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Abstract: Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the
correspondence between predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We
present equations for assessing prediction error in direct and indirect responses to selection that integrate uncertainty in genetic
parameters used for prediction and sampling effects during selection. Using these, we analyzed a selection experiment on floral
traits replicated in two taxa of the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were
obtained from a diallel breeding design. After four episodes of bidirectional selection, direct and indirect responses remained
within wide prediction intervals, but appeared different from the predictions. Combined analyses with structural-equation
models confirmed that responses were asymmetrical and lower than predicted in both species. We show that genetic drift is
likely to be a dominant source of uncertainty in typically-dimensioned selection experiments in plants and a major obstacle to
predict short-term evolutionary trajectories.

Key words: G-matrix, Lande equation, breeder’s equation, evolvability, indirect selection, genetic constraints. 

Author contributions
CP, TFH and WSA initiated the study. CP and EA collected the data. TFH did the derivation on the prediction intervals in
collaboration with ALR, GHB and CP. EA, ALR, CF, GHB and CP performed the statistical analyses. CP did the literature
search. CP, EA and TFH wrote the manuscript with contributions from all authors.

Acknowledgements
We are grateful to Grete Rakvaag and Liv Antonsen for taking care of the plants during the selection experiment. We thank
Michael B. Morrissey, three anonymous reviewers and many people at the Centre for Biodiversity Dynamics (NTNU) for
fruitful comments on earlier versions of this paper. Elena Albertsen was supported by the Research Council of Norway through
its Centre of Excellence funding scheme, project no. 223257. We also thank the Norwegian Research Council (grant no.
196494 and 287214 to CP and 244139 to CP and ALR, and 275862 to GHB) and the US National Science Foundation (grant
nos. DEB-0444157 to T.F.H. and DEB-0444745 to W.S.A.) for financial support. CP, TFH, ALR and WSA were hosted by the
Center of Advanced Study (CAS) in Oslo during the writing of the paper.

Data archiving
All the data and scripts that were used to conduct analyses and produce the figures are deposited in the Dryad Digital
Repository: https://doi.org/10.5061/dryad.ns1rn8psz

Conflict of interest
The authors declare no conflict of interest.

2



At the core of evolutionary quantitative genetics sits the Lande equation, which predicts the mean evolutionary response of a
set of characters as the product between the selection gradient and the additive genetic variance matrix, G (Lande 1979; Lande
and Arnold 1983). Many studies have confirmed that the geometry of G influences the response to selection (e.g. Hine et al.
2014), and patterns of population and species divergence in multivariate character space are often congruent with directions of
high evolvability in G (e.g. Schluter 1996; Hansen and Houle 2008; Bolstad et al. 2014; Houle et al. 2017; McGlothlin et al.
2018; Hansen and Pélabon 2021). The realization that evolutionary changes are important at ecological time scales (Kopp and
Matuszewski 2014; Reznick et al. 2019) and the subsequent development of the eco-evolutionary dynamics (Hendry 2017)
underscore the relevance of quantitative genetics theory to microevolution beyond animaand plant breeding. The utility of
quantitative genetics to ecology and management rests on its ability to predict short-term evolution, however, and both
empirical and theoretical studies have cast doubt on whether sufficient accuracy can be expected to allow meaningful
forecasting in specific cases (e.g. Hansen et al. 2019; Shaw 2019; and see Hendry 2017, chap. 3 for a review of the
performance of the Lande equation in predicting short-term evolution in natural populations).

The breeder's equation also has somewhat mixed performance in predicting the outcome of univariate selection
experiments in the lab (Sheridan 1988; Eisen 2005; Walsh and Lynch 2018, chap. 18), and its success in predicting correlated
responses in traits under indirect selection is generally considered to be poor (e.g. Bohren et al. 1966; Rutledge et al. 1973;
Palmer and Dingle 1986; Gromko et al. 1991; Cortese et al. 2002; Roff 2007). This is a serious concern, because indirect
selection may well be the major component of selection on most traits in natural populations. The main advance brought by the
G-matrix was the ability to predict correlated responses, and if this cannot be done reliably, then inferences about genetic
constraint based on G must be poor.

Most assessments of evolutionary predictions have been qualitative, however, and when prediction uncertainties are
presented, they are usually given as estimation errors in realized heritabilities based on very simple models of the underlying
genetic architecture, and further reduced to statements about "significant" difference between predictions and observations
(e.g. Hill and Caballero 1992; Walsh and Lynch 2018, chap. 18). For correlated responses, uncertainties have almost never
been presented, and claims of poor prediction of correlated responses are based largely on qualitative assessments (e.g. Roff
2007).

There are three main sources of error in predicting evolutionary responses: i) errors due to discrepancies between the
model used for prediction and the actual evolutionary process; ii) errors made in estimating the parameters in the chosen
prediction model, and iii) errors due to inherent stochasticity in the response.

Deterministic discrepancies from simple predictive models such as the Lande or breeder's equation are unlikely to be
substantial in the first few generations, but as selection extends over more generations, the response may deviate due to a
number of issues related to details of genetic architecture, inbreeding and counteracting natural selection (Le Rouzic et al.
2011). In principle, more detailed models can be fitted to evolutionary time series to estimate parameters describing such
effects (e.g. Le Rouzic et al. 2010, 2011; Walsh and Lynch 2018, chap. 19), but this has rarely been done.

Various methods have been suggested to assess the effects of sampling error in quantitative genetic parameters on
prediction variance (Tai 1979; Knapp et al. 1989; McCulloch et al. 1996; Conner et al. 2011). Stinchcombe et al. (2014) used a
Bayesian approach and combined the Price equation with the Lande equation to estimate uncertainties of the predicted
response to a single generation of selection from the posterior distribution of the G-matrix and the selection gradients (see also
Careau et al. 2015).

As for the last source of error, few studies have assessed the effects of genetic drift on the prediction uncertainty.
Building on Prout (1962) and Hill (1971), Hill (1974) provided an estimate for the drift variance of selection lines, and
Sorenson and Kennedy (1983,1984) showed how pedigree information analyzed with mixed-effect models could be used to
incorporate these effects into the estimation of realized genetic parameters (see also Walsh and Lynch 2018, chap. 19).
Combined with a Bayesian approach, this method has been used to estimate genetic parameters when the pedigree is known,
but to our knowledge, it has not yet been implemented to estimate prediction intervals of selection responses.

In this paper, we report the results of a selection experiment on floral traits replicated in two taxa of the Dalechampia
scandens (Euphorbiaceae) species complex and use these to illustrate some difficulties in predicting multivariate selection
responses from estimated G-matrices. We present a simple pedigree-free equation to calculate the expected variance in the
discrepancy between predicted and observed responses under truncation selection that incorporates both stochasticity in the
observed response and uncertainty in the predicted response. With this we assess the relative importance of the different
sources of error in short-term selection experiments. To assess the discrepancy between the evolutionary model chosen to
make the predictions (i.e. the Lande equation) and the evolutionary process that produced the selection responses, we further
analyze the temporal dynamics of responses with structural-equation models that assume different genetic architectures.
Finally, by reviewing parameter uncertainties in breeding experiments and the design of artificial-selection studies, we show
that the large prediction uncertainties found in our experiment are not unusual for artificial-selection studies on plants.

Theory: prediction error in artificial selection
Consider a focal trait, z, which can be under direct selection with selection gradient z, or under indirect selection due to its

correlation with another trait, y, under selection with gradient y. The Lande equation (Lande 1979; Lande and Arnold 1983)

predicts the mean of the focal trait, z, in generation t as

  ,                (1)

where VA is the additive genetic variance in z, Gzy is the additive genetic covariance between z and y. Motivated by our

selection experiment with Dalechampia, we focus on the situation in which only one of the two traits is under selection,ut we
give the key equations with selection on both traits to allow general application. We assume that the G-matrix and the selection
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gradient stay constant and hence do not include time notation on these. Equation 1 gives the partial change in the mean
additive genetic value due to selection. In absence of other effects on mean phenotype (e.g. biased transmission, migration
from genetically differentiated populations, non-random mating or non-additive gene action), this change in mean genetic
value will be the expected change in mean phenotype, around which the realized mean will be distributed due to sampling
effects. Additionally, uncertainties in the estimation of genetic and selection parameters may lead to errors in the prediction
that need to be considered. To combine these uncertainties, we derive the variance of the deviation between the predicted, ,

and observed, , trait means at a given generation as:

  Var[  - ] = Var[ ] + Var[ ],              (2)

which assumes that the statistical error in the prediction is independent from stochasticity due to sampling in the observed
response. If the selection gradient is known without error and the G-matrix stays constant throughout the experiment, the
variance in the prediction after t generations is:

  ,      (3)

where , and are the sampling variances and covariance in the estimates of genetic parameters.

With selection on one trait only, this expression reduces to  for the direct response and

 for the correlated response. If all potential parents are phenotyped and their fitness known, as in our
study, uncertainty in the selection gradient is small and limited to the measurement error of the phenotype. Known changes in

the selection gradient from generation to generation can be accommodated by replacing the expressions 2t2 with

.
The variance in the observed selection response due to sampling is more complex. First note that there are two distinct

sampling effects on the mean of a quantitative trait. The first is the sampling of alleles we call genetic drift, and the second is
the "sampling" of environmental effects to form the phenotypes in the new generation. We model the latter as the sampling
variance of a mean from a normal distribution, which is Ve/N, where Ve is the environmental variance, and N is the population

size (i.e., number of offspring). In contrast to genetic drift, this component does not accumulate over time.
  In appendix 1, we derive the following equation for the variance in the per generation changes of an additive trait due
to genetic drift under truncation selection in which exactly Np parents are picked from a population of N individuals to make

exactly 2N/Np offspring each:

            (4)

where F is the average inbreeding coefficient of the population, and Var[w] is the variance in relative fitness among the
genotypes in the population. The derivation assumes two alleles per locus and infinitesimal effects so that changes in allele
frequency due to selection can be ignored. Linkage disequilibrium, dominance and epistasis are also ignored.

Two special cases can help illustrate this equation. First, if there is no selection and parents are picked at random, then
the variance in relative fitness is zero, and if also F = 0 then

  ,                (5)

which can be used to estimate the effect of genetic drift in control lines. Because the variance in relative genotypic fitness is
small for low heritabilities, this equation will also be a good approximation under selection if the heritability of the selected
trait is less than about 30% (Fig. 1). Note also that assuming N = ∞ yields the standard equation for the drift variance (Lande

1976): . Second, if there is truncation selection and the heritability in the population is unity, so that the
genotypic value equals the phenotypic value, then the variance in relative fitness of genotypes is Var[w] = (N - Np)/Np, and if F

= 0, equation 4 reduces to

  .                  (6)
 
In this case the sampling of parental genotypes is deterministic, and the only stochasticity comes from sampling alleles from
parents during mating. If the heritability is not unity, then a given genotype may or may not be picked as a parent in different
realizations due to its random environmental effect, and this will reduce the variance in relative fitness. Hence, the sampling
variance of the mean will be bounded between equations 5 and 6 and move from equation 5 towards equation 6 as heritability
of the selected trait increases (Fig. 1). In appendix 2, we outline an approximation to the variance in relative genotypic fitness
as a function of the heritability of the trait under selection that we used to make prediction intervals.
  To summarize, the expected variance of the prediction error after t generations is
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  ,    (7)

where Gzy is the additive covariance between the focal trait, z, and the trait under selection, y (which could be the focal trait

itself). The variance in fitness is a function of the heritability of the trait under selection, which is not necessarily the focal
trait. This prediction ignores the effects of selection and genetic drift on the G-matrix, which is assumed to stay constant
throughout the experiment. Ideally drift variance in the G-matrix should be added to the variance in the first term. The
prediction also ignores the effects of sampling on the realized selection gradient, which will vary stochastically in a finite
population, but this effect is not an error in the prediction from an observed selection gradient.

Materials and methods
Study species and trait measurements
Dalechampia scandens (Euphorbiaceae) is a perennial Neotropical vine with flowers arranged in pseudanthial inflorescences
(blossoms), each consisting of a male subinflorescence of 10 staminate flowers and a female subinflorescence of three
pistillate flowers (Fig. 2). The male subinflorescence also contains a gland producing a triterpenoid resin as reward for
pollinating bees that use resin in nest construction (Armbruster 1984, 1985, 1986, 1988, 1993), and the amount of resin offered
to the pollinator depends on the gland size (Armbruster 1984; Pélabon et al. 2012). In interpopulation and interspecies
comparisons, blossoms with larger resin glands tend to attract larger pollinators (Armbruster 1985, 1988). The blossom is
subtendeby two large involucral bracts, which are white or light green in the study species. Phenotypic selection studies on
several Dalechampia species and populations have shown that pollinators choose blossoms based either on the size of the
involucral bracts (the signal), or on the size of the gland (the reward), thus causing selection on these traits (Armbruster et al.
2005; Bolstad et al. 2010; Pérez-Barrales et al. 2013; Albertsen et al. 2021). Additionally, the Dalechampia blossom is an
integrated structure in which involucral-bract size is phenotypically and genetically correlated with resin-gland size
(Armbruster 1991; Hansen et al. 2003b; Armbruster et al. 2004; Pélabon et al. 2012). In this study, we performed artificial
selection on the size of the resin-producing gland and recorded the direct response in gland size and the correlated response in
bract size.

Gland size was measured as the area of the resin-secreting surface (Gland Area, GA), and bract size was measured as
the area of the upper bract (Upper Bract Area: UBA, see Fig. 2 for measurements details). Blossoms go through a series of
ontogenetic stages during which they increase in size (Armbruster 1991; Opedal et al. 2016b). To reduce ontogenetic variation
in size, we measured the blossoms on the first day of the bisexual phase, that is, when the first 1-3 male flowers were open.
Measurements of the blossoms in the two diallels, the starting generation (F0) and the first three episodes of selection were

performed by CP using 5× stereo magnifying lenses (Optivisor) and digital calipers with 0.01 mm precision. Measurements of
the last generation were done by EA using the same measuring devices. There was no evidence of systematic difference
between observers in measurements on a common subset of blossoms, and because all selected lines were measured by a
single observer at each generation, we do not expect the different observers to have affected the outcome of the study. During
the diallels and the artificial-selection experiment, plants were placed randomly on four tables in a single room in the
greenhouse of the Department of Biology, NTNU (Trondheim, Norway) and moved regularly during the measurement period
to reduce positional effects.
  Interpopulation crosses (Pélabon et al. 2004a, 2005) and molecular studies (Falahati-Anbaran et al. 2013, 2017) have
shown that D. scandens is a complex of two or more distinct, yet undescribed species. In this study, diallels and artificial-
selection experiments were performed on two populations from distinct species. Individuals from the first species are
descended from seeds collected near Tulum, Mexico (20º13’ N; 87º26’ W), and individuals from the second species are
descended from seeds collected near Tovar, Venezuela (8º21’ N; 71º46’ W).

Diallel experiment
We estimated the G-matrix for several blossom traits in the two species with two diallels completed in 1999-2000 and in
2005-2006 for Tulum and Tovar, respectively. Methods and results of these diallels are presented in Bolstad et al. (2014).
Briefly, seeds collected from different blossoms in the field were sown in the greenhouse and, upon maturity, plants were
crossed in a partial diallel design with twelve and nine 5 × 5 blocks for Tulum and Tovar, respectively. Self and reciprocal
crosses were included. Two seeds per cross were sown to produce the offspring generation (Tulum: n = 523 individuals; Tovar:
n = 419 individuals) and two blossoms per individual were measured.

Selection experiment
We conducted four episodes of selection on each species. Due to space limitation in the greenhouse, we alternated by
generation the species being grown and measured, but the up- and down-selected lines as well as the control line from a given
species were always grown simultaneously in the same room in the greenhouse with plants from the different lines placed
randomly on the tables. To form the starting populations (F0), we performed stratified sampling of 100 individuals among the

diallels blocks and families to have populations as similar as possible to the ones from which G-matrices were estimated. We
did not include the diagonal of the diallel (i.e., selfed offspring) in this sampling. For Tovar, we sampled plants directly from
the diallel experiment. For Tulum, whose diallel was completed first, all plants were selfed at the end of the diallel experiment
and preserved as seeds until the start of the selection experiment. We sampled among these seeds to form the F0 in Tulum,

grew them, and measured their blossoms at maturation. Hence, the first episode of selection on the Tulum species was
performed on selfed individuals.

This episode of selfing in the Tulum line may affect the response to selection by altering the trait mean due to
dominance and by inflating additive variance by a factor 1.5 for the first generation of selection (i.e., by 1+F, where F is the
inbreeding coefficient, Lynch and Walsh 1998; Shaw et al. 1998). We thus multiplied G by 1.5 in our prediction for the first

5



episode of selection in Tulum. We did not correct for dominance effects on the mean, however, because previous experiments
with this species have shown little evidence of either dominance variance (Hansen et al. 2003b) or inbreeding effects (Pélabon
et al. 2004b; Opedal et al. 2015).

We performed direct selection to increase or decrease the area of the resin-producing gland. We started the experiment
by measuring gland and bract area on four blossoms per individual in the 100 individuals forming the F0 and chose the 16

individuals with the smallest or largest mean gland area to produce the first generation of the down- and up-selected lines,
respectively. Within each line, 64 new families were produced by pollinating each of the 16 individuals with pollen from four
other individuals among the 16 selected. Each idividual thus contributed equally to the next generation, four times as sire and
four times as dam. Reciprocal crosses were avoided so that none of the 64 families shared more than one parent. Details of the
crossing method and seed collection are presented in Pélabon et al. (2015). We kept track of the pedigree and never crossed
individuals with a coefficient of relatedness higher than 0.10 to reduce inbreeding.

We sowed two or three seeds from each of the 64 families and kept one individual per family to form the F1 generation.

We then measured three blossoms per individual and selected the 16 (25%) most extreme individuals to produce the next
generation. Selection gradients were calculated at each generation as the selection differential (mean of the selected individuals
minus the mean of the population before selection) divided by the phenotypic variance of the line in that generation. From the
F1 generation and onwards, we maintained a population size of 64 individuals, and selected 16 of them. In practice, we kept

the 20 most extreme individuals at each generation to replace individuals with poor blossom production to assure a total of 16
reproducing individuals. The number of individuals measured in each selected line at each generation varied slightly due to
occasional failures to flower (Supplement S1 and S2).

For each species we generated a control line from random crosses among individuals of the F0 to assess phenotypic

changes due to uncontrolled variation in the greenhouse environment. At each generation, several individuals from these
control lines were grown simultaneously with the selected lines and randomly crossed while avoiding selfing to provide seeds
for the next generation. For logistical reasons, the size of these control lines varied each generation (Appendix S1 and S2) and
we were unable to measure them at the third generation (F3).

The phenotypic values observed in the last generation (F4) were unusual, particularly for bract size in the Tulum

population (Appendix S3). This was most likely due to unusual conditions in the greenhouse. We thus regrew the last
generation from seeds from the same crosses and measured it anew for both species. This second set of measurements
provided qualitatively similar results as the first set regarding the differences between the up- and down-selected lines, but
thphenotypic values were closer to the expected ones (see results). Therefore, we used this second set of measurements for the
last generation in the analyses that follow.

Statistical analyses
Genetic parameters from the diallel experiment – The analyses of the two diallels are presented in Bolstad et al. (2014). For
each species, we estimated the additive genetic variances and covariance for gland area and bract area together with their
credible intervals. Using the R package MCMCglmm (Hadfield 2010) we fitted the following model:

zijk = i,+ aij + bij + dik + sijk + qijk,

where z is the trait value, the trait mean, a the breeding value, b the non-genetic plant effect, d, is the measurement date, s
the number of male flowers open when the blossom was measured (1, 2 or 3), and q the within-plant residual effect. The
subscripts i, j and k represent the trait, plant and blossom, respectively. We accounted for temporal variation in the greenhouse
environment by including measurement date d as a random factor. The random effects are assumed to be distributed as a~N(0,
G ⊗ A), b~N(0, B ⊗ I), d~N(0, F ⊗ I) and q~N(0, E ⊗ I), where A is the relatedness matrix, I is the identity matrix and ⊗ is
the Kronecker product. The model estimates the additive genetic variance matrix G, the among-plant environmental variance
matrix B, the among-date variance matrix F, and the residual variance matrix E. The elements of the relatedness matrix are
twice the coancestry coefficients of the corresponding relatives. The relevant coancestry coefficients are 1/2 for selfed full sibs,
1/4 for full sibs, and 1/8 for half sibs. As priors for the Bayesian mixed models (MCMCglmm), we used zero-mean normal

distributions with very large variances (108) for the fixed effects, half-Cauchy distributions with scale parameter 20 for the
variance components, and inverse-Wishart distributions for the residual variance matrices. These models ran for 1 100 000
iterations, with a burn-in phase of 100 000, and a thinning interval of 1 000. Data were natural-log-transformed before
analyses, so that evolutionary changes in the two traits could be interpreted as proportional changes and genetic variances as
mean-scaled evolvabilities in the sense of Hansen et al. (2003a, 2011).
  While the relatedness matrix accounts for known relatedness generated by the crosses in the diallel, it assumes that
seeds collected in the wild are not inbred. This is problematic because D. scandens is self-compatible and can readily produce
seeds by autogamy in absence of pollinators (Opedal et al. 2015, 2016a). Crosses among plants in the diallel experiment will
remove this source of inbreeding, but within-plant crosses (diagonal of the diallel) may produce individuals with coefficients
of coancestry larger than 0.5 and may upwardly bias the estimation of G. In absence of information about the level of
inbreeding in each population, it is difficult to compute the element of the relatedness matrix. We therefore assessed the effect
of parental inbreeding by analyzing the data from the two diallels with and without the selfed crosses. Except for a 40%
reduction in the genetic variance of gland area in the Tulum population, the effects of removing selfed offspring were minor
(Table S4 and Fig. S5). Because parental inbreeding would predict a proportional decrease of all elements in G, and because
there was no effect in the Tovar population, which was a priori more likely to be inbred in view of its small herkogamy
(Opedal et al. 2015, 2016a), it is unlikely that the observed differences are generated by inbreeding. We therefore used G
estimated from the whole data set to calculate the predicted responses to selection and their intervals.
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Comparing observed and predicted response to selection – We compared the observed responses to selection with the
predictions from the multivariate Lande equation (Eq. 1) with genetic variances and covariances estimated from the two

diallels. We constructed 95% prediction intervals from the variance in equation 7 by assuming that  is normally
distributed with mean zero. This is an approximation because the estimation errors of the elements in G are not normally
distributed. We assumed no inbreeding (i.e., F = 0) in Tovar, and in Tulum, we multiplied G by 1.5 in the F0 to account for

the episode of selfing between the estimation of G and the start of the selection. Because crosses among selected parents
avoided crosses among relatives, we further assumed no inbreeding from the F1 and onward.

To control for variation in the greenhouse environment across generations, we centered the response to selection on the
mean of the up- and down-selected lines or we corrected the responses for changes in the control line. In the former case, the
responses of the up- and down-selected lines are forced to be symmetrical. This approach also assumes that environmental
effects are identical in the up- and down-selected lines. Correcting for changes in the control line avoids these assumptions but
yields less precise predictions due to the estimation error in the control mean.

Analyzing the temporal dynamics of the responses to selection – In a second set of analyses, we used the R package SRA
(Selection Response Analysis; Le Rouzic et al. 2011) to estimate the realized genetic parameters from the observed response to
selection. The SRA package fits deterministic population-genetics models with different genetic architectures (e.g. epistasis,
linkage disequilibrium, or finite number of loci) to time series of selection responses (Le Rouzic et al. 2010, 2011, Le Rouzic
2014). These analyses therefore assess the influence of discrepancies between the model chosen to make the predictions
(Lande equation) and the evolutionary processes that generated the selection responses. The code was modified to include two
traits, one selectedspan style="font-family:'Times New Roman'"> and one correlated, and to estimate the genetic
covariance between them (Supplement S6). The model estimates the realized additive genetic variance of the selected trait, VA,

and covariance, Gzy, with the correlated trait, as well as the environmental variances Ez and Ey. It is not possible to estimate the

realized additive genetic variance for the correlated trait because direct selection on this trait is assumed to be zero. The full
dataset needed to fit the time-series model included for each generation, the sample size, the phenotypic means for both traits
before and after selection, and their associated phenotypic variances (supplement S1 and S2).

Although often assumed to be constant over a few episodes of selection, G may change due to allele-frequency
changes, directional epistasis, and changes in linkage disequilibrium (the Bulmer effect; Bulmer 1971). We compared models
fitted with or without a Bulmer effect, but due to the limited number of generations, we could not fit more complex models
including epistasis or major-effect loci. We also tested for the occurrence of asymmetry in the response to selection (e.g.
Bohren et al. 1966; Frankham 1990; Bell 2008, Walsh and Lynch 2018 chap. 18) by allowing variances to differ in the two
selected directions with and without correcting for changes in the control line.

At each generation, we calculated the phenotypic correlation and the slope of the regression of log(UBA) on log(GA)
using mixed-effect models with plant identity as random effect. All statistical analyses were performed with R 4.0.2 (R core
team, 2020).

Results
Genetic variation and evolvability
The G-matrices estimated from the two diallels are presented in Table 1. Because we conducted analyses on natural-log-
transformed data, the additive genetic variances can be interpreted as mean-scaled evolvabilities sensu Hansen et al. (2003b,
2011). Theunconditional evolvabilities of gland and bract area were 1.05% and 1.41% in Tovar and 0.73% and 0.84% in
Tulum. These are moderately high evolvabilities for morphological traits (Hansen and Pélabon 2021). The genetic covariances
between the two traits were 0.57 in Tovar and 0.49 in Tulum, which should generate robust correlated responses to selection.
The correlations are not strong enough to constitute a major constraint on evolution, however, because conditioning traits on
each other, sensu Hansen et al. (2003a), would only reduce their evolvabilities by 22% in Tovar and 40% in Tulum.

Direct response to selection
Gland area responded to selection in both species, but the response diminished after the second generation (Fig. 3 and 4,
Supplement S3), and despite a good fit in the first generation, responses after four episodes of selection were nearly half the
prediction for the Tovar lines and 30% lower for the Tulum lines. Still, observed responses remained within the 95% prediction
intervals, although barely so for Tovar. Thus, if we neglect the temporal dynamics of the response, the discrepancies could be
explained by a combination of sampling stochasticity in the response and uncertainty in the prediction due to estimation error
in the additive genetic variance (Table 2). For the mean-centered responses (Fig. 3), 60 to 70% of the prediction error variance
was due to sampling effects in the first generation, but by the last generation this has shifted to almost 80% being due to
estimation error in the additive variance. For the control-corrected responses (Fig. 4), the contribution of the sampling effects
was larger and remained above 50% of the total error variance even after four episodes of selection (Table 2).

The realized evolvabilities estimated from the selection response analysis were smaller than the evolvabilities estimated
from the diallels (Table 3). Including a Bulmer effect improved the fit for the Tovar data, but had little impact on the estimated
evolvabilities. When corrected for changes in the control lines, the direct responses in gland area were asymmetrical, with a
larger decrease for both species (Table 3).

Correlated response to selection
The correlated responses of bract area differed between the two species. In Tovar, the correlated responses paralleled the direct
responses by matching the prediction in the first generation before diminishing in the following generations. In Tulum, the
correlated responses were smaller than predicted already after the first episode of selection and were practically absent in the
following generations (Fig. 3 and 4). Nevertheless, even the weak response in Tulum remained within the prediction intervals,
which were large relative to the predicted response. This was particularly striking for the control-corrected responses for which
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the error intervals always included zero response (Fig. 4). Accordingly, realized additive genetic covariances estimated from
the selection-response analysis were smaller than the covariances estimated from the diallels, especially in Tulum (Table 3).

Neither the among-individual phenotypic correlations nor the slopes of the regression of bract area on gland area
estimated within each line at each generation changed markedly during the experiment (Table 4).

Discussion
Discrepancies between observed and predicted responses to selection have been attributed either to imprecise estimation of
genetic parameters (Sheridan 1988; Eisen 2005; Roff 2007) or to changes in G during selection (Hill and Caballero1992; Roff
2007). Few studies have considered the impact of genetic drift on the responses to selection, however. This is not because the
importance of drift has gone unrecognized (e.g. Falconer 1973; Nicholas 1980; Walsh & Lynch 2018), or due to a lack of
methods for assessing its effects (Hill 1974; Sorensen & Kennedy 1983, 1984), but it may be due to the relative inaccessibility
of these methods and the lack of a common framework to account for the different sources of uncertainty. We have presented a
simple equation for the error variance due to the combined effects of genetic drift and uncertainty in genetic parameters. Our
equation is still limited to truncation selection and does not incorporate changes in genetic parameters due to selection or drift,
but it can still be used for a priori pedigree-independent assessment of uncertainty in predicting short-term responses to
selection. When applied to our own selection experiment, this method showed how sampling effects may dominate the
uncertainty during early generations, making it difficult to predict selection responses over few generations, especially for
correlated traits.

Our treatment of genetic drift differs in many aspects from that of Hill (1971, 1974). First, we have based our sampling
on alleles while Hill sampled breeding values. Hill further assumed a normal distribution of breeding values and environmental
effects, while we did not make distributional assumptions for the breeding values. In contrast, we did assume two alleles per
locus, infinitesimal effects of alleles and no variation among selected parents in number of offspring. Second, we sampled
parents without replacement from a finite population, while Hill assumed sampling of the measured individuals from an
infinite zygote pool. This generates a difference in the equations even in the absence of selection. The treatment of selection is
also different. Hill (1971) and Prout (1962) considered the variance in breeding values conditionally on phenotypes and thus
neglected a component due to variation in phenotypes among selected parents. Hill (1974) did consider this but used a
different approximation from the one we used and suggested that this effect could be ignored. We have shown that the effect
of selection on the drift variance is a non-ignorable function of the genetic variance in relative fitness generated by the
selection scheme. Unfortunately, under truncation selection this variance can be given analytically only in special cases, and
we could only provide a crude approximation for the general case. We also reiterate that we have not included the effects of
either drift or selection on the G-matrix.

In the additive infinitesimal model, genetic drift will generate a pattern equivalent to Brownian motions of the
population mean (Lande 1976), and the variance of the mean among independent replicate lines should increase linearly with
time (i.e., generations). Thus, if the mean selection response increases linearly with time, the relative prediction error due to
drift would decrease with the square root of time. In contrast, the prediction error due to misestimation of the quantitative
genetics parameters scales with the size of the response, which keeps the relative error constant over time. Thus, genetic drift
and environmental sampling are likely to dominate the imprecision for the first few generations, but their relative influence
will diminish with time and become less important for long-term predictions. In bidirectional selection experiments, the
contribution of the sampling effects can be further reduced by centering the responses on the grand mean of the up- and
down-selected lines at each generation. Although this method reduces sampling variance by a factor two, it treats the responses
as symmetrical, which is problematic given the ubiquity of asymmetrical response in artificial-selection experiments
(Frankham 1990; Bell 2008; Walsh and Lynch 2018; this study).

To estimate asymmetry and correct for environmental variation and inbreeding, it is customary to subtract the changes
from a control line. This method has the unfortunate consequence of increasing the imprecision of the predictions because the
uncertainty of the control line is then incorporated into the imprecision of the selected lines (Nicholas 1980, and compare Fig.
3 and 4). Additionally, the effect of genetic drift is often larger in control lines due to smaller sample sizes (e.g. Worley and
Barrett 2000; Sarkissian and Harder 2001), and because the more deterministic choice of individuals in selected lines reduces
sampling effects (compare equations 5 and 6). This problem may be mitigated by increasing the size of the control line or
maintaining replicated control lines with the same effective population sizes as the selected lines. This second method allows
assessing inbreeding depression, although inbreeding may increase faster in the selected lines (Walsh and Lynch 2018).

In our experiment, with relative errors in genetic parameters ranging from 18% to 29% and 16 selected individuals at
each generation, the expected relative errors of the direct responses were never much below 25% for any of the generations,
and always above 50% for the correlated responses. To assess the generality of these results and evaluate the typical level of
error made in comparable studies, we compiled estimates of the relative error in genetic parameters reported in quantitative
genetic studies and details of the experimental design of artificial-selection experiments performed on various non-
domesticated plant species (Supplement S7 and S8). Figure 5 presents the distribution of relative errors in evolvability
estimates for 519 traits taken from 40 quantitative genetics studies (Supplement S7). From this, we see that the median relative
error in estimates of univariate genetic parameters is 36%, which is larger than in our study. In 41 selection experiments on
plants, we found a median of 3 (mean of 3.1) episodes of selection with a median of 14 (mean of 24.1) selected parents at each
generation (Supplement S8). Hence, most selection experiments in plants are expected to be less precise than our study, and
the changes due to genetic drift are likely to match the size of the predicted selection response. This means that the combined
levels of uncertainty in a typically-dimensioned selection experiment will preclude precise testing of theory, a conclusion in
accordance with McCulloch et al. (1996).

Analyzing the temporal dynamics of our selection responses revealed that both direct and correlated responses were
smaller than predicted, and that the direct responses were asymmetric with larger changes to decrease the gland size. While
these responses individually fall within expected levels of uncertainty, their similarity in the two species suggests some
violation of the assumptions of the Lande equation. We did find evidence for a Bulmer effect, that is, a decrease in additive

8



variance due to linkage disequilibrium generated by selection, but this explained less than 10% of the difference between
estimated and realized evolvabilities (Table 3).

Directional epistasis (i.e. when allele substitutions that increase a trait systematically increase or decrease effects of
allele substitutions at other loci; Hansen and Wagner 2001) could explain the asymmetrical responses by increasing genetic
variance in one direction and decreasing it in the other (Carter et al. 2005; Hansen et al. 2006; Pavlicev et al. 2010; Morrissey
2015). It would require strong epistasis to explain changes of this magnitude over so few generations, however, and more
complex patterns of epistasis would be necessary to explain why the response is less than predicted in both directions of
selection.

Other mechanisms such as natural selection counteracting the production of exaggerated traits or inbreeding depression
could also generate asymmetrical responses (Frankham 1990; Walsh and Lynch 2018 chap. 18 for reviews). Inbreeding
depression is unlikely to explain these patterns because we found no effects of selfing on blossom traits in these two species
(Hansen et al. 2003a, Pélabon et al. 2004, Opedal et al. 2015). Similarly, it is unlikely that natural selection would counteract a
change in gland size in a greenhouse environment. Alternatively, an asymmetrical response could be generated by changes in
the frequency of rare alleles with large effect (e.g. Frankham and Nurthen 1981; Kelly 2008). Stabilizing selection in natural
populations may generate negative relationship between allele frequency and effect size (Zhang and Hill 2005), but the
asymmetry in the response observed here would imply a bias towards low frequency of alleles that decrease gland size.
Although this could result from sustained directional selection to increase gland size, this scenario is not supported by
observations of pollinator-mediated selection on gland area in several populations of D. scandens (Pérez-Barrales et al. 2013;
Albertsen et al. 2021). Finally, we note that the asymmetry is more pronounced on an arithmetic scale and is thus not restricted
to the log-scale we used.

The decrease of the correlated response of bract area observed in the Tulum population is also difficult to explain,
because the underlying mechanism must change the additive genetic covariance of the traits more than it changes the additive
variance in the selected trait. This is particularly puzzling in the light of our observation of little change in the phenotypic
covariance.

Finally, the lower than expected response to selection may have resulted from an overestimation of additive genetic
variance in the breeding experiments. Two possible causes of overestimation are epistatic variation and inbreeding among the
parents used in the diallels. Neither of these mechanisms can explain the decline in the response only after the first generation,
however. Furthermore, the similarity in the G matrices estimated with or without the contribution of selfed individuals
does not support the inbreeding hypothesis in the Tovar population, which was the one with the largest reduction of the
observed responses.

Artificial selection has been instrumental in the development of the evolutionary theory from Darwin and onward (Robertson
1966; Wright 1977, Hill and Caballero 1992; Bell 2008), and still provides valuable insights on the evolvability of quantitative
traits (e.g. Beldade et al. 2002; Carlborg et al. 2006; Le Rouzic et al 2008; Pavlicev et al. 2010; Carter and Houle 2011; Hine et
al. 2011; Bolstad et al. 2015; Sztepanacz and Blows 2017; Morgan et al. 2020). The lack of consideration of uncertainty in this
type of experiments, however, has limited our ability to infer underlying genetic architecture from the discrepancies between
observed and predicted responses. Despite the Lande equation being 40 years old, models that explicitly incorporate estimation
of uncertainties in the prediction of evolutionary changes or allow analysis and interpretation of the selection-response
dynamics in terms of genetic architecture are only starting to be developed (Le Rouzic et al. 2010, 2011; Stinchcombe et al.
2014). We argue that, with such models, a better and more systematic quantification of the imprecision associated with genetic
parameters and their predictions will help us to better understand the limitations of the current approaches, and design
experiments that will bring progress in understanding multivariate evolution. This should also hlp us in assessing predictability
in eco-evolutionary dynamics.
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Appendix 1: Drift variance under truncation selection
In this appendix we derive equation 4 in the main text for the sampling variance in the mean breeding value of a quantitative
trait after one generation of selection. We assume that exactly Np parents are picked from a population of N individuals and
then mated deterministically such that each parent produces exactly 2N/Np offspring.
  Let the phenotype of an offspring, i, be zi = gi + ei, where gi is the breeding value and ei an environmental effect with

mean zero and variance Ve. Let  be the mean breeding value among the N offspring. To compute the variance in 
due to sampling we first write
 
  ,
 
where |P denotes conditioning on the Np parents of the offspring. To simplify the computation, we now consider a single locus
with two alleles, B and b, with frequencies p and q, and genotypic effects 2a, a, 0 for BB, Bb and bb, respectively. Assuming
additivity and linkage equilibrium, the total genetic sampling variance will be the sum of the contribution from each locus. For
each locus we have
 
  ,

  ,
 
where p' and H' are the allele frequency and the heterozygosity among the parents. The first equation follows because each
parent contributes exactly 2N/Np alleles to the offspring's total of 2N alleles, and each of the 2Np' B-alleles contribute an effect
a. To derive the second equation, note that every homozygous parent always contributes the same allele type to the offspring
and thus no sampling variance. An heterozygote parent will contribute a variance of a2/4. There are H'Np heterozygote parents,
each being the parent of 2N/Np alleles, so we get
 

 
This is the variance due to random sampling of alleles from individual parents during mating. Putting the two equations
together we get
 

  .
 
We now need to compute E[H'] and Var[p'] over samples of parents. We start with the case of no selection, as in our control
lines. Here, parents are picked at random without replacement. The joint distribution of the numbers of BB homozygotes and
Bb heterozygotes in the sample is multivariate hypergeometric with moments
 
  E[N'BB] = NppBB,
  E[N'Bb] = NppBb,
  Var[N'BB] = NppBB(1-pBB)(N - Np)/(N - 1),
  Var[N'Bb] = NppBb(1-pBb)(N - Np)/(N - 1),
  Cov[N'BB, N'Bb] = - NppBBpBb(N - Np)/(N - 1),
 
where pBB and pBb are the frequencies of the two genotypes in the population before sampling. Using these moments, and pBB =

p2 + Fpq and pBb = 2pq(1 - F), where F is the coefficient of inbreeding in the population before sampling, we derive
 
  E[p'] = p,

  Var[p'] = ,
  E[H'] = 2pq(1-F).
 
This yields
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because the additive variance contributed by the locus is VA = 2pqa2(1+F). If the population we sample from is in Hardy-

Weinberg equilibrium (i.e., F = 0), this reduces to  ≈ VA(1/Np - 1/2N).
  To compute E[H'] and Var[p'] in the case of truncation selection, we need to make some approximations. The most
important is that each locus has small effects such that we can ignore the effects of selection on the expected genotype
frequencies. Hence, we assume E[N'BB] = NppBB and E[N'Bb] = NppBb. We do, however, need to consider that individual parents
differ in their probabilities of being selected. If we take the extreme case of a population in which all variance is additive
genetic, then the probability of a given genotype being selected under truncation selection is either zero or one. This means that
if we repeat the sampling, we will always pick exactly the same parents, and then Var[p'] = 0. If there are environmental
sources of variation, then the probability of a given genotype being picked is uncertain and there will be sampling variance in
p'. To quantify this, we need to compute the probability of picking a given genotype in the presence of environmental variance.
  The number of BB individuals in the selected sample can be written as N'BB = iyi, where yi is an indicator for whether
individual i was included or not, and the sum is over all NBB individuals that could be selected. The variance of this is

 
 
The yi are each sampled without replacement, and in each of the Np sampling events this happens with a probability of wi/N,
where wi is the relative fitness of the individual genotype. From this we can derive
 

  ,

  .
 
Fitting this in yields

  ,
 
where variance and expectation are over relative fitness in the population before selection, and we have used E[w] = 1. To
obtain an approximation in terms of the variance of fitness, we use a second-order Taylor approximation of the expectations
around the mean relative fitness:
 

 
 
Fitting in, collecting terms, and ignoring some terms of lower order in 1/N yields
 

  .
 
Hence, increasing variance in relative fitness, stronger selection will reduce the sampling variance from the expectation under
random sampling. Eventually, when selection becomes deterministic, the sampling variance becomes zero. The variance in
relative fitness under deterministic truncation selection is (N - Np)/Np. Using this in our equation, we find that the sampling
variance is reduced with a factor 1/Np relative to random sampling. Provided the number of selected parents is not extremely
small, this is close to zero, and thus shows that the approximations are good even far from random sampling. Using the same
approach, we compute
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  ,
 

 
 
Using these we get
 

  .
 
If we ignore the effects of selection on inbreeding and allele-frequency change, we can use this together with E[H'] = 2pq(1-F)
to calculate
 

 
 
where we have ignored terms of lower order in 1/N and 1/Np. If the population we select from is in Hardy-Weinberg
equilibrium, this reduces to
 

  .
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Appendix 2: An approximation for the genotypic variance in fitness
While the variance in relative fitness of phenotypes under truncation selection is exactly (N - Np)/Np, what we need in the
equations is the variance of the relative fitness of genotypes. This is not easily expressed in terms of observable population
parameters. For our purpose, to make prediction intervals, we use a crude approximation based on dividing the population into
three groups, one with breeding values for the selected trait at least one environmental standard deviation above the selection
cutoff, k, one with breeding values at least one environmental standard deviation below the selection cutoff and one with
breeding values in between. The two first groups we assign fitness of one and zero, respectively. For the intermediate group we
assign fitness equal to the mean fitness (Np/N). We do this even if the fitness of a breeding value exactly at the cutoff is 1/2,
because in our situation with Np = N/4 most of the probability mass of the group will be below the cutoff. Using the mean
fitness will also make the variance in fitness converge correctly to zero when the heritability goes to zero. We assume that the
breeding values and the environmental effects of the selected trait are normally distributed. If F(g)span style="font-
family:Times"> is the cumulative normal probability function for the breeding values, we can write
 

  ,
 

where Erf[x] =  is the error function. The probability masses of the three categories are 1- , ,

and , respectively, and using these we can write
 

 
 
From the assumed normal distribution of the breeding values we have
 

  ,
 
which yields
 

  ,
 

where  is the probit function. Fitting this in we get
 

 
 
which can be computed from the heritability of the selected trait. This approximation gives the correct values of (N - Np)/Np

when h2 = 1 and zero when h2 = 0. We used this variance computed from the estimated heritability of the selected trait in
equation 7 to make prediction intervals.
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Table 1. Trait means (SD), genetic (G), environmental (E), and phenotypic (P) variance matrices for the Tovar and Tulum
populations of Dalechampia scandens estimated from the diallel experiments with the full data set (including selfed). For each
matrix, variances are reported on the diagonal, covariances above and correlations below the diagonal
along with their standard error and credible intervals (genetic; calculated with HPDinterval.mcmc with default probability
= 0.95) or confidence intervals (phenotypic) between parentheses. Means and SDs are in mm2, variances are in log(mm2) ×100.
The E variances are the sum of two variance components: the residual of the diallel model and the individual error level.
Genetic correlations are estimated from the posterior distribution of the MCMCglmm models estimating genetic variances and
covariances between GA and UBA. Sample size are 820 for Tovar and 1046 for Tulum.

Gland area (GA) Upper bract area (UBA)
Tovar mean (SD) 17.56 (3.30) mm2 385.0 (75.7) mm2

G GA 1.05 ±0.20
(0.69; 1.44)

0.57 ±0.15
(0.30; 0.87)

UBA 0.47 ±0.08
(0.30; 0.62)

1.41 ±0.20
(1.07; 1.80)

E GA 2.27 ±0.16
(1.93; 2.55)

1.14 ±0.11
(0.95; 1.35)

UBA 0.57 ±0.03
(0.51; 0.63)

1.76 ±0.12
(1.56; 2.02)

P GA 3.32 ±0.19
(2.98; 3.68)

1.72 ±0.15
(1.44; 1.99)

UBA 0.53 ±0.03
(0.47; 0.58)

3.17 ±0.19
(2.84; 3.60)

Tulum mean (SD) 20.20 (5.26) mm2 407.0 (81.9) mm2

G GA 0.73 ±0.22
(0.37; 1.16)

0.49 ±0.13
(0.23; 0.75)

UBA 0.63 ±0.11
(0.43; 0.82)

0.84 ±0.14
(0.60; 1.13)

E GA 5.63 ±0.30
(5.03; 6.20)

1.60 ±0.15
(1.29; 1.87)

UBA 0.45 ±0.03
(0.38; 0.50)

2.27 ±0.13
(2.06; 2.53)

P GA 6.36 ±0.28
(5.82; 6.91)

2.09 ±0.16
(1.78; 2.37)

UBA 0.47 ±0.03
(0.41; 0.51)

3.11 ±0.15
(2.81; 3.41)
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Table 2: Contribution of the different sources of uncertainty to the prediction intervals for data centered on the mean of the
Up- and Down-selected lines (Up-Down centered) or corrected for changes in the control line (Control corrected).
Uncertainties in 100×(log(mm2))2 are due to error in genetic parameters, G, genetic drift, D, and environmental variation, E
(see Eq. 7 for the calculation of each contribution). The total error variance is reported in the Var columns and the relative
contributions are reported in the columns %G, %D and %E, respectively. The width the of the prediction intervals in Fig. 3 and

4 are calculated as . We also give the relative error (Rel.) in the predicted response (Resp.) as
100×SE/Resp.

Trait Gen. Source of error Up-down centered Control corrected

G D E Var# %G %D %E Resp. 2SE
Rel.
err. Var$ %G %D %E 2SE

Rel.
err.

Tovar GA 0 0.0 0.0 3.6 1.8 0.0 0.0 100.0 0.00 0.03 NA 7.1 0.0 0.0 100.0 0.05 NA

1 3.8 7.8 3.6 9.4 40.0 41.1 18.9 0.11 0.06 27.2 26.4 14.3 58.7 27.0 0.10 45.6

2 15.1 15.5 3.6 24.7 61.3 31.5 7.2 0.21 0.10 23.1 53.3 28.3 58.3 13.4 0.15 34.0

3 34.0 23.3 3.6 47.4 71.7 24.6 3.8 0.30 0.14 22.7 87.7 38.8 53.1 8.1 0.19 30.9

4 60.4 31.1 3.6 77.8 77.7 20.0 2.3 0.40 0.18 22.0 129.7 46.6 47.9 5.5 0.23 28.5

UBA 0 0.0 0.0 2.8 1.4 0.0 0.0 100.0 0.00 0.02 NA 5.5 0.0 0.0 100.0 0.05 NA

1 2.2 10.6 2.8 8.9 24.8 59.7 15.5 0.06 0.06 48.0 28.9 7.6 73.3 19.1 0.11 86.6

2 8.8 21.2 2.8 20.8 42.4 51.0 6.6 0.12 0.09 38.5 56.7 15.5 74.8 9.7 0.15 63.7

3 19.8 31.8 2.8 37.0 53.4 42.9 3.7 0.17 0.12 36.5 88.8 22.3 71.5 6.2 0.19 56.6

4 35.2 42.4 2.8 57.7 60.9 36.7 2.4 0.22 0.15 34.5 125.4 28.1 67.6 4.4 0.22 50.9

Tulum GA 0 0.0 0.0 8.8 4.4 0.0 0.0 100.0 0.00 0.04 NA 17.6 0.0 0.0 100.0 0.08 NA

1 3.4 5.4 8.8 10.6 32.5 25.7 41.7 0.10 0.06 34.0 31.9 10.8 34.0 55.2 0.11 59.2

2 13.7 10.9 8.8 23.6 58.3 23.0 18.7 0.13 0.10 36.7 53.1 25.9 40.9 33.2 0.15 55.0

3 30.9 16.3 8.8 43.4 71.1 18.8 10.1 0.19 0.13 34.5 81.1 38.1 40.2 21.7 0.18 47.2

4 54.9 21.7 8.8 70.2 78.2 15.5 6.3 0.25 0.17 33.8 116.0 47.4 37.5 15.2 0.22 43.5

UBA 0 0.0 0.0 3.6 1.8 0.0 0.0 100.0 0.00 0.03 NA 7.1 0.0 0.0 100.0 0.05 NA

1 1.3 6.2 3.6 6.2 20.6 50.5 28.9 0.06 0.05 39.0 20.9 6.1 59.7 34.2 0.09 71.6

2 5.1 12.5 3.6 13.1 38.8 47.5 13.6 0.09 0.07 40.9 37.1 13.7 67.1 19.2 0.12 68.9

3 11.4 18.7 3.6 22.6 50.7 41.4 7.9 0.13 0.10 37.3 55.9 20.5 66.8 12.8 0.15 58.6

4 20.3 24.9 3.6 34.6 58.8 36.0 5.2 0.17 0.12 35.6 77.3 26.3 64.5 9.2 0.18 53.2

# Var = VA + ½ × Drift + ½ × Env.  
$ Var = VA + 2×Drift + 2×Env.
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Table 3. Estimated (diallel) and realized (artificial selection) genetic variance of gland area (GA) and covariance between
gland area and upper bract area (UBA) in the two species of D. scandens. All estimates are calculated from log-transformed
data and ×100. Estimates for the realized responses are calculated for the pooled up- and down-selected lines assuming
symmetric response, with or without Bulmer effect, or assuming different variances in the up and down lines, using the raw
data or the data corrected for the control (95% credible intervals for the estimated parameters and 95% confidence interval for
the realized values in parentheses).
Species Data Method AICc Direction Glog(GA) Glog(GA), log(UBA)

Tovar Diallel MCMCglmm 1.05 (0.69; 1.44) 0.57 (0.30; 0.87)
Up-Down centered Symmetric 359.9 0.49 (0.46; 0.52) 0.33 (0.30; 0.37)

Symmetric + Bulmer§ 352.5 0.53 (0.50; 0.57) 0.33 (0.30; 0.37)
Raw data Asymmetric 1.4 Up 0.26 (0.21; 0.32) 0.52 (0.46; 0.59)

  Down 0.72 (0.66; 0.78) 0.17 (0.11; 0.24)
Asymmetric + Bulmer 0 Up 0.27 (0.21; 0.34) 0.52 (0.45; 0.59)

Down 0.80 (0.73; 0.87) 0.17 (0.11; 0.24)
Control-corrected Symmetric 239.8 0.49 (0.46; 0.52) 0.34 (0.31; 0.37)

Symmetric + Bulmer§ 234.6 0.54 (0.50; 0.58) 0.34 (0.31; 0.37)
Asymmetric 1.6 Up 0.40 (0.34; 0.46) 0.33 (0.27; 0.40)

Down 0.58 (0.53; 0.65) 0.35 (0.29; 0.41)
Asymmetric + Bulmer 0 Up 0.44 (0.38; 0.51) 0.34 (0.27; 0.40)

Down 0.63 (0.57; 0.70) 0.35 (0.29; 0.41)
Tulum Diallel MCMCglmm 0.73 (0.37; 1.16) 0.49 (0.23; 0.75)

Up-Down centered Symmetric 462.8 0.38 (0.34; 0.42) 0.14 (0.11; 0.17)
Symmetric + Bulmer§ 462.8 0.39 (0.35; 0.43) 0.14 (0.11; 0.17)

Raw data Asymmetric 0 Up 0 (0; Inf) 0.17 (0.11; 0.19)
Down 0.84 (0.78; 0.9) 0.13 (0.07; 0.19)

Asymmetric + Bulmer 5.5 Up 0 (0; Inf) 0.17 (0.11; 0.23)
Down 0.90 (0.83; 0.97) 0.13 (0.07; 0.19)

Control-corrected Symmetric 242.0 0.38 (0.35; 0.42) 0.15 (0.11; 0.18)
Symmetric + Bulmer§ 243.0 0.40 (0.36; 0.44) 0.15 (0.11; 0.18)
Asymmetric 0 Up 0.27 (0.22; 0.34) 0.16 (0.10; 0.22)

Down 0.51 (0.45; 0.58) 0.13 (0.07; 0.20)
Asymmetric + Bulmer 1.6 Up 0.28 (0.22; 0.35) 0.16 (0.10; 0.22)

Down 0.53 (0.46; 0.61) 0.13 (0.07; 0.20)
§ The bivariate SRA models assume constant genetic covariance (see Appendix S6), therefore estimates of the genetic covariance are not affected by the
Bulmer effect.
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Table 4. Regression slope on natural-log-transformed data and phenotypic correlation (r) between gland area (GA) and upper
bract area (UBA) in the different lines at each generation.

Up-selected lines Down-selected lines Control

slope (±SE) r (95% CI) slope (±SE) r (95% CI) slope (±SE) r (95% CI)

Tovar

0 0.56 (±0.04) 0.50 (0.33; 0.63) 0.56 (±0.04) 0.50 (0.33; 0.63) 0.56 (±0.04) 0.50 (0.33; 0.63)

1 0.78 (±0.05) 0.43 (0.21; 0.61) 0.75 (±0.06) 0.44 (0.21; 0.62) 0.64 (±0.04) 0.56 (0.43; 0.67)

2 0.44 (±0.05) 0.59 (0.40; 0.73) 0.55 (±0.06) 0.46 (0.25; 0.63) 0.54 (±0.05) 0.38 (0.19; 0.54)

3 0.58 (±0.06) 0.40 (0.17; 0.59) 0.32 (±0.06) 0.31 (0.07; 0.52) NA NA

4 0.52 (±0.05) 0.50 (0.32; 0.65) 0.55 (±0.04) 0.47 (0.28; 0.63) 0.60 (±0.05) 0.56 (0.40; 0.69)

Tulum

0 0.57 (±0.04) 0.57 (0.42; 0.69) 0.57 (±0.04) 0.57 (0.42; 0.69) 0.57 (±0.04) 0.57 (0.42; 0.69)

1 0.51 (±0.06) 0.46 (0.25; 0.63) 0.55 (±0.06) 0.50 (0.30; 0.66) 0.60 (±0.04) 0.56 (0.43; 0.66)

2 0.51 (±0.06) 0.42 (0.19; 0.60) 0.36 (±0.06) 0.36 (0.12; 0.57) 0.44 (±0.05) 0.43 (0.19; 0.62)

3 0.55 (±0.07) 0.52 (0.31; 0.68) 0.41 (±0.06) 0.30 (0.05; 0.51) NA NA

4 0.37 (±0.05) 0.35 (0.14; 0.53) 0.24 (±0.04) 0.40 (0.20; 0.57) 0.40 (±0.06) 0.46 (0.18; 0.67)

1
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Figure 1. Genetic drift under truncation selection: The solid line gives the sampling variance in mean breeding value plotted
against heritability of the trait under selection based on equation 4 in the main text with approximation for variance of
genotypic fitness as given in Appendix 2. The upper dashed line gives the sampling variance under random sampling

, and the lower dashed line gives the sampling variance under deterministic sampling . The plot is
based on a population size of N = 64 and a number of selected parents of Np = 16, as in our experiment. Te additive variance is

set to VA = 1 for illustration.

Figure 2. The Dalechampia blossom and the traits analysed in this study. Gland area (GA) is the product of the average of the
left and right gland height (GHl and GHr) and the total gland width (GW), and upper bract area (UBA) is the product of the

upper bract width (UBW) and length (UBL) (Drawing by M. Carlson, Photo by E. Albertsen).

Figure 3. Observed and predicted response to selection with data centered on the generation-mean of the up- and down-
selected lines. For the two species of D. scandens the responses are shown for gland area (GA), which is the selected trait, and
bract area (UBA), which is the correlated trait. Observed responses in trait means (±2SE) are given as the dotted lines. The
predicted responses with their prediction intervals (±2SE) are represented by the black lines and shaded area. Control lines are
reported in grey with their prediction intervals in light grey.

Figure 4. Observed and predicted response to selection with responses corrected for changes in the control lines. No results are

given for the 3rd generation due to the absence of a control. See Figure 3 for definitions of symbols and shaded areas. 

Figure 5. Distribution of relative errors in evolvability for 519 estimates from 40 studies. The median is 36% excluding 38
estimates with a relative error larger than 100% (see Supplement S6 for details). The relative error in the evolvability of gland
area obtained from the diallel experiments were 18% in Tovar and 29% in Tulum.
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