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Abstract. We deal with a linear hyperbolic differential operator of the second

order on a bounded planar domain with a smooth boundary. We establish a

well-posedness result in case where a mixed, Dirichlet-Neumann, condition is
prescribed on the boundary. We focus on the case of a non-homogeneous

Dirichlet data and a homogeneous Neumann one. The presented proof is

based on a functional theoretical approach and on an approximation argu-
ment. Moreover, this work discuss an improvement of a result concerning the

range of some operators related to the considered hyperbolic PDE yielding

characterizations for the range space of these operators.

1. Introduction

Throughout this paper, we let Ω ⊂ R2 to be a bounded planar domain with a C∞

boundary. This boundary, ∂Ω := Γd∪Γn, is formed out of two parts, each of which
is of strictly positive measure. We assume, for simplicity, that Γd is connected and
denote:

{si}i=1,2 := Γd ∩ Γn. (1.1)

We are interested in the study of the second order hyperbolic operator:

Hu := ∂2
t u− Lu, (1.2)

where L is a second order uniformly and strongly elliptic operator, one can think
of the Laplace or the Lamé operator for instance. In the sequel, and only for the
sake of clarity of presentation, the operator L will be represented by the Laplace
operator L ≡ ∆. We consider the partial differential equation:

Hu = f a.e. in (0, T )× Ω, (1.3)

where T > 0. The equation (1.3) is completed with a mixed boundary condition.
More precisely, we prescribe a Dirichlet condition on (0, T ) × Γd and a Neumann
condition on (0, T )× Γn i.e. we have in the sens of trace:

u = G on (0, T )× Γd ,
∂u

∂−→n
= 0 on (0, T )× Γn, (1.4)

2010 Mathematics Subject Classification. 35L20, 35A01, 35B30.
Key words and phrases. Linear hyperbolic operator; Evolution PDE’s; Boundary value prob-

lems, Energy estimate, Mixed boundary condition.

1



2 D. AIT-AKLI, A. MERAKEB

where −→n is the exterior unit normal defined at each point of Γn and ∂u
∂−→n denotes

the normal derivative of u. Moreover, initial-in-time conditions are also prescribed:

u(0, x) = Ψ0(x), ∂tu(0, x) = Ψ1(x) on Ω. (1.5)

Such a problem is known to model wave propagation in case when L = ∆ is the
Laplace and models for instance the time-dependent elasticity behavior in case
where L is the Lamé system. We address in this work the issue of existence and
uniqueness of a solution to the problem associated to equation (1.3) when endowed
with the conditions (1.4) and (1.5). Moreover, we establish an energy estimate that
asserts the continuous dependence of the solution of this problem with respect to
the data, this estimate expresses the stability of the solution.

Let’s place our work in perspective: a well-posedness result, in case of an homo-
geneous Dirichlet conditions, can be found in [1]. A similar study for the case of a
non-homogeneous Dirichlet condition, on the entire boundary, is dealt with in [2].
Regarding other types of boundary condition, the work presented in [3] deals with
the case of the non-homogenous Neumann-type boundary condition. The problem
with a mixed homogeneous type condition has been dealt with in [4], see also [5].
Statement of the main result. The problem under consideration is given in the
following system: 

∂2
t u−∆u = f in (0, T )× Ω,

u = G on (0, T )× Γd,

∂u

∂−→n
= 0 on (0, T )× Γn,

u(0, x) = Ψ0, ∂tu(0, x) = Ψ1 in Ω.

(1.6)

Let K(Ω) denote the completion of the set of the up to boundary smooth functions
in Ω, vanishing on a neighborhood of Γd, with respect to the Sobolev H1(Ω)-norm
i.e.

K(Ω) := {v ∈ C∞(Ω), supp v ∩ Γd = ∅}
|| ||H1

. (1.7)

Two functions ξ and η are said to satisfy the weak boundary condition, cf. [4,
Definition 2, p.170], if:

(ξ, η) ∈ K(Ω)×K(Ω),∫
Ω

∆ξϕ =

∫
Ω

∇ξ∇ϕ, ∀ϕ ∈ K(Ω).
(1.8)

The main result of the paper is stated in the following theorem:

Theorem 1.1. Let f ∈ C1([0, T ];L2(Ω)). Assume that (Ψ0,Ψ1) satisfy the weak

boundary condition (1.8). Let G ∈ H1((0, T ) × Γd) such that there exists G̃ ∈
H1((0, T )× ∂Ω) satisfying:

G̃ ≡ G on (0, T )× Γd, (1.9)

G̃(0, x) = 0 on ∂Ω. (1.10)

Let {si}i be defined as in (1.1). We assume further that G satisfy point-wisely a
domination condition near si, that is:

∃γ > 0, |G(t, x)| = O
x→si

(|x− si|1+γ), ∀t ∈ (0, T ), i = 1, 2. (1.11)
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Then, there is a unique solution u ∈ C0([0, T ];H1(Ω))∩C1([0, T ];L2(Ω)) of system
(1.6), moreover this solution satisfies the following energy estimate:

‖u‖C0([0,T ];Hα(Ω)) + ‖∂tu‖C0([0,T ];Hα−1(Ω))

≤ C
(
‖G‖H1((0,T )×Γd) + ‖f‖L1(0,T ;L2(Ω)) + ‖Ψ0‖H1(Ω) + ‖Ψ1‖L2(Ω)

)
.

(1.12)

where α =
3

5
− ε and where ε > 0 is arbitrary small. (1.13)

The plan of the paper. We prove in section 2 an auxiliary Lemma which states
that the solution of a problem similar to (1.6) i.e. with homogeneous second mem-
ber and initial data, satisfy an energy estimate, cf. Estimate (1.12). As a second
step, we construct in section 3 a sequence of functions that solves approximating
problems similar to (1.6) and that effectively satisfy energy estimate of Lemma 3.1.
We finally pass to the limit and conclude the results of Theorem 1.1.

In all the sequel, we denote by E∗ the topological dual space of the Banach or
Hilbert space E and ifM is a subset of the euclidean space, we denote by C∞0 (M)
the set of smooth function with compact support in M.

2. Preliminary facts

Before presenting the two auxiliary results, we need to set some preliminary
facts:

Remark 2.1. Consider the Dirichlet boundary value problem:
∂2
t u−∆u = 0 in (0, T )× Ω,

u = G on (0, T )× ∂Ω,

u(0, x) = 0 , ∂tu(0, x) = 0 in Ω,

(2.1)

where G ∈ H1((0, T ) × ∂Ω) satisfy the same compatibility conditions as G̃ in
(1.10). Following [2, Theorem 2.1, p.151], there exists a unique solution u ∈
C0([0, T ];H1(Ω)) ∩C1([0, T ];L2(Ω)) to problem (2.1), moreover ∂u

∂−→n ∈ L
2((0, T )×

∂Ω). Let us denote g := ∂u
∂−→n ∈ L

2((0, T ) × ∂Ω) the Neumann data associated to
system (2.1). Combining [3, Theorem A.1, p. 117] and the remark at the beginning
of [3, section 1.2, p. 116], we conclude that u satisfy following energy estimate:

‖u‖C0(0,T ;Hα(Ω)) + ‖∂tu‖C0(0,T ;Hα−1(Ω))

≤ C‖g‖L2((0,T )×∂Ω).
(2.2)

where α is given by (1.13). Using the continuity of the trace operator on ∂Ω we
deduce from (2.2):

‖G‖
C0

(
0,T ;Hα− 1

2 (∂Ω)
) = ‖u‖

C0
(

0,T ;Hα− 1
2 (∂Ω)

) ≤ C‖g‖L2((0,T )×∂Ω). (2.3)

We state a useful density fact that will be used in the proof of Lemma 3.1:

Remark 2.2. Pose

J := {v ∈ C∞((0, T )× ∂Ω), supp v ∩ ({0} × ∂Ω) = ∅}. (2.4)

Pose

J 1
2

:= JH
1
2

, J1 := JH
1

, (2.5)
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which are respectively the completion of J with respect to the H
1
2 ((0, T )×∂Ω)−norm

and H1((0, T ) × ∂Ω)−norm. We claim that J ↪→
d

[J 1
2
]∗. Consider the mixed

boundary value problem associated to the Laplace operator on (0, T )× Ω:
−∆v = 0 in (0, T )× Ω,

v = 0 on {0} × Ω,

∂v

∂ν
= g on ((0, T )× ∂Ω) ∪ ({T} × Ω),

where ∂((0, T ) × Ω) := ((0, T ) × ∂Ω) ∪ ({0} × Ω) ∪ ({T} × Ω). Then consider the
operator

K : [J 1
2
]∗ → V ⊂ H1((0, T )× Ω)

g 7→ K(g) = v,

where V = K([J 1
2
]∗). The operator K is invertible and continuous between the

closed, and then Banach, spaces [J 1
2
]∗ and V, we deduce that its inverse K−1 is

also continuous i.e.

‖K−1(v)‖[J 1
2

]∗ = ‖g‖[J 1
2

]∗ ≤ C−1‖v‖H1((0,T )×Ω) (2.6)

for all v ∈ V. On the other hand we know that

{v ∈ C∞((0, T )× Ω), supp v ∩ ({0} × Ω) = ∅} ⊂ J

is dense in
(
V, ‖ ‖H1((0,T )×Ω)

)
and that K−1 maps C∞ functions into C∞ func-

tions. Thus we deuce, using (2.6), that J is dense in [J 1
2
]∗. Let us show that

C∞0 ((0, T )× ∂Ω) ↪→
d

[H1((0, T )× ∂Ω)]∗. (2.7)

Recall the standard result C∞0 ((0, T )× ∂Ω) ↪→
d
L2((0, T )× ∂Ω). On another hand,

for any element f ∈ [H1((0, T )× ∂Ω)]∗ there exists f0, f1, f2, f3 ∈ L2((0, T )× ∂Ω)
such that f is represented by: < f, v >=

∫
f0v + f1vt + f2x1 + f3vx2 . The density

claim follows immediately. To obtain such a representation of f ∈ [H1]∗, one can
use the Riesz representation theorem and the definition of the Sobolev space H1(M)
on the manifold M := (0, T )× ∂Ω, see for instance [6, Section 2.2, p.21-22].

3. Auxiliary results

We state the essential auxiliary Lemma needed subsequently for the proof of
Theorem 1.1:

Lemma 3.1. Consider the mixed boundary value problem given by:

∂2
t u−∆u = 0 in (0, T )× Ω,

u = G on (0, T )× Γd,

∂u

∂−→n
= 0 on (0, T )× Γn,

u(0, x) = 0, ∂tu(0, x) = 0 in Ω.

(3.1)
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where we assume that G meet the same compatibility conditions as G̃ in (1.10) on
Γd. Then the subspace G ⊂ H1((0, T )× Γd):

G :=


G ∈ H1((0, T )× Γd) : problem (3.1)

admits a unique solution u such that

u ∈ C0(0, T ;Hα(Ω)) ∩ C1(0, T ;Hα−1(Ω))

 . (3.2)

isn’t trivial. Moreover, any solution u of problem (3.1) satisfy the energy estimate:

‖ ∂u
∂−→n
‖Hβ((0,T )×Γd) + ‖u‖C0(0,T ;Hα(Ω)) + ‖∂tu‖C1(0,T ;Hα−1(Ω))

≤ C1‖G‖H1((0,T )×Γd), (3.3)

for all G ∈ G, where the exponent β equals 2(1 − α) and α is given by (1.13). A
trivial subspace means: a vector space containing only the zero element 0H1 .

Regarding the non triviality of G, we construct, in step 1 of the proof of the main
result cf. problem (4.12), a sequence of functions that are different from the zero
element and which belong to G, this shows the first claim of Lemma 3.1. Remark
that: {

G ∈ H1((0, T )× ∂Ω) : G satisfy the

compatibility conditions (1.10) on ∂Ω

}
≡ JH

1

. (3.4)

where J is defined by (2.4). The equivalence is due to the fact that ∂ ((0, T )× ∂Ω) =
{{0}×∂Ω}∪{{1}×∂Ω}. Consider the non necessarily homogeneous Dirichlet prob-
lem given by the following system:

∂2
t u−∆u = 0 in (0, T )× Ω,

u = G on (0, T )× ∂Ω,

u(0, x) = 0 , ∂tu(0, x) = 0 in Ω,

(3.5)

where G ∈ J1 ⊂ H1((0, T )× ∂Ω). Consider the operator T defined by:

T : H1((0, T )× ∂Ω)→ L2((0, T )× ∂Ω)

G 7→ T (G) = g :=
∂u

∂−→n
,

(3.6)

the operator T associates to every Dirichlet data G ∈ J1 ⊂ H1((0, T ) × ∂Ω),
the unique Neumann data g ∈ L2((0, T ) × ∂Ω) corresponding to the solution u of
problem (3.5). Following [2, Theorem 2.1, p.151], the operator T is well defined.
According to [2, Remark 2.2, p.152] the operator T : H1 → L2 is also bounded.
That said, T (H1((0, T ) × ∂Ω)) ⊂ L2((0, T ) × ∂Ω) can not be complete for the
L2-norm. This is the reason why we restrict, in the sequel, the operator T to
more regular spaces, namely D and A, which are respectively given in (3.19) and
(3.18). But before doing this, we need to consider less regular space. For the case
of distributional Neumann data, following [3, Theorem G, p.119], we know that

T−1([H1((0, T )× ∂Ω)]∗) ⊂ [Yβ ]∗, (3.7)

where

Yβ := {h ∈ Hβ((0, T )× ∂Ω), h(0, .) = 0}, (3.8)

and β = 2(1− α), where α is given by (1.13).
Before going further, we need to derive a crucial adjoint identity, this is the

subject of Lemma 3.2:
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Lemma 3.2. Let Yβ be given by (3.8). Two functions G ∈ T−1(T (H1) ∩ Yβ) ⊂
H1((0, T ) × ∂Ω) and g ∈ T (H1) ∩ Yβ are respectively the Dirichlet and Neumann
data relatively to a solution of problem (3.5) if and only if the following adjoint
identity is fulfilled:

< G, η >1,[1]∗=< g, h >Yβ ,[Yβ ]∗ (3.9)

for all η ∈ [H1((0, T )× ∂Ω)]∗ and all h = T−1(η) ∈ [Yβ ]∗.

We will prove in the sequel, namely as a consequence of the first step of the
proof of Lemma 3.1, that T (J1) ≡ Yβ , thus estimate (3.9) holds for G ∈ J1 and
g ∈ T (J1) = Yβ , where J and J1 are given by (2.5). We now present a proof of
Lemma 3.2:

Proof. Consider the problem, cf. [2, Problem 2.63, p.163]:
∂2
t φ−∆φ = 0 in (0, T )× Ω,

φ = h on (0, T )× ∂Ω,

φ(T, x) = ∂tφ(T, x) = 0 in Ω.

(3.10)

Pose: η(t, x) := ∂φ
∂−→n (t, x). According to [2, Estimate (2.65), p.163], we know that if

G ∈ J1 ⊂ H1((0, T ) × Ω) and g ∈ L2 are respectively the Dirichlet and Neumann
data corresponding to the solution to problem (3.5), then we have:∫

(0,T )×∂Ω

Gη =

∫
(0,T )×∂Ω

gh. (3.11)

for all h ∈ H1((0, T )× ∂Ω) ⊃ H1
0 ((0, T )× ∂Ω) and all η = T (h) ∈ L2((0, T )× ∂Ω)

such that (h, η) corresponds to the solution φ of problem (3.10), which presup-
poses the compatibility condition h(T, .) = 0, cf. Problem (3.10). Set F := {φ ∈
H1((0, T ) × Ω) : φ(T, .) = ∂tφ(T, .) = 0}. We claim that: C∞0 ((0, T ) × ∂Ω) ⊂
T (F �(0,T )×∂Ω)) i.e. if the Neumann data is C∞0 , then the corresponding solution
u of the Dirichlet problem (3.5) satisfy u ∈ F . To see it, consider the Neumann
problem given by: 

∂2
t ϕ−∆ϕ = 0 in (0, T )× Ω,

∇ϕ · −→n = η on (0, T )× ∂Ω,

ϕ(0, x) = ∂tϕ(0, x) = 0 in Ω.

(3.12)

We denote, in case when φ is smooth, h := ϕ �(0,T )×∂Ω. There is an important
fact to emphasize. Let η ∈ C∞0 ((0, T ) × ∂Ω). Consider the T−shifted function
t 7→ ηT (t) := η(T − t). Then η(0) = ηT (0) = 0. Since the given Neumann data
η are mapped into solutions ϕ of problem (3.12), then T−shifted Neumann data
η(T − ., .) are mapped into T−shifted solution ϕT ; to see this, one may consider [3,
Identity 1.3, 1.6 p.115]. Consequently for every η ∈ C∞0 ((0, T )× ∂Ω), the solution
ϕT corresponding to ηT satisfy ϕT ∈ F . But since η ∈ C∞0 if and only if ηT ∈ C∞0 ,
then for every η ∈ C∞0 ((0, T ) × ∂Ω), the corresponding solution ϕ satisfy ϕ ∈ F ,
this proves the claim. We infer that every (h, η) satisfying η ∈ C∞0 ((0, T ) × ∂Ω)
and h = T−1(η) fulfills the identity (3.11). On another hand, following [3, Theorem
G, p.119], one can see that for every Neumann data η ∈ [H1 ((0, T )× ∂Ω)]∗, there
exists a unique solution to problem (3.12) whose corresponding Dirichlet data satisfy
h = T−1(η) ∈ [Yβ ]∗. Moreover, one may consider the continuity statement at the
beginning of [3, section 1.2, p. 116] to deduce that there exists C > 0 s.t.:

‖h‖[Yβ ]∗((0,T )×∂Ω) = ‖T−1(η)‖[Yβ ]∗ ≤ C‖η‖[H1((0,T )×∂Ω)]∗ , (3.13)
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for all η ∈ [H1 ((0, T )× ∂Ω)]∗ where Yβ is given by (3.8). According to the claim
proved in the beginning of this proof, estimate (3.11) can be rewritten in the fol-
lowing setting: for G ∈ T−1

(
T (H1) ∩ Yβ

)
⊂ H1 and g ∈ Yβ ∩ T (H1) we have:

< G, η >1,[1]∗=< g, h >Yβ ,[Yβ ]∗ (3.14)

for all η ∈ C∞0 ((0, T ) × ∂Ω) and all h = T−1(η), h(T, .) = h(0, .) = 0. Let
η ∈ [H1((0, T ) × ∂Ω)]∗. Applying the density fact (2.7), stated in Remark 2.2,
there exists a sequence (ηm)m in C∞0 ((0, T )×∂Ω) such that ‖ηm−η‖[H1]∗ → 0, this

convergence implies, by using (3.13), that ‖hm−h‖[Yβ ]∗ → 0, where hm := T−1(ηm).
Then (hm, ηm) do satisfy:

< G, ηm >1,[1]∗=< g, hm >Yβ ,[Yβ ]∗ (3.15)

for all m ∈ N. Letting m → ∞ in (3.15), we discover that (3.11) can be extended
to the form:

< G, η >1,[1]∗=< g, h >Yβ ,[Yβ ]∗ (3.16)

for all η ∈ [H1((0, T )×∂Ω)]∗ and all h = T−1(η) ∈ [Yβ ]∗. The estimate (3.16) is the
desired adjoint identity. Actually we have established the necessary condition part
of the lemma. To see the other direction of the equivalence, it suffices to integrate
by part in (3.16) against adequately regular test functions η and h and then deduce
that (G, g) actually solves problem (3.5). �

The identity (3.9) in Lemma 3.2 is the key for proving the completeness of the
functional space D defined by (3.19). Denote E to be the closure of T−1([H1]∗)
with respect to the strong norm of the dual, b(Yβ , [Yβ ]∗):

E := T−1([H1]∗)
b([Yβ ],[Yβ ]∗)

⊂ [Yβ ]∗. (3.17)

Notice that, since the involved spaces in the topology b are normed, this dual
topology is equivalent to the topology induced by the operator norm. The space E
is a Banach and admits a (non necessarily unique) pre-dual. The existence of such
a pre-dual, that we denote A, can be shown using the sufficient condition stated
in [7, Proposition 1, p.88]. Indeed, since E is a complete, and so a closed subspace
of the reflexive space [Yβ ]∗, then it is also reflexive. This means that the natural
embedding in the bidual is onto an thus it can be easily shown that the, above
mentioned, sufficient condition for existence is fulfilled. Let us denote

A := a pre-dual of the space E containing J ⊃ C∞0 . (3.18)

where J is defined by (2.4). We report four observations:

Observation 1. We claim that A ⊂ Yβ. Consider the isometry Ψ : Yβ → [Yβ ]∗ that
associate to each element of Yβ the unique corresponding element in [Yβ ]∗ via the
Riesz representation theorem with respect to the inner product induced by (, )Hβ i.e.
for every f ∈ [Yβ ]∗, there exists a unique uf ∈ Yβ such that: (uf , v)Hβ =< f, v >
for all v ∈ Yβ. Since E is a closed subspace of [Yβ ]∗, then by continuity of Ψ we
deduce that Ψ−1(E) is also closed and thus is a Hilbert space. By definition, every
element of E ⊂ [Yβ ]∗ is continuous on Yβ, and thus is continuous on Ψ−1(E) ⊂ Yβ,
this is due to the fact that both Yβ and Ψ−1(E) are endowed with the same norm
‖ ‖Hβ . We consider the restriction of Ψ defined by: Ψ : Ψ−1(E)→ E, it is still an
isometric isomorphism. Using (3.18), we infer that A ∼= Ψ−1(E). Hence A ⊂ Yβ
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and A is closed, thus it a Banach space.

Pose:

D := {G ∈ J1, : there exists g ∈ A, T (G) = g}. (3.19)

where J1 := JH
1

. The subspace D is endowed with the H1((0, T ) × ∂Ω)-norm.
This space is characterized as the largest subspace of J1 whose direct image by T
is included in A i.e. such that A ⊃ T (D).

Observation 2. Let A be a predual of E. We claim that J1 := JH
1

↪→
c
A. Indeed,

first recall that the spaces A and J1 are reflexive and Banach. Moreover, we have
clearly (since J ↪→

d
Yβ and J ↪→

c
J 1

2
↪→
c
Yβ) that J 1

2
↪→
d
Yβ, then [Yβ ]∗ ↪→

c
[J 1

2
]∗

and thus, following (3.17), we have E ↪→
c

[J 1
2
]∗. According to the density fact stated

in Remark 2.2, we have J ↪→
d

[J 1
2
]∗. Consequently, and since J ⊂ E, we have

E ↪→
d

[J 1
2
]∗. We conclude immediately that J 1

2
↪→
c

[E ]∗ ≡ A. Since J1 ↪→
c
J 1

2
, the

claim follows.
Observation 3. The subspace A, being a predual of the closed and then reflexive
subspace E ⊂ [Yβ ]∗, is reflexive. Moreover, according to observation 1, it is complete
(with respect to the norm || ||Hβ ). From preceding observations J ⊂ J1 ⊂ A ⊂ Yβ,
then we immediately deduce that:

A ≡ Yβ . (3.20)

This implies that E := [A]∗ = [Yβ ]∗ then, using (3.17), we have

T−1([H1]∗) ↪→
d

[Yβ ]∗. (3.21)

We claim that actually we have T−1([H1]∗)∗ ∼= [Yβ ]∗∗ ∼= [Yβ ] (since Yβ is reflexive).
Indeed, since T−1([H1]∗) is a dense subspace of the Banach space [Yβ ]∗ then its
orthogonal complement is trivial i.e. T−1([H1]∗)⊥ = {0}. Consequently, we have
the isometric isomorphism:

[Yβ ] ≡ [Yβ ]
/(
T−1([H1]∗)

)⊥ ∼= [T−1([H1]∗)]∗. (3.22)

this shows the claim.
Observation 4. According to [2, Remark 2.10, p.167], for every G ∈ J , we have
g = T (G) ∈ C∞((0, T ) × ∂Ω). Moreover, given the necessary compatibility condi-
tion (of the Neumann data with initial data) we infer that g(0, x) = ∂u

∂ν (0, x) = 0
for x ∈ ∂Ω; indeed, this can be deduced using the continuity of the gradient of the
solution corresponding to G on the surface (0, T )×∂Ω (near {0}×∂Ω), cf. the clas-
sical theory of Neumann problems for linear Hyperbolic operators. Consequently,
g = T (G) ∈ A i.e. T (J ) ⊂ A, we infer from these arguments that J ⊂ D.

An important consequence of this observation is the existence of a unique predual
A of the space E containing J . Observation 2 shows also that D andA aren’t trivial.

The operator T : D → T (D) ⊂ A, given by (3.6), is clearly linear and invertible.
The procedure for proving estimate (3.3) is based on the boundedness of its inverse
operator, denoted T−1. For this we need to make use of the Banach isomorphism
theorem. In order to apply this theorem, we need, in addition to the fact that
(A, ‖ ‖Hβ ) is complete, to show that A = T (D) and that the subspace (D, ‖ ‖H1)
is a Banach spaces. We now present a proof of the second claim of Lemma 3.1:
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Recall that Lemma 3.2 asserts that: G ∈ D and g = T (G) ∈ A are respectively
the Dirichlet and Neumann data associated to the solution of problem (3.5) if and
only if (3.9) holds for all η ∈ [H1]∗ and all h ∈ T−1([H1]∗) ⊂ [A]∗ ≡ E .

Proof of Lemma 3.1:

Proof. The proof is done in two steps:
Step 1: completeness of D. First recall that A ≡ Yβ is reflexive. Let D be as
defined by (3.19). Let Gn ∈ D be a convergent sequence i.e. such that ‖Gn −
G‖H1 → 0, then we show that G ∈ D. By assumption, for all n ∈ N, there exists
gn ∈ A ≡ Yβ such that T (Gn) = gn. Surely we have the weak convergence:

Gn ⇀
H1

G. (3.23)

Using (3.9) we can write:

< Gn, η >1,[1]∗=< gn, h >Yβ ,[Yβ ]∗ , (3.24)

for all η ∈ [H1]∗ and all h = T−1(η) ∈ T−1([H1]∗). Then, combining (3.23) and
(3.24), we infer that

gn : T−1([H1]∗)→ R
h 7→< gn, h >Yβ ,[Yβ ]∗

is point-wisly bounded i.e. for all h ∈ T−1([H1]∗) there is ch > 0 such that

sup
n
| < gn, h >Yβ ,[Yβ ]∗ | ≤ ch. (3.25)

According to (3.22), gn ∈ [Yβ ] ∼= [T−1([H1]∗)]∗, then gn can be viewed as a linear
functional on T−1([H1]∗). On another hand, since T−1([H1]∗) ↪→

d
[Yβ ]∗ then, for

all n ∈ N, there exists a unique bounded linear functional Fn that extends gn from
T−1([H1]∗) to the Banach space [Yβ ]∗ such that ‖Fn‖L([Yβ ]∗,R) = ‖gn‖L(T−1([H1]∗),R)

i.e. such that

sup
h∈T−1([H1]∗)

< gn, h >

‖h‖[Yβ ]∗
= sup
h∈[Yβ ]∗

< Fn, h >

‖h‖[Yβ ]∗
. (3.26)

Following (3.25) We deduce that Fn is point-wisly bounded on [Yβ ]∗. Since [Yβ ]∗

is a Banach space then, according to the uniform boundedness principle, we de-
duce that Fn is uniformly bounded. Thus, using (3.22) and (3.26), we infer that
‖gn‖[T−1([H1]∗)]∗ = ‖gn‖Yβ is uniformly bounded. i.e. there exists g ∈ Yβ such that
gn ⇀

Yβ
g. Then, letting n → ∞ in (3.24), we deduce easily that A 3 g = T (G) and

thus G ∈ D. Consequently D is complete. Hence, (D, ‖ ‖H1) is a Banach space.
Using Observation 4 we conclude, by density, that D ≡ J1. As a consequence of the
preceding argument, we infer that weakly convergent sequences in J1 are mapped
into weakly convergent sequences in A. This observation leads to the conclusion
that the operator T : (J1, | ‖H1)→ (A, ‖ ‖Hβ ) is weakly continuous, and since it is
linear, then it is bounded i.e. ∃C > 0:

‖T (G)‖Hβ((0,T )×∂Ω) ≤ C‖G‖H1((0,T )×∂Ω), (3.27)

for all G ∈ J1.
Another important consequence of the above arguments is that T (J1) = Yβ .

Indeed, we know that J ↪→
d
A. Let g ∈ A, there exists (gn)n ∈ J such that

‖g − gn‖Hβ → 0, according to the above results, there exists (Gn)n ∈ J1 such that
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gn = T (Gn) for all n. Following these assumptions, < gn, h > is a Cauchy sequence
for all h ∈ T−1([H1]∗), thus < Gn, η > is also Cauchy for all η ∈ [H1]∗. Then, since
D ≡ J1 is weakly complete (it is indeed reflexive), there exists G ∈ H1 such that:

< G, η >=< g, h >

for all η ∈ [H1]∗ and all h ∈ T−1([H1]∗). We deduce easily, by performing an
integration by part, that g = T (G), this implies that g ∈ T (D), thus T (J1) = A.
Step 2: proof of Estimate (3.3). Since J1 and A are Banach space and using
(3.27), we apply the isomorphism theorem, to infer that the inverse operator is
bounded i.e. there exists C−1 > 0 s.t.

‖T−1(g)‖H1((0,T )×∂Ω) = ‖G‖H1((0,T )×∂Ω) ≤ C−1‖g‖Hβ((0,T )×∂Ω), (3.28)

for all g ∈ T (J1) ≡ A ≡ Yβ . Set B to be the subspace:

B := {g ∈ Hβ((0, T )× ∂Ω) : g ≡ 0 on (0, T )× Γn}.
The subspace (B, ‖ ‖Hβ ) is clearly closed. We infer that A ∩ B is also closed, thus
it is a Banach space. Since T : J1 ⊂ H1 → A is continuous, as well as its inverse,
then T−1(A ∩ B) is a complete subspace of J1, thus it is a Banach. We remark
that:

• The space T−1(A∩ B) isn’t trivial. Indeed, one can see with ease that the
non trivial space G, given by (3.2), is nothing but the restriction to Γd of
functions of the spaces T−1(A∩B), this is due to the fact that any solution
u of problem (3.1) should satisfy the compatibility conditions (1.10) on
(0, T )× ∂Ω, and thus we infer the claimed non triviality.

We immediately deduce from estimate (3.28) that:

‖G‖H1((0,T )×Γd) = ‖T−1(g)‖H1((0,T )×Γd)

≤ C−1‖g‖Hβ((0,T )×Γd),
(3.29)

for all g ∈ A ∩ B. Then the restriction of the operator T−1 defined by:

T−1 : A ∩ B → T−1(A ∩ B) ⊂ J1

g 7→ T−1(g) = G

is continuous. Consider the operator Re|(0,T )×Γd defined by:

Re|(0,T )×Γd : T−1(A ∩ B) ⊂ J1 → C
G 7→ Tr|(0,T )×ΓdG,

where C := Re|(0,T )×Γd ◦ T−1(A ∩ B). The space C is the set of restrictions to

(0, T ) × Γd of Dirichlet data G ∈ T−1(A ∩ B) that correspond to Neumann data,
in Yβ , which are identically zero on Γn. Following the above remark, we have:

Re|(0,T )×Γd ◦ T
−1(A ∩ B) ≡ G,

where G is given by (3.2). Estimate (3.29) shows that the operator

P :=
(
Re|(0,T )×Γd ◦ T

−1
)

: A ∩ B → C ≡ G
is continuous, and it is, obviously, one-to-one and onto. One can easily see, using
the completeness of A and B, in addition to the estimate (3.27), that the subspace
C ≡ G is a Banach space. Then applying the isomorphism theorem we show that
the operator P has a bounded inverse i.e. there exists C1 > 0 s.t.:

‖g‖Hβ((0,T )×Γd) = ‖P−1(G)‖L2((0,T )×Γd) ≤ C1‖G‖H1((0,T )×Γd), (3.30)
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for all G ∈ G ⊂ H1((0, T )× Γd). Finally, by combining estimates (3.30), (2.2) and
the continuous mebedding of Hβ in L2, we conclude immediately Estimate (3.3).
This ends the proof of Lemma 3.1. �

4. Proof of the main result

Presently we establish Theorem 1.1, which is about the well-posedness of system
(1.6), this is done using mainly the result of Lemma 3.1.

Proof. The proof is carried in two steps. In the first one we construct, starting
from a Dirichlet problem, a sequence of functions, (u1

ε)ε, each of which solves an
approximating problem (cf. system 4.12) which is similar to (1.6) and satisfy the
estimate (3.3) of Lemma 3.1. In the second subsection we pass to the limit and
combine with the a priori estimate (4.11), satisfied by u2, and finally conclude the
results of theorem 1.1.
Step 1: construction of the approximating solution. Let {si}i=1,2 be as
defined by (1.1). Denote by D(si, ε0) ⊂ R2 the disk centered at si with radius ε0,
where ε0 := 1

2 |s1 − s2|. Let ε, 0 < ε < ε0, be a parameter designed to tend towards

zero. We introduce a sequence of truncating functions χε,i ∈ C1(R2), i = 1, 2
defined by:

χε,i(x) :=


0, |x− si| ≤ ε2,
exp

(
ε−|x−si|
ε2−|x−si|

)
, ε2 < |x− si| < ε,

1, ε < |x− si|.
Define:

χε(t, x) :=


χε,1(x), ∀x, |x− s1| ≤ ε0, ∀t ∈ (0, T ),

χε,2(x), ∀x, |x− s2| ≤ ε0, ∀t ∈ (0, T ),

1, ∀x ∈ R2 − V1 ∪ V2, ∀t ∈ (0, T ),

(4.1)

where we denote Vi := D(si, ε0). It is easy to see, from the definition (4.1), that
the functions (χε)ε are constant with respect to the time variable and satisfy:

1) |χε(t, x)| ≤ 1, ∀t ∈ (0, T ),∀x ∈ R2,∀ε > 0. (4.2)

2) ε1+γ‖∂xχε‖∞,(0,T )×Vi → 0 as ε→ 0, with γ > 0. (4.3)

3) |χε(t, x)| → 1, as ε→ 0,∀(t, x) ∈ (0, T )× Γd. (4.4)

Let us cover the set Ω by open sets U1 and U ε2 such that:

(i) Ω ⊂ U1 ∪ U ε2 , for all ε > 0,
(ii) U1 ∩ ∂Ω = Γd,
(iii) |αεi − si| < 1

2ε
2, for every i = 1, 2 ,

where we denote {αε1, αε2} := ∂Ω∩∂U ε2 such that d(αε1, s1) < d(αε2, s1), for all ε > 0.
The condition (ii) implies that ∂U1 ∩ ∂Ω = {s1, s2}. Consider, for every ε > 0, the

partition of the unity (ψ̃ε1, ψ̃
ε
2) subordinate to the cover (U1, U

ε
2) i.e.

(a) ψ̃εi ∈ C∞0 (Ui), 0 < ψ̃εi < 1, for 1 ≤ i ≤ 2,

(b) supp ψ̃ε1 ⊂ U1, supp ψ̃ε2 ⊂ U ε2 , ∀ε > 0,

(c) ψ̃ε1(x) + ψ̃ε2(x) = 1 for every x ∈ Ω.

Define the functions:

ψε1(t, x) := ψ̃ε1(x), ψε2(t, x) := ψ̃ε2(x), ∀t ∈ (0, T ),∀x ∈ Ω. (4.5)
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Thus, the functions ψε1, ψ
ε
2 are constant with respect to the time variable. One

immediate consequence is:

‖ψε1 − 1‖∞,(0,T )×Γd → 0 as ε→ 0. (4.6)

Let G ∈ H1 ((0, T )× Γd) and G̃ ∈ H1 ((0, T )× ∂Ω) be such that conditions
(1.9)-(1.10) are satisfied. Consider the Dirichlet boundary value problem:

∂2
t u−∆u = 0 in (0, T )× Ω,

u = G̃ on (0, T )× ∂Ω,

u(0, x) = 0 , ∂tu(0, x) = 0 in Ω,

(4.7)

the compatibility conditions are well met by G̃ on ∂Ω. Denote u ∈ C0
(
[0, T ];H1(Ω)

)
∩

C1
(
[0, T ];L2(Ω)

)
to be the unique solution of (4.7). It is easy to see that the func-

tion χεψ
ε
1u satisfy the following system:

∂2
t (χεψ

ε
1u)−∆(χεψ

ε
1u) = fε in (0, T )× Ωs,

χεψ
ε
1u = Gε on (0, T )× Γd,

∂(χεψ
ε
1u)

∂−→n
= 0 on (0, T )× Γn,

(χεψ
ε
1u)(0, x) = 0, ∂t(χεψ

ε
1u)(0, x) = 0 in Ω,

(4.8)

where Gε := ψε1χεG̃ and fε ∈ C1([0, T ];L2(Ω)). One should remark that the
homogeneous Neumann condition in (4.8) arises from the conditions (ii) and (b).
Consider the function wε satisfying the following system:

∂2
twε −∆wε = f − fε in (0, T )× Ωs,

wε = 0 on (0, T )× Γd,

∂wε
∂−→n

= 0 on (0, T )× Γn,

wε(0, x) = Ψ0(x), ∂twε(0, x) = Ψ1(x) in Ω,

(4.9)

where (Ψ0,Ψ1) satisfy the weak boundary conditions (1.8). In virtue of [4, Theorem
1, p. 170] and its Corollary, see also [5], there is a unique wε ∈ C1([0, T ];K(Ω)) ∩
C2([0, T ];L2(Ω)) satisfying, for all ε > 0, system (4.9). Then it is obvious to remark
that the function uε := χεψ

ε
1u+ wε solves the following system:

∂2
t uε −∆uε = f in (0, T )× Ωs,

uε = Gε on (0, T )× Γd,

∂uε
∂−→n

= 0 on (0, T )× Γn,

uε(0, x) = Ψ0(x), ∂tuε(0, x) = Ψ1(x) in Ω.

On the other hand, consider the function u2 that solves the system:

∂2
t u

2 −∆u2 = f in (0, T )× Ω,

u2 = 0 on (0, T )× Γd,

∂u2

∂−→n
= 0 on (0, T )× Γn,

u2(0, x) = Ψ0(x), ∂tu
2(0, x) = Ψ1(x) in Ω,

(4.10)
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following again [4, Theorem 1, p. 170], see also [5], we deduce that (4.10) admits a
unique solution:

u2 ∈ C1([0, T ];K(Ω)) ∩ C2([0, T ];L2(Ω)),

moreover we have, cf. [4, Estimate 1.9, p. 170], the following estimate:

‖u2‖C0([0,T ];H1(Ω))∩C1([0,T ];L2(Ω))

≤ C(‖f‖L1(0,T ;L2(Ω)) + ‖Ψ0‖H1(Ω) + ‖Ψ1‖L2(Ω)).
(4.11)

Step 2: passing to the limit using Lemma 3.1. It is immediate to see that
u1
ε := uε − u2 ∈ C0([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) exists and satisfy, for every
ε > 0, the system: 

∂2
t u

1
ε −∆u1

ε = 0 in (0, T )× Ω;

u1
ε = Gε on (0, T )× Γd;

∂u1
ε

∂n
= 0 on (0, T )× Γn;

u1
ε(0, x) = 0, ∂tu

1
ε(0, x) = 0 in Ω,

(4.12)

and thus Gε ∈ G for every ε > 0, where G is defined by (3.2). Moreover, the
associated solution u1

ε of system (4.12) satisfy, for every ε > 0, the assumption of

Lemma 3.1. Consequently, if we note g1
ε :=

∂u1
ε

∂n , we obtain by applying (3.3):

‖g1
ε ‖Hβ((0,T )×Γd) ≤ C1‖Gχεψε1‖H1((0,T )×Γd). (4.13)

for all ε > 0. The H1−norm of Gε −G = Gχεψ
ε
1 −G satisfy:

‖Gε −G‖H1((0,T )×Γd)

≤ ‖Gε −G‖2L2((0,T )×Γd) + ‖∂tGε − ∂tG‖2L2((0,T )×Γd)

+ ‖∇xGε −∇xG‖2L2((0,T )×Γd).

(4.14)

We show that ‖Gε − G‖H1((0,T )×Γd) → 0. Since both of ψε1 and χε are constant
with respect to the time variable, and considering (4.2), (4.4) and (4.6), then we
can easily see that the limit of the first two terms in the RHS of (4.14) is zero,
one can use for instance the dominated convergence theorem. Let us estimate the
limit of the term ||∇xGε − ∇xG||L2((0,T )×Γd). This term involves the L2-norm of
the gradient on the surface (0, T ) × ∂Ω and therefore we need to apply Estimate
(4.24) of Remark 4.1 that yield us with expression of ∇x(ψε1χεG), thus we have:

‖∇xGε −∇xG‖L2((0,T )×Γd)

≤ ‖χεψε1∇xG−∇xG‖L2((0,T )×Γd)

+ ‖Gχε∇xψε1‖L2((0,T )×Γd) + ‖Gψε1∇xχε‖L2((0,T )×Γd).

(4.15)

Let us note the following three facts:

(A) Using Estimates: (4.2), (4.4) and (4.6), we can show easily, using dominated
convergence, that:

||χεψε1∇xG−∇xG||L2((0,T )×Γd) → 0, as ε→ 0.

(B) Given condition (i)-(iii) and (b), the support of ∇xψε1 is contained in the
region ∪iD(si, ε

2), for every ε > 0. Moreover, according to its definition
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(4.1), the function χε is zero on this region, thus:

‖Gχε∇xψε1‖L2((0,T )×Γd)

=

2∑
i=1

‖Gχε∇xψε1‖L2((0,T )×{x∈Γd, |x−si|≤ε2}) = 0.
(4.16)

(C) Using condition (1.11), the properties (a) and (4.3), we infer:

‖Gψε1∇xχε‖L2((0,T )×Γd) =

2∑
i=1

‖Gψε1∇xχε‖L2((0,T )×{x∈Γd, ε2<|x−si|≤ε})

≤ 2‖εγ‖L2((0,T )×{x∈Γd, ε2<|x−si|≤ε}) → 0,

we have used the fact that the support of ∂xχε on Γd is contained in ∪i{x ∈
Γd, ε

2 < |x− si| ≤ ε}) .

Consequently, using the facts (A)-(C) we infer that:

‖∇x(Gψε1χε)−∇xG‖L2((0,T )×Γd) → 0 as ε→ 0. (4.17)

Finally, combining (4.14) and (4.17) one can see that ‖Gε − G‖H1((0,T )×Γd) → 0.
Consequently, since A is complete, we deduce from estimate (4.13) that there exists
g1 ∈ Hβ((0, T )× Γd) such that ‖g1

ε − g1‖Hβ((0,T )×Γd) → 0 and thus, by passing to
the limit in estimate (4.13), we obtain:

‖g1‖Hβ((0,T )×Γd) ≤ C‖G‖H1((0,T )×Γd). (4.18)

Since Gε and g1
ε converges strongly in H1((0, T )× Γd) resp. Hβ((0, T )× Γd), then

Gε → G a.e. on (0, T ) × Γd and g1
ε → 0 a.e. on (0, T ) × Γn. Using the energy

estimate (2.3), when associated to the Neumann data g1
ε − g1 and letting ε → 0,

one can easily see that the limit functions G resp. g1 are the Dirichlet resp. the
Neumann data on Γd of problem (3.1) whose solution is u1 = limu1

ε . Combining
Estimates (2.2), (4.18) and the continuous embedding of Hβ in L2 we conclude:

‖u1‖C0(0,T ;Hα(Ω))∩C1(0,T ;Hα−1(Ω)) ≤ C‖G‖H1((0,T )×Γd), (4.19)

where u1 solves (3.1) with the function G as a Dirichlet data on (0, T )× Γd.
Conclusion. It is immediate to see that the function u := u1+u2 solves uniquely sys-
tem (1.6), where u2 is the unique solution of problem (4.10). Combining estimates
(4.11) and (4.19) we infer that:

‖u‖C0(0,T ;Hα(Ω))∩C1(0,T ;Hα−1(Ω))

= ‖u1 + u2‖C0(0,T ;Hα(Ω))∩C1(0,T ;Hα−1(Ω))

≤C
(
‖G‖H1((0,T )×Γd) + ‖f‖L1(0,T ;L2(Ω)) + ‖Ψ0‖H1(Ω) + ‖Ψ1‖L2(Ω)

)
,

which yields estimate (1.12) that guarantee the stability of the solution. Finally, it
is easy to see how the uniqueness of the solution u follows from this estimate, and
thus conclude the proof of Theorem 1.1. �

Remark 4.1. Since G̃ ∈ H1((0, T ) × ∂Ω) we know, cf. [8, Theorem 1, p.40],

there exists G̃n ∈ C∞(∂Ω) such that ‖G̃n − G̃‖H1((0,T )×∂Ω) → 0. On the other
hand, given that ∂Ω ∈ C∞, we know, cf. [9, Theorem 2, p.12], that there exists an

extension G̃ne of G̃n having a sufficient regularity, say G̃ne ∈ C1(R2) such that:

G̃ne = G̃n on (0, T )× ∂Ω (4.20)
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the rule of derivation of the product on Ω yields:

∇x(G̃neχεψ
ε
1) = χεψ

ε
1∇xG̃ne + G̃neχε∇xψε1 + G̃neψ

ε
1∇xχε, a.e. in (0, T )×Ω. (4.21)

Given the smoothness of all the involved functions, identity (4.21) holds true
when passing to the boundary points Γd. Thus, taking into account (4.20), we have:

∇x(Gnχεψ
ε
1) = χεψ

ε
1∇xGn +Gχε∇xψε1 +Gnψε1∇xχε, a.e. in (0, T )×Γd. (4.22)

Using the density assumption, we pass to the limit n→∞ by using the dominated
convergence theorem to deduce that:

‖∇x(Gnχεψ
ε
1)− (χεψ

ε
1∇xG+Gχε∇xψε1Gψε1∇xχε) ‖H1((0,T )×∂Ω

≤ ‖χεψε1∇xGn − χεψε1∇xG‖+ ‖Gnχε∇xψε1 −Gχε∇xψε1‖
+ ‖Gnψε1∇xχε −Gψε1∇xχε‖
→ 0.

(4.23)

On one hand using the density assumption, and on the other hand converting the
normed convergences in (4.23) into point wise convergences, we get using (4.22):

∇xGε(t, x) = ∇x(Gχεψ
ε
1)(t, x)

= lim
n→∞

∇x(Gnχεψ
ε
1)(t, x)

= χεψ
ε
1∇xG+Gχε∇xψε1 +Gψε1∇xχε, a.e. in (0, T )× Γd.

(4.24)

Remark 4.2. One should notice that the derivative ∂xψ
ε
1 can become infinite when

ε → 0, the point behind the domination condition (1.11) and condition (iii) is to
annihilate the effect of this possible blow-up.
- Finally, we emphasize that the results stated in [2] and which are used in this
paper, were established within the framework of the Laplace operator. That said,
they remain valid in case of a strongly and uniformly elliptic operator L in (1.2).
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