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INITIAL-BOUNDARY VALUE PROBLEM FOR SECOND ORDER

HYPERBOLIC OPERATOR WITH MIXED BOUNDARY

CONDITIONS

DJAMAL AIT-AKLI1,∗, ABDELKADER MERAKEB1

AUGUST 25, 2021

Abstract. We deal with a linear hyperbolic differential operator of the second

order on a bounded planar domain with a smooth boundary. We establish a

well-posedness result in case where a mixed, Dirichlet-Neumann, condition
is prescribed on the boundary. We focus on the case of a non-homogeneous

Dirichlet data and a homogeneous Neumann one. The presented proof is based

on a functional theoretical approach and on an approximation argument.

1. Introduction

Throughout this paper, we let Ω ⊂ R2 to be a bounded planar domain of class
C∞. The boundary ∂Ω := Γd ∪ Γn is formed with two part. We assume, for
simplicity, that Γd is connected and denote:

{si}i=1,2 := Γd ∩ Γn. (1.1)

We are interested in the study of the second order hyperbolic operator:

Hu := ∂2
t u− Lu. (1.2)

where L is a second order uniformly and strongly elliptic operator, one can think
of the Laplace or the Lamé operator for instance. In the sequel, and only for the
sake of clarity of presentation, the operator L will be represented by the Laplacian
operator ∆. We consider the partial differential equation:

Hu = f a.e. in (0, T )× Ω. (1.3)

where T > 0. The equation (1.3) is completed with a mixed boundary condition.
More precisely, we prescribe a Dirichlet data on Γd and a Neumann condition on
Γn i.e. we have in the sens of trace:

u = G on (0, T )× Γd ,
∂u

∂−→n
= 0 on (0, T )× Γn, (1.4)

where −→n is the exterior unit normal defined at each point of Γn and ∂u
∂−→n denotes

the normal derivative of u. Moreover, initial time conditions are also prescribed:

u(0, x) = Ψ0(x), ∂tu(0, x) = Ψ1(x) on Ω. (1.5)

We address in this work the issue of existence and uniqueness of a solution to
the problem associated to equation (1.3) when endowed with the conditions (1.4)
and (1.5). Moreover, we establish an energy estimate that shows the continuous
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dependence of the solution of this problem with respect to the data, this estimate
expresses the stability of the solution.

Let’s place our work in perspective: a well-posedness result, in case of an homo-
geneous Dirichlet conditions, can be found in [1]. A similar study for the case of a
non-homogeneous Dirichlet condition, on the entire boundary, is dealt with in [2].
Regarding other types of boundary condition, the work presented in [3] deals with
the case of the non-homogenous Neumann-type boundary condition. The problem
with a mixed homogeneous type condition has been dealt with in [4], see also [5].

The problem under study is given in the following system:

∂2
t u−∆u = f in (0, T )× Ω,

u = G on (0, T )× Γd,

∂u

∂−→n
= 0 on (0, T )× Γn,

u(0, x) = Ψ0, ∂tu(0, x) = Ψ1 in Ω.

(1.6)

Let K(Ω) denote the completion of the set of the up to boundary smooth func-
tions in Ω vanishing on Γd with respect to the Sobolev H1-norm i.e.

K(Ω) := {v ∈ C∞(Ω), v|Γd = 0}
|| ||H1

. (1.7)

The functions (u, v) are said to satisfy the weak boundary condition, cf.[4, Defi-
nition 2, p.170], if:

(u, v) ∈ K(Ω)×K(Ω),∫
Ω

∆uϕ =

∫
Ω

∇u∇ϕ, ∀ϕ ∈ K(Ω).
(1.8)

The main result of this paper is stated in the following theorem:

Theorem 1.1. Let f ∈ C1([0, T ];L2(Ω)). Assume that (Ψ0,Ψ1) satisfy the weak

boundary conditions (1.8). Let G ∈ H1((0, T ) × Γd) such that there exists G̃ ∈
H1((0, T )× ∂Ω) satisfying:

G̃ ≡ G on (0, T )× Γd, (1.9)

G̃(0, x) = 0, ∂tG̃(0, x) = 0 on ∂Ω. (1.10)

Let {si}i be defined as in (1.1). We assume further that G satisfy point-wisely
a domination condition near si, that is:

∃γ > 0, |G(t, x)| = O
x→si

(
|x− si|1+γ

)
, ∀t ∈ (0, T ), i = 1, 2. (1.11)

Then, there is a unique solution u ∈ C0([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) of
system (1.6), moreover this solution satisfies the following energy estimate:

|| ∂u
∂−→n
||L2((0,T )×Γd) + ||u||C0([0,T ];H1(Ω)) + ||u′||C0([0,T ];L2(Ω))

≤ C
(
||G||H1((0,T )×Γd) + ||f ||L1(0,T ;L2(Ω)) + ||Ψ0||H1(Ω) + ||Ψ1||L2(Ω)

)
.

(1.12)

The plan of the paper. We prove in section 2 the auxiliary Lemma 2.1 which
states that the space of solutions of the a problem similar to (1.6) is non-trivial.
Moreover, these solutions satisfy an energy estimate. As a second step, we consider
in section 3 the solution of an approximating problem that effectively satisfy this
energy estimate. We finally pass to the limit and conclude the results of Theorem
1.1.
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2. Auxiliary result

Before going further, we need to set some preliminary remarks:

Remark 2.1. Consider the Dirichlet boundary value problem:
∂2
t u−∆u = 0 in (0, T )× Ω,

u = G on (0, T )× ∂Ω,

u(0, x) = 0 , ∂tu(0, x) = 0 in Ω,

(2.1)

where G ∈ H1((0, T )×∂Ω) satisfy the same compatibility conditions as (1.10). Fol-
lowing [2, Theorem 2.1, p.151], there exists a unique solution u ∈ C0([0, T ];H1(Ω))∩
C1([0, T ];L2(Ω)) to problem (2.1), moreover ∂u

∂−→n ∈ L
2((0, T )× ∂Ω). Let us denote

g := ∂u
∂−→n the Neumann data associated to system (2.1), then the weak problem

associated to this system writes:

find u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) such that:

< ∂2
t u, v >−1,1 +B[u, v, t] = (g, v), (2.2)

for all v ∈ H1(Ω) and a.e. 0 ≤ t ≤ T.
u(0, x) = Ψ0(x), ∂tu(0, x) = Ψ1(x). (2.3)

where <,>−1,1 denotes the duality pairing H−1(Ω)×H1(Ω). Regarding the struc-
ture of the bilinear form B and the existence of a, unique, solution of this weak
problem, the reader may refer to [6, Sec.7.2.1-7.2.2, p.377-380].

An energy estimate can thus be derived, cf. [6, Theorem 5, p. 389]:

sup
t∈(0,T )

||u(t)||H1(Ω) + sup
t∈(0,T )

||u′(t)||L2(Ω) ≤ C||g||L2((0,T )×∂Ω). (2.4)

Noicte that the weak problem (2.2) in [6] was stated in the case of a right right
hand side f such that f ∈ L2

(
0, T ;H−1(Ω)

)
but this poses no problem given that

g ∈ L2(0, T ;H−
1
2 (∂Ω)) ⊂ L2

(
0, T ;H−1(Ω)

)
.

We state an auxiliary Lemma needed subsequently for the proof of Theorem 1.1:

Lemma 2.1. Consider the mixed boundary value problem given by:

∂2
t u−∆u = 0 in (0, T )× Ω,

u = G on (0, T )× Γd,

∂u

∂−→n
= 0 on (0, T )× Γn,

u(0, x) = 0, ∂tu(0, x) = 0 in Ω.

(2.5)

where we assume that G meet the compatibility conditions (1.10) on Γd. Then the
subspace G ⊂ H1((0, T )× Γd):

G :=


G ∈ H1((0, T )× Γd) : problem (2.5)

admits a unique solution u such that

u ∈ C0([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω))

 . (2.6)

isn’t trivial. Moreover, any solution u of problem (2.5) satisfy the energy estimate:

|| ∂u
∂−→n
||L2((0,T )×Γd) + ||u||C0([0,T ];H1(Ω)) + ||∂tu||C0([0,T ];L2(Ω))

≤ C1||G||H1((0,T )×Γd), (2.7)
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for all G ∈ G. Where we mean by a trivial subspace: a vector space containing only
the zero element 0H1 .

We present a proof of Lemma 2.1:

Proof. Let us introduce the subspace D ⊂ H1 ((0, T )× ∂Ω) defined by:

D :=

{
G ∈ H1((0, T )× ∂Ω) : G satisfy the

compatibility conditions (1.10) on ∂Ω

}
. (2.8)

The subspace D is endowed with the norm || ||D := || ||H1((0,T )×∂Ω). It can be
easily shown that D is closed with respect to || ||D, and thus it a Hilbert space. We
set D′ to be the topological dual space of D. The proof is dived into three steps:

Step 1. Non triviality of G. Denote F to be the subspace:

F := {η ∈ H1((0, T )× ∂Ω), η(0, x) = 0 on ∂Ω}. (2.9)

Consider the non-homogeneous Neumann problem given by the following system:
∂2
t φ−∆u = 0 in (0, T )× Ω,

∂φ

∂n
= η on (0, T )× ∂Ω,

φ(0, x) = 0 , ∂tφ(0, x) = 0 in Ω.

(2.10)

where η ∈ F . Pose:

E := {φ|(0,T )×∂Ω : φ solves problem (2.10)} ⊂ D.

Following [3, Theorem A.3, p.117], for every η ∈ F , there exists a unique solution
φ of problem (2.10), such that φ ∈ E ⊂ H1+δ0((0, T )× ∂Ω), for some δ0 > 0.

One can construct a function η such that: η ∈ F and η ≡ 0 on (0, T )×Γn which
is not identically zero on (0, T )× ∂Ω. Then, there exists a unique, non identically
zero, h := φ|(0,T )×Γd ∈ G which is the trace of the solution φ of problem (2.10)
corresponding to the Neumann η. This ensures the non triviality of the space G
given by (2.6).

Consider the non-homogeneous Dirichlet problem given by the following system:
∂2
t u−∆u = 0 in (0, T )× Ω,

u = G on (0, T )× ∂Ω,

u(0, x) = 0 , ∂tu(0, x) = 0 in Ω,

(2.11)

where G ∈ D, and D is defined by (2.8). Consider the operator T defined by:

T : D ⊂ H1((0, T )× ∂Ω)→ A ⊂ L2((0, T )× ∂Ω)

G 7→ T (G) = g :=
∂u

∂−→n
,

where A := T (D), the operator T associates to every Dirichlet data G ∈ D, the
unique Neumann data g ∈ A on the boundary associated to problem (2.11). Follow-
ing the well-posedness result recalled in Remark 2.1, T is well defined. According to
[2, Remark 2.2, p.152], and in addition to being linear, the operator T is bounded
i.e. there exists C0 > 0 such that:

||T (G)||L2 = || ∂u
∂−→n
||L2((0,T )×∂Ω) ≤ C0||G||H1((0,T )×∂Ω), (2.12)
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for all G ∈ D. The operator T : D ⊂ H1((0, T ) × ∂Ω) → A is clearly linear and
invertible, we would like to establish the boundedness of its inverse, denoted by
T−1. For this we use the Banach isomorphism theorem. In order to apply this
theorem, we need first to show that the subspace A is complete i.e. is a Banach.

Step 2. Completeness of A. In order to prove the completeness of A, it is
sufficient to prove that it is a closed subspace. Let (gn)n be a convergent se-
quence of functions in A i.e. there exists g ∈ L2 ((0, T )× ∂Ω) such that ||gn −
g||L2((0,T )×∂Ω) → 0, then we need to show that g ∈ A i.e. that there exists G ∈ D
such that g = T (G). By assumption, there exists (Gn)n∈N such that: for all n ∈ N,
Gn ∈ D and gn = T (Gn). Consider the problem, cf. [2, Problem 2.63, p.163]:

∂2
t φ−∆u = 0 in (0, T )× Ω,

φ = h on (0, T )× ∂Ω,

φ(T, x) = ∂tφ(T, x) = 0 in Ω,

(2.13)

Pose: η(t, x) := ∂φ
∂−→n (t, x). According to [2, Estimate (2.65), p.163] we know that

(Gn)n and (gn)n do satisfy:∫
(0,T )×∂Ω

Gnη =

∫
(0,T )×∂Ω

gnh (2.14)

for all φ solution of the problem (2.13) i.e. Estimate (2.14) is true for all h ∈ DT
and all η ∈ T (DT ), where DT := {u(T − ., .) : u ∈ D}. An important fact to
emphasize is: for any η and h corresponding to the solution of (2.13), T−shifted
Neumann data η(T − ., .) are mapped into T−shifted Dirichlet data h(T − ., .). To
see this, one may consider [3, Identity 1.3, 1.6 p.115]. Our objective is to pass to
the limit in (2.14) and deduce the existence of a limit, limGn, that belongs to D.

It is easy to see that Estimate (2.14) is true for all η ∈ C∞0 ((0, T )×∂Ω), then by
density we infer that it is true for all η ∈ L2((0, T ) × ∂Ω). Following [3, Theorem
A.1, p.117], Estimate (2.14) is true for all η ∈ L2((0, T )× ∂Ω) ≡ L2

(
0, T ;L2(∂Ω)

)
and all h = T−1

(
L2
(
0, T ;L2(∂Ω)

))
⊂ Hγ(∂Ω), for some γ > 0. On another hand,

define for every η ∈ D ⊂ L2((0, T )× ∂Ω) the linear functional Zη ∈ D′:
Zη : D → D′

G 7→ Zη(G) :=

∫
(0,T )×∂Ω

Gη.
(2.15)

Applying the Riesz representation theorem, we have: every Zη ∈ D′, with η ∈
D ⊂ L2((0, T )× ∂Ω), defines a unique Z̃η ∈ D and such that:

(G, Z̃η)D = Zη(G), ∀G ∈ D and ||Z̃η||D = ||Zη||D′ , (2.16)

where (., .)D stands for the scalar product on D. Applying the estimate (2.14) and
the definition (2.15) we obtain:

(Gn, Z̃η)D = Zη(Gn) =

∫
(0,T )×∂Ω

Gnη =

∫
(0,T )×∂Ω

gnh. (2.17)

for all Gn ∈ D with n ∈ N. One should remark that Z̃η traverses all of D when η
runs over D which is equivalent to the fact that Zη runs over all D′. Hence, passing
to the limit in (2.17), we deduce that there exists G∗ ∈ D such that:

(Gn, Z̃η)D →
n→∞

(G∗, Z̃η)
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for all Z̃η ∈ D. This means that the sequence Gn converges weakly in the Hilbert
space D. Passing to the limit in (2.17), we infer that the limit function G∗ satisfy :∫

(0,T )×∂Ω

G∗η =

∫
(0,T )×∂Ω

gh. (2.18)

Thus G∗ ∈ D solves problem (2.11). We conclude that there exists G ∈ D such
that g = T (G) and thus A is a Banach space.

Step 3. Proof of Estimate (2.7). using the completeness of A and (2.12) we
infer, by virtue of the isomorphism theorem, that the linear operator T−1 : A → D
is bounded. The continuity of T−1 ensures that ∃C−1 > 0 such that:

||T−1(g)||H1((0,T )×∂Ω) = ||G||H1((0,T )×∂Ω) ≤ C−1||g||L2((0,T )×∂Ω), (2.19)

for all g ∈ A. Set B to be the subspace:

B := {g ∈ L2((0, T )× ∂Ω) : g ≡ 0 on Γn}.
The subspace (B, || ||L2) is closed. We infer that A ∩ B is also closed, thus it

is a Banach space. Since T : D → A is continuous, as well as its inverse, then
T−1(A ∩ B) is a complete subspace of D, thus it is a Banach. We remark that:

• The space T−1(A∩ B) isn’t trivial. Indeed, one can see with ease that the
non trivial space G, given by (2.6), is nothing but the restriction to Γd of
functions of the spaces T−1(A∩B), this is due to the fact that any solution
u of problem (2.5) satisfy the compatibility conditions (1.10) on (0, T )×∂Ω.

We immediately infer from estimate (2.19) that:

||T−1(g)||H1((0,T )×Γd) = ||G||H1((0,T )×Γd)

≤ C−1||g||L2((0,T )×Γd),
(2.20)

for all g ∈ A ∩ B. The operator T−1 is defined by:

T−1 : A ∩ B → T−1(A ∩ B) ⊂ D
g 7→ T−1(g) = G.

and is continuous. Consider the operator Tr defined by:

Tr|(0,T )×Γd : T−1(A ∩ B) ⊂ H1 → C
G 7→ Tr|(0,T )×ΓdG,

where C := Tr|(0,T )×Γd ◦ T−1(A ∩ B). The space C is the set of restrictions to

(0, T )× Γd of functions G ∈ T−1(A ∩ B) that correspond to Neumann data which
are identically zero on Γn. Following the above remark, we have:

Tr|(0,T )×Γd ◦ T
−1(A ∩ B) ≡ G,

where G is given by (2.8). Estimate (2.20) shows that the operator Tr|(0,T )×Γd◦T−1 :
A∩ B → C is continuous, and it is, obviously, one-to-one and onto. One can easily
see, using the completeness of A and B in addition to the estimate (2.12), that the
subspace C is a Banach space. Then applying again the isomorphism theorem we
show that the operator M ◦T−1 has a bounded inverse i.e. there exists C1 > 0 s.t.:

||g||L2((0,T )×Γd) = ||[M ◦ T−1]−1(G)||L2((0,T )×Γd) ≤ C1||G||H1((0,T )×Γd). (2.21)

for all G ∈ C ⊂ H1((0, T ) × Γd). Finally using estimate (2.21), and taking into
account remark 2.1, namely estimate (2.4), we conclude immediately estimate (2.7).

�
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3. Proof of the main result

Presently we establish Theorem 1.1, which is about the well-posedness of system
(1.6), using mainly the result of Lemma 2.1:

Proof. The proof is divided into two subsections. In the first one we construct,
starting from a Dirichlet problem, a sequence of function each of which solves an
approximating problem similar to (1.6) and satisfy the estimate (2.7) of Lemma
(2.1). In the second subsection we pass to the limit and conclude the results of
theorem 1.1.

Step 1. Construction of the approximating solution. Let {si}i=1,2 be as
defined by (1.1). Denote by D(si, ε0) ⊂ R2 the disk centered at si with radius ε0,
where ε0 := 1

2 |s1 − s2|. Let ε, 0 < ε < ε0, be a parameter designed to tend towards

zero. We introduce a sequence of truncating functions χε,i ∈ C1(R2), i = 1, 2
defined by:

χε,i(x) :=


0, |x− si| ≤ ε2,
exp

(
ε−|x−si|
ε2−|x−si|

)
, ε2 < |x− si| < ε,

1, ε < |x− si|.
Define:

χε(t, x) :=


χε,1(x), ∀x, |x− s1| ≤ ε0, ∀t ∈ (0, T ),

χε,2(x), ∀x, |x− s2| ≤ ε0, ∀t ∈ (0, T ),

1, ∀x ∈ R2 − V1 ∪ V2, ∀t ∈ (0, T ).

(3.1)

where we denote Vi := D(si, ε0). It is easy to see, from the definition (3.1), that
the functions (χε)ε are constant with respect to the time variable and satisfy:

1) |χε(t, x)| ≤ 1, ∀t ∈ (0, T ),∀x ∈ R2,∀ε > 0. (3.2)

2) ε1+γ ||∂xχε||∞,(0,T )×Vi → 0 as ε→ 0, with γ > 0. (3.3)

3) |χε(t, x)| → 1, as ε→ 0,∀(t, x) ∈ (0, T )× Γd. (3.4)

Let us cover the set Ω by open sets U1 and U ε2 such that:

(i) Ω ⊂ U1 ∪ U ε2 , for all ε > 0,
(ii) U1 ∩ ∂Ω = Γd,
(iii) |αεi − si| < 1

2ε
2, for every i = 1, 2 ,

where we denote {αε1, αε2} := ∂Ω∩∂U ε2 such that d(αε1, s1) < d(αε2, s1), for all ε > 0.
The condition (ii) implies that ∂U1 ∩ ∂Ω = {s1, s2}. Consider, for every ε > 0, the

partition of the unity (ψ̃ε1, ψ̃
ε
2) subordinate to the cover (U1, U

ε
2) i.e.

(a) ψ̃εi ∈ C∞0 (Ui), 0 < ψ̃εi < 1, for 1 ≤ i ≤ 2,

(b) supp ψ̃ε1 ⊂ U1, supp ψ̃ε2 ⊂ U ε2 , ∀ε > 0,

(c) ψ̃ε1(x) + ψ̃ε2(x) = 1 for every x ∈ Ω.

Define the functions:

ψε1(t, x) := ψ̃ε1(x), ψε2(t, x) := ψ̃ε2(x), ∀t ∈ (0, T ),∀x ∈ Ω. (3.5)

Thus, the functions ψε1, ψ
ε
2 are constant with respect to the time variable. One

immediate consequence is:

||ψε1 − 1||∞,(0,T )×Γd → 0 as ε→ 0. (3.6)
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Let G ∈ H1 ((0, T )× Γd) and G̃ ∈ H1 ((0, T )× ∂Ω) be such that conditions
(1.9)-(1.10) are satisfied. Consider the Dirichlet boundary value problem:

∂2
t u−∆u = 0 in (0, T )× Ω,

u = G̃ on (0, T )× ∂Ω,

u(0, x) = 0 , ∂tu(0, x) = 0 in Ω.

(3.7)

the compatibility conditions are well met by G̃ on ∂Ω. Denote u ∈ C0
(
[0, T ];H1(Ω)

)
∩

C1
(
[0, T ];L2(Ω)

)
to be the unique solution of (3.7). It is easy to see that the func-

tion χεψ
ε
1u satisfy the following system:

∂2
t (χεψ

ε
1u)−∆(χεψ

ε
1u) = fε in (0, T )× Ωs,

χεψ
ε
1u = Gε on (0, T )× Γd,

∂(χεψ
ε
1u)

∂−→n
= 0 on (0, T )× Γn,

(χεψ
ε
1u)(0, x) = 0, ∂t(χεψ

ε
1u)(0, x) = 0 in Ω,

(3.8)

where Gε := ψε1χεG̃ and fε ∈ C1([0, T ];L2(Ω)). One should remark that the
homogeneous Neumann condition in (3.8) arises from the conditions (ii) and (b).
Consider the function wε satisfying the following system:

∂2
twε −∆wε = f − fε in (0, T )× Ωs,

wε = 0 on (0, T )× Γd,

∂wε
∂−→n

= 0 on (0, T )× Γn,

wε(0, x) = Ψ0(x), ∂twε(0, x) = Ψ1(x) in Ω,

(3.9)

where (Ψ0,Ψ1) satisfy the weak boundary conditions (1.8). In virtue of [4, Theorem
1, p. 170] and its Corollary, see also [5], there is a unique wε ∈ C1([0, T ];K(Ω)) ∩
C2([0, T ];L2(Ω)) satisfying, for all ε > 0, system (3.9). Then it is obvious to remark
that the function uε := χεψ

ε
1u+ wε solves the following system:

∂2
t uε −∆uε = f in (0, T )× Ωs,

uε = Gε on (0, T )× Γd,

∂uε
∂−→n

= 0 on (0, T )× Γn,

uε(0, x) = Ψ0(x), ∂tuε(0, x) = Ψ1(x) in Ω.

On the other hand, consider the function u2 that solves the system:

∂2
t u

2 −∆u2 = f in (0, T )× Ω,

u2 = 0 on (0, T )× Γd,

∂u2

∂−→n
= 0 on (0, T )× Γn,

u2(0, x) = Ψ0(x), ∂tu
2(0, x) = Ψ1(x) in Ω,

(3.10)

following again [4, Theorem 1, p. 170], see also [5], we deduce that (3.10) admits a
unique solution:

u2 ∈ C1([0, T ];K(Ω)) ∩ C2([0, T ];L2(Ω)),
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moreover we have, cf. [4, Estimate 1.9, p. 170], the following estimate:

||u2||C0([0,T ];H1(Ω))∩C1([0,T ];L2(Ω))

≤ C(||f ||L1(0,T ;L2(Ω)) + ||Ψ0||H1(Ω) + ||Ψ1||L2(Ω)).
(3.11)

Step 2. Passing to the limit using Lemma 2.1. It is immediate to see that
u1
ε := uε − u2 ∈ C0([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) exists and satisfy, for every
ε > 0, the system: 

∂2
t u

1
ε −∆u1

ε = 0 in (0, T )× Ω;

u1
ε = Gε on (0, T )× Γd;

∂u1
ε

∂n
= 0 on (0, T )× Γn;

u1
ε(0, x) = 0, ∂tu

1
ε(0, x) = 0 in Ω,

(3.12)

and thus Gε ∈ G for every ε > 0, where G is defined by (2.6). Moreover, the
associated solution u1

ε of system (3.12) satisfy, for every ε > 0, the assumption of

Lemma 2.1. Consequently, if we note gε :=
∂u1

ε

∂n , we obtain by applying (2.7):

||gε||L2((0,T )×Γd) ≤ C1||Gχεψε1||H1((0,T )×Γd). (3.13)

for all ε > 0. The H1−norm of Gε −G = Gχεψ
ε
1 −G satisfy:

||Gε −G||H1((0,T )×Γd)

≤ ||Gε −G||2L2((0,T )×Γd) + ||∂tGε − ∂tG||2L2((0,T )×Γd)

+ ||∇xGε −∇xG||2L2((0,T )×Γd).

(3.14)

Since ψε1 and χε are constant with respect to the time variable, and considering
(3.6), then we can easily see that the limit of the first two terms of the RHS of
(3.14) is zero. Let us estimate the limit of the term ||∇xGε −∇xG||L2((0,T )×Γd).

This term involves the L2-norm of the gradient on the surface (0, T ) × ∂Ω
and therefore we need to apply Estimate (3.24) of Remark 3.1 that computes
∇x(ψεχεG), and thus we have:

||∇xGε −∇xG||L2((0,T )×Γd)

≤ ||χεψε1∇xG−∇xG||L2((0,T )×Γd)

+ ||Gχε∇xψε1||L2((0,T )×Γd) + ||Gψε1∇xχε||L2((0,T )×Γd).

(3.15)

Let us note the following three facts:

(A) Using Estimates: (3.2), (3.4) and (3.6), we can show easily that:

||χεψε1∇xG−∇xG||L2((0,T )×Γd) → 0, as ε→ 0.

(B) Given condition (i)-(iii) and (b), the support of ∇xψε1 is contained in the
region ∪iD(si, ε

2), for every ε > 0. Moreover, according to its definition
(3.1), the function χε is zero on this region, thus:

||Gχε∇xψε1||L2((0,T )×Γd)

=

2∑
i=1

||Gχε∇xψε1||L2((0,T )×{x∈Γd, |x−si|≤ε2}) = 0.
(3.16)
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(C) Using condition (1.11), the properties (a) and (3.3), we infer:

||Gψε1∇xχε||L2((0,T )×Γd) =

2∑
i=1

||Gψε1∇xχε||L2((0,T )×{x∈Γd, ε2<|x−si|≤ε})

≤ 2||εγ ||L2((0,T )×{x∈Γd, ε2<|x−si|≤ε}) → 0,

we have used the fact that the support of ∂xχε on Γd is contained in ∪i{x ∈
Γd, ε

2 < |x− si| ≤ ε}) .

Consequently, using the facts (A)-(C) and applying the dominated convergence
theorem, one can easily show that:

||∇x(Gψε1χε)−∇xG||L2((0,T )×Γd) → 0 as ε→ 0. (3.17)

Finally, using (3.6), (3.14) and (3.17) one can see that ||Gε−G||H1((0,T )×Γd) → 0.

Consequently, we deduce from estimate (3.13) that there exists g ∈ L2((0, T )×Γd)
such that ||gε − g||L2((0,T )×Γd) → 0 and thus, by passing to the limit in estimate
(3.13), we obtain:

||g||L2((0,T )×Γd) ≤ C||G||H1((0,T )×Γd). (3.18)

Since Gε and gε converge strongly in H1 resp. L2, then after writing the weak
problem (2.2)-(2.3) associated to the Neumann data gε and then letting ε → 0,
one can easily see that: the limit functions G resp. g are the Dirichlet resp. the
Neumann data on Γd of problem (2.5). Considering the claim in remark 2.1, namely
estimate (2.4), and then using (3.18) we conclude the estimate:

||u1||C0([0,T ];H1(Ω))∩C1([0,T ];L2(Ω)) ≤ C||G||H1((0,T )×Γd), (3.19)

where u1 solves (2.5) with the function G as a Dirichlet data on (0, T )× Γd.

Conclusion. It is immediate to see that the function u := u1 + u2 solves uniquely
system (1.6), where u2 is the unique solution of problem (3.10). Combining esti-
mates (3.11) and (3.19) we infer using the triangular inequality:

||u1 + u2||C0([0,T ];H1(Ω))∩C1([0,T ];L2(Ω))

≤ ||G||H1((0,T )×Γd) + ||f ||L1(0,T ;L2(Ω)) + ||Ψ0||H1(Ω) + ||Ψ1||L2(Ω),

which yields estimate (1.12). Finally, it is easy to see how the uniqueness of the
solution u follows from this estimate, and thus conclude the proof of Theorem
1.1. �

Remark 3.1. Since G̃ ∈ H1((0, T ) × ∂Ω) we know, cf. [7, Theorem 1, p.40],

there exists G̃n ∈ C∞(∂Ω) such that ||G̃n − G̃||H1((0,T )×∂Ω) → 0. On the other
hand, given that ∂Ω ∈ C∞, we know, cf. [8, Theorem 2, p.12], that there exists an

extension G̃ne having a sufficient regularity, say G̃ne ∈ C1(R2)) such that:

G̃ne = G̃n on (0, T )× ∂Ω (3.20)

the rule of derivation of the product on Ω yields:

∇x(G̃neχεψ
ε
1) = χεψ

ε
1∇xG̃ne + G̃neχε∇xψε1 + G̃neψ

ε
1∇xχε, a.e. in (0, T )×Ω. (3.21)

Given the smoothness of all the involved functions, identity (3.21) holds true
when passing to the boundary points Γd. Thus, taking into account (3.20), we have:

∇x(Gnχεψ
ε
1) = χεψ

ε
1∇xGn +Gχε∇xψε1 +Gnψε1∇xχε, a.e. in (0, T )×Γd. (3.22)
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Using the density assumption, we pass to the limit n→∞ by using the dominated
convergence theorem to deduce that:

||∇x(Gnχεψ
ε
1)− (χεψ

ε
1∇xG+Gχε∇xψε1Gψε1∇xχε) ||H1((0,T )×∂Ω

≤ ||χεψε1∇xGn − χεψε1∇xG||+ ||Gnχε∇xψε1 −Gχε∇xψε1||
+ ||Gnψε1∇xχε −Gψε1∇xχε||
→ 0.

(3.23)

On one hand using the density assumption, and on the other hand converting the
normed convergences in (3.23) into point wise convergences, we get using (3.22):

∇xGε(t, x) = ∇x(Gχεψ
ε
1)(t, x)

= lim
n→∞

∇x(Gnχεψ
ε
1)(t, x)

= χεψ
ε
1∇xG+Gχε∇xψε1 +Gψε1∇xχε, a.e. in (0, T )× Γd.

(3.24)

Remark 3.2. One should notice that the derivative ∂xψ
ε
1 can become infinite when

ε → 0, the point behind the domination condition (1.11) and condition (iii) is to
annihilate the effect of this possible blow-up.
- The identification L2 ((0, T )× ∂Ω) ≡ L2

(
0, T ;L2(∂Ω)

)
in the second step of the

proof of Lemma 2.1 relies on the existence of the isometric isomorphism defined by:

I : L2 ((0, T )× ∂Ω)→ L2
(
0, T ;L2(∂Ω)

)
η 7→ (t 7→ η(t, x)) .

- Finally, we emphasize that the results stated in [2] and which are used in this
paper, were established within the framework of the Laplacian operator. That said,
they remain valid within the framework of a strongly and uniformly elliptic operator
L in (1.2).
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