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Abstract: This paper introduces a prospective study of the potential of spatio-temporal graphs
(ST-graphs) and knowledge graphs (K-graphs) for the modelling of geographical phenomena. While
the integration of time within GIS has long been a domain of major interest, alternative modelling
and data manipulation approaches derived from graph and knowledge-based principles provide
many opportunities for many application domains. We first survey graph principles and how they
have been applied to GIS and a few representative domains to date. A comprehensive analysis
of the principles behind K-graphs, respective data representation and manipulation capabilities is
discussed. The perspectives offered by a close integration of ST-graphs and K-graphs are explored.
The whole approach is illustrated and discussed in the context of maritime transportation.

Keywords: graphs; spatio-temporal; knowledge graphs; maritime transportation

1. Introduction

The past 30 years have seen a continuous search for modelling concepts and structures
oriented to a sound integration of time within GIS [1–4]. Most of these models have been
oriented to the integration, management and analysis of moving data and phenomena
in space and time with a large diversity of applications in the environmental and urban
domains [5]. Despite a series of conceptual and formal advances at all levels, there is still a
need for novel modelling mechanisms that can provide additional data representations and
analysis capabilities for moving objects and complex dynamic phenomena in space and
time [6]. Continuous advances in real-time and sensor-based technologies have favoured
the integration of large geographical data sets. However, this often leads to heterogeneous
and complex data structures, which are not always easy to manipulate [7]. This stresses
the need for novel spatio-temporal approaches adapted to the complexity of these large
emerging datasets.

Over recent years, spatial and temporal graphs have been the object of major devel-
opments in many fields, thanks to a sound theoretical framework and to computational
efficiency when applied to the analysis of the properties of large interconnected data sets [8].
Knowledge graphs (K-graphs) [9] offer a recent and promising paradigm that has emerged
in the field of Semantic Web technologies. This approach promotes a graph-based data
model that is both human and machine-readable and thus interoperable and dedicated
to a semantically enriched knowledge representation by means of ontologies that offer a
formal, and generally consensual, specification of the conceptualisation of a given domain.

A spatio-temporal graph (ST-graph) not only supports the representation of enti-
ties but also changes, events and processes. Connections between all these instances are
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specifically represented as nodes and edges, thus generating large network structures
whose properties can be then analysed at different local to global levels, using specific
graph operators and analytics. Moreover, graphs offer specific algorithms for browsing
through the structural properties and relationships that characterise a given phenomenon
(e.g., data inference [10] and knowledge extraction [11]). Last but not least, additional
graph visualisation capabilities favour the observation of patterns and outliers from large
evolving network structures [12,13]. Figure 1 illustrates the respective representation and
computational principles behind spatio-temporal graphs and knowledge graphs. Differ-
ences in terms of data sources and application capabilities are highlighted, with these
clearly showing a potential avenue for complementary approaches that not only are likely
to provide extended heterogeneous data source integration but also a wider range of data
analysis and visualisation capabilities and much more potential in terms of application
domains.

Figure 1. ST-graph vs. K-graph frameworks.

Despite the intuitive properties and computational efficiency of graph-based models,
a series of modelling issues are still pending. First, at the primitive levels, graphs can be
applied using different principles. While nodes and edges are basic modelling structures,
they might generate different types of graphs (e.g., connectivity graphs, bi-graphs, dual
graphs, K-graphs and colored graphs), with these constraining the range of patterns that
can be explored. Next, the integration of the temporal, spatial and semantic dimensions
brings a series of conceptual issues that must be deal with; this is a common research
issue when applying a general theory or computational technique to the field of GIS, not
mentioning the problem of scale and abstraction levels. Third, the range of graph operators,
graph analytics and algorithms that can be applied is relatively large, and so there is a need
to have a clear picture of the current capabilities offered at the user level.

This paper reviews the formal and modelling principles behind ST-graphs and K-
graphs. Their capabilities are described from the integration and representation of large
and heterogeneous semantic data sources (e.g., RDF vocabularies to Web and social me-
dia contents) to the data manipulation and visualisation levels (Figure 1). The range of
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applications is relatively large and is discussed in the specific context of maritime infor-
mation systems that illustrate how structural, temporal and semantics properties might
be manipulated and analysed. This should favour a better understanding of the patterns
and trends that emerge at the regional and global levels [14]. We finally introduce a few
methodological directions for the methodological integration of ST-graphs and K-graphs.

The remainder of the paper is organised as follows: Section 2 introduces the main
principles behind the representation of graphs, spatial, ST-graphs and K-graphs. Section 3
develops a few principles behind the representation of K-graphs, while Section 4 presents
a few successful application of ST-graphs to the geographical and maritime domains.
Section 5 provides methodological pathways for a modelling integration of ST-graphs and
K-graphs. Finally, the conclusion summarizes the paper and outlines a few directions for
further work.

2. Graphs

Graph models and structures have long been recognised as valuable means to rep-
resent many real-world applications that embed network structures. Graph principles
provide valuable abstractions and mechanisms to represent and analyse many complex
systems. This section introduces a brief survey of the principles behind graph structures,
with a specific focus on the spatial and temporal dimensions.

2.1. Structural Graphs

Graphs have long been studied for the representation of many phenomena in different
fields and disciplines. Graphs embed different structural properties that characterise a
given phenomena but also provide additional opportunities to study emerging patterns at
the local and global levels using either graph operators or graph analytics. The structure of
a graph is relatively straightforward to represent as it is made of a finite set of nodes that
form either undirected or directed sets of edges. These edges and nodes can be valued to
denote additional semantics, thus extending the range of data manipulations.

Amongst the many successful applications of graph properties, the study of the re-
lationship between the structure and function of urban spaces has been a major example
of successful development. This has been the scope of space syntax studies, whose objec-
tives are to empirically explore the relationships between the structure and function of a
given urban space representing an urban network environment as a spatial graph [15]. By
analysing urban network properties using local and global metrics, graph-based measures
can reveal network structures, clusters and connected and disconnected areas in the city,
thus providing useful insights for urban planners and decision-makers [15]. Indeed, as GIS
already supports network structures, close integration between GISs and graph manipula-
tion principles, as required by space syntax studies, have been widely facilitated, with this
being one of the main reasons behind the fast growing application of space syntax studies
in close connection with spatial data infrastructures.

Different graph primal representations (i.e., where nodes denote road intersections
and edge connections between road intersections) have been applied to date to model the
structural properties of an urban network, based on either isovists [16], axial lines [17]
or convex spaces [18]. Different graph measures based on either local connectivities or
global path-based properties can reveal urban structures and navigation opportunities in
the urban layout and possible correlations with behavioural and social patterns. However,
a few recent discussions note a lack of the theoretical grounding of these quantitative space
syntax approaches and a lack of consideration of additional metrics [19], or even a lack of
some additional structural properties such as the land property layout [20]. In fact, this also
illustrates the fact that the current integration between graph-based and GIS approaches
does not completely explore their full potential.

Not only graph-based principles have been applied to the analysis of the structural
and functional properties of urban environments, but amongst many relevant examples,
origin–destination simulations have been applied for the study of mobility patterns in
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urban systems by a combination of GIS network properties and graph-based analytics and
simulations [21], the management of water distribution networks in order to identify water
losses through the definition of an optimal network partitioning applied on top of a network
representation [22], the study of large human communities as derived from social media
and where humans are denoted as spatial entities and friendships as graph connections [23],
hydrological networks [24] and graph patterns over time derived from water masses in the
Mediterranean Sea [25]. Modelling the close relations between places, events and traffic
patterns has been also explored using graph metrics and an experimental implementation
within the Neo4j graph database [26]. This is indeed a major development as graph
databases certainly provide a much more logical and methodological connection between
GIS and graph capabilities than the geo-relational principles available in most GISs. Overall,
these recent advances and trends highlight the interest of different research communities
in the potential of graphs, thus stressing the need for a clear picture of the underlying
modelling principles and processing capabilities available and of the perspectives and
challenges offered by a close integration of graphs and GISs.

2.2. Spatial Graphs and Spatio-Temporal Graphs
2.2.1. Spatial Graphs

Spatial graphs describe spatial entities associated by spatial relationships. Spatial
relations can denote, for instance, either topological relations or network properties that
can be further qualified and valued by additional spatial semantics and metrics. Spatial
graphs have been applied and embedded at different levels of granularity and scale
(cf. Section 2.2.2) [27], in order, for instance, to study urban network structures at different
levels of hierarchy [28–30]. One can remark that accessibility should not be confused with
a connectivity graph, where edges denote any kind of spatial connection relation specified
using, for instance, topological relationships. Approximate topological relations can be
represented as in [31], for example, where degrees of connection between spatial entities are
valued. In [32], a connectivity graph is applied to the context of historical cadastral maps.

2.2.2. Granularity in Graphs

The modelling of a given phenomenon implies a more or less simplified description
of the reality that depends on the available knowledge and application requirements. The
concept of granularity characterises the levels of abstraction and detail required for the
representation of a given phenomena [33]. These levels can be organised according to a
hierarchical structure that can increase or decrease the detail of the representation [34]
within the limit imposed by the data. Browsing across different granularity levels is
a valuable tool when one wishes to study the same phenomenon at several levels of
detail. The granularity is usually broken down into three dimensions: semantic, temporal
and spatial [29]. However, there are a few criteria to take into account when selecting a
higher level of abstraction (i.e., spatial or temporal generalisation): this generates a loss of
information, and so semantic and spatio-temporal constraints should be defined to identify
which data are kept at a higher level of abstraction.

The modelling of the granularity in a graph is generally done according to two levels,
node and/or edge, or via specific graph structures (e.g., bi-graph). Once a change of
abstraction is modelled at the node level, this means that, at a certain level of granularity, a
node actually represents a sub-graph. For example, clustering has been applied to group a
series of vertices towards a single node at a higher level of abstraction [35]. Indeed, the
choice of the clustering criterion depends on the modelling objectives. One might, for
instance, group nodes according to some given criteria (e.g., grouping vertices into a cluster
when they have the same neighbours outside the cluster, or according to some distance
constraints). Abstraction can also be expressed by the selection of sub-graphs according to
some spatial or semantic criteria (e.g., specific structure, node type). Regardless of how
the granularity is modelled in a graph, hierarchical structures allow the selection of the
appropriate level of abstraction with regard to the objective of the study. Representing
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a spatial graph from different points of view can help to select the sub-graphs that are
relevant according to the context and thus to select the most appropriate level of granularity
according to the user’s needs. Choosing a sub-graph means limiting the study to elements
that compose this sub-graph. For example, in [30], the authors introduced several sub-
graphs that denote transportation modes in the urban environment. Therefore, routes can
be derived according to different transportation means, while the union of these graphs
supports the derivation of multi-modal routes. Indeed, different levels of granularity can
be generated either by establishing an abstraction via the nodes [27,36] or the edges [37] of
the graph. The concept of granularity could also be associated with spatial inclusion, like in
bi-graph structures [38,39], which are another way to model different levels of granularity.
A bi-graph is made up of a “places” graph and a “links” graph. The “links” graph is a
hypergraph that denotes the semantic relations between the represented spatial entities.
A “places” graph is a forest as denoted in graph terminology that represents the entities
that denote a given phenomenon, thus favouring the derivation of user-oriented views at
different levels of spatial granularity.

2.2.3. Spatio-Temporal Graphs

It appears that most spatial modelling attempts oriented towards the integration of
graphs have not fully considered the temporal dimension. Indeed, analysing the evolution
of entities involves studying time as a component of the phenomenon considered. Time
could be also taken into account by graphs using either external or internal mechanisms.
For example, bi-graphs can define external dynamic rules that are not directly embedded
into the graph structure. On the other hand, an ST-graph can be roughly defined as a spatial
graph extended by additional temporal properties at the internal structural and representa-
tion levels. Integrating this temporal dimension stresses the need to formalise the notion of
temporal abstractions and relationship in close association with the spatial concepts already
identified at the spatial graph level. Temporal relations can be quantitatively valued by
interval-based algebra [40] and by dependency links that appear from events, processes
and changes. The temporal dimension can be introduced by either directly integrating time
in the graph or a sequence of spatial graphs between which temporal relations are defined.
For example, in [41], the authors introduce a graph that falls into the first category, where
the nodes of the graph are clustered according to some spatial and temporal metrics (i.e.,
spatial distance, time differences). The objective is to detect patterns of moving objects that
evolve together (i.e., moving objects patterns). Modelling actions or events in a graph was
proposed in [42], but with a graph falling into the second category. Spatial configuration
changes are characterised via a particular graph structure called a map tree. The evolution
of a spatial configuration is modelled by temporal connections. The idea is to propose a
classification of events according to the structure of the associated graphs. Many models
fall into this second category of spatial graph sequences that evolve over time, and where
from a spatial configuration, at each timestamp in which a change occurs, appropriate
relationships are derived between the subsequent configurations. These models denote a
global graph that contains the available data at a given time but also temporal connections
between different times (or when these changes happen). Different generic approaches
have been proposed in that direction, such as [8,43] or [44,45] (i.e., historical data available
at different times), or in urban environment contexts [46]. In fact, identifying snapshots
(i.e., spatial configurations at a given time) of evolution is relatively well supported for
this category of graph but not immediately for graphs that integrate time intrinsically
(i.e., the first category). On the other hand, the integration of different times increase
the computational complexity at the processing levels. Other alternatives apply aggrega-
tion mechanisms to decrease the computational time and also the effectiveness of data
manipulation processes [44,47].
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2.2.4. Spatio-Temporal Graphs and Semantic Graphs

In [48], the existing duality between the spatial and the semantic components of a
given object is highlighted. These two components can be broken down into several levels
of granularity. Ideally, such models should therefore take into account both the spatial
and temporal dimension of an object, but also its semantic component, and consider them
homogeneously at the data manipulation level. In fact, additional semantic relations can
be considered and should be integrated into spatial or ST-graphs using specific relations.
For example, in [8], the concept of filiation, unlike as it is considered in [49], is not a spatial
relationship; it is rather defined by the concept of identity and can be seen as a relationship
of dependence, which is the transmission of kinship when a entity descends from another
(see Figure 2).

Figure 2. A spatio-temporal graph from [8]. A, B, C, D and CD are four spatial entities present at the
first time t1. X(ti) represents the set of spatial entities present at time ti. Spatial relations are denoted
with plain lines, filiations are shown with dotted lines with labels γ and δ to denote continuations
and derivations and spatio-temporal relations are shown with a double line. C and D combine at
time t2 to a new entity CD which derives from them. CD continues at t3 while A and B combine at t3

to a new entity AB.

This notion of filiation is also found in the field of ontologies, as in [50], where filiations
are defined between entities based on spatial relationships and identities, and these two
types of filiations are combined to obtain another level of abstraction in the typology of
these filiation relationships. This model exploits the capabilities of the Semantic Web
and defines a hierarchy of filiation relationships. This favours the consistency of a model
based on this hierarchy and the inference of filiation relationships. This way of inferring
information is a relevant example of using data that are not necessarily available in current
spatial and ST-graph models.

2.2.5. Graph Analysis

One of the major challenges when characterising spatial dynamics is the modelling
of change. Extracting knowledge and patterns from a spatial or ST-graph is one of the
most widespread processing approaches applied to date and is based on graph theory
techniques. In [41,42,51], the authors search for specific patterns. In [41], a graph clustering
technique is introduced to extract entities (i.e., cliques) whose speed and space are close to
each other in order to detect traffic anomalies. In [42], spatial configuration changes are
detected, and in [51], actions are qualified. In both cases, each transformation as well as
each action corresponds to a given structure of the graph, while the search for structural
properties is also concerned with patterns. However, a key issue is not only to extract data
but also to infer new information from the data.
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In [52], the author combines the concept of a colored graph and logic programming
to generate new crop rotations that respect a set of constraints learned from the study
of agricultural plots in a pre-processing step. In [44], another example of the creation of
information is presented in which the generation of an aggregate ST-graph brings out other
relationships. An ST-graph represents the evolution of geo-historical observations and
describes the changes and processes that constitute this evolution. The main idea is to
search for temporal patterns in the graph (e.g., disappearance, re-appearance), but this
implies that data quality issues such as missing data must be considered.

3. Knowledge Graphs

K-graphs have recently been the object of increased interest as they have the advantage
of combining graph principles with semantic Web formalisms. This section briefly reviews the
main principles of K-graphs and their potential for representing spatio-temporal phenomena.

3.1. Knowledge Graphs: Main Principles

For about 10 years, the paradigm of K-graphs, which appeared in the field of the
Semantic Web, has been the subject of great interest in many research domains, which
have largely exceeded its original community and the field of Artificial Intelligence from
which it originates. K-graphs are associated with Linked Data, an initiative of the W3C
to publish and link data on the Web (Berners-Lee T., Linked Data. Design Issues. W3C,
2006, https://www.w3.org/DesignIssues/LinkedData (accessed on 1 August 2021)). The
RDF (Resource Description Framework) (RDF, RDF 1.1 Concepts and Abstract Syntax,
W3C, 2014, https://www.w3.org/TR/rdf11-concepts/ (accessed on 1 August 2021)) is the
basic language of the Semantic Web (or Web 3.0) and is made up of a set of languages and
technologies dedicated to making the content of the Web interpretable by humans but also
by machines.

In order to formally describe Web resources and their metadata, RDF is supported by
a data model on top of a graph structure. RDF data are represented by a triple (subject,
predicate, object), and an RDF graph is then a set of such triples. The subject of a triple
can be a URI (Uniform Resource Identifier) or an empty node. A predicate represents a
property always designated by a URI. The object corresponds to the value of the property
(i.e., predicate). This value can be a URI, an empty node or a literal. A literal denotes a
string of characters or typed data. The vertices (which play the roles of subject or object) and
the oriented edges (which carry the predicates) of an RDF graph are therefore labelled (see
Figure 3). The challenge for humans, and especially for machines, is to understand these
labels (especially when they are represented by URIs or by their generalisation, namely
IRIs (Internationalised Resource Identifiers)). This is the role of RDF vocabularies. Among
them, the RDF Schema (RDFS) (RDFS, RDF Schema 1.1, W3C, 2014, https://www.w3.org/
TR/rdf-schema/ (accessed on 1 August 2021)) is an RDF vocabulary that acts as a meta-
vocabulary by structuring the terms of a domain by means of classes and properties. Thus,
if the nodes (i.e., subjects or objects) of RDF graphs are described by RDF vocabulary classes
while the edges (predicates) are described by RDF vocabulary properties, the semantics of
these RDF graphs become accessible through these vocabularies by humans and machines.
In order to surpass the limits to the expressiveness of RDFs, the knowledge representation
language OWL (Web Ontology Language) (OWL, OWL Web Ontology Language, W3C,
2004, https://www.w3.org/TR/owl-ref/ (accessed on 1 August 2021)) has been proposed.
OWL is also based on the RDF data model. An ontology in OWL is defined first by means of
classes and properties that capture the concepts and relations between these concepts of the
domain addressed by the ontology. Moreover, OWL proposes a set of axioms (equivalent
classes, equivalent properties, equality of two resources, difference, opposite, symmetry,
cardinality constraints. . . ) that gives it superior description capabilities. It is commonly
acknowledged that SPARQL (SPARQL, SPARQL Query Language for RDF, W3C, 2008,
https://www.w3.org/TR/rdf-sparql-query/ (accessed on 1 August 2021)) is to RDF what
SQL is to relational databases: a query language allowing users to search, create, add, delete

https://www.w3.org/DesignIssues/LinkedData
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
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and modify data. SPARQL is therefore the language on which the triple stores, which are
the RDF database management systems, are based [53]. Triple stores rely on the SPARQL
protocol to offer the possibility of creating access points, called SPARQL end points. These
SPARQL end points allow a local RDF database to be accessed and queried via SPARQL
queries from any client on the Web. Although the term “Knowledge Graph” was first
introduced by Google (Singhal A., Introducing the Knowledge Graph: Things, not Strings,
May 2012. https://googleblog.blogspot.co (accessed on 1 August 2021)) to refer to the
exploitation of semantics by its search engine—without however revealing all its secrets—it
owes its success more to applications such as DBPedia, Freebase, Wikidata or Yago, which
provide access to open and publicly accessible K-graphs [54]. These multilingual K-graphs
are all based on the linked data paradigm. The Wikidata knowledge base, for example,
to date contains more than 92 million items (nodes). Wikidata is a common source of
data covering a wide variety of domains, topics and communities. All of these datasets,
consisting of publicly accessible RDF triplets, are part of the Linked Open Data Cloud
(LOD, https://lod-cloud.net/ (accessed on 1 August 2021)). Within the LOD Cloud, more
than a thousand RDF datasets are mutually referenced through the URIs they contain,
thus enabling navigation from dataset to dataset, from domain to domain, from subject to
subject and from node to node. This global and semantic database greatly contributes to
the strength and interest of the Linked Data Web. Figure 4 shows a simple example of a
K-graph.

Figure 3. An RDF triple (N-Triples notation), referring to a Web resource about the Queen Mary boat,
and its graphical representation.

Figure 4. A K-graph representing knowledge about a sailing ship A and a trawler B sharing the
same home port P. Through the predicate rdf:type, two ontologies, available in the LOD Cloud and
describing a universe of boats and ports, respectively, are referred to.

Graph theory in support of K-graphs favours the manipulation of structural properties
and metrics and the application of search-based algorithms for querying, browsing, digging
(for a review, see [9]) and pattern extraction [55]. As a K-graph is based on one-to-many
ontologies, additional reasoning mechanisms can be applied from the Semantic Web. Im-
mersed in the Linked Data Web, based on the same RDF model and reference vocabularies
and serialisable, accessible and searchable via SPARQL, K-graphs are interoperable. They
benefit from the standardisation operated by the W3C. They are easily navigable and com-
posable. They make data from billions of linked triples and knowledge on multitudes of
domains in most languages freely accessible on the Web. Finally, they are a natural support

https://googleblog.blogspot.co
https://lod-cloud.net/
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for the explicability, the provenance and therefore the traceability of facts. All this available
knowledge can be used for different purposes, in different fields of application: natural
language understanding, dialogue systems (questions/answers) and recommendation
systems [56] in the field of tourism, energy or education [57].

3.2. Spatio-Temporal Knowledge Graphs

If existing K-graphs are complemented with edges and nodes carrying information
related to space and/or time, then we can qualify these graphs as spatial and/or temporal
K-graphs (or STK-graphs here, for the sake of simplicity). Similarly, if one seeks to describe
objects in the real world by considering their spatial footprint or coverage, their location
in time or their positioning in space and/or time in relation to each other, constructing
STK-graphs is a solution to his issue. Figure 5 extends the example of Figure 4 and shows a
simple STK-graph.

Figure 5. An STK-graph extending the K-graph of Figure 4. Spatial knowledge (predicates in blue)
has been added as the latitude and longitude coordinates of the port P and boats A and B, using
the geonames ontology (https://www.geonames.org/ontology/documentation.html (accessed on 1
August 2021)) (prefix gn is used). We suppose that time is contextual to the K-graph and corresponds
to 12 July 2021 at 2:33 p.m. and 22 s, UTC +2.

For the past 15 years, the description of temporal data in the Semantic Web has been
preferably based on the W3C’s standard OWL-Time ontology (OWL, Time Ontology in
OWL, W3C Candidate Recommendation, 2020, https://www.w3.org/TR/owl-time/ (ac-
cessed on 1 August 2021)). OWL-Time is an ontology dedicated to the representation of
time, in which a temporal entity is either an instant or an interval (i.e., a period of time
whose duration is delimited by a beginning and an end instant). OWL-Time provides a
description to express dates and durations, as well as properties to characterise and access
temporal data, but also seven topological binary relationships and their inverses (e.g., be-
fore, after, meets, met by, overlaps, overlapped, starts, started by, during, contains, finishes,
finished by, equals), making it possible to locate, in the chronological order of a chosen ref-
erence time system, instants and intervals in relation to each other. As recommended by the
OGC and W3C (SDWBP, Spatial Data on the Web Best Practices, W3C Working Group Note
28 September 2017, https://www.w3.org/TR/sdw-bp/#spatial-relations (accessed on 1
August 2021)), the description of spatial data embedded in K-graphs can be based on the on-
tology of the OGC GeoSPARQL standard (GeoSPARQL, A Geographic Query Language for
RDF Data, OGC, 2012. https://www.ogc.org/standards/geosparql (accessed on 1 August
2021)). GeoSPARQL is both a vocabulary for representing spatial or geospatial data in RDF
and an extension of the SPARQL language to formulate queries on the spatial dimension of
RDF data expressed in this vocabulary. GeoSPARQL integrates a number of standards, rec-
ommendations or norms that preceded it. The GeoSPARQL ontology is based on three main

https://www.geonames.org/ontology/documentation.html
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/sdw-bp/#spatial-relations
https://www.ogc.org/standards/geosparql
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classes: one represents spatial objects in all their generality; the other two, which are distinct
sub-classes, correspond respectively to features and geometries, so that, among the features
of a spatial object, the characteristics specific to its geometry (spatial footprint) are distin-
guished. The geometries described by sets of points can be voluminous and then serialised
using the WKT (WKT CRS, Well-known text representation of coordinate reference systems,
OGC, 2012, https://www.ogc.org/standards/wkt-crs (accessed on 1 August 2021)) or GML
(GML, Geography Markup Language, OGC, 2010, https://www.ogc.org/standards/gml
(accessed on 1 August 2021)) languages. GeoSPARQL includes a vocabulary of spatial topo-
logical relations established between two spatial objects and to be chosen among the three
models DE-9IM [58], Egenhofer [59], and RCC8 [60]. Each binary topological relation can
be queried or asserted. A set of non-topological spatial functions (e.g., Euclidean distance,
convex envelope, etc.) is also provided. Directional or orientation relationships, although
spatial, are not covered by the GeoSPARQL vocabulary. With regard to the spatio-temporal
aspect, the coverage of the temporal dimension in GeoSPARQL queries is limited to the
functions available in the SPARQL language on dates and time. The topological temporal
relations taken into account by OWL-Time are excluded.

The storage of these STK-graphs is also carried out within triple stores. In [61], the au-
thors propose a recent comparative study of the main triple stores that support GeoSPARQL.
This study tests a substantial RDF dataset of more than 130 Gbytes against a benchmark
composed of two series of queries (simple and complex). The Virtuoso, GraphDB and
Strabon systems have proven to be very efficient here for processing queries on data sets
of around 500 million RDF triplets. However, the OBDA approach implemented in the
Ontop-spatial system [62] is superior due to its potential for scaling up. Ontop-spatial
is an extension of the Ontop system [63]. The idea is to access geospatial data stored in
relational databases from virtual geospatial RDF graphs, created using R2RML, which can
be queried via GeoSPARQL queries translated into standard OpenGIS SQL (OGC, Simple
Feature Access—Part 2: SQL Option, 2010, https://www.ogc.org/standards/sfs (accessed
on 1 August 2021)).

The design of an STK-graph from various sources has crystallised around the entity
resolution problem and the link discovery problem. The former [64,65] is tackled with
non-spatial and/or spatial similarity measurements between entities and is established
using the sameAs property defined in OWL. Link discovery echoes the fourth rule of
the Data Web (linking data together to enrich their respective information context). It
is based on various measures of similarity [66,67] adapted to the processed data. In the
case of spatial data, it is possible to establish topological relationships [68], distances or
orientations. Similarly, temporal topological relationships, where appropriate, can be
generated. Entity resolution and link discovery are essential operations in that they make it
possible, firstly, to link K-graphs (or RDF data sets) together and then to traverse them in a
second stage dedicated to the exploration and exploitation of these graphs. The integration
of heterogeneous data sources is currently facilitated by specific tools such as SILK [69].

Spatial and temporal data lend themselves well to visualisation capabilities. In fact,
there are several works that propose an interface to visualise, by means of maps, data
extracted from STK-graphs. Among them, Sextant [70] is a multifunction system that
allows the visualisation and exploration of the evolution of linked spatial data, as well as
the production of thematic maps or statistical diagrams. More recently, in [71], the authors
proposed the building of spatio-temporal K-graphs from some vectorised historical maps
about a railway network and then for changes to be visualised over time.

Driven by the objective of the European INSPIRE directive to facilitate access to open
data, the National Mapping Agencies in Europe, which are the producers of official data,
are also turning their attention to linked data to develop an open European Geographic
K-graph on top of an open European SDI [72]. In 2014, in [73], the potential of Linked
Data and K-graphs for Geographic Information Science was discussed: “The Linked
Data paradigm offers a radically new perspective on structuring, publishing, discovering,
accessing, and integrating data”. One of the most striking recent attempts to bring GIS

https://www.ogc.org/standards/wkt-crs
https://www.ogc.org/standards/gml
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closer to the LOD Cloud is [74], which proposes a deep integration of linked data into GIS,
preserving the functionality, roles and strengths of each party. This framework and the
underlying methodology can be seen as a geo-enrichment service within ArcGIS and a
first step towards GIS with extended exploration, question/answer and recommendation
capabilities, which are the primary missions of K-graphs.

Finally, when compared to ST-graphs, two types of K-graphs are also capable of
representing knowledge and its evolution over time: dynamic K-graphs and contextual
K-graphs. In dynamic K-graphs, time-stamps are associated with relations (edges) or
even nodes and define their validity or existence period. Approaches such as temporal or
dynamic K-graphs [75,76], labelled property graphs promoted by Neo4j (https://neo4j.com
(accessed on 1 August 2021)) or RDF-star (RDF*) (https://w3c.github.io/rdf-star/cg-spec/
editors_draft.html (accessed on 1 August 2021)) are based on graph models that are capable
to capture the evolution of information or knowledge through time, in the same manner as
ST-graphs. A single dynamic K-graph is generally considered, but the nodes and edges of
this dynamic K-graph are embedded or are labelled with some spatial and/or temporal
information indicating when they are valid (in which space and/or during which period).
It should be noted that labelled property graphs or RDF-star (RDF*) are generic approaches
that are not specifically dedicated to the representation of knowledge evolution within a
graph, but rather allow this representation through their model. Contextual K-graphs form
a dual approach that expresses a set of temporalised (valid in the time interval associated
with the K-graph) and/or spatialised (valid in the space or territory associated with the
K-graph) knowledge. Thus, a spatial and/or temporal context is associated with the
contextual K-graph as a global label [9]. The representation of the evolution of knowledge
leads to the consideration of as many spatial and/or temporal contexts (and thus contextual
K-graphs) as necessary, which renders this approach more cumbersome to manage.

4. Graphs and Knowledge Graphs in the Field of Maritime Transportation
4.1. Large Maritime Graphs

Maritime transportation is a valuable example of a worldwide phenomenon with large
data flows that can be comprehended using spatial, temporal and semantic graphs [77]. It
provides a set of properties, either spatial, semantic or temporal, that support a valuable
application example in which different categories of graphs can be applied for different
representation and application purposes and an illustrative support to discuss most of the
concepts and methodological proposals introduced in this paper. For instance, maritime
trade routes can be derived from either liner companies or global insurance companies [78]
or automated maritime geo-location infrastructures. Therefore, harbour departure and
arrival records can favour the analysis of modern trade routes and flows from city to
country and regional scales [79]. As illustrated in Figure 6, maritime datasets can also
be integrated and aggregated using different data sources in order to provide additional
semantics and processing capabilities [80]. For instance, the global cargo trajectory data
available in real-time can be associated with freight status (e.g., type, length, width) and
with additional maritime infrastructures such as ports and berths. This provides a sound
support for the construction of a fine-grained global maritime network that can be further
manipulated at either the local or the global level using graph functions and analytics, as
well as GIS analysis and visualisations. From vessel departure and arrival data, origin
and destination ports modelled as nodes, the underlying maritime routes are implicitly
represented as links and then maritime routes. Additional semantics can be associated
with these links and nodes. For instance, a weighted maritime network can be associated
with trade volumes, and graph theory principles have been recently applied to mine the
spatio-temporal characteristics of maritime transport network journeys [13,81].

https://neo4j.com
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
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Figure 6. Sketch map of a maritime network design.

Current research on the development of the spatio-temporal analysis of maritime
transport networks generally considers maritime network structural properties through
the main transportation routes and/or port connections and flows using graph theory
principles. This favours, for instance, the analysis of the main maritime routes over
time or some dependency relations between different ports and countries. The typical
analysis of maritime networks can also study “scale-free”, “small-world” and “rich-club”
characteristics that generally arise in maritime networks and that can be revealed by
graph-based operators [81–84]. When studying “scale-free” maritime networks, the degree
of the ports (i.e., port-to-port connections in terms of maritime traffic) might reveal a
power-law distribution when most of the ports have low degree values (i.e., they are
stops over a few maritime routes) while a few ports have large degree values (i.e., they
are stops over many maritime routes). There are also many studies oriented towards
container shipping to exhibit core–periphery patterns and “hub-and-spokes” structures
that reflect spatial disparities using graph analytics [81,85,86]. Overall, it has been shown
that the global maritime network has a low average shortest path length value and a high
average clustering coefficient compared with other transport networks (e.g., the worldwide
airport network) [87], indicating that the global maritime transport network is much more
closely connected than many other networks. Close trade relations between different
ports and fewer occurrences of transshipments among ports will lead to an increase
in the transshipment capacity of the hub ports and promote the formation of a closer
trading community around them. A series of works have developed community analysis
for the maritime transport networks by combining graph operators and analytics with
additional semantic graph properties [12,13,88,89]. As Figure 7 shows, in [12], it appears
that the global liquefied natural gas (LNG) trade network has developed several closely
connected trading communities since 2013, and ports within individual communities
have gradually become more geographically spatially concentrated. By using different
network topology representations and the effects of space-L (a link is created between
consecutive stops in one route) and space-P (all ports that belong to the same route are
connected), emerging topologies on the maritime network can be studied [90,91]. Hu et
al., found that the worldwide maritime transportation network is a small-world network
with power-law behaviour for both its network and topology [91]. Moreover, differences
between maritime transportation networks can be also studied [77,78]. For example, in [78],
the authors found that container ships follow regularly repeating paths, whereas bulk
dry carriers and oil tankers move less predictably between ports. To fully consider the
spatial relationships between different types of maritime transport networks, rather than
aggregating all layers of networks, multi-layer network methods can be applied to study
global maritime transport networks [89,92,93].
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Figure 7. Spatial distribution of ports in different trading communities [12].

The efficiency of maritime transportation has a major impact on global economic devel-
opment, international politics and social and economic exchanges. Maritime transportation
is also extremely vulnerable to emergencies such as natural disasters and political changes.
Therefore, the quantitative evaluation of the robustness of the maritime transportation
network structure and the proposal of targeted improvements are of great significance
for improving the efficiency of maritime transportation [94]. Several scholars have devel-
oped some graph structural analyses and simulations to evaluate the impact on the whole
network of some ports’ decline of maritime activity and flows. This helps to evaluate the
degree of robustness of the whole or even local maritime networks [77,87,95,96]. These
studies found that maritime networks are relatively robust to random failure while being
extremely vulnerable to targeted failure. Moreover, different cargo ship networks behave
heterogeneously in terms of their robustness, with the container network being the weakest
and the bulk carrier network being the strongest [77]. Ensuring the stable operation of key
hub ports is of great significance to ensuring the robustness of maritime transportation.

Another important area that has been explored when studying maritime networks
is the study of some local and global port properties at different levels of granularity,
using some centrality indices such as the degree, betweenness centrality and closeness,
et al., in order to mine important ports and the way they are embedded in the whole
network [77,97–102]. One can conclude that port centrality represents a port’s ability to
attract both traffic from its hinterland area and services from its directly connected and
indirectly connected ports [99]. Some well-known ports, such as Singapore and Hong Kong,
have a high centrality, because they are strategically located in favourable intermediate
geographical positions along major trade routes. Other ports have a high centrality because
they are visited by a large number of ships (e.g., Shanghai) or primarily by being connected
to many different ports (e.g., Antwerp) [78]. There is a certain correlation between different
centrality indicators; in [102], it was found that high-scoring ports in betweenness centrality
have high degree and closeness measures. Apart from the static centrality indices in mining
the port importance, in [103,104], a port influence diffusion model was designed. The
authors found over half of the ports in the networks were able to influence only one other
port, while Rotterdam and Antwerp influenced ports in the entire network in 2013 and
2016. Figure 8 shows the hub influence and its diffusion in 2013 and 2016.

Figure 8. Hub influence and diffusion in 2013 and 2016 [103].
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With the availability of many maritime data sources, temporal analysis on maritime
transport and ports that particularly influence the structural changes over time can be
applied [12,92,103–109]. With the continuous advancement of navigation technology
and the further popularisation of long-distance transportation, the scale of the maritime
transport network has shown an increasing trend over time, accompanied by an increase
in the number of routes of the important ports. For example, in [107], it was found that
Singapore port had 159 routes passing through it in 2009 and 484 in 2016 for crude oil
transport, and the increase in trade relations with ports in the Asia-Pacific region has been
particularly prominent, especially with China, Japan, South Korea and Australia. Moreover,
by analyzing the network character of global maritime multilayer networks and their
evolution from 1977 to 2008, the authors of [92] found that maritime traffic distribution
shows a place-dependent character due to the reinforced position of existing ports, and the
network expands and concentrates around large hub ports over time. However, several
major events have also had a great impact on maritime transport [108,110]. For example,
the worldwide evolution of containerised trade reflects a general decrease in the volume of
merchandise from 2008 to 2010, with this being caused by the fall in the demand within the
global economy which took place during the years considered [108].

4.2. Ontology-Based and Knowledge Graph-Based Approaches in the Maritime Transport Domain

As pointed out by Katsumi and Fox [111], formal ontologies whose semantics are ex-
plicitly defined and transcribed into machine-readable languages are capable of supporting
various knowledge management and reasoning services, such as semantic integration and
interoperability, data validation and knowledge inference. The study by these authors lists
a dozen ontologies dedicated to passenger and freight transport, with various description
capacities adapted or not to a particular transport mode. Although none of these ontologies
is specifically concerned with maritime transport, one can identify two main families of
ontologies dedicated to the maritime transport domain in the literature: those focused
on the monitoring and control of ship movements at sea, and those oriented towards the
regulation and management of risks in ports and terminals.

The first category includes the work by Villa and Camossi [112], which introduces a Mar-
itime Container Ontology (MCO) that represents ships, containers, their movements and their
routes (see a excerpt in Figure 9) in order to identify and detect patterns of suspicious manoeu-
vres or movements using axioms described in OWL. Similarly, a semantic trajectory ontology
is exploited for surveillance and control purposes in [113] in which spatial or aspatial rules,
written in SWRL (the Semantic Web Rula Language (SWRL, SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML, W3C, 2004, http://www.w3.org/Submission/SWRL/
(accessed on 1 August 2021))), allow abnormal ship behaviours to be described and alerts to
be triggered. Lange et al. [114] introduce an ontology to describe and simulate the behaviour
of objects involved in the management of container loading and unloading terminals.

In the second category, the work by Hagaseth et al. [115] addresses the problem of the
complexity of maritime transport regulations. To this end, they introduced an ontology of
maritime regulations whose classes capture both the target (i.e., person or ship) to which
the regulation applies, the conditions under which it applies (i.e., context) and what is re-
quired by that regulation. The complete ontology describes the documents supporting one
regulation and all the rules and clauses associated with this regulation, as well as the ships,
ports, weather, routes, etc. The ontology is exploited by a triple store after the conversion of
its content into RDF graphs. A SPARQL query is then used to extract and reconstruct a text
document corresponding to a (part of a) regulation. Pileggi et al. [116] developed a vision
of port management in which several communities or actors are involved and cooperate in
the general organisation and, more specifically, in the risk management process. All the
knowledge (i.e., type of risks, decision makers, port, cooperation aspects, risk management,
etc.) related to the interactions between these actors are described by ontologies. The Port
of Hamburg (Germany) serves as a case study in the validation of this approach.

http://www.w3.org/Submission/SWRL/
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Figure 9. An excerpt of the Maritime Container Ontology [112].

K-graphs, on the other hand, have emerged more recently in the maritime transport
domain. In the field of monitoring and control, Wen et al. [117] introduced a semantic
model for ship behaviour (SMSB). These semantic networks describe observable states
and behaviours in navigation, at berth, at anchorage and on a defined maritime route.
States are recognised and established by rules, and potential behaviours are inferred
by a Dynamic Bayesian Network (DBN). Automatic Identification System (AIS (AIS,
https://en.wikipedia.org/wiki/Automatic_identification_system (accessed on 1 August
2021))) data from maritime merchant traffic are used to establish typical profiles of ship
behaviour in different phases (at berth, at anchor, underway, on a given route) through
the DBN. In real time, ship trajectories can be annotated with the detected states and with
alerts in case of the recognition of an abnormal behaviour. A visualisation of the annotated
trajectories in real time is proposed. With the different states characterising the ships stored
in the K-graphs, the SPARQL language can then be used to query the recorded trajectories.
Zhang et al. [118] retained a K-graph approach for the monitoring and management of
Dangerous Maritime Goods (DMG). K-graphs describe the types of DMGs, the packaging
and the containers that carry them (see Figure 10 for an excerpt of the DMG K-graph). In
addition to terminology axioms establishing inclusion or equality relationships between
concepts, the SWRL language is used to establish segregation (i.e., separate exposure) and
storage condition rules for each DMG.

An approach based on link prediction in dynamic K-graphs oriented to the identi-
fication of maritime navigation scenes is presented in [76]. Dynamic K-graphs capture
the evolution of entities such as ships, ports and countries. Two link prediction methods
(Know-Evolve [75] and TransE [119] between two entities based on neural networks are
exploited and allow for the prediction of a suspicious activity (e.g., transshipment at sea
between two ships) by observing their respective trajectories.

The difference between ontology-based and knowledge graph approaches is first
a matter of precedence (K-graphs were introduced recently (in 2012, through Google’s
Knowledge Graph), while formal ontologies have existed in Artificial Intelligence for about
30 years. As a matter of fact, K-graphs are often assimilated and confused with knowledge
bases, and these are confused with ontologies. However, in contrast to a simple knowledge
base or ontology, according to the definition given by [54], a knowledge graph that is
immersed and built from semantic Web technologies should demonstrate capabilities to
“acquire and integrate information into an ontology and to apply a reasoner to derive new
knowledge”.

https://en.wikipedia.org/wiki/Automatic_identification_system
https://en.wikipedia.org/wiki/Automatic_identification_system
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Figure 10. An excerpt of the DMG K-graph [118].

Beyond these emerging works highlighting the contribution of K-graphs and under-
lying ontologies, one can remark that there is so far little or no public RDF vocabulary
specifically dedicated to maritime transport in the LOD Cloud. However, it is important
that existing ontologies are listed and accessible. Thus, it appears that the ontology-based
initiatives mentioned above could be extended to K-graphs and exploited by dedicated
analysis techniques (i.e., querying, visualszation, machine learning, etc.), the development
of which is currently booming. As with many other application domains, the development
and publication of K-graphs dedicated to maritime transport would facilitate semantic in-
teroperability and the integration of data from different sources. Similarly, linking (through
discovery, whether automatic or manual) should favour a close association of these busi-
ness resources described by these K-graphs to other domain resources, thus avoiding the
well-known phenomena of knowledge islands formed by isolated K-graphs. Once linked to
other K-graphs—in particular, those accessible in the LOD Cloud—K-graphs representing
maritime transportation networks can be semantically enriched, thus offering much greater
possibilities of knowledge discovery or inferences. Finally, thanks to the valuable tools
now available for storing K-graphs, the accumulated data on maritime transport could be
queried using much more powerful semantic queries.

5. Discussion

It clearly appears that (ST) graphs and K-graphs both encompass specific properties,
implying that each has its own advantages, especially when taking into account the spatial
and temporal dimensions. On the one hand, graphs offer a straightforward data model
that is mainly based on a dual representation of nodes and edges, to which labels can be
associated as a very first step towards semantics. The ability of graphs to propose multiple
structures and properties that are generally well-fitted to the representation of real-world
geographical networks is a strong point of this method. In other words, graphs concentrate
on the essential factors and also offer many data manipulation capabilities thanks to the
large availability of graph operations and analytics. This kind of processing can most often
highlight some underlying structural properties and metrics derived from graph principles.
One might also browse these graphs in search of a node, an edge or a given path or clusters,
or to compare different graphs to search for particular sub-graphs or patterns. Overall,
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graphs have now reached a good level of maturity to be applied to different application
contexts, especially the geographical context, in which many network-based structures can
be represented with graph-based approaches (for a review, see [120]).

On the other side, with K-graphs, semantics takes precedence and is expressed in the
vocabularies and domain ontologies at the conceptual level. The main principle lies in the
graph model promoted by RDF, which, adopted de facto as a pivotal format, facilitates
interoperability. Interoperability is also reinforced by the support of standard vocabularies
or ontologies that can be used by machines (computers). The Linked Open Data (LOD)
Cloud, which contains open and accessible K-graphs, linking together a multitude of
domains, thus constitutes a global and RDF semantised database that can be browsed or
traversed in search of data and knowledge but also extended by connecting one’s own
graphs by means of IRI referencing.

The constant progress of RDF (triple) stores makes them capable today of competing
on many points with graph database management systems or relational databases [121],
while the complexity of SPARQL is proven to be similar to that of SQL [122]. Moreover,
these families of data management tools are not necessarily opposed. For example, graph
DBMS can be used to store and analyse K-graphs. Neo4j is a popular graph DBMS which
relies on a modelling based on labelled property graphs (i.e., LPG), which is both more
flexible and more compact than the classic modelling by RDF triples, but also on a query
language, called Cypher, adapted to these LPGs while ensuring compatibility with RDF
graphs. Moreover, the debate around LPGs and K-graphs may well fade away with
the recent proposal of RDF-star (RDF*), which allows metadata to be associated to any
RDF triplet while still preserving the triplet unit format. The next sub-sections discuss the
respective and mutual contribution of graphs and K-graphs and the emerging opportunities
when the two are associated or closely connected.

5.1. From Knowledge Graphs to Spatio-Temporal Graphs

Starting from a K-graph, one can extract an associated graph in order to analyse the
structural properties and then manipulate it using specific graph operators and analytics.
A promising objective is to combine the respective data representation and manipulation of
both knowledge and structural graphs in order to take full advantage of the two approaches.
Therefore, the approach can be implemented in a homogeneous, complementary and
efficient way in which structural properties resulting from graph principles and metrics
can be applied together with K-graph operations. Accordingly, this implies that an initial
K-graph is available, as well as specific properties and constraints that can relate the
structural and the K-graphs. In other words, this requires a domain-based ontological
model, a structural-based model and indeed a relevant dataset. Practically, from a K-graph,
one can identify an associated sub-graph that is constructed by extracting nodes and/or
edges from the initial K-graph. After this extraction, the nodes/edges of the associated
graph are not necessarily identical to the nodes and edges selected in the K-graph but may
also result from a complex transformation rather than a simple projection. In the example
illustrated in Figure 11, the K-graph on the top describes boats which have the same home
ports. The ST-graph below describes the spatial relation of the closeness between different
boats. In this example, there is no bijection between the instances and relations of the
K-graph and the ST-graph. This means that data could come from different sources, but
there could be an injection from the K-graph to ST-graph if the ST-graph is an extraction of
the K-graph data.
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Figure 11. Potential correspondence between K-graph and ST-graph (one timestamp).

The associated ST-graph can be used to analyse, by derivation, the K-graph, and then
to produce a set of additional knowledge related to the initial K-graph. The knowledge
inferred by processing the associated graph can retrospectively be integrated (i.e., made
explicit) into the initial K-graph in order to increase it and to enrich the knowledge it
contains. For example, the result of applying a metric to the associated graph would be
added to the metadata (by means of nodes and edges) of the K-graph.

5.2. From Spatio-Temporal Graphs to Knowledge Graphs

Conversely, starting from a graph, it is possible to complete it with additional knowl-
edge provided by K-graphs—in particular, those accessible on the LOD Cloud—in order to
infer new knowledge and to complete the initial graph in a detailed manner.

Indeed, in the example given in Figure 11, the semantics related to the node classifica-
tion could be inferred from the conceptual hierarchy of the K-graph to enrich the ST-graph
(e.g., entity a is a sailing ship which is a boat). The conceptual hierarchy in the K-graph
should be greatly more developed as that in the ST-graph, as it is only possible to assign a
flattened classification for nodes, and as considering additional structural properties is not
straightforward. This conceptual hierarchy could refer to an ontology that characterises
the instances more accurately.

Overall, it is assumed that an initial graph that represents the model of a given
application is available. For a particular node (or edge) of this graph, it is possible—for
example, by relying on a search engine—to search (usually in the LOD Cloud) for a K-
graph that contains a node that describes the node (or edge) of the initial graph. This
identification phase can be complex and costly; it also requires the consideration of the
reliability and quality of the associated K-graph discovered. This associated K-graph can
then be browsed for specific additional knowledge. In the example given in Figure 11, the
associated K-graph can be used to search for all the ships that have the same owner as a
given ship in the initial graph. Traversing the associated K-graph can also be a matter of
serendipity and allow links between nodes to be discovered that are not present in the
initial graph. For example, it may be discovered that two boats represented by two nodes
in the initial graph correspond to nodes in the associated K-graph that point to the same
node via the “is-owned-by” edge, meaning that they have the same owner. As illustrated
in the two previous examples, the explicit and direct knowledge carried by the associated
K-graph is exploited. However, more broadly, other types of ontological and axiomatic
knowledge (for example, by exploiting properties such as transitivity or specialisation
relations), possibly expressed by rules, make it possible to make implicit knowledge explicit
(i.e., to make it appear in order to eventually integrate it). At the end of this search and
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enrichment process via the LOD Cloud, one can decide to extend and thus enrich the initial
graph with all or part of the discovered or inferred knowledge. This results in a more
general process that can be described as the semantisation of graphs through K-graphs.
On the other hand, it is possible that the search in the LOD Cloud is unsuccessful and
that no K-graph is identified. However, if the process of semantic enrichment of the initial
graph has been initiated, this implies the building of a K-graph based on an ontological
representation of the domain covered by the initial graph, and then for this K-graph to be
published and made accessible in the LOD Cloud.

In the example in Figure 11, the ST-graph does not consider time, but if considered, as
shown in Figure 12, the mapping between K-graph instances and the ST-graph is similar.
The K-graph here is static, which means that the semantics are considered to be constant
or atemporal, while the dynamics are represented by the ST-graph, which shows the
mobility of the boats. This is a choice, and the extension to a temporal K-graph could
be done according to the same principles. The idea is still to make a mapping between
the common instances of the two types of graphs. Accordingly, the ST-graph focuses on
specific relations, and the possibility to complicate the graph operators by querying the
K-graph remains. For example, it is possible to search for the closest boats if the issue
consists of detecting the risk of impact and then looking for the port to which they belong.
For the main objective (impact detection), the second question is not absolutely required,
but it could be useful in a second iteration to look at a higher semantic level of detail to
have this information. Furthermore, taking into account the only necessary information
should improve the computational time requirements.

Figure 12. Potential correspondence between K-graph and ST-graph (multiple timestamps).

6. Conclusions

Over the past few years, many modelling attempts have been developed for a sound
representation of spatio-temporal phenomena. In particular, spatial and temporal graphs
have been recently widely explored as alternative modelling structures for many geo-
graphical phenomena. The research developed in this paper discusses recent research
advances in the application of different categories of graphs for handling spatial and
temporal information.

In order to provide a modelling background, in our paper, we first introduce a brief
survey of ST-graphs and K-graphs principles and capabilities and how they have been
progressively applied to geographical applications. The specific example of the maritime
transportation domain exemplifies how ST-graphs and K-graphs have been successfully
applied to a context that provides many spatial, temporal and semantic properties, but also
still raises many open avenues for further research.
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An underlying important and challenging issue we have addressed in this paper is
whether K-graphs can be considered as a support when specifying the semantics of the
ST-graph models as a new higher level of semantics for ST-graphs. On the other hand,
we also discuss how K-graphs can be associated with and enriched by an ST-graph that
provides a structurally complementary view of the data. A prospective discussion of the
mutual benefits of this dual approach is developed, as well as potential ways to connect
these two types of graphs. It appears that an ST-graph shows a greatly simplified level of
semantic that allows graphs operators to be computed more efficiently, and the K-graph
makes a higher level of semantic available, allowing more complex semantic queries.

The next step is to confirm this intuition and try to use Semantic Web tools such
as inference engines to automatically complete the semantics in ST-graphs and create
completely new information (i.e., not already present in the initial K-graph/ST-graph).
The processing carried out on these graphs thus enriched could be much more precise
regarding the traversed semantics of the nodes and arcs. It would also be possible to
show the potentiality of more complex queries which would not be considered without
the combination of the ST-graph and K-graph. However, there will certainly be a need
to further develop ST-graphs and K-graphs within integrated database frameworks that
support conceptual design processes and query representation and manipulation interfaces
that support a sound combination of the data representations and intuitive user-oriented
functions. This is a still expected development that will imply the full involvement of the
scientific community, standardisation bodies and the software industry [123].
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