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ABSTRACT

Recent developments of the hot plasma theory involving non-zero equi-
librium gradients are discussed in the basic context of energy conser-
vation. The corresponding boundary value problems are formulated in
variational form and solved by the finite element method. This method
is shown to lead to transparent and reliable numerical models. Basic
physics questions are addressed in both the Alfvén Wave and the Ion-
Cyclotron Range of Frequencies.

1.  INTRODUCTION

The excitation of small-amplitude electromagnetic waves in a
plasma can be treated theoretically by two very different methods: the
geometric optics approximation or the resonant cavity assumption.

In the Alfvén Wave Range of Frequencies (AWRF) that is at very
low frequencies, one must assume a resonant cavity, whereas in the
Electron Cyclotron Range of Frequencies that is at very high frequen-
cies, the geametric optics is the ideal tool. In the intermediate
frequency ranges at the ion cyclotron (ICRF) and the lower hybrid
frequencies both methods have advantages and disadvantages. As one
goes to lower frequencies and smaller devices the resonant cavity

assumption becomes more and more appropriate but even in large devices
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like JET ICRF cavity modes have been observed.! iIn the present work we
concentrate on the resonant cavity assumption; concerning the gecmet-

ric optics approximation, we refer the reader to a recent review by
Brambilla.?

The present authors have already reviewed the theory of MHD

3

waves® based on the resonant cavity assumption and relevant to low

frequency plasma heating (AWRF, ICRF). The stress of that discussion
was on cold and resistive plasma models and resonance absorption. The
present paper can be regarded as a followup of Ref., 3 as it concen-
trates on non-ideal aspects in the theory, like temperature or finite
electron mass. What has merely been described as resonance absorption
in Ref. 3 will now be treated as linear mode conversion at least in
one dimension. The paper is, however, not a review of the kinetic
theory of wave excitation at low frequencies but a contribution to its
further development. Investigating by numerical means the role played
in theory by equilibrium gradients" we are able to treat on the same
footing plane slab and cylindrical plasmas, AWRF and ICRF, and all the
relevant collisionless dissipation mechanisms including transit time
magnetic pumping by standing waves. This goes partly beyond previous
work in the AWRF°~1? and in the ICRF.l!-16

We find that the temms in the dielectric tensor proportional to
the ratio between the Lammor radius and the equilibrium scale-length
show the route to a satisfactory definition of the local absorption of
an electromagnetic wave in a hot magnetized plasma. To first order in
Larmor radius the so-defined local absorption is identical to that
obtained ad hoc by McVey and co-workers!’ and by Vaclavik and Appert
using a more rigorous appfroach.18

For our theoretical investigation it is essential that we may
treat the wave equation

o F g ~e¥t
lE = z € E, E~ e (1)

as it stands with all the odds and ends where E is the wave electric
field, :s‘ the dielectric tensor operator, c¢ the speed of light and w
the wave frequency, respectively. The method of numerical physics
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enabling us to do so is described in Chap. II. In Chapter III we
mention the hot plasma wave equation, the boundary conditions under
which it is solved and discuss conservation laws and local
absorption. In Chapter IV we review the wave excitation phenomena in
the AWRF using a cylindrical model. Finally, in Chap. V, using both
kinetic plane slab and cold-plasma toroidal models we try to get some
insight into the linear mode conversion in the ICRF.

2. A METHOD OF NUMERICAL PHYSICS FOR LINEAR WAVE PROPAGATION

A conceptually extremely simple method for the numerical solution
of ordinary and partial differential equations is the Finite Element
Method (FEM). Given a linear differential equation in the spatial
damain G

LU =0 (2)

together with appropriate boundary conditions on 8G, one searches for
approximate solutions of the form

o |
UX) = wcd = Z w; ¥ (X). (3)
J=

The method is called FEM because the basis functions ¥5(X) have a
finite support based on some subdivision (finite element discret-
isation) of the solution domain G, The most commonly used way to
determine the unknown coefficients uj in Bg. (3) starts from the
Galerkin weak variational form!® of K. (2),

fVerdi’ =0, ¥V, (4)
G

where V is an appropriate test function. One usually integrates £ by
parts until V and U are subject to roughly the same order of differen—
tiation. During this partial integration some of the boundary condi-
tions can be used and became natural boundary conditions of the varia-
tional problem. Those conditions which cannot be used at that time are
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essential conditions and must be imposed explicitely on u(¥), Bq. (3).

If the basis functions ¥y are used as test functions as well
- which one cammonly does - the approximate form of Hy. (4) becames

A
)Zj&t’lae'f,di’ uj; = sar{ace ferms) ¥ t'e 1).__) N) (5)
G

where by.é we mean the operator which, after partial integration of &,
acts to the left and to the right. Equation (5) is a set of N alge-
braic equations for the N unknowns W . In one dimension this method
has the disadvantage of needing more camputer memory and programming
skills than a straightforward shooting method like a Runge-Kutta inte-
gration but it works, in contrast to the latter, under all imaginable
situations. In particular, one can easily deal with the stiff problem
of strongly evanescent waves.?°

In most of RF heating scenarios in inhomogeneous plasmas there
exist some wave modes which are strongly evanescent in certain parts
of the solution damain: the FEM makes a global solution possible; no
subdivision into domains with different physical parameters is
needed. This, in turn, enables one to separate in the canputer code
the solution algorithm fram the physics, represented by the dielectric
tensor. Hence the code can be modular and transparent which are essen—
tial qualities of a reliable numerical tool. The dielectric tensor is
defined at one and only one place in the code. It is therefore easy to
investigate changes in the physics by changing the dielectric tensor.
This feature of the numerical method was particularly important in our
investigation of different energy conserving forms of the wave
equation.

When applying the FEM to eq. (1), one does not eliminate any
component of F unless one uses the restricted physical model where
Ez = 0. This procedure has several essential advantages over the
elimination procedures leading to higher order equations.!l First of
all, as one does nothing, one does not introduce errors. Secondly, the
code remains transparent because one deals directly with the Hy. (1).



Thirdly, no equilibrium gradients appear unless they are introduced
explicitly into the dielectric tensor. Last but not least, it is an
advantage to obtain standardly all components of the electric field.
In some versions of our kinetic codes we have even gone so far as to
compute all components of the electric and the magnetic fields, E and
B = -i(c/w)rot E, and the particle number and current densities, ng
and 'J'JL, respectively. The latter quantities can be obtained for each
species & from the dielectric tensor or rather from the susceptibility
=

XL

Je =-¢(w/m) 7:(;-?, (6)
n, = (1/c0g) dv g, (7)

Equation (6) is also evaluated by the FEM. Ampére's law, Poisson's
equation and divB = 0 can then serve as tests for the coding. These
tests cambined with convergence studies?? also evidence the relia-
bility of the numerical method.

In practice, one uses piecewise constant, piecewise linear or
piecewise cubic functions in the approximation, Bg. (3). For details

concerning the numerical analysis we refer the reader to the special-
ized literature.l9-2!

3. THE HOT-PLASMA MODEL

To demonstrate some problems one may encounter with the hot-
plasna model, we start to discuss the wave equation describing small
amplitude electromagnetic perturbations in a plane, hot, non-uniformly
magnetized (Bo=Bp(X)ez), inhomogeneous plasma. Expanding the
Vlasov and Maxwell equations to second order in the smallness of the
Lammor radius compared to characteristic scale-lengths of the plasma
and fields, Martin and Vaclavik® have derived the dielectric tensor
operator for a wave motion of the form
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— iy + a2 —et)
Erny i1+ ke (8)
In a closed form their tensor includes é'erenkov, fundamental and first
harmonic cyclotron interactions together with all the equilibrium
gradient terms up to second order. T our knowl edge the camplete

tensor operator has never been given explicitely before Ref. 4.

As one would expect, we have found that most of the equilibrium
gradient terms are negligible in many situations especially in the
ICRF. In the AWRF where the characteristic scale-lengths of the plasma
may be of the same order as those of the field some gradient terms are
important. Although the gradients seem to influence hardly the
solution of the wave equation (1) in the ICRF, they can influence,
however, the interpretation of what one regards as the l_oc_a_l power
absorption.

The dielectric tensor given in Ref, 4 has the form

= 3 d
Y+(53'

&_

1.

[
R

d
dx (9)

x
+
X

The operators d/dx act on everything to their right. The tensors i and
:’; have the following symmetry properties

'yxbtn*,—o;t?ta;k; ng:};-> (10)
=4 =
where, however, axz = ayz = 0. The tensors g* and B~ have the
structure
0 B B 0 o 0
. Pry G2}

" -
- = o - + - ,
The particular form of the tensor elements is not of interest here and
can be found in Ref., 4. We mention, however, that B;(y contains first
3.

order gradient terms and ¥ first and second order terms.



If we restrict ourselves to first order gradients of the particle
densities and temperatures we may write

7o (X

= €® 4 I ) (12)

= . . . .
where €(0), the classical?? dielectric tensor, and .ﬁ’ can be inferred

fron Ref. 4. Replacing ? by By. (12) one finds the following
dielectric operator

J . d
I 7 dx

g;: :(0? -+

3l
o

d =d
* kB Ix (13)

-y - g -ty

-5
where b‘ ﬁ? 7 and bt = -‘.‘ + n. This trivial remodelling of F-:?has
non-trivial consequences on the interpretation of the conservation
laws derivable from Bq. (1),

A
=(S+S8,) + ® =0. (14)
Here S is the time-averaged x-component of the Poynting vector,

= ¢r Z" [’zdx ’ é’f (13)

and

O g h[-E. (L D) 22(EL D2,

Clearly, By. (14) cannot be declared to be the energy conser-
vation law because the definition of ST and Q, the thermal flux and

the local energy absorption, is not unique. One can indeed define



another pair, é‘T and 9, by replacing in BEgs. (15) and (16) t?* by §'+
and B~ by E"‘.L’ Yet other definitions can be obtained when some
gradient terms are kept in ? Only the remaining terms would then
appear in the definition of Syp. If, in our argumentation, we would
neglect the gradient terms altogether, we could introduce any
arbitrary %’ in By. (12) and arrive at any grotesque Sp and Q in
Egs. (15) and (16). The theory of wave propagation in a hamogeneous
plasma therefore cannot be of any help in the definition of the
thermal flux and the local energy absorption.

In this bad situation resort has been taken to the most basic
definition of energy absorption by particles.!”'18 Essentially one
calculates the time average of

:) sz f&i(/‘ (17)

to second order in the wave field, By. (8). Here M, v and f denote
particle mass, velocity and velocity distribution, respectively, Along
these lines one arrives at a definition for the local power absorp-
tion, Q(2), which, upto first order in Larmor radius, is equal to
Q as defined in Bg. (16). In a stable plasma 6(x) is positive definite
unlike e.g. Q(x) defined on the basis of BEg. (9).

It seems therefore that the wave equation should not contain any
explicit gradient term when it is used to define energy flux. More-
over, explicit gradient terms cause troubles at any finite-temperature
or finite-density plasma boundary because they are unbounded in infi-
nitely small transition layers. If, however, they are removed to the
higher order (in d/dx) terms of the tensor =s’, they are absolutely
inoffensive and boundary conditions can be formulated by means of an
integration over the boundary layer.”'zs Oonsequently all the boundary
conditions at the plasma-vacuum interface become natural conditions of
the weak variational form, By. (5). As a further consequence, the same
conditions can be used for the hot and the cold plasma models.23



As long as the temperature T approaches zero at the plasma
boundary, the solution of Bg. (1) is not affected by the choice of :sz'
Eq. (9) or (13) respectively, because ‘ﬁ' = 0 for T = 0. In cylindrical
geometry, however, T is finite on the axis and the boundary terms due
to ’?f must be taken seriously. We have again found that the explicit
gradient terms must be made implicit in the sense of K. (13).

For the cylindrical geometry it has been necessary to repeat the
derivation of ? in analogy to that of Ref. 4 because a few terms
cannot be inferred from the plane slab geometry. As the assumption of
a cylindrical symmetry is reasonable for the AWRF only, our derivation
was limited to the Cerenkov interaction.

In the cylindrical geometry (r,0,z) the dielectric tensor opera-
tor takes the form

. T =2 4 d 3, 14 _Fd
E- CE i rurBermrdly (18)

when the wave field is E(r) el(m + kz - wt)_; The tggsors é, g", g
and C can be obtained by first transforming @, g+, g~ and 2(0) into
cylindrical coordinates and then adding (substracting) the following
gradient terms to(from) the transformed §+( {?‘):

hoe =T/T, hea = k¥,
7] (19)
lnee =k0_’ kze_-_--srf)
where
2
Ufh (A <
T =
TAY4 wca- ’
2
(20)
_ o 4 Y-
Here vih = 2I/M, @p and Y, denote the thermal velocity, the

plasma and the cyclotron frequency, respectively, and Z,S =

Z8(w/ |kz|vth) is the plasma dispersion function as defined by
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Shafranov.2"

The so-defined dielectric tensor includes the magnetic pumping
tems in Agg and Bgg which is important for the damping of the
Global Eigermodes of the Alfvén Wave and of the Fast Magnetosonic
Wave. In previous AWRF heating related work>-10 magnetic pumping has
been neglected.

In the derivation of eq. (18) we have assumed a purely axial
equilibriun magnetic field, B = By,&,, Byy = const. We know,
however, from all our previous investigations? using cold-plasma
theory that the wave propagation and coupling in the AWRF is strongly
influenced by the existence of an axial (toroidal) equilibrium
current. A poloidal magnetic field Byg(r) is important even if
‘Boe/Boz| « 1 as in a tokamak. Using the smallness of |B09/Boz|
we can transform 3 in By. (18) into magnetic coordinates @&,

- - -

6= € x &, € = Bo/Bo by replacing m/r and k by

k = (BOé % ‘Boek)/Bo

and (21)
\'(" = (Bﬂo %.:- + Boz.k) /Ba >

and by identifying r, 6 and z-components with r, L and ll~components.
The equilibrium current term A has the form?®

et ku %(L&)

Bo (22)

and has to be added to Crp and to -Cjy. In BEg. (1) it cambines
with similar temms appearing in (rotrotE), and (rotrotE)y in such
a way that the gradients again disappear.

Now that the wave equations for the plane slab and cylindrical
geometries are defined we shall briefly discuss the boundary condi-
tions under which these equations are solved. Let us start with the
axis in the cylindrical geometry. The regularity conditions at r = 0
are
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E, = & = c/E///drzo Cor (w1 (23)
and
(E,.*t'még):d‘% Etiwkp) =€, =0 for [m| =1, (24)

They are essential conditions and must be imposed at r = ry «< Ype
where Ip is the plasma radius.

The situation at the axis strongly contrasts with that at the
plasma-vacuum interface where all conditions are natural in nature.
Irrespective of the geometry one can choose the solution domain G such
that it includes the plasma "outer" boundary rp + 0 where Sy,
Eq. (15), can be assumed to be zero even if it is finite at the
"inner" boundary, rp-O. In this way one satisfies continuity condi-
tions on E, and E; (or E; and E; respectively) as well as the
requirement that their derivatives be bounded."

The weak variational form for the slab geometry is obtained from
Egqs. (1) and (13):

PP*O - 2fay D - = J'E'-" olﬁv =
I [m‘f*'m{E‘é’Z(Fr‘ ,'E'I' F”‘ b-o "')'(‘—' _4-3(——. *- E
-r\ra-o
¢E* s o’E - — 10
;(:;” of K)]AX =(FrKYOtE2‘/ . (25)

—r’.-o

- -
The test function F* belongs to the same function space as B,

Eg. (8). The two surface terms F* x rotE are directly expressible
via the wave magnetic field B~ rotE at x = t(rp + 0).

In the usual RF heating models the plasma is surrounded by vacuum
and conducting walls. Somewhere in the vacuum one places an antenna
modelled by an infinitely thin current layer with or without radial
feeders,?® Irrespective of whether the displacement current is
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neglected or not, one can solve for the wave fields in the vacuum
either numerically or analytically. The so-obtained solution then
serves to express rotE in terms of the antenna current and E at
t(rp + 0) .22 The power emitted by the antenna is obtained from

l 3z > Py
= = 26
P 2 “(‘0‘, X d.a = (26)
7 (e / 777
where j; denotes the antenna current,
The treatment of the vacuum in the cylindrical geometry and of

the plasma-vacuum interface is a trivial variant of the corresponding
plane case.

4. WAVE EXCITATION IN THE ALFVEN WAVE RANGE OF FREQUENCIES

We now turn to an investigation of the different waves which can
be excited in the AWRF. The numerical tool we have at our disposition
includes all the relevant physics in contrast to earlier
models.8-10127 ¢ particular, transit time magnetic pumping is
included. The phenomenology of the excitation as described in earlier
publications °-10127-28 is, however, not affected.

Extensive experimental investigations of wave excitation in the
AWRF have been undertaken on the TCA tokamak at Lausanne.29-30 por
this reason we concentrate our computations on TCA. If not otherwise
stated the antenna and plasma parameters used are the following:
deuterium plasma, major and minor radius, R = 65 cm and rp = 18 am,

toroidal (axial) and poloidal wave numbers n = -2 (k = -0.03 cm"3),
m = -1; exciting frequency, f, = 3 MHz; number density of species A,
ngo(r) = ngo(1.-0 .981‘2/rp2 )07, temperatures, Tholr) =
Tool1.-0.84r%/r;?)2 with Teo = 800 eV and Ty = 500 eV; to-

roidal (axial) magnetic field, Byz; = 1.5 T, plasma current density,

. ) 2 2 2 . . .

Joz(r) = Joz(1-r /tp)  with an amplitude 3jop such that the
total current is 120 kA. As a result of these parameters the safety
factor has the values, q(0) = 1 and q(rp) = 3,
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In Fig. 1 is shown the power, Bg. (26), versus the electron
density on axis. In its very first part, 2.10!3 < Nego < 9.10%3 cm"3,
the graph corresponds to the experimental antenna loading measurements
in TCA.2° Higher densities are outside the usual operational domain

for heating experiments on TCA and are shown for academic reasons. As

in the axisymmetric casel®

one can distinguish essentially four
different excitation conditions denoted by GEAW, KAW, CONT and SQEW.
At the lowest density, ng, = 2.61+ 1013 cm"s, the plasma responds
with a high quality eigermode, the fundamental Global Eigermode of the
Alfvén Wave (GEAW). Having its frequency outside the cold plasma
continuum, this mode can correctly be situated even with a cold plasma
model.?® The quality (height) of the response, however, can only be
obtained from the hot plasma theory, including magnetic punping. The
magnetic pumping increases the height of the peak by 50% over that
obtained without pumping. From a theorist's point of view this is a
large correction. When put into the experimental context, however, the
correction is quite irrelevant because the experimentally observed
responses?’ have never the high quality of the GEAW in Fig. 1.

The next peak denoted by KAW (Kinetic Alfvén Wave) is situated in
the range of the cold plasma continuum and cannot be found there with
a cold plasma model. On the contrary, the latter model would predict
an infinity of GEAW's between the actual GEAW and the continuum edge,
i.e. between GEAW and KAW. In the present case (n = -2), only the
fundamental GEAW survives the finite temperature corrections in the
kinetic model; in the case n = -1 the first and the second GEAW can
survive. It is reasonable to call the wave motion inside the continuum
the Kinetic Alfvén Wave®
fundamental difference between the GEAW and the KAW: they are just the
fundamental and higher radial eigemmodes of the Alfvén wave. Their
excitation is facilitated by the existence of a low quality campres-
sional motion with collective mode character, the MHD surface wave
mode, 3!

although in a kinetic model there is no

The KAW manifests itself as long as it exhibits an appreciable
field amplitude on the axis, Fig. 2. At higher densities, indicated by
CONT (continuum) in Figs. 1 and 2, the kinetic Alfvén wave does not
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reach the centre and, hence, cannot set up an eigenmode. For Fig. 2 we
have chosen E, rather than E or E; because E. exhibits both the

cold and the hot plasma features and also some problems of theoretical
nature near the boundary.

Let us now turn to high densities or to the excitation of kinetic
waves near the boundary, respectively. Donnelly at al.!® have termed
the wave excited in the cold plasma near the boundary the "surface
electrostatic wave". We prefer to call it the Surface Quasi Electro-
static Wave (SQEW) because the compressibility plays an important role
in its excitation. The SQEW form shown in Fig. 2 exhibits one main
hump with a short wavelength superposed. The main hump is the SQEW
whereas the short wavelength, which is of the order of the ion Larmor
radius, corresponds to the third solution of the dispersion relation
obtained from By. (1) and is unphysical. The existence of this
unphysical wave mode is the price we have to pay for our general
approach where we do not eliminate E; using some approximations. So
far it seems that this mode does not interfere at all with the rest of
the physics. It is excited at the boundary and damped within 2 am. In
particular, it does not affect the energy deposition density.32 We
have even the hope to make it disappear altogether by working up to
second order in the equilibrium gradients in analogy to Hq. (13). A
pragmatical approach which makes it disappear is to introduce
electron-ion collisions (vei) in £(0),,, i.e.

: £ 1
(o) o, e[ . 27
e — & * 7 ( ’ {4 i /0 /) “n

and to decrease the electron temperature to 2 eV at boundary instead
of 20 eV as in Fig. 2. In any event we do not attach too much impor-
tance to the physics in the boundary layer because experimentally it
is found to be highly turbulent, an aspect we theoretically do not
model at all. Some interesting results have been reported in Ref. 28.

In Fig. 3 we show how the distance (in density) between the first
two peaks (i.e. GEAW and KAW in Fig. 1) varies with toroidal mode
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nunber and current. The current and its profile have been varied in
such a way that g(0) = 1. The temperature on axis has also been varied
and was found to be a quantity of little influence. The values of the
relative distance Angy/ng, are of the same order as those found
experimentally.33 A detailed comparison using experimental current and
density profiles should be undertaken and could well reveal a certain
potential for diagnostics.3"

In contrast to Fig. 1 we show in Fig. 4 a loading trace in the
experimentally relevant density range. Here the four dominant modes
m = +1 and n = *2 have been summed. Two different values of the
temperature at the plasma boundary have been used
T ~ (1—0.841:'2/1:]_02)2 and (1—0.95r2/rp2)2. We see that the peaks due
to the GEAW and the KAW are hardly affected by the temperature whereas
those due to the SQFW (m,n) = (-1,2), (1,-2) disappear with the higher
temperature. At Teo(rp) = 2 eV the introduction of electron-ion
collisions makes them disappear too. From a theoretical point of view
it seems therefore that the SQEW has no clear signature in TCA when
excited with 3 MHz. It could, however, be responsible for some of the
background loading observed.?® Whenever excited in our numerical
models it is excited via mode conversion from the campressional mode
and not by direct antenna coupling.35 For a given pair (m,n) its
excitation seems not to depend on the direction of the antenna current
which can be varied in our model. We shall obtain more insight into
these questions when higher frequencies will be used on TCA.

In Fig. 5 we show the parallel component of the wave magnetic
field in the vacuun adjacent to the plasma. The parameters are those
of Fig. 4. Particularly interesting is the fact that the phase goes
through 4n when the GEAW and KAW are excited. Phase junps as high as
6n have been observed on TCA3? and may be interpreted as a signature
of the GEAW and Kaw.

So far in our discussion we did not consider toroidal and other
geametric effects. Generally, in the AWRF they lead to weak coupl ing
between eigemmodes of the idealized cylindrical geometry with one
noticeable exception, the GEAW m = 0 which does not exist in cylin-
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drical gecmetry.3 6

In ICRF, on the other hand, the geometry is domi-
nated by the w = wei(r) line and a plane slab model is the only one-
dimensional (1D) model possible. The transition from a 1D to a two-
dimensional (2D) toroidal model is easy to understand in the AWRF but

not in the ICRF. The latter transition is the swject of the next
chapter.

5. WAVE EXCITATION IN THE ION CYCLOTRON RANGE OF FREQUENCIES

Around the world there are several 2D kinetic ICRF codes in
development. So far basic plasma physics questions have not been
addressed with these codes. One of the most basic questions is that
concerning linear mode conversion in 2D: where and how is the fast
magnetosonic wave converted into the kinetic wave. Here, we shall try
to infer the 2D hot plasma conversion physics fram the kinetic 1D
model described in Ch. 3 (but with E; = 0) and from the cold plasma
2D model LION.2!

We start with a review of the well-known phenomenon of mode
conversion in one dimension.3”'?® The first discussion is based on a
TCA like plasma. The changes with respect to Ch. 4 are: n = 4, fo =
22 MHz, deuterium/hydrogen mixture npy = 101 o3 ¢+ Do =
10'2 an? with parabolic profiles. With these parameters the cold-
plasma wave equation is singular near the axis at the ion-ion hybrid
resonance. Physically this resonance corresponds to the spatial
location x of a singular Alfvén or ion~cyclotron eigemmode with an
eigenfrequency wp equal to the driving frequency, wa(xX) = w. In an
initial value approach the field in the neighbourhood of this mode
would grow in time without bound and would accumulate energy at a
constant rate (resonant accumulation of energy). If the system is made
dissipative, the growth saturates at values inversely proportional to
the damping rate. The energy flux to the plasma remains the same
irrespective of the damping rate and one talks about resonance absorp-
tion. The wave forms for three different dampings &6 = 162,54,18
introduced via®®
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—

1‘8 —8 0

= =2 .

e > O 4 8 t ; 0 (28)
o o 0

are shown in Fig. 6a. The antenna is situated on the right side which
is the high magnetic field side (HFS). The incoming fast wave has
roughly the same amplitude in all three cases and the power emitted by
the antenna is comparable too.

Fig. 6a can be reinterpreted as a time sequence of wave forms.
If, in an undamped system, we would find a wave form like the one in
the middle at time t = 1 we should have seen the wave form at the top
at t = 1/3 and would expect to find that in the bottom graph at t = 3,

In Fig. 6b we show that the energy is convected away from the
resonance by the kinetic wave when the hot plasma model is used. We
have achieved the same spatial scales at the resonance as in Fig. 6a
by using the unrealistic temperatures 90, 10 and 1.1 eV. The damping
of the kinetic wave has been adjusted in such a way as to have the
same damping length in all three cases.

Now imagine a time sequence in a hot plasma with 10 eV. At
t = 1/3 the wave form would be that of the cold plasma. In the course
of time the characteristic length would, however, shrink and approach
the wavelength of the kinetic wave and at this moment the resonant
structure of the fast wave would start to emit the kinetic wave. This
sequence is illustrated in Fig. 6c where the hot plasma model is used
and the damping is changed, &6 = 162, 54, 18, representing growing
time.

Let us now turn to the 2D situations depicted in Figs. 7-9. These
figures have been produced using the Lausanne ION-cyclotron code
LION’! which is based either on the cold or on what we call the "warm"
plasma model. In the cold plasma model (Fig. 7) dissipation is
provided by Bj. (28) whereas in the "warm" plasma model the ion-
cyclotron damping is used in addition (Figs. 8 and 9).
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In Fig. 7 the same plasma parameters have been used as in Fig. 6,
apart from the plasma current which is unimportant in a plane slab
ICRF model but very important for a 2D model where it determines the
equilibriun and the geometry of the magnetic field. An analytical
Solov'ev equili.briun39 with g(0) = 1 has been used for simplicity.
Fig. 7 corresponds to Fig. 6a; the same three dampings have been used
and the result can again be interpreted as a time sequence. As in
Fig. 6a the antenna excites the fast magnetosonic wave which suffers
framn singularities. For graphical reasons only the singular regions
are shown in Fig. 7. They are situated on certain magnetic surfaces®
as predicted analytically."orl’l In the course of time the incoming
fast wave excites the geometrically predetermined resonant structure
to higher and higher amplitudes whereby the structure's radial half-
widths shrink inversely proportional to the time. The poloidal exten-
sion of the structure, however, remains constant, its centre being
aligned with the ion-ion hybrid resonance condition

AL (o) 2
% e =k @

as obtained from the geometric optics and indicated by a broken line
in Fig. 7. Here and in the following, the index n denotes the direc-
tion normal to the magnetic surfaces. Physically, the resonant struc-
ture can be understood as poloidally standing, radially singular
Alfven or ion-cyclotron waves or eigermodes. When modelled by hot
physics in analogy to Fig. 6c these modes would start to emit kinetic
waves when their radial extension starts to be as small as the wave—
length of the latter. It is to be expected that the phase velocity of
the kinetic wave would be directed radially as sketched in Fig. 7. If
the kinetic wave is not absorbed between individual resonant surfaces
complicated standing wave patterns of even the kinetic wave could be
set up. These patterns should be strongly temperature dependent.

The academically interesting transition from the present 2D

picture back to 1D can be made by either diminishing the equilibrium

3

current or by increasing the plasma size.® In both cases the number of

resonant surfaces increases and the poloidal extensions of the reso-
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nant structure become smaller. In both limits one can recover the 1D
picture of a resonant structure defined by Bg. (29).

A large plasma like JET, however, can still be daminated by 2D
effects."?/*3 In contrast to Ref. 42 here we show results obtained
using the "warm" model for a JET plasma (aspect ratio 2.4, q(o) = 1,
q(rp) = 2.2, elongation 1.68, B, = 3.4 T, Ry = 3 m ng =
3.2-1019011"3, T; = 6 keV, £f5 = 43 MHz, n = -15) containing a mixture
of deuterium and hydrogen with ng/ne = 0.3 if not stated other-
wise.

In Fig. 8 is shown the wave form of a fast wave incident fram the
low-field side (LFS). In the 1D model this wave encounters a cut-of f
in front of the resonance. In a large plasma like JET the 1D result
obviously has significance. One observes a dominant standing wave
structure of the fast wave and a very weak excitation (through tunnel-
ing) of the resonant structure described above. If the antenna is
situated on the HFS, however, the incident fast wave does not set up a
standing wave (Fig. 9, left side) on its way inwards but delivers its
energy to the standing resonant structure which in this case is the
dominant feature of the wave form.

In Fig. 9 we also show how the wave structure changes with
decreasing minority density (from left to right, ng/ne = 0.3,
0.1, 0.03). At the lowest concentration the ion-cyclotron damping is
active even at the ion-ion hybrid resonance and the geometric features
due to the cold plasma are completely wiped out. It is only in this
limit that one could expect a ray-tracing code? to produce reliable
results, All the other cases in Figs. 8 and 9 cannot be treated by
ray-tracing because it cannot handle standing waves.

6. CONCLUSION

It has been shown that the linear theory of electromagnetic wave
propagation in a hot plasma is not completely developed yet. We have,
however, found a satisfactorily working version which can be applied
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to the whole low frequency range without ad hoc approximations. We
have found reasonable definitions for the energy flux and the local
absorption. In particular, we have shown that we are able to include
transit time magnetic pumping even in cylindrical geometry. In view of
the results which are to be expected from the 2D kinetic ICRF codes we
have tried to predict some of the main features of mode conversion in
two dimensions.
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Fig.

1:

DENSITY [CM—3] * 10—14

Power versus central electron density for
TCA with m = -1 and n = =2,
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Fig. 2: Typical wave forms in different regimes defined in

1.0

Fig. 1. Shown are the imaginary parts of the radial
component of the wave electric field versus radius.
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Fig. 3: Relative distance between the GEAW and
——— the KAW versus the plasma current for
3 different toroidal wave numbers and
3 different temperatures, the solid lines
corresponding to 800 eV.
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Total power due to the 4 modes with |m| = 1

and |n| = 2 versus central electron density

for TCA. Two different temperatures at the

plasma boundary are used: Teo = 2 eV, broken
line, Teo = 20 eV, solid line.
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Absolute value and phase of vacuum wave
magnetic field By versus density. Para-
meters are the same as in Fig. 4.



- 30 -

Fig. 6:

Wave forms in Ex versus spatial
coordinate x for the cold plasma
model (a) and 3 different damp-
ings, for the hot plasma model
(b) and 3 different temperatures,
and for the hot plasma model (c)
with T = 10 eV and 3 different
dampings.

COORDINATE X

(b)

(c)
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Fig. 7: Equilines of the power absorption density
-_ in a TCA plasma for 3 different dampings
corresponding to those used in Fig. 6.



Fig. 8:

Equilines of Re(E_ ) in a
"warm" D/H JET plasma with
LFS excitation.

Fig. 9: Equilines of Re(E,) in a "warm" JET plasma

_— with HFS excitation and varying H minority
concentration (from the left to the right,
nH/neo = 0.3, 0.1, 0.03).



