003). The momentum and49

heat exchanges between the ocean and the atmosphere are affected by waves and wind. For50

example, some aerosols are generated by wave breaking and transported by wind (Kunz et51

al., 2002); the growth and decay of sea ice are influenced by waves and wind (Schlosser et52

al., 2018); waves and wind also show critical interactions with surface currents and upper53

ocean turbulence (Babanin, 2006), to list a few. Furthermore, waves and wind are major54

information for the safety of offshore operations and the forecast of marine severe weather55

events. Therefore, waves and wind, especially significant wave height (Hs) and wind speed56

(WS) are of interest for many fields from scientific researches to engineering applications.57

The aims of studying the waves and wind are also to improve the ocean dynamic58

modeling and prediction, marine meteorology forecast, climate variability knowledge, and59

fundamental knowledge of surface processes (Hauser et al., 2016). Due to extremely high60

Reynolds numbers, the non-linearities and multiple spatial-temporal scales characterizing61

the ocean and atmosphere, it is hard to describe, simulate or predict their complicated62

motions precisely (Vallis, 2017). Most oceanic, atmospheric or global models are operated63

by averaging Navier-Stokes equations at large scales. Turbulent closures are needed to64

express the effects of small-scale fluxes to large scale processes, but exact expressions are65

still lacking (Pope, 2001; Schmitt, 2007; Egolf & Hutter, 2020), indicating that oceanic and66

atmospheric models have still fundamental weaknesses.67
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The foundation of studying the wind and waves comes from field observations. Rela-68

tively accurate measurements of wind speed were possible after the invention of the anemome-69

ter by Thomas Romney in 1846. Then, more precise wind speed observations have been70

achieved by the development of hot wire anemometers, while the wind could only be mea-71

sured in a fixed point, until the occurrence of Doppler radars. For estimating the wind at a72

global scale, a satellite onboard wind scatterometer was developed during the Seasat mission73

in the 1970s. After that, a series of satellites which can observe the wind field have been74

launched, such as Nimbus-7 (1979), Advanced Earth Observing Satellite (ADEOS, 1996),75

Quick Scatterometer (QuikSCAT, 1999), Meteorological Operational Satellites (METOP-A,76

METOP-B, and METOP-C, mission since 2006), Cyclone Global Navigation Satellite Sys-77

tem (CYGNSS, 2017), HaiYang-2B (HY-2B, 2018), to name a few. Before 1975, wave height78

data have been mainly collected by buoys or coastal marine observation stations. Since79

that year, global ocean wave heights could be retrieved by satellites equipped with radar80

altimeters, such as for instance, Geodetic Earth Orbiting Satellite-3 (GEOS-3, 1975), Euro-81

pean Remote-Sensing Satellite (ERS-1, 1991), Topography Experiment/Poseidon (TOPEX,82

1996), JASON-1 (2001), and followed by JASON-2 (2008), and JASON-3 (2016), HaiYang-83

2A (HY-2A, 2011), to list a few.84

Previously, due to the limitation in the available data, the dynamic analysis of wind85

and waves have mostly been done separately. Since the ocean surface waves are most86

commonly driven by wind through frictions between wind and surface waters, the energy87

and momentum of waves are injected by the wind blowing over the sea surface. In some light88

WS regions, such as in the tropics, the energy and momentum can also be transferred back89

from waves to wind (Hanley et al., 2010). To determine the dynamical coupling between90

wind and waves, a detailed study of the multiscale properties of wind and waves is required.91

Thanks to the China France Oceanography SATellite (CFOSAT), the WS and Hs data can92

be observed simultaneously from space for the first time. The CFOSAT project provides a93

unique chance to analyze the wind and waves together at a global scale.94

In this study, on the basis of the WS and Hs data observed by CFOSAT, Fourier power95

spectra are estimated via the Wiener-Khinchine theorem to study scaling properties and96

evaluate scaling ranges and slopes. In addition, the spatial and temporal variations of the97

scaling exponents are examined. In the following, firstly some theories for atmospheric wind98

scaling regimes are recalled, as well as for the oceanic waves. Then the data and methods99

are presented, followed by a section presenting the results, and two last sections are devoted100

to discussions and conclusions.101

2 Theories102

2.1 Theories for the Atmospheric Wind103

Assuming that there are no characteristic length scales, over given scale ranges, several104

scaling laws have been proposed for the wind field in the atmosphere. Here these theoretical105

proposals are recalled briefly. They will be used as comparisons and potential explanations106

when considering the CFOSAT data analysis in the following sections.107

The most classical scaling is Kolmogorov’s 1941 assumption of universal fluctuations of108

the turbulent wind velocity in the inertial range, using locally isotropic and homogeneous109

hypotheses. For very large Reynolds numbers, as is the case in the atmosphere, one obtains110

(Kolmogorov, 1941; Obukhov, 1941):111

Eu(k) = C0ϵ
−2/3k−5/3, (1)

where Eu(k) is the Fourier power spectrum of the wind velocity, ϵ is the mean energy112

dissipation rate per unit mass, k is one component of the wavenumber vector k = (kx, ky, kz),113

and C0 is a constant. In case of intermittency there may be some small corrections to114

the value of the spectral slope −5/3, with slopes that may be slightly steeper, e.g., an115
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experimental value of −1.70 has been reported (Monin & Yaglom, 1971; Frisch, 1995).116

This framework corresponds to a cascade of energy as proposed by Richardson in the 1920s117

(Richardson, 1922): the energy is injected at large scales, is cascading in the inertial range118

and is dissipated at small scales, smaller than the Kolmogorov scale, which is of the order of119

millimeters. The Reynolds number in the atmosphere is in the order of 107 to 109, and the120

−5/3 slope has been found from atmospheric observations by many authors (Sreenivasan &121

Antonia, 1997; Calif & Schmitt, 2012; Schmitt & Huang, 2016).122

The atmosphere is stratified and at very large scales the atmospheric motions seem to123

be quasi-two dimensional (Danilov & Gurarie, 2000). This motivated the application of 2D124

turbulence phenomenology, as developed by Kraichnan (1967). The phenomenology of 2D125

turbulence is very different from 3D turbulence. There is no vortex-stretching term, and the126

enstrophy (square of vorticity) can be introduced to propose an enstrophy cascade picture127

(Wyngaard, 2010): enstrophy is produced at large scales through mean vorticity gradient,128

and is destructed at small scales by viscosity. The enstrophy spectrum has dimensionally a129

-1 slope, and since this is k2 times the energy spectrum, in this range of scales the energy130

spectrum follows (Kraichnan, 1967):131

Eu(k) = C1ζ
2/3k−3, k > kf (2)

where C1 is a constant, ζ represents the dissipation rate of enstrophy, and kf is the wavenum-132

ber corresponding to the forcing. At this forcing scale, the enstrophy goes down to small133

scales, and the energy has an inverse cascade, going to large scales, with a scaling range as134

(Kraichnan, 1967; Vallis, 2017):135

Eu(k) = C2ϵ
2/3k−5/3, k < kf (3)

At very large scales, the energy is assumed to be dissipated by friction through Ekman136

layers. For the application of this approach to the atmosphere, a quasigeostrophic theory137

has been proposed (Charney, 1971), where the enstrophy is replaced by a pseudo potential138

enstrophy. In such framework, contrary to Kraichnan’s 1967 model, there is a −3 slope at139

large scales and a −5/3 slope at small scales, for the power spectrum of the velocity field.140

Finally, let us also mention the 23/9D model proposed by Schertzer and Lovejoy since141

the 1980s (Schertzer & Lovejoy, 1985, 1987; Lovejoy et al., 2009). Anisotropic feature142

are suggested at all scales with different scaling exponents in the horizontal and vertical143

directions, where the former is dominated by the energy flux with a slope of −5/3 and the144

latter by the buoyancy variance flux with a slope −11/5 (Bolgiano, 1959; Obukhov, 1959).145

Later, the horizontal anisotropy has been taken into account in the 23/9D model and verified146

by using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses147

data (Lovejoy & Schertzer, 2011). This model is also discussed and checked in more recent148

works (Lovejoy & Schertzer, 2013; Pinel & Lovejoy, 2014). The results show that this model149

is capable to explain numerous claims of transition phenomena, for instance the spurious150

-2.4 slope for aircraft collected data can be interpreted by the anisotropic 23/9D turbulence151

model, rather than the isotropic 3D or 2D turbulence models.152

2.2 Theories for the Oceanic Waves153

Under a turbulent wind forcing over the sea, a part of the wind energy is transferred154

to the water masses through the surface wind shear. Since the wind forcing, in the inertial155

range, has no characteristic scale, and since the related processes involved no obvious char-156

acteristic scales, scaling laws for the sea surface height (SSH) have been proposed since the157

1950s. They write as:158

EΨ(k) ∼ k−B (4)

where EΨ(k) is the Fourier power spectrum of the spatial 2D SSH field, and B is the scaling159

exponent. This is valid in a range found over high wavenumbers corresponding to a so-160

called equilibrium range involving gravity waves. Such range describes breaking waves have161
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large curvatures, and even nearly discontinuous slopes, with sharp and random crests. By162

considering dimensional analysis, one early proposal was Phillips (1985a), who proposed163

B = 4. This value was also advanced later by Belcher and Vassilicos (1997) using different164

dynamical and geometrical arguments: B = 5 − D was proposed. With considering the165

balance arguments, a value of the dimension D = 1 was found. On the other hand Phillips166

(1985b) revoked the B = 4 result and proposed B = 7/2, for taking into account wave167

breaking and wave-wave interactions, and assuming that the nonlinear energy flux, wind168

forcing, and dissipation are in balance, proportional, and of comparable magnitude.169

These results concern about the SSH variable, at small scales, in part smaller than170

the scale range spanned by satellites. What is recorded by CFOSAT satellite is Hs, a local171

indicator, at the pixel size, of the intensity of the waves. The Hs has been originally defined172

as the average of the highest one-third of waves that occur during a given period. Nowadays173

it is usually defined as four times the standard deviation of the ocean surface elevation. As174

the value of Hs is estimated locally, it may have also spatial variations. However, its relation175

with SSH is not direct and there is no theoretical predictions in the literature concerning a176

scaling behavior of Hs, either directly or in relation with theoretical proposals for SSH.177

3 Data and Methods178

3.1 Data179

The simultaneously observed WS and Hs data in this study are provided respectively180

by a rotating fan beam scatterometer (SCAT) and surface waves investigation and monitor-181

ing radar (SWIM), both boarded on CFOSAT. Both instruments use Ku band microwave182

frequencies, and SCAT uses medium incidence angles (from 26◦ to 46◦) to retrieve the wind183

vectors at 10m height, whereas SWIM operates at near-nadir incidence angles (from 0◦ to184

10◦) to retrieve sea-surface waves (Liu et al., 2020). With an orbital repetition cycle of 13185

days and accounting for the instrument geometry, which can provide a 1000 km width of186

swath for the wind field as illustrated in Figure 1a, the system provides a global coverage187

within 3 days for wind fields and nearly global for waves (Hauser et al., 2016).188

The wind field is not directly measured; it is estimated using a geophysical model189

function, which gives the relation between the microwave scattered field, incidence angle,190

wind direction and speed close to the sea. Using this approach, an algorithm is designed191

to retrieve the 10m wind intensity and direction, from backscattered data from the SCAT192

instrument. When the scatterometer has an inclined beam, both wind speed and direction193

can be retrieved. This is why rotating beam scatterometers are used since SeaWinds on-194

board the satellite QuikSCAT (Spencer et al., 1997). A similar design is used in CFOSAT,195

using two fan beams, one vertically polarized, and the other horizontally polarized (Lin &196

Dong, 2011; Lin et al., 2018). The processing done involves averaging several backscatter197

values having similar incidence and azimuth angles: the larger the number of views, the198

more precise results can be obtained. As compared to fixed fan beams or pencil beams199

scatterometers, the rotating fan beam system used by SCAT can obtain more observations200

of the azimuth angles within a single swath: normally 4–16, more than ten in most areas201

for SCAT, while for fixed fan beams or pencil beams, the maximum number is equal to 4202

(Zhang et al., 2021). Thus, the wind information retrieval accuracy is greatly increased in203

the CFOSAT mission (Liu et al., 2020).204

For obtaining Hs, an “adaptive retracking” algorithm is performed (Tourain et al.,205

2021). The main idea of this algorithm is the following. Different pulses are received by the206

satellite sensor, coming from reflections at the ocean’s surface. These different backscattered207

echos are classically treated using a model of the ocean’s rough surface (Brown, 1977), seen208

as the convolution of a point source, a flat sea surface and an assumed probability density209

function of sea elevation. Different improvements of this algorithm have been proposed since,210

and a modified version, used for CFOSAT, is described in details in Tourain et al. (2021).211
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This algorithm is still based on the fit of the Brown model echo (Brown, 1977) to the recorded212

waveforms and the use of a maximum likelihood estimator. One of the improvements as213

compared to the conventionally used algorithms for other altimeter missions is the use of214

the real point target response from the SWIM sensor, instead of a theoretical one. Other215

improvements are linked with inversion methods using new analytical models.216

With all of these improvements, the performance of the CFOSAT mission was found to217

be remarkable: the accuracy of the Hs is 25− 30 cm or 5% of the mean value; the accuracy218

of the wind filed is 2m/s in magnitude and 20◦ in direction (Suquet et al., 2019; Liu et al.,219

2020; Hauser et al., 2020; Li et al., 2021).220

The WS data used in this study are in a 12.5 km resolution covering the period from221

December 18, 2018 to August 31, 2020, which is nearly 9200 orbits. For each orbit, the222

satellite can generate a wind field dataset with a size of 84 × 3440 pixels. Conventionally,223

the measured WS is treated as 10 meter wind above the sea surface. In other words, it is still224

in the marine-atmospheric boundary layer. The Hs data analyzed here were collected from225

July 29, 2019 to August 31, 2020, which is 7200 orbits with a nominal spatial resolution of 1.5226

km. Figure 1a shows an example of the along-track wind field and Hs data collected in the227

western Pacific Ocean on September 4, 2019 during the Typhoon Lingling (Xu et al., 2019).228

The corresponding along-track WS and Hs are shown as black and red dots respectively in229

Figure 1b. The signal of Typhoon Lingling (2019) can be distinguished by the CFOSAT230

observation, and the typhoon-induced enhancements of WS and Hs are clearly visible. Note231

that the WS and Hs data used in this paper are Level-2 products, which means the data232

are processed without any further interpolations. Thus, the original dynamical features of233

atmosphere and ocean surface can be well preserved in these data.234

Before the processing of the data, quality control (QC) was performed. For WS, only235

the data collected by more than two beams are considered. As for Hs, a Hampel identifier236

(Davies & Gather, 1993) is chosen to detect the outliers. Hampel identifier uses the median237

and median absolute deviation as a robust estimate of the location and spread of the outliers.238

For each data series, firstly a value of W points of the window half-width is given. Then the239

identifier computes the median of a window composed of the sample and its 2W surrounding240

samples, W data points per side. Besides, the median absolute deviation is also estimated.241

If a sample differs from the median by more than three times the standard deviations, it242

is treated as an outlier. This identifier has been proven extremely effective in practice for243

various fields (Pearson, 2002; Pearson et al., 2015, 2016). In this study, the window half-244

width is set as 150 data points and the abnormal data are set as Not-a-Number (NaN). As245

a result, there are roughly 15% of the WS and 2% of the Hs data discarded.246

Figure 2 shows an example of the WS and Hs data before and after QC. The black dots247

represent the raw data provided by the CFOSAT, and the red dots are the data after QC. To248

minimize the estimation bias for the calculated Fourier power spectrum, a small portion of249

normal data which successive to the abnormal ones are also excluded in the QC procedure.250

Figure 3 shows the probability density functions (pdf) of WS and Hs before and after QC,251

computed over all the data: the pdf tails are cut off after QC. The pdf of WS shows an252

exponential tail for values larger than 16 m/s. The tail is in the form of exp(−x/V0) where253

the characteristic scale is V0 = 1/0.31 = 3.22 m/s. For Hs data, there is also an exponential254

form in the ranges of 5 to 15 m: here the tail is in the form of exp(−x/L0) where the255

characteristic scale is L0 = 1/0.39 = 2.56 m.256

3.2 Spectra and Co-spectra Estimated via the Wiener-Khinchine Theorem257

In this work, the Fourier power spectra E(k) are estimated via the Wiener-Khinchine258

theorem. More precisely, the Fourier transform of the autocorrelation functions ρ(r) as259

follows:260

Eϕ(k) = R
∫ +∞

−∞
ρ̃(r) exp(−j2πkr)dr, (5)
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Figure 1. (a) Simultaneously observation of wind vectors (black arrows) and Hs (color dots)

by CFOSAT in the western Pacific Ocean on September 4, 2019 during the Typhoon Lingling. (b)

The corresponding along-track WS observed by SCAT (black dots) and Hs observed by SWIM (red

dots).
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Figure 2. Comparisons of raw data (black dots) and the data after quality control (red dots).

(a) and (b) indicate WS and Hs data, respectively.
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Figure 3. The comparisons of the pdfs of WS and Hs data before (black curves) and after (red

curves) QC. Dashed lines emphasize the exponential tails which are found, and the fitted slopes are

indicated.

in which R means real part, j =
√
−1 is the complex unit, k is the wavenumber vector, r is261

the distance vector, and,262

ρ̃(r) = ⟨ρm(r)⟩m, ρm(r) =
1

Mm(r)

Mm(r)∑
i=1

ϕ̃m(xi + r)ϕ̃m(xi) (6)

where ϕ̃m(xi) = ϕm(xi) − ⟨ϕm(xi)⟩ is the centered ϕm(xi), ϕm is the value of either WS263

or Hs of the mth orbit, ⟨ ⟩m means spatial average over the mth orbit, and Mm(r) is the264

sample size at the separation scale r for the mth orbit. Due to several reasons, such as the265

presence of sea ice, lands, bad measurements, the collected WS and Hs data often contain266

gaps. The use of the autocorrelation here prevents problems coming from small gaps. To267

mitigate the impacts of missing data to the spectral analysis, orbits with the ratio of more268

than 50% of the valid data are then accepted. It is found empirically that the averaged269

autocorrelation function ρ̃(r) and the corresponding power spectra Eϕ(k) are not affected270

by these missing data. In this work, the radially averaged Fourier power spectrum of the271

WS data is also estimated: in such case, the autocorrelation function of the 2D wind field272

is estimated; then the 2D power spectrum Eu(k) is calculated via the Wiener-Khinchine273

theorem. Assuming a horizontal statistical isotropy, the radially averaged Fourier power274

spectrum Eu(k̂) is estimated by an angle integration of the 2D spectrum. For a convenient275

comparison with the 1D spectrum, the final radially averaged spectrum is multiplied by the276

wavenumber modulus k̂ = |k|.277

In case of scaling and isotropy, a power-law behavior of the Fourier spectrum is expected:278

Eϕ(k) ∝ k−β , (7)

where k is one component of the wavenumber vector k, and β is the so-called scaling expo-279

nent, which represents the absolute value of the slope of the best-fit straight line between280

log(Eϕ(k)) and log(k) on a certain range of k values corresponding to the scaling range. Let281

us note that the Hs data are scalar, whereas WS data are 2D vectors. In the remaining of282

the manuscript, the WS analysis is done on the velocity amplitude, except when zonal and283

meridional components of WS are compared: in the latter case each vectorial component is284

analyzed separately for comparison.285

For estimating the co-spectrum for WS and Hs, we perform a similar procedure. The286

mean cross-correlation function ρ̃WS,Hs(r) is estimated. The co-spectrum is then derived287
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from Fourier transform via the Wiener-Khinchine theorem:288

EWS,Hs(k) = R
∫ +∞

−∞
ρ̃WS,Hs(r) exp(−2jπkr)dr. (8)

3.3 Coherency Spectrum289

To identity the relation between WS and Hs, the co-spectrum is normalized with the290

1D spectra for WS and Hs to get the coherency spectrum,291

HWS−Hs(k) =
|EWS,Hs(k)|2
EWS(k)EHs(k)

, (9)

where 0 ≤ HWS−Hs(k) ≤ 1. When the value of coherence function value is equal to 1, there292

is a perfect linear relationship between the two signals. When the value is 0, then there is293

no relationship between the two signals (Formenti, 1999).294

3.4 De-aliasing295

Another problem often occurring in the Fourier power spectrum analysis is due to alias-296

ing: when the sampling frequency rate is less than twice the highest frequency of the physical297

process, namely, the data are undersampled. For undersampled datasets, measurements of298

their power spectra will often be distorted by aliasing, not only near the Nyquist frequency,299

but also below it (Kirchner, 2005). To correct the distortions introduced by spectral alias-300

ing, and recover the spectrum, Kirchner (2005) proposed a filtering method which does not301

require some a priori knowledge of the true spectrum. Here note EX(f) is the true spec-302

trum and EY (f) is the measured one which includes some degree of aliasing. The formula303

to derive EX(f) from EY (f) is as follows,304

EX(f) =
EXmodel

(f)

EYmodel
(f)

EY (f), (10)

in which EXmodel
(f) and EYmodel

(f) are model functions defined as305

EXmodel
(f) =

E0f
−α

1 + (f/fc)2
≈

{
E0f

−α, f ≪ fc
E0f

2
c f

−(α+2), f ≫ fc,
(11)

and306

EYmodel
(f) = EXmodel

(f) +

∞∑
n=1

EXmodel
(nfs − f) + EXmodel

(nfs + f). (12)

Here E0 is an arbitrary constant that sets the scale of the spectral power, fs is the sampling307

frequency and fc indicates the corner frequency, which must typically be specified a priori.308

As long as fc is substantially above fs, the exact value of fc will have little effect on the alias-309

filtered spectrum. The parameter α is auto determined by a nonlinear fitting procedure,310

which finds the value of α for which EYmodel
(f) matches the measured spectrum EY (f)311

as closely as possible. In this way, the effects of aliasing to the spectral analysis can be312

suppressed.313

4 Results314

4.1 Scaling Features at the Global Scale315

The global averaged spectra of WS (blue curves) and Hs (red curves) are shown in316

Figure 4. The dotted and solid curves indicate the raw and alias-filtered spectra, respectively.317

The straight lines are given as references with different slopes. In the high wavenumber318

ranges, due to the existence of spectral aliasing, the raw spectra exhibit upward trend,319

mainly visible for WS. After applying the alias-filtered processes, the tails are downward320
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Figure 4. The global averaged Fourier power spectra of WS (blue curves) and Hs (red curves),

the dotted and solid line styles mean the raw spectra and the spectra after alias-filtered. The black

dash dotted, dashed, and thin lines are given as references with the slopes of −3, −2, and −5/3.

The insets show the corresponding compensated spectra.

recovered. In the wavenumber ranging from 1×10−3 to 1×10−2 km−1 , corresponding to321

the spatial scales (r) from 100 to 1000 km, the scaling exponent β for Hs is close to 2,322

as shown in Figure 4. For wavenumbers smaller than 1×10−3 km−1 (r ≥ 1000 km), β for323

Hs approaches 3. As for the wavenumbers higher than 1×10−2 km−1 (r ≤ 100 km), the324

spectrum of Hs illustrates a conspicuous decreasing trend in the spatial scales from 30 to 100325

km, then small fluctuations occur along the spectrum. The spectrum of WS also exhibits326

power-law features in the range from 100 to 3000 km, and the values of β are between 5/3327

and 3 with small variations. A finer inspection shows that in the range from 100 km to 250328

km, the slopes of WS spectra are close to −5/3. These multiscale features for WS and Hs329

are also emphasized in the compensated spectra as insets.330

The averaged spectra of zonal and meridional components of WS are also calculated331

to tentatively test the horizontal directional isotropy of the wind field. The comparison of332

these two spectra is illustrated in Figure 5a. The blue and red curves represent the zonal333

and meridional component along track spectra, respectively. These two spectra show similar334

scaling features, with the zonal component spectrum slightly larger than the meridional335

one, which has been previously reported by Freilich and Chelton (1986). In order to better336

compare these two spectra, we introduce their ratio as:337

I(ky) =
Ev(ky)

Eu(ky)
, (13)

where v and ky are the velocity and the wavenumber components along track. This ratio338

is displayed in Figure 5 b. The inset in log-log plot shows a horizontal line, confirming that339

zonal and meridional spectra have the same scaling exponent, from 100 to 3000 km. In340

turbulence such ratio is called the isotropy ratio and for 5/3 spectra, in case of isotropy,341

the value I(kx) = 3/4 is derived, using symmetry arguments, from the continuity equation342

(Kolmogorov, 1941; Monin & Yaglom, 1971).343
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Figure 5. (a) The global averaged Fourier power spectra of zonal (blue curve) and meridional

(red curve) components of WS; the black lines are references. The insets show the corresponding

compensated spectra. (b) The corresponding isotropy ratio function; the dashed black line indicates

the theoretical value 3/4 expected in case of isotropy (Kolmogorov, 1941); the inset is in log-log

plot.

To consider the dynamical links between WS and Hs, the co-spectrum Eco(k) =344

EWS,Hs(k) for WS and Hs is estimated and illustrated in Figure 6 a. Power-law features345

can be found from the corresponding spatial ranges from 30-250 km and 250-2000 km with346

the scaling exponents equal to 1.8 and 2.4, respectively. The compensated spectra as inset347

confirm the scaling features. The coherence function HWS−Hs(k) between WS and Hs is348

also estimated and shown in Figure 6b, where a log-log plot is shown as inset. The values349

of coherence function lie between 0.04 and 0.13 in the whole wavenumber domain, with a350

peak value occurring in the separation scale around 1200 km.351

4.2 Analyses in Basin Scales352

In order to perform more analyses at smaller portions of the globe, the world ocean353

is separated into five regions: the Indian Ocean, the North Atlantic Ocean, the South354

Atlantic Ocean, the North Pacific Ocean, and the South Pacific Ocean. This provides355

scaling characteristics of WS and Hs spectra in different oceanic areas. The measured356

ensemble averaged Fourier power spectra are shown in Figure 7a (WS) and Figure 7b (Hs).357

The spectra measured from different ocean basins have all the same shape and share the358

same scaling properties.359

The spectra of WS display a very clear scaling with exponents close to 2, for scales360

from 25 to 2500 km, for all basins. Concerning Hs, the scaling exponents β are close to 3,361

and 2 for the ranges from 500 to 3000 km and 50 to 500 km, respectively. The compensated362

spectra are also given in Figure 7 to emphasize the scaling feature.363

4.3 Scaling Analysis at Smaller Scales, Below 1000 km364

In the above analysis, the whole basin as a unit was considered to calculate the spectra365

of WS and Hs. The results were nearly identical for different ocean basins. In order to better366

characterize the dynamical features of WS and Hs in different oceanic regions, datasets of367

finer scale are used to measure the power spectra.368
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Figure 6. (a) Global averaged cross-spectrum of WS and Hs. The insets show the corresponding

compensated spectra. (b) The coherence function between WS and Hs in the semi-log coordinate;

the inset is in log-log plot.
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Figure 7. The ensemble averaged Fourier power spectra of the WS (a) and Hs (b) in different

oceanic basins; the black dash dotted, dashed and thin lines are given as references. The insets

show the corresponding compensated spectra.
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Figure 8. (a) An example of the selected 84 × 84 2D domain of WS (gray dots); the line formed

by red dots indicates the 1D field along the track of the satellite. (b) The global averaged Fourier

power spectra measured from the 1D (dashed curve) and 2D (solid curve) WS subsets. The dotted

line and dash-dot line are given as references with slopes equal to −2 and −5/3, respectively. The

insets are the corresponding compensated spectra. The red line in (b) indicates the separation scale

of the spectra, to emphasize the chosen scale, 100-1000 km.

For WS, the data were separated into 84 × 84 boxes for each orbit, each one being369

approximately a square area with a spatial scale of about 1000 km × 1000 km. Figure 8a370

gives an example of a 2D domain, in which the selected subset are shown as gray dots. The371

radially averaged Fourier power spectrum is then estimated by the aforementioned algorithm372

for the WS magnitude. For comparison, another approach to derive the scaling features for373

WS with the scales below 1000 km is to consider the 1D WS data along the satellite track374

(red dots in Figure 8a). The global averaged Fourier power spectra for the subsets of WS375

in 1D (along the track) and 2D (spatial zone) are illustrated in Figure 8b. Scaling features376

are found for both spectra on the scale range of 100-1000 km with a scaling exponent close377

to a value of 2, see the compensated curves in the insets.378

Concerning Hs, 700 along-track data points (which form a total of nearly 1000 km)379

are selected as a whole to calculate the spectrum at smaller scales. In this way, the lowest380

wavenumber of spectra is around 1×10−3 km−1. In order to increase the number of mea-381

surements to cover the global ocean, the selected data are overlapped 75% along the satellite382

track. Figure 9 illustrates the global averaged Fourier power spectrum for the Hs case. A383

scaling feature is distinguished in the range of 10-1000 km, again with a scaling exponent384

close to a value of 2.385

The global distributions of scaling exponents for WS and Hs are derived by averaging386

the scaling exponents which are located on the same 2◦× 2◦ grid. This is done for the387

scale ranges chosen for each field (e.g., 100-1000 km for WS, and 10-1000 km for Hs). The388

results are illustrated in Figure 10 respectively (a) for WS and (b) for HS. The scaling389

exponents for WS and Hs both exhibit clear latitudinal dependence. Distinct boundaries390

which separate the scaling exponents whose values are larger or smaller than 1.8 are found391

around the horse latitudes (30 degrees north and south of the equator) for WS. Moreover, a392

small portion with large scaling exponents is found near the equatorial eastern Pacific (e.g.,393

roughly 90◦W to 160◦W and 10◦S to 10◦N), which coincidentally is in the same region as394

the famous Pacific equatorial dry zone (Hastenrath, 1999). For the nearby regions, such395

as the Intertropical Convergence Zone (ITCZ), equatorial Pacific Warm Pool (PWP), and396
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Figure 9. The global averaged Fourier power spectrum measured from the subsets of Hs; the

dashed and dotted lines are given as references with slopes of −2 and −5/3. The insets are the

corresponding compensated spectra. The red line indicates the separation scale of the spectrum to

emphasize the chosen range, 10-1000 km.
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Figure 10. The global distribution of the scaling exponents β measured from (a) WS (100-1000

km) and (b) Hs data (10-1000 km). (c) The meridional variations of β inside the Pacific Ocean.

The solid and dashed curves indicate β measured from WS and Hs, respectively.

South Atlantic Convergence Zone (SACZ), the scaling exponents for WS are close to 5/3.397

For Hs, the scaling exponents are larger than the ones derived from WS for most regions,398

the meridional variations are relatively weak as compare to the WS case. Overall the global399

ocean, β for Hs is larger than 2.1 except for the coastal areas. Again, relatively small β is400

found in the tropical regions.401

To quantify the meridional variation of β, a region inside the Pacific Ocean is chosen402

(150◦E to 100◦W, 60◦S to 60◦N) to perform a meridional average of β. Figure 10 c illustrates403

the measured meridional variations of β for WS (solid curve) and Hs (dashed curve). The404

variation trends of β for WS and Hs are similar, the maximums occur in mid-latitudes, with405

small values in tropical regions. Averaged β derived from WS and Hs are mainly in between406

1.6 − 2.2 and 1.8 − 2.3, respectively. A crest value can be found near the equator for WS407

case, which corresponds to the Pacific equatorial dry zone mentioned above.408

Finally, we focus on the seasonal changes of these scaling parameters. For this, the409

difference ∆β = βs − βw, where βs is the summer scaling exponent, and βw the winter one,410

is considered. The boreal summer is composed of the months of June, July, and August,411

and the boreal winter of the months of December, January, and February. The results are412

given in Figure 11. The seasonal variations of β are weaker in mid-latitudes than those413

observed in low-latitudes, for both WS and Hs. The scaling exponents for WS are larger414

in winter than those in summer for most areas. While for Hs, the seasonal variations of β415

are relatively complicated. For Northern Hemisphere, β are larger in summer than those in416

winter for most regions; in the tropical area of Southern Hemisphere, β for Hs is larger in417

winter, then for the regions further south than 25◦S, the seasonal differences are found to418

be vaguely.419

5 Discussion420

5.1 Wind Data421

In this work, different scaling laws have been found for the wind velocity data set.422

First, the global averaged Fourier power spectrum for CFOSAT observed WS shows power-423

law features from 100 to 3000 km where β varies from 5/3 to 2.5. Figure 5a displaying the424
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Figure 11. The global distribution of ∆β = βs − βw, where βs is the summer (June, July,

and August) scaling exponent and βw is the winter (December, January, and February) scaling

exponent, for (a) WS in the wavelength band of 100-1000 km, and (b) Hs in the wavelength band

of 10-1000 km. (c) The meridional variations of ∆β inside the Pacific Ocean. The solid and dashed

curves indicate ∆β measured from WS and Hs, respectively.

global averaged Fourier spectra of zonal and meridional components of the wind field, shows425

that horizontally the wind field is roughly directionally isotropic, since the two curves follow426

the same laws as indicated by the insets. The scaling exponents are close to −2.5 for scales427

from 300 to 3000 km, and close to −5/3 for smaller scales, from 30 to 300 km, corresponding428

roughly to the mesoscale.429

The fact that the meridional spectrum is slightly below the zonal spectrum is due430

to symmetry reasons. Indeed, this ratio is 3/4 for 5/3 isotropic turbulence, and it is a431

constant of the form I(k) = 2/(1 + β) for isotropic turbulence with spectral slope β (Monin432

& Yaglom, 1971). This ratio is displayed in Figure 5 b: it is close to 3/4 for some range of433

scales for which there is no 5/3 spectrum. Hence, the value found here is not a proof of434

horizontal symmetry, since for the scales for which an approximate 5/3 slope is found (the435

larger wave numbers), the ratio is decreasing. This may be due to the fact that these spectra436

are not perfectly scaling. However, this ratio in log-log plot (inset of Figure 5 b) still shows437

that there is no clear scaling difference between both spectra: the wind field data appear to438

be nearly directionally isotropic on the horizontal plane.439

Note that previous studies have shown that the atmospheric movements could be440

anisotropic with different scaling exponents estimated along meridional, zonal, and ver-441

tical directions (Lovejoy et al., 2007, 2009; Pinel et al., 2014). For example, using the442

ECMWF reanalyses data, Lovejoy and Schertzer (2011) found horizontal anisotropy at 700443

mbar, corresponding to the top of clouds. As aforementioned, the 10-meter wind field is in444

the marine-atmosphere boundary layer, where the horizontal directional isotropy might be445

restored due to the interaction with sea surface.446

At the global scale, different regimes, climates, boundary conditions are mixed. The447

basin scale analysis is a way to avoid mixing signals from different zones, especially tropical448

zone which provides specific scaling properties. This is why the basin scale analyses show449

different results from the global analysis (Figure 4 versus Figure 7). Indeed at the basin scale450
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there is a very neat power-law, from 25 to 2500 km, with a scale ratio of 2 decades. Each451

basin shows the same universal property, which is quite remarkable.452

To have results at finer scales, the analysis has been performed over shorter segments,453

over the range from 100 to 1000 km. Globally the estimated β displays patterns emphasizing454

the tropical regions, and latitude dependence. This latitude dependence could best be455

considered in the Pacific Ocean (Figure 10c), the differences in the value of β are more456

marked at high latitudes. Such patterns show the climatic influences on wind scaling regimes.457

Globally, no scaling range with k−3 has been found here. It does not seem to sustain the458

enstrophy cascades corresponding to the quasigeostrophic theoretical framework. We find a459

k−5/3 range, at mesoscales from 25 to 300 km (Figure 5a), followed by an empirical fit close460

to the slope of −2.5 for larger scales, from 300 to 3000 km, having no theoretical explanation.461

The more detailed analyses (Figure 10) show that the scaling exponents are not so universal462

and depend on the location. Strong patterns in this figure illustrate spatial variations of463

scaling features associated with different types of climate. Quite often in tropical regions,464

the exponents are close to 5/3, whereas they are between 1.8 and 2.2 for the other areas465

(see also Figure 10c).466

The −2 slopes that are found in the oceanic basins are in agreement with none of the467

theories discussed above. It was in fact already found in previous studies using satellite data.468

For instance, Freilich and Chelton (1986) examined the Seasat-A satellite scatterometer ob-469

served wind vector data over the Pacific Ocean, and found an energy spectrum proportional470

to k−2 in the range of 200 to 2200 km. Pinardi and Milliff (2004) found also a k−2 slope471

for the spectrum of the Mediterranean surface winds from QuikSCAT for spatial scales be-472

tween 200 km and 1000 km. Chelton et al. (2006) studied the wavenumber spectra of the473

QuikSCAT zonal and meridional wind components and the wind speed in the North Pacific.474

The results shown that the dependence on wavenumber k for these three variables are all475

approximately k−2 for scales below 1000 km.476

We may compare our results with other previous studies. Wikle et al. (1999) considered477

wind data from three different sources (e.g., reanalysis wind data from National Centers for478

Environmental Prediction, satellite-based ERS-1 scatterometer observed wind, and wind479

from high-resolution aircraft observations). They found that the combined spectra from480

these data demonstrate a power-law relation over the range 1-1000 km, with a best-fit slope481

close to the value of −5/3, and the energy spectra for subsets of the data support spectral482

slopes of −5/3 and −2. Patoux and Brown (2001) investigated the spectra of QuikSCAT483

observed wind vectors. They fitted the spectra on the range of 100-1000 km to derive484

the scaling exponents. The values of measured β were roughly between 5/3 and 3, with485

wide variations from 1.8 to 2.6. Then the spatial and seasonal variations of the spectra486

slopes were examined. They found that the energy spectra were steeper in midlatitudes,487

and all the more so in winter, also with steeper slopes in the tropics in the presence of488

convection. They concluded that when convection is enhanced, the energy level is raised at489

all scales. Consequently, the energy spectrum is steeper. The seasonal variations correspond490

to enhanced baroclinic activities in winter in the midlatitudes. According to our results, in491

the strong convection regions, e.g., ITCZ, PWP, and SACZ, the measured β in 100-1000 km492

scales is close to 5/3. The corresponding spectra are flatter than the ones in nearby regions,493

i.e., equatorial dry zone with relatively steady atmospheric movements. Xu et al. (2011)494

performed a spectral analysis of QuikSCAT winds over the global ocean, and found that β495

possesses spatial variability in the scale range of 1000-3000 km, with values varying from 1.6496

to 2.9. The slopes of spectra were observed to become steeper toward high-latitudes in the497

Pacific and in the South Atlantic. Besides, the spectra are steeper in winter than those in498

summer for most regions of the Northern Hemisphere midlatitude. This was also explained499

by the baroclinic argument. Furthermore, the seasonal differences which are observed in500

our analysis might also be related to the temporal variations of the baroclinic instability501

strength.502
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Globally, the analysis for WS subsets found in the present study is relatively consistent503

with the results reported by Patoux and Brown (2001) and Xu et al. (2011). With the same504

fitting range set as Patoux and Brown (2001), we found β for WS subsets various from 1.6505

to 2.2 for most regions, and β are larger in midlatitudes than those in tropics. The regions506

in same latitudes but with strong convection show β close to 5/3.507

Let us mention some limitations or specific properties of CFOSAT data used in this508

study. The wind speed retrieved by the SCAT sensor is typically treated as 10 meters above509

the sea surface. This height is close to the bottom of the marine atmospheric boundary510

layer, which is often in the order of O(1) km (Lang et al., 2018). The 10-meter wind is thus511

strongly influenced by the bottom conditions, e.g., the effective roughness/wave height,512

temperature profiles, the variation of boundary layer, to name a few. Hence, it is not purely513

large-scale turbulence and boundary conditions may have influence on the statistics. For514

the same reason, one cannot fully compare the results from this sensor to the one of the515

altitude measurements using the commercial aircraft, such as the one obtained by Nastrom516

and Gage (1985) or other similar measurements done at the height O(10) km.517

5.2 Wave Data518

From global analysis, features for Hs are found in the ranges of 10 to 1000 km and519

1000 to 3000 km with β close to 2 and 3, respectively. Some heave and roll features that520

occur in the spectrum range below 50 km may be the signature of energy injections induced521

by some energetic submesoscale processes, such as eddies and fronts or other interactions522

between surface currents, closely related to the upper ocean dynamics, thermodynamics, and523

biogeochemistry. At the basin scale, spectra for Hs in different oceanic basins are identical524

in the spatial ranges of 50 to 2000 km (Figure 7). As indicated above, there is no theory to525

explain such results. We may only compare these findings with previous published works.526

Similar studies estimating the spectra for satellite collected Hs were performed by Monaldo527

(1988, 1990), where 100 Geosat radar altimeter sampled Hs trajectories around the world528

were used to calculate the energy spectra. The scaling exponents were found to be around529

1.4 in the spatial scale from several kilometers to about 50 km. Similar scaling features are530

observed in our study at small scales (Figure 4 and Figure 7b) where both global and basin531

scale averaged spectra are shown. For the scales less than 50 km, the scaling exponents are532

slightly smaller than 3/5. Tournadre (1993) estimated the energy spectra with 583 and 689533

Geosat observed Hs trajectories. The corresponding scaling exponents were derived in the534

range 14 to 1400 km with the values equal to 1.39 and 1.21, in the North Sea and equatorial535

Atlantic respectively. Spatial differences are found, and values of β are larger in midlatitudes536

than those in tropics, which is similar to what we found of the spatial distribution of β in537

the scale of 10-1000 km, while in our results the slopes are steeper.538

The parameter Hs is a measure of the local roughness, proportional to the small-scale539

variance of the wave field. This quantity shows a scale-dependent variability, with long-range540

correlations as revealed by the scaling regimes which have been found. Such properties of Hs541

are certainly inherited from the surface wave height field, for which several scaling theories542

have been proposed in the literature, as was discussed in a previous section.543

5.3 Coupling between Wind and Waves544

Wind and waves are closely related to each other, and the relationship between WS545

and Hs has been studied for a long time (Kinsman, 1965; Carter, 1982; Andreas & Wang,546

2007; Khandekar, 2013). Due to the limitation of data available, the dynamic features547

between WS and Hs in the spatial domain are rarely reported in literature. Bhandari and548

Shaeb (2014) examined the spatial coherence of WS and Hs over the Arabian Sea with auto-549

correlation functions. They found that the spatial coherence scales are of the order of 100 to550

500 km. The Hs and WS data they used were all provided by Poseidon-2 Radar Altimeter.551

The WS could have been retrieved from altimeter, but the accuracy is relatively poor as552
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compared to the ones got from scattermeter (Monaldo, 1988; Hwang et al., 1998; Ribal &553

Young, 2019). In our study, based on the SCAT observed WS and SWIM collected Hs, the554

co-spectrum of WS and Hs was derived at a global scale. Scaling features were found in555

the spatial ranges from 30 to 250 km and 250 to 2000 km with scaling exponents equal to556

1.8 and 2.4, respectively. Further, the coherence function also illustrated scale dependent557

features. These results confirmed the existence of spatially coupled dynamical links between558

WS and Hs, and the fact that the mechanisms of these links are related to the spatial scales.559

However, the fundamental rules of the interactions between WS and Hs are still unclear and560

will be the topic of further works.561

6 Conclusion562

Simultaneously observed wind and wave data by CFOSAT have been used to determine563

the multiscale features of WS and Hs. Before processing the data, quality controls have564

been carefully performed and outliers were removed, as shown by the pdfs of the two main565

variables considered here. The spatial and temporal variations of the corresponding scaling566

exponents have been examined. Power-law features were found in the global averaged Fourier567

power spectra of WS and Hs. The scaling exponents β for Hs are close to 3, and 2 in the568

range of 1000-3000 km and 10-1000 km, respectively. For WS, power-law features are found569

from 100 to 1000 km with β between 5/3 and 2, with little evidence of β close to 3 for larger570

scales. The global averaged co-spectrum for WS and Hs also showed power-law features571

from 30 km to 250 km and 250 km to 2000 km with scaling exponents equal to 1.8 and 2.4,572

respectively. The values of the coherence function lay between 0.04 and 0.13 in the whole573

spatial ranges, and the maximum occurs around at 1200 km.574

Our results showed that within each oceanic basin, the averaged Fourier power spectra575

for WS and Hs have nearly identical shapes and scaling features from 50 km to 3000 km,576

while for the scales below 50 km, the spectra for Hs show more roughness as compared to577

those at larger scales. This may indicate that complex submesoscale processes are dominant578

at these scales.579

A finer examination of the global distribution of β showed that the scaling exponents580

for WS and Hs are both meridional dependent with large values occurring in middle and581

high latitudes and small values in the tropics. For WS, the scaling exponents are smaller582

inside the convergence zones than those in the relatively steady equatorial dry zone. The583

scaling exponents in convective regions are close to 5/3. We also considered the temporal584

evolution of scaling exponents. Their seasonal variations derived from WS data showed585

small scaling exponents in summer and large ones in winter for most regions. This result is586

likely related to the strength of baroclinic disturbances in different seasons. While for Hs587

case, β are found larger in summer than those in winter in the Northern Hemisphere; in the588

tropical area of Southern Hemisphere, large β is found in winter, as for the regions further589

south than 25◦S, the seasonal variations are unclear.590

Globally these results show that some scaling properties may be obtained when con-591

sidering all the data together, some universal properties are found when considering the592

averages in some subsamples, such as the basin scale study, especially for the wind field593

when a very clear k−2 range was found over 2 decades in scale. The variability of the field594

considered, and hence their spectral properties, vary in time and in space and some ade-595

quate spatial or temporal domain must be chosen to find evolution, universality, patterns596

and identify hidden processes. This is what has been done in this work, either by looking at597

the basin scale, the local spatial patterns, the latitude averages in one ocean, or the seasonal598

changes in some spatial patterns.599

In this work, some basic scaling features of WS and Hs collected by CFOSAT have600

been derived by spectral analysis. For further works, we plan to characterize also the601

intermittency in these scaling ranges, by considering structure functions, joint structure602
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functions and also Hilbert spectral analysis (HSA) of higher orders, which are shown not to603

be strongly impacted by energetic forcing (Huang et al., 2008, 2011; Schmitt & Huang, 2016).604

Also, the information provided by one satellite with a single scaling analysis approach is not605

enough to further diagnose the multiscale dynamical features of WS and Hs. Studies of WS606

and Hs data from other satellites or in-situ observations with other compensatory scaling607

analysis methods are needed. Finally, it is planned also to focus more on the dynamical608

relationships between WS and Hs.609
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Appendix A CFOSAT Orbits625

In the main text, we mentioned that the CFOSAT provides a global coverage every626

roughly 3 days for both the wind field and waves. The CFOSAT orbit is fixed: it cannot627

provide a 24-hour observation for the same region, see Figure A1.628
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Appendix B Effect of outliers on β629

Here, we present the effect of outliers on the slope of spectra, by subtracting the mea-630

sured β with raw data from the ones estimated with data after quality control (QC). The631

results are illustrated in Figure B1. There are clear spatial variations for both WS and Hs.632

For WS, the existence of abnormal values leads to flatter spectra in tropical areas (except in633

ITCZ). While for the other higher latitudes, the outliers make the spectra relatively steep as634

compared to the ones measured with the data after QC. The differences are all in between635

-0.2 to 0.2. For Hs, the influence of outliers is mainly found along the coastal and equatorial636

regions, where the slopes of the spectra are greatly reduced. For the other regions (open637

oceans), SWIM performs well in Hs observation, since there are relatively small estimation638

errors. Thus, the differences of β in the open oceans are close to 0 for most regions.639

Figure B1. The global distribution of ∆β = βQ−βR, where βQ and βR are the scaling exponents

estimated with data after QC and raw data, respectively. For (a) WS in the wavelength band of

100-1000 km, and (b) Hs in the wavelength band of 10-1000 km.
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Appendix C Code for Quality Control640

Matlab version codes to perform the quality control is provided below, see Figure C1.641

Both Matlab and Python codes are also freely available at: https://github.com/lanlankai.642

Here is the Matlab code used to remove the outliers in Hs dataset.

re_out.m
% This function is used to remove Hs outlies based on Hampel identifiler
% x means the raw data
% k means the window half-width
1 function x2=re_out(x,k)
2 [x2,j]=hampel(x,k);
3 x2(j)=nan;
4 lx=length(x);
5 iLo=[1:lx]-k;
6 iHi=[1:lx]+k;
7 iLo(iLo<=0)=1;
8 iHi(iHi>=lx)=lx;
9 xra=zeros(lx,1)*nan;
10 for i = 1 : lx
11 w=x(iLo(i):iHi(i));
12 ind=find(isnan(w)==1);
13 xra(i)=length(ind)/length(w);
14 end
15 ind=find(xra>0.9);
16 x2(ind)=nan;
17 ind2=find(x<0.1);
18 x2(ind2)=nan;
19 end

call MATLAB function hample.m

set outliers as NaN

set windows for further filtering

filtering out the values smaller than 0.1 

filtering out the data in the window with 
missing data ration larger than 90%

record the missing data ration of each window

Figure C1. A Matlab code to remove the outliers.
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Appendix D Code for the Wiener-Khinchine Theorem Preserved Fourier643

Power Spectrum644

Matlab version codes to estimate the Fourier power spectrum via the Wiener-Khinchine645

Theorem (WKT) for both 1D and 2D cases are provided below, see Figure D1, D2 and D3.646

Both Matlab and Python codes are also freely available at: https://github.com/lanlankai.647
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Matlab version codes to estimate the autocorrelation function for both 1D and 2D data via 
Wiener-Kinchin theorem (WKT). The missing data is replaced by NaN.

fastacf1D.m
%This code is used to estimate the autocorrelation function for 1D data, where the missing 
data is replaced by the NaN.
% x means the input data
1 function c=fastacf1D(x)
2 x=x-nanmean(x);
3 Nx=length(x);
4 y=ones(size(x));
5 xi=find(isnan(x)==1);
6 x(xi)=0;
7 y(xi)=0;
8 xf=rfft(x, 2.^(ceil(log2(2*Nx-1))));
9 c1=irfft(abs(xf).^2);
10 c1=real(c1);
11 xf=rfft(y,L);
12 c2=irfft(abs(xf).^2);
13 c2=real(c2);
14 c2=fix(c2);
15 c2(c2==0)=1;
16 c3=zeros(size(c1));
17 c3(1:Nx)=Nx:-1:1;
18 c3(end-Nx+1:end)=c3(Nx:-1:1);
19 c=c1./c2.*c3;
20 end

fastacf2D.m
%This code is used to estimate the autocorrelation function for 2D data via the WKT. The 
missing data is replaced by NaN.
%x means the input data
1 function c=fastacf2D(x)
2 x=x-nanmean(x(:));
3 ind=find(isnan(x)==1);
4 x(ind)=0;
5 [M,N]=size(x);
6 y=ones(size(x));
7 y_new=y;
8 y(ind)=0;
9 X = fft2(x,2^nextpow2(2*M-1),2^nextpow2(2*N-1));
10 c1 = ifft2(abs(X).^2);
11 c1(M-1:end-M+2,N-1:end-N+2)=0;
12 X = fft2(y,2^nextpow2(2*M-1),2^nextpow2(2*N-1));
13 c2 = ifft2(abs(X).^2);
14 c2=real(c2);
15 c2=fix(c2);
16 c2(c2==0)=1;
17 X = fft2(y_new,2^nextpow2(2*M-1),2^nextpow2(2*N-1));
18 c3 = ifft2(abs(X).^2);
19 c3=real(c3);
20 c3=fix(c3);
21 c=c1./c2.*c3;
22 end

autocorrelation function via WKT 
with zero-padding

set a counter for further use

find the index of NaN

remove mean value from x

autocorrelation function with missing data correction

remove mean value from x

find the index of NaN

replace NaN by zeros

autocorrelation function with missing data correction

number of pair of valid sample

number of pair if there is no missing data

set a counter for further use

number of pair of valid sample

number of pair if there 
is no missing data

autocorrelation function via WKT 
with zero-padding

replace NaN by zeros

Figure D1. A Matlab code to estimate the auto-correlation function in both 1D and 2D with

the missing data correction.
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This code is used to estimate the Fourier power spectrum via the autocorrelation function 
for 1D case

acf2psd1D.m
%x means the 1D autocorrelation function
%fs is the sampling frequency
% pd  is the estimated power spectrum
% f is the frequency
% bpd is the bin averaged power spectrum in a logarithmic scale
% bin is the corresponding bin
1 function [pd,f,bpd,bin]=acf2psd1D(x,fs)
2 if nargin==1
3 fs=1;
4 end
5 pd=abs(real(ifft(x)));
6 M=length(x);
7 pd=pd(2:fix(M/2));
8 f=[2:fix(M/2)]/M;
9 bpd0=binaverageM(f,pd,20);
10 xi=find(isnan(bpd0.d)==0);
11 bpd=bpd0.d(xi);
12 bin=bpd0.bb(xi);
13 f=f*fs;
14 bin=bin*fs;
15 end

binaverageM.m
%bin average in a logarithmic scale with bq bins each decade
1 function bpd=binaverageM(x,y,bq)
2 if nargin~=3
3 error('Three inputs are required’);
4 end
5 dx=1/bq;
6 bin=-dx+log10(min(x)):dx:log10(max(x))+dx; 
7 NB=length(bin);
8 bb=zeros(1,NB-1)*nan;
9 bd=zeros(1,NB-1)*nan;
10 x1=log10(x);
11 for i=1:NB-1
12 xi=find(x>bin(i) & x<bin(i+1));
13 if isempty(xi)==0
14 bd(i)=nanmean(y(xi));
15 bb(i)=nanmean(x1(xi));
16 end
17 end
18 bpd.d=bd;
19 bpd.bb=bb;
20 end

sampling frequency

frequency or wavenumber

logarithm of frequency or wavenumber 

FPS  via WKT, only half of the 
spectrum is needed

bin average of the spectrum with 20 points each bin

prepare output: the bin without 
value is excluded

prepare the bin in a logarithmic scale

loop for the bin average 

prepare output

Figure D2. A Matlab code to estimate the 1D Fourier power spectrum and to perform a bin

average in a log-scale.
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This code is used to estimate the Fourier power spectrum via the autocorrelation function 
for 2D case

acf2psd2D.m
%x means the 2D correlation function
%fs is the sampling frequency
% pd  is the estimated 2D power spectrum
%pdr is the estimated radially averaged power spectrum
% f is the frequency
% bpd is the bin averaged power spectrum in a logarithmic scale
% bin is the corresponding bin
1 function [pd,pdr,f,bpd,bin]=acf2psd2D(x,fs)
2 if nargin==1
3 fs=1;
4 end
5 pd=abs(real(ifft2(x)));
6 pd=fftshift(pd);
7 [M,N]=size(x);
8 pdr = zeros(1, ceil(sqrt((M/2)^2+(N/2)^2)));
9 co = pdr;
10 midx = M/2 + 1;
11 midy = N/2 + 1; 
12 for i = 1 : M
13 for j = 1 : N
14 dr = round(sqrt((j - midy)^2 + (i - midx)^2));
15 if dr == 0
16 continue;
17 end
18 pdr(dr) = pdr(dr) + pd(j, i);
19 co(dr) = co(dr) + 1;
20 end
21 end
22 co(co==0)=1
23 pdr = pdr ./ co;
24 pdr=pdr(2:end-1);
25 f=2:length(pdr)+1;
26 f=f/length(pdr)/2;
27 bpd0=binaverageM(f,pdr,20);
28 xi=find(isnan(bpd0.d)==0);
29 bpd=bpd0.d(xi);
30 bin=bpd0.bb(xi);
31 f=f*fs;
32 bin=bin*fs;
33 end

sampling frequency

bin averaged FPS

2D FPS  via WKT

prepare for radially averaged FPS

loop for radially averaged FPS

1D radially averaged FPS

prepare frequency or wavenumber

prepare output

Figure D3. A Matlab code to estimate the 2D Fourier power spectrum and to perform a radially

average.
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