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Evidence of the control of summer atmospheric transport of
African dust over the Atlantic by Sahel sources from TOMS
satellites (1979-2000)

C. Moulin' and 1. Chiapello2

'Laboratoire des Sciences du Climat et de I’Environnement, CEA-CNRS, 91191 Gif-
sur-Yvette, France.
*Laboratoire d’Optique Atmosphérique, CNRS-USTL, 59655 Villeneuve d’Ascq,

France.

Abstract. We used 18 years (1979-1992 and 1997-2000) of aerosol observations from
TOMS satellites to monitor the inter-annual variability of summertime atmospheric dust
optical thickness over both Atlantic and Africa. A comparison of TOMS dust optical
thicknesses with ground-based Sun-photometer measurements shows that our long-term
data set is consistent in time and space and is thus suitable for studying the interannual
and decadal variability of African dust transport. Our results show that dust emissions in
North western Sahel are so variable from one year to the other that they control most of
the variability of summer dust transport to the tropical Atlantic. Our satellite data also
demonstrate that there is a large scale correlation between Atlantic dust export and
drought occurrence in Sahel and thus confirm that the variability of Sahel dust
emissions is primarily controlled by the position of the vegetated southern boundary of

the Sahara in this semi-arid region.

Submitted to Geophys. Res. Lett., October 2003



1. Introduction

Atmospheric wind-blown dust from arid regions of Africa affects the radiative
budget over Africa and tropical Atlantic [Li et al., 1996; Alpert et al., 1998; Kaufman et
al., 2002], likely decreases precipitations [Rosenfeld et al., 2001] and transports
microbes that might significantly affect human health [Griffin et al., 2001]. Former
studies based on surface measurements [ Prospero and Nees, 1986; Middleton, 1985]
and satellite images [Moulin et al., 1997a; Chiapello and Moulin, 2002] have shown

that climate variability controls the African dust export.

Here we used an 18-year satellite archive to monitor summertime atmospheric
dust load over both Atlantic and Africa. The semi-quantitative TOMS (Total Ozone
Mapping Spectrometer) Absorbing Aerosol Index (AAI) is a unique satellite archive
that provides a quasi-daily global coverage of desert dust occurrence [Herman et al.,
1997]. This archive has recently been used to locate major dust sources [Prospero et al.,
2002] and to monitor the dust optical thickness (DOT; a measure of the total

atmospheric dust load) over ocean [Chiapello and Moulin, 2002].

2. Data and methods

We used 18 years of daily AAI images from the TOMS/Nimbus-7 (1979-1992)
and TOMS/Earth Probe (1997-2000) sensors to compute DOT values over Africa and
tropical Atlantic during the period of maximum African dust transport over the tropical
Atlantic. AAI values are converted into DOT using statistical relationships estimated
from a comparison of coincident daily TOMS AAI and METEOSAT DOT over the
Atlantic in 1986-88 for TOMS/Nimbus-7 [ Chiapello and Moulin, 2002] and in 1997 for
TOMS/Earth-Probe. Daily METEOSAT data for the period 1995-1997 were processed
with the algorithm of Moulin et al. [1997b], using an updated sensor calibration [Moulin

and Schneider, 1999]. The statistical relationship between METEOSAT DOT at 0.55



um and TOMS/Earth-Probe AAI for summer (April-September) is DOT = 0.45 AAI -
0.01.

Figure 1 compares our TOMS DOT with ground-based Sun-photometer
measurements performed in Africa between 1986 and 2000. Figure 1 shows that the
TOMS DOT computed using our simple relationships are in good agreement with Sun-
photometer measurements, even if they are overestimated by about 8%. Beyond this,
Figure 1 shows that TOMS DOT are consistent in time over both TOMS/Nimbus-7 and
TOMS/Earth-Probe periods, as well as in space over both ocean (Cape Verde island)
and land (Banizoumbou, Gao, Dakar). This is of prime importance for studying the

large scale interannual variability of dust transport.

Daily TOMS data were then used to produce mean summer (June-August) DOT
maps for the 18 available years over a region that covers western tropical Atlantic and
northern Africa. For every TOMS pixels over this region, we thus have the summer
DOT value for each year between 1979 and 1992 and between 1997 and 2000. This data
set will be used here to quantify geographical changes in inter-annual variability of
summer DOT and to compute pixel-by-pixel the correlation between the inter-annual
variability of summer DOT and that of other parameters such as the mean summer DOT

integrated over the Sahel region or a Sahel drought index.
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Figure 1. Comparison between TOMS and coincident Sun-Photometer DOT at 0.55 um during summer
(April-September). Earth-Probe/TOMS data are compared to AERONET measurements [Holben et al.,
1998] performed between 1997 and 2000 at Cape Verde Islands (O; 160 measurements), Dakar (Senegal;
®; 78 measurements), and Banizoumbou (Niger; X; 99 measurements). Nimbus7/TOMS DOT are
compared to measurements performed during three years (1986-1988) at Gao (Mali; V¥ ; 42
measurements) [Holben et al., 1991] and during spring 1986 and 1987 at M’Bour (Senegal; A; 21
measurements) [Tanré et al., 1988a, b]. AERONET level 2.0 daily averages of optical thickness at 0.44
and 0.67 um were interpolated to derive DOT at 0.55 pum. At Gao, daily DOT was estimated from optical
thickness measurements at 0.50 um taken at 9:00, 12:00, and 14:30 GMT. At M’Bour, daily DOT was
computed from measurements made at 0.55 um with the “Proche Infrarouge Radiometer” Sun-
photometer. The linear regression between TOMS and Sun-Photometer DOT for the 400 measurements

gives a slope of 1.08 + 0.02 and a correlation coefficient of 0.82.



3. Results

The summertime DOT map averaged over the 18-year TOMS archive is shown in
Figure 2a. At this period of the year, dust transport is particularly intense over the
Atlantic [Moulin et al., 1997a] and is maximum between 15 and 22°N. Major sources
during summer are located in southwestern Sahara, mainly between 18°N and 25°N in
Mauritania, Mali and southern Algeria [Prospero et al., 2002]. Further East, the Bodele
depression (Chad) is also one of the most active African dust source [Prospero et al.,
2002]. The standard deviation of DOT in Figure 2b shows the high inter-annual
variability of summer dust transport over western Africa and tropical Atlantic. This
large-scale inter-annual variability is what makes these aerosols so difficult to account
for in climate modelling because it is controlled by multiple phenomena, from the large-

scale meteorology to the local weather conditions at the source.
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Figure 2. a) Map of the mean summer DOT over Africa and Atlantic computed from June to August
TOMS/Nimbus-7 (1979-1992) and TOMS/Earth Probe (1997-2000) daily images for the 18 years; b)

Map of the standard deviation of mean summer DOT over the 18 years.

When comparing Figures 2a and 2b, it is noteworthy that the zone of maximum

DOT variability widely includes the northern Sahel (15-18°N) whereas the most intense



sources are all located north of 18°N. This shows that the prevailing Saharan dust
sources are less variable from one year to the other than northern Sahel sources, which
might thus control to the inter-annual variability of dust export to the tropical Atlantic.
Figure 3 shows that the inter-annual variability of DOT over the north tropical Atlantic
strongly correlates (r > 0.8) with that of the mean DOT averaged over northern Sahel
(15-17°N). This co-variation demonstrates that the variability of DOT over the Atlantic
during summer is mostly due to that of Sahel dust emissions and that the intense dust
flux from Sahara does not contribute much to the inter-annual variability of Atlantic

transport.
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Figure 3. Correlation map between the year-to-year variability of summer DOT and that of the summer
mean DOT over North western Sahel (15-17°N; white rectangle). A correlation coefficient of 0.7

corresponds to a significance level of 99.9%.

Inter-annual changes in dust emission over semi-arid regions can basically be due
to a combination of the following three factors: a change of mean wind intensity
(dynamical impact), a change of the atmospheric washout of dust particles (washout
impact) and a change in soil characteristics such as humidity or vegetation coverage

(drought impact). Former studies [Moulin et al., 1997a; Chiapello and Moulin, 2002]



have shown that the North Atlantic Oscillation (NAQO), which controls the large-scale
atmospheric circulation over Atlantic, western Africa and Europe [Hurrell, 1995], has
an impact on the African dust export. It has also been suggested [ Prospero and Nees,

1986; Middleton, 1985] that Sahel drought controls the dust emissions.

We tentatively studied the respective impact of each factor on the inter-annual
variability of summer Atlantic dust export by correlating our satellite DOT to a NAO
index [Hurrell, 1995], to address the dynamical impact, and to a Sahel Drought (SD)
index, to evidence both rainfall and drought impacts. Our SD index is defined as the
opposite of the Sahel rainfall departure index of L 'Hote et al. [2002]. Because summer
is the rainy season in Sahel and because atmospheric washout is an immediate process,
we used the SD index of the coincident year as a proxy for the washout impact. Drought
is thought to have a more cumulative effect for example on the vegetation cover and we
thus considered the SD index of the previous year to study the drought impact. Note that
we verified the coherence of other available time series of both NAO [Jones et al.,
1997] and Sahel rainfall departure [Nicholson et al., 2000] indices with the two indices

that we selected because they fully cover our analysis period.

No significant correlation was found for both NAO and same-year SD indices,
suggesting that dynamical and washout impacts do not have much influence on the
inter-annual variability of the dust emission and transport. The only exception is for the
Bodele depression where correlation coefficients of 0.6-0.7 between DOT and NAO
index were locally found. On the contrary, Figure 4 shows that high correlation
coefficients (r > 0.5; p > 95%) between DOT and previous-year SD index are found
over both Sahel and tropical Atlantic between 12°N and 18°N, which are the zones of
maximum DOT variability in Figure 2b. This demonstrates that the drought controls
Sahel dust emissions during the whole following year likely through a change in

vegetation coverage, as shown from satellite observations of the Sahara extent



[Nicholson et al., 1998], and that this drought is thus responsible for most of the

variability in summer dust export to the tropical North Atlantic.
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Figure 4. Map of the correlation coefficient of the year-to-year variability of the mean summer DOT
with the previous-year SD index. Negative (respectively positive) SD values indicate wet (respectively
dry) conditions. A correlation coefficient of 0.5 corresponds to a significance level of 95% and a

correlation coefficient of 0.6 to a significance level of 99%.

4. Concluding Remarks

Figure 5 summarizes the previous result by comparing summer DOT over Sahel
and tropical North Atlantic to the previous-year SD index during the last two decades.
Summer Atlantic DOT strongly varies during the two decades (0.2 to 0.5) and
significantly correlates with the SD index (r = 0.44). The correlation coefficient
between Atlantic and Sahel DOT is of 0.87 and of 0.59 between previous-year SD index
and Sahel DOT, confirming the drought control on the interannual variability of the
summer tropical Atlantic dust export. This result is however in apparent contradiction
with the results of Moulin et al. [1997a] who found a correlation coefficient of 0.49
between summer Atlantic DOT and NAO index using 12 years (1983-1994) of daily

METEOSAT DOT, whereas their NAO/DOT correlation for wintertime has been



recently confirmed using TOMS data [Chiapello and Moulin, 2002]. This
misinterpretation of the summertime dust export by Moulin et al. [1997a] comes from
the significant correlation (r = 0.67) between NAO and previous-year SD indices during
their 12-year period (1983-1994). Even if some connections are possible through the
Azores High strength and position, we verified on our data set that NAO and SD are

mostly independent phenomena (r = 0.26 over the 22 years shown in Figure 5).
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Figure 5. Inter-annual variability of summer (June to August) mean DOT over the tropical North
Atlantic (17-30°W, 15-30°N; A) and Sahel (17°W-10°E, 12-18°N; H), and of the Sahel Drought (SD; @)
index. METEOSAT daily images were used over the Atlantic to fill the gap in TOMS data between 1993
and 1996 (open triangles).

The 18-year TOMS record shows that dust emissions in western Sahel are
extremely sensitive to drought conditions on a yearly basis and is responsible for most
of the year-to-year variability in dust export over western Africa and tropical North
Atlantic. Persistent drought conditions in Sahel since the early 80’s might in addition
have modified more deeply the soil characteristics and generate a decadal increase of
dust emission and transport. This is what suggests the increase in summer Sahel DOT
twenty years apart between two low-drought periods (1979-80 and 1999-2000) in
Figure 5. This sensitivity of Atlantic dust export to desertification in Sahel suggests that

the drought persistence in this fragile region might impact both climate and local



populations in the future. It is however possible that this long term climate-related
desertification superimposed to that due to human activities in Sahel through process
like cultivation and deforestation [Sokolik et al., 1996], even if such an impact is still
highly uncertain [Nicholson et al., 1998; Prospero et al., 2002]. Only a combination of
numerical modelling [e.g.,Tegen et al., 1996] with long series of satellite data and of in-
situ observations will enable to separate the respective impacts of natural and
anthropogenic soil degradation on Sahel dust emissions and their role in regional

climate change.
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