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Abstract.  A comprehensive linear model for the interaction between the MHD n = m = 1 internal kink 
and fast particles, based on the Hamiltonian angle-action formalism, is derived.  On the basis of this 
model, a linear code, MHD-K, that solves partially analytically and numerically the kinetic-MHD 
dispersion relation non-perturbatively is presented. The impact of passing fast particles on the fishbone 
is shown to be an essential drive of the instability, where previous models highlighted only trapped 
particles as the driver of the kinetic-MHD instability. Resonant planes in phase space are presented, 
showing multiple resonant branches for both trapped and passing particles. 

 
 
 

 

1. Introduction 
The kinetic-MHD fishbone instability  has  been  studied  extensively  for  the  past  three  decades,  from the 
experimental, theoretical and numerical points of  views.  First  results  of  MHD  bursts  with  the typical 
fishbone-like signature on magnetic oscillations  were  found  at  the  PDX tokamak  [1].  Since then, they 
have been observed in many other experiments [2][3] for different phase space distributions of energetic 
particles. The relevance of studying this instability rests upon the fast particles transport, induced by the 
fishbone instability. The fast particles, such as the fusion born alpha particles, are transported out of the 
plasma core. This decreases the plasma performances due to a partial loss of the alphas heating, 
mandatory for steady-state plasma operations. Furthermore, such a transport can trigger disruptives  MHD  
instabilities,  such  as  NTMs  (Neoclassical  Tearing  Modes).  Due  to  the  fact that future fusion devices 
such as ITER and DEMO are expected to produce a large quantity of alpha particles, understanding the 
interplay between kinetic suprathermic population and MHD  both  in  its linear and non-linear phase is 
crucial for conducting successful experiments. While the linear phase can be investigated analytically for 
simple models, or with little numerical cost for more complete models, the study of the non-linear phase 
of the fishbone instability requires the use of complex numerical codes such as MEGA [4], M3D-K [5][6], 
XTOR-K[7][8]. However,  for  realistic  non-linear  predictions,  such codes need to be  firstly  validated  against  
complete  linear  model  during  their  linear  phase.  The  goal of this study is to provide 
analytical/numerical linear tools to perform such a validation, by deriving a complete linear model for 
the fishbone instability, and a linear code to solve the implicit dispersion relation. Using the formalism from 
[9], a more complete model is needed because, so far, theoretical linear models [10],[11],[12],[13], 
primarily identified the precessionnal frequency of trapped energetic particles ωd, as the drive of a 
resonant mechanism with the n = m = 1 internal kink mode, inducing the fishbone instability. vd is the 
magnetic drift velocity. It is argued in this paper that passing  fast particles need to be considered as an 
equivalent drive to the fishbone instability. In later models [14] the contribution of passing particles has 
been taken into account, however the impact on the dynamics of the fishbone has often been discarded, 
in some linear codes [5][15]. Moreover, some linear codes [16] compute perturbatively  the  fast  particles  
contribution  to  the  internal  kink  dispersion  relation.  Such an approximation holds for kinetic instabilities 
such as TAEs (Toroidal Alfven Eigenmodes). However, in the case of the fishbone, the growth rate of 
the instability can be up to one order of magnitude higher for a given magnetic equilibrium on the 
fishbone branch than it is on the kink branch without 
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fast particles. That is why a non-perturbative treatment of the kinetic dispersion relation, implicit in 
complex frequency as it will be shown, is needed. This paper is organized as follows, in a first part, a 
comprehensive linear model for the fishbone instability is derived, through a Hamiltonian angle-action 
formalism that will be presented as well. In a second part, the linear code MHD-K that solves partly 
analytically and numerically the fishbone dispersion relation is presented, as well as linear results 
showing the relevance of passing particles on the instability due to multiple resonant planes in phase 
space associated with both passing and trapped particles. 

 
2. Derivation of the linear model 
2.1. Kinetic dispersion relation of the internal kink 
Most linear models have used the energetic principle [17] to work out an expression for the fishbone 
dispersion   relation   with   the   additional   functional   introduced   by   kinetic   populations   :    δWK    = 

d3xd3v  mh  ξ · ∇ · (v ⊗ v)f̃h,  f̃h   the  linear  distribution  response  of  energetic  particles  and  ξ  the 
MHD displacement. This kinetic term comes from the extra stress tensor Πh due to fast particles in 
the momentum equation. Following what has been done in [18] and also in [19][20], the dispersion 
relation for the bi-fluid resistive internal kink mode n = 1, m = 1 is obtained by matching the expressions 
for ξr obtained from the linearized MHD equations, inside and outside of the inertial layer q = 1, yielding 

D(nh0, ω) = δI(ω) − iωA[λH + λK(nh0, ω)] = 0 (1) 

ω ∈ C,  with  the  inertial  contribution  δI  given  as 
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where  ω∗i, ω∗e  stands  for  the  ion/electron-bulk  diamagnetic  frequency,  ω  the  complex  MHD  mode 
frequency, S  the Lundquist number, s0  the magnetic shear at q = 1, ωA  the Alfvén pulsation, nh0  the 
density of fast particles on the magnetic axis, λH = γMHDτA the contribution of the bulk plasma, τA 
being the Alfvén time, and γMHD  is the growth rate of the instability without fast particles, constant 
for  a  given  MHD  equilibrium.   λK  is  a  normalization  of  δWK  given  by  λK  =  µ0δWK/2πξ2s0R0B2   , 

0 θ,0 

with R0 the major radius, Bθ,0 the poloidal field at q = 1 and ξ0 the constant radial MHD displacement. 
Here the eigenfunction ξ has been assumed to be a simple step function, null outside q = 1. The way 
(1) is solved will be discussed in the second part of the article.  Firstly, the derivation of the kinetic term  
δWK  is  presented.   For  this  purpose,  one  needs  to  solve  the  Vlasov  equation  to  work  out  an 

expression  for  the  perturbed  distribution  of  fast  particles  f̃h. 

 
2.2. Resolution of Vlasov equation 

Let  Fh  be  the  distribution  function  of  fast  particles  such  as  Fh  =  Feq,h + f̃h,  with  Feq,h  being  the 
equilibrium distribution function. Vlasov’s equation can be written as, assuming no collisions 

dtF = ∂tF − {H, F } = 0 (3) 

where {·, ·} are the the Poisson’s brackets defined in an angle/action formalism [21] as 

∂A   ∂B ∂B    ∂A 
{A, B} = 

∂α 
· 

∂J 
− 

∂α 
· 

∂J 
(4) 

In a tokamak configuration, one can identify three invariants of motion Ji related to a set of conjugate 
fast varying angles αi [22],[23].The conjugate coordinates are given as follows 

(α1, J1) is related to the cyclotron motion, where α1 stands for the gyroangle and J1 is proportional 
to the magnetic moment µ 

(α2, J2) is related to the poloidal motion, where α2 stands for the bounce angle and J2 is a function 
of the two other invariants and the energy 

• (α3, J3) is related to the toroidal motion, where J3 = Pϕ = mRvϕ − eψ(r) is the toroidal kinetic 
momentum, m and e the particle’s mass and charge, vϕ its toroidal velocity and ψ the poloidal 
magnetic flux. 

4 
0 

(2) 

• 

• 
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This set of coordinates has been built so that the equilibrium quantities are only functions of 
J, therefore the linearized equations of motion regarding the equilibrium Hamiltonian Heq,  where H(α, 

J) = Heq(J) + h̃(α, J),  h̃  the  perturbed  hamiltonain,  simply  read 

dα 
= 

∂Heq  
= Ω, 

dJ 
= − 

∂Heq  
= 0 (5) 

 

Therefore, the unperturbed motion is characterized by three frequencies. Ω1 = ωc is the gyrofrequency 
and Ω2, Ω3 are respectively the poloidal and toroidal transit frequency given by [21] 

 

 
Ω2 = ωb = 2π 

θ0 

 
−θ0 

dθ −1 

Ivǁ 

 

, Ω3 = δpqωb + ωd (6) 

 

where θ0 is the bounce angle, I the Jacobian for toroidal coordinates (ψ, θ, ϕ), θ the geometric poloidal 

angle, vǁ the parallel velocity, δp is 1 for passing particles and 0 for trapped particles and ωd the 
precessional frequency. Linearizing (3), one gets 

∂tf̃h  − {h̃, Feq,h} − {Heq, f̃h} = 0 (7) 

reducing, according to the definitions above, to 

∂ f̃   − 
∂h̃  

· 
∂Feq   

+  
∂f̃h  

· 
∂Heq   

= 0 (8) 
 

since Feq does not depend on angle variables, as it is an equilibrium quantity. Performing a Fourier 
expansion on the perturbed quantities, according to the defined angle/action variables, one has 

 

g̃ = gnω   e
i(n·α−ωt) (9) 

n 
 

where n = (n1, n2, n3) is linked to the angle/action formalism. Therefore, one readily obtains 
 

f˜nω = 
n · ∂Feq,h/∂J 

h̃
 

ω − n · Ω 

 

(10) 

Considering that Feq,h is solely a function of (Heq, µ, Pϕ), its derivative with respect to J expands as 

n · 
∂Feq,h  

= n ·

 
∂Heq  ∂Feq   

+ 
∂µ ∂Feq  

+ 
∂Pϕ ∂Feq  

    

= 
∂Feq,h 

h
(n · Ω − ω) + ω − ω    − ω  

i 
(11) 

 

where  ω  is  artificially  introduced  to  later  dissociate  f̃  in  resonant  and  fluid  parts.   ω+  and  ω∗  are 
defined as 

ω  = n es   ∂Feq,h/∂µ  
, ω

 = −n ∂Feq,h/∂Pϕ (12) 

+ 1 
m ∂Feq,h/∂Heq 

∗ 3      
∂Feq,h/∂Heq 

with es the particle’s charge  and  m  the  particle’s  mass.  Considering  the  perturbed  Hamiltonian, derived 

from the  electromagnetic  Lagrangian,  assuming  that  the  perpendicular  potential  vector  A⊥ can be 
discarded 

h̃  = es(φ − vǁAǁ) (13) 

with φ the electric potential.  Following the ideal MHD constraint on the system, E = 0, and 

introducing the time integral of the electrical potential χ(x, t) = 
∫ t 

φ(x, tJ)dtJ, it leads to 

Eǁ = −∇ǁφ − ∂tAǁ = 0 ⇔ Aǁ = −∇ǁχ (14) 

The perturbed Hamiltonian can then be expressed as 

h̃  = es[∂tχ + vǁ∇ǁχ] = es[dtχ − (vd · ∇)χ] (15) 

  ∫ 

nω 
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where dtχ = (∂t + v )χ, v = vǁb + vd, vd being the drift velocity of fast particles. dtχ can be 
expressed, using the angle-action Hamiltonian approach, as 

 

∂χ 
dtχ = ∂tχ − {Heq, χ} = ∂tχ + Ω · 

∂α 
(16) 

Therefore,  plugging  (16)  into  (15)  and  Fourier  developping  h̃,  one  gets 

h̃nω  = i(n · Ω − ω)esχnω − [es(vd · ∇)χ]nω (17) 

Then,  inserting  (17),(11)  into  (10),  one  obtains  f̃  = f̃res  + f̃
f l  

,  with 
nω nω nω 

f̃res  =  
∂Feq  ω − ω+ − ω∗ 

[e  (v
 · ∇)χ] , 

 
f̃ f l = 

∂Feq  

  

i(n · Ω − ω — ω )e χ — [e (v · ∇)χ] 

nω ∂Heq
 

ω − n · Ω 
nω nω ∂Heq + ∗   s   nω s d nω 

(18) 

Let us now introduce the ordering between the different resonant, diamagnetic and MHD frequencies 
for energetic particles. Ω1 being generally several orders of magnitudes above Ω2, Ω3 and the pulsation 
of the internal kink ω, fast particles gyrofrequency cannot react resonantly with the MHD mode. It 
is  then  possible  to  reduce  the  number  of  resonances  considering  n1  = 0.  It  implies  also  that  ω+  = 0. 
Given that perturbed quantities such as the electrostatic potential are assumed to have, due to the 

internal  kink,  the  following  form  φ(r, θ, φ) = φ(r)e−i(θ−ϕ),  their  Fourier  transform  using  angle-action 
formalism gives 

φ   = 
   1     

∫ 

dα dα φ(r)e−i(θ−ϕ+n3α3+n2α2) (19) 

 

Since α3 = ϕ − qθ̂, with θ̂  a periodic function of α2  defined in [21], and that θ = θ̂ + δpα2, the only non 
vanishing component of φn following the integration over α3 is n3 = n = 1. Therefore, the general 
resonance condition reads 

ω − σǁ(n2 + δpqn)ωb − nωd = 0 (20) 
n2 

σǁ = ±1 for co/counter passing particles. Since the frequencies ωb, ωd depend on the three invariants of 
motion (E, Pϕ, µ), the solutions of this resonance condition are surfaces in phase space. After numerical 
studies, which will be presented in part 3.3, for typical fast particles distribution and ITER-like MHD 
equilibrium, only three surfaces, one for trapped particles with n2 = 0 and two for passing ones with 

n2 = −1, mainly contribute to the resonant term, yielding for the n = m = 1 internal kink 

ω + σǁδp(1 − q)ωb(E, Pϕ, µ) − ωd(E, Pϕ, µ) = 0 (21) 

Regarding the fluid term, it is not necessary to use the angle/action formalism, this formalism being 
better adapted to the study of resonant terms. It is therefore more convenient to express it in real 

space. Noticing that in Fourier space v · ∇ = in · Ω and that {χ, Pϕ} = in3χn,ω 

f˜f l = e 
∂Feq 

 

v ∇ χ − ω {χ, P }/n

 

(22) 

 

The first term of this expression is directly linked to the particle’s tearing term in [9]. As a current  
term, it needs to be incorporated in δWMHD, since it uses the total current, as shown is eq. (85-86) 
of [14]. 

 

In order to derive explicitly f˜, an expression of χ as a function of ξ0, the order 0 MHD displace- 
ment,  is  needed.   For  n  =  m  =  1,  it  reads  ξ  =  ξ0H(rq=1      r̄)e−i(θ−ϕ+ωt)er  at  lowest  order,  where  H 

is  the  Heaviside  function  and  r̄  a  radial  position  linked  to  a  specific  choice  of  referent  flux  surface  ψ̄ 
[17][29].   Following  reduced  MHD  assumption,  at  lowest  order  in  ϵ  =  r̄/R  and  assuming  a  toroidal 
equilibrium with concentric circular surfaces without Shafranov shift 

 

v⊥ = vE×B  ⇔ −iωξ0B0e−i(θ−ϕ+ωt)=iω∂θχ/r̄  ⇔ χ = −iξ0B0r̄e−i(θ−ϕ+ωt) (23) 

3 

s d 
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It is possible to obtain explicit expressions for both the resonant and fluid perturbed distribution using 
the definition of the drift velocity 

v   = 
  2E   

B × 

  
1 − 

λ   
κ + 

 λ  
∇ ln B

 

(24) 
 

where λ = µ0B0/Heq stands for the generalized pitch angle, µ0 being the order 0 magnetic moment 
and  B0  the  magnetic  field  at  r̄  = 0,  H  = R/R0  = 1 + r̄/R0 cos θ,  ωc  the  particle’s  gyrofrequency  and 
κ the magnetic curvature. At low β, this expression reduces to 

Eσ 
vd = 

mΩBH 
B × ∇ ln B (25) 

with  B  = B0R0/R,  σ = 2 − λ/H  and  B = (B0/H)(eφ + (r̄/Rq)eθ).  Therefore 

 
 
 

Then 

∇ ln B = 
hsin θ 

e   − 
cos θ 

e 
i 

(26) 

v  · ∇ = −
  σE       

sin θ∂ + 
cos θ

∂
 

(27) 
d 

 

For the resonant term, one has 

esB0R0 r r̄  θ 

(vd )χ =  
σEξ0 ei(α3+qθ̂−ωt) (28) 
esR0 

The Fourier coefficient being given by the inverse Fourier transformation 

g = 

∫  
dα1  dα2  dα3 

e−in·αg (29) 

two cases need to be considered in computing the resonant term.  Firstly,  for trapped particles,  as will 
be shown numerically in part 3.3 for the n=m=1 internal kink, only the triplet nt = (0, 0, 1) contributes, 
therefore 

[e (v · ∇)χ] 
= 

Eξ0 
∫ 

dα2 
σeiqθ = 

Eξ0 
σI

 (30) 

where Iq =< cos θ >α2 +(1 − q) < θ sin θ >α2 , whose derivation is given in annex. For passing 

particles, only the triplet np = (0, −1, 1) is contributes, therefore 
 

[e (v · ∇)χ] = 
Eξ0 

∫  
dα2 σeiqθ+(1−q)α2 = 

Eξ0 σI 
 

(31) 

 

Given the α2 dependency in Iq,p, the obtention of an analytical expression for it is quite intricated. 
However, performing a serie expansion of exp[(1 q)α2], where 1 q is considered as a small parameter 
given that the studied MHD instability is the internal kink, trapped and passing contributions are 
identical at lowest order. Therefore the analytical expression for Iq is used for both trapped and 
passing particles. The resonant perturbed distribution function then reads 

f̃res  = E 
∂Feq ω − ω∗ 

ξ0 
I (r, λ) (32) 

∂Heq ω + δpσǁ(1 − q)ωb − ωd R0 

Regarding the fluid term, using the expression of  Poisson’s  brackets  in  regular  toroidal  coordinates 
[24], one finds 

b 
{χ, Pϕ} = − 

eB
 

r̄  
· ∇χ × ∇Pϕ =  

q 
r̂  · (b × ∇χ) (33) 

where  Pϕ  =  cst  =     eψ̄  =     er̄2B0/2q,  assuming  thin  orbits  around  the  magnetic  surfaces  and  q(r̄) 

almost  constant  inside  q  =  1.   The  choice  ψ̄  =  ψ + mRvϕ/Ze  is  explained  in  the  next  section.   The 
fluid contribution, or interchange contribution by comparison with [9], yields 

· ∇ 

0 

d ntω 

R
0 

2π R
0 

q 
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npω 

q,p 
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f ĩnt = −ξ0 

∂Feq ei(ϕ−θ) (34) 
∂r̄  

where one can see that the adiabatic contribution from [12] is retrieved, as well as the more general 
expression in eq. (71) of [14] in the limit of thin particles orbits. 
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2.3. Derivation of the toroidal drift frequency ωd 
To retrieve an expression  for  ωd,  one  needs  to  express  the  toroidal  angle  as  ϕ = ω3t + F (α2),  where ω3 
is the pulsation associated with the third angle of the angle-action formalism, and F is a periodic 

function of α2. Given the
˙
angle α from the Clebsch magnetic field expression, α = ϕ − q(ψ)θ; and 

that any angle ξ respects ξ = v · ∇ = (vǁ∇ǁ + vd · ∇)ξ 

α̇  = vd · ∇

 

ϕ − q(ψ̄)θ − (ψ̄)ψ̂θ

  

(35) 
dq 

where  ψ̄  stands  for  the  referent  flux  surface  for  a  given  particle  orbit,  an  invariant  as  a  function  of 

invariants.  ψ̂ stands  for  the  excursion  from  ψ̄ along  the  orbit,  such  as  ψ = ψ̄ + ψ̂.  Given  that  ψ̄ is  an 

unperturbed  quantity,  and  that  ψ̂ is  a  first  order  quantity,  as  well  as  vd · ∇θ,  at  leading  order 

 
α̇  = vd · ∇ϕ − q(ψ̄)vd · ∇θ − 

dq 
(ψ̄)θv · ∇ψ̂ 

 
(36) 

 

Noticing  that  θvd · ∇ψ̂  = θ(dψ̂/dt) = d(θψ̂)/dt − (dθ/dt)ψ̂ 

 
α̇  = v · ∇ϕ − q(ψ̄)v · ∇θ +  

dq 
(ψ̄)ψ̂

dθ  
− 

dq 
(ψ̄) 

d(ψ̂θ)
 

 
(37) 

 

Then, performing an averaging over α2, and a series expansion in q(ψ) regarding the toroidal angle, 
ϕ can be written as 

ϕ = (ωd + δpq(ψ̄)ωb)t + δpq(ψ̄)θ̂(α2) + χ(α2) (38) 

where the toroidal drift frequency is given by 

¯ dq ¯ ˆdθ 
 

 
∫ t 

J

 

 

 

 

Since  δpθ̂(α2) + χ(α2)  is  a  periodic  function  of  α2,  ω3  =  ωd + δpq(ψ̄)ωb  and  ωd  is  well  defined.   This 
expression for ωd is identical to the one used in [25], eq. 10. However, it has been chosen here to work 
with  ψ̄  rather  than  ψ,  since  the  resonance  is  solely  a  function  of  the  invariants,  which  simplify  the 
analytical/numerical  computation  of  δWK . 

 

Though, it should be noted that such a choice for ψ̄ does not allow all the physics related the inertial 
layer  to  be  retained,  since  the  MHD  displacement  ξ  is  naturally  a  function  of  ψ,  not  ψ̄.   Therefore, 
using a step function for ξ, inertial enhancement and global stability effects recovered in [25], where ψ 
was chosen as radial variable, are not included in our model. However, for fast particles at low energies 
(     100keV ),  orbit  width  are  relatively  small,  which  means  that  considering  ξ(r)  =  ξ(r̄)  should  not 
impact significantly the solution of the kinetic eigenvalue problem. 

 

The  change  of  variable  has  been  chosen  as  Pϕ  → ψ̄  =  −Pϕ/Ze,    ψ̂  =  mRvǁ/Ze,  such  as  ψ̄  stands 
for the flux surface at the tips of the banana orbits for trapped particles. One should note that such 
a change of variable is arbitrary, allowable for all classes of particles and  simplify  expressions.  The 
toroidal drift frequency therefore yields, at leading order in ϵ 

 

q(r̄)Eλ 
ωd = 

Zer̄R0B0 

 

Id,  Id 
 

=< cos θ >α2 

m 
+s(r̄) 

ϵλE 
< v2 >α 

ǁ 2 
(40) 

where Id is given in annex. 

 
2.4.  Derivation  of  δWK 
Using the energy principle, the kinetic contribution to (1) is given by 

 

1 
δWK  =  

2
 d3x ξ∗ · ∇ · Πh 

 

(41) 

0 

∫ 

d 

d 

ωd = 
α2 

, χ(α2) = 

d 

V 

dψ 
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where Π stands for the stress tensor. Considering the equation of motion for fast particles, discarding 

their inertia on the basis of their dilution in the whole plasma, Jh ×B = ∇·Πh.  Since ξ = (b/B)×∇χ, 
δWK  can  be  rewritten  as,  using  vectorial  identities 

δW = − 
1 

∫ 

d3x J · ∇χ∗, J ≡ 

∫ 

d3vF e v 

 
(42) 

 

J⊥h being the perpendicular hot current. It should be noted here that the parallel component of 
the hot particles current has also to be taken into account, this term being incorporated into the 
functionnal δWMHD  so that the current considered in Maxwell equations stands for the total current, as 
it should. Using the same normalization as in the previous part 

λ =
 1 

∫ 

d3xd3vF [e(v 
 

  
· ∇)χ∗] (43) 

 

Therefore, using this expression, the resonant perturbation in Fourier space and applying Parseval’s 
theorem 

res   1 
∫ 

3 
 

   

3    ∂Feq ω − ω∗ 
 

  

σ2E2    
2

 

 

λK   = 
s R B2 

d xd v 
∂E 

ω + δ σ (1 − q)ω − ω 

R2   Iq (44) 

The strategy that has been adopted to obtain precise numerical results for λK, is to solve analytically the energy/velocity integral and numerically the others.  This is due to the fact that the resonances 
depend on all integration variables. Therefore, computing the resonant integral analytically enhances 
the overall precision of λK. This strategy here differs from others linear codes such as [16] that use a grid 
adapted to the resonance patterns expected in the plane (ψ, E). Therefore, in order to carry out such 
an analytical integration, one needs to express the resonant term as an unitary polynomial of E or v. 

Then, expliciting ω∗ 
res   1 

∫ 
3 

 
 

3  σE2I2 
  

∂F R 
 

 

 

 

∂F     xω̂
 

  1  
 

     
λK   = s0R0B2 d xd v 

q 
R2Id 

eq 
∂r̄  

eq 
Eα ∂E  q 

Ê + δ  σ  (1 − q)E  ω  Ê1/2  − E  ω̂ (45) 

where  Ê  =  E/Eα,  v̂  =  v/vα,  ω̂  =  ω/ω̄d,  ω̄d  =  ωd[r̄  =  r0, λ  =  (1 − ϵ0)−1, E  =  Eα]  =  Eα/esB0r0R0, 
r0   =  rq=1,x  =  r̄/r0  E0   =  x/qσId,  ω̂b   =  2esB0r0/qmαvαIb,p  ,  and  where  σǁ  =      1  regarding  co- 
passing/counter-passing particles. The interchange term reads 

λint = −
 1 

∫  

d3xd3v 
∂Feq σE 

e−iθ (46) 
 

One now needs an expression  for  the  volume  element  in  phase  space  using  the  coordinates (r̄, 

θ, φ, E, λ, Φ),  Φ  being  the  gyro-angle.  In  toroidal  geometry,  assuming  large  aspect  ratio  and  using (vǁ, 

v⊥, Φ) coordinates 
∫ 

d3x = 2πR0 

∫

 
 
r̄dr̄  

∫ 2π  
dθ, 

∫ 

d3v = 

∫

 
 
2πv⊥dvǁdv⊥ = 2π 

∫ Σ 
E1/2 

 
 2 

  1/2    
λ 

  1/2  
J dEdλ 

0 0 
σ 

m H  
(47) 

where  σǁ   =   sgn(vǁ),   J  is  the  Jacobian  of  the  change  of  variable  (vǁ, v⊥)   →  (E, λ). Since 

vǁ = σǁ(2E/m)1/2(1 − λ/H)1/2, v⊥ = (2λE/mH)1/2, one has the following derivatives 

∂vǁ  
= σ  (2Em)−1/2(1 − λ/H)1/2, 

∂vǁ  
= −σ  (2Em)1/2

h
(2H)−1(1 − λ/H)−1/2

i 
(48) 

 

∂v⊥ 
= (λ/2mEH)1/2, 

∂v⊥ 
= (E/2mλH)1/2 (49) 

 yielding 

0 p 

0 0 p p ǁ 

p 0 
− 

p 0 b 0 

p 

0 

⊥h ⊥h d 

d 

a 

b d 0 
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∫ 

∫   

p,0 

λres = q r̄  eq α E eq 0 0 

λint = − 0 

s0r0B
2 

E3/2 eq dE (54) 
∂r̄  

∫   
1 dθ 

∫ ∞
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Therefore, using the following identity, phase space in our set of variables is expressed as 

 

π H 

dθ 
−π 0 

 
dλ = 

(1−є)−1 

dλ 
0 

θ0 

 
−θ0 

 
dθ (51) 

∫ 

d3xd3v = 
Σ 

π2R0 
 

 2  
  3/2 ∫ r0 

 

r̄dr̄  
(1−є)−1 

dλ 
θ0 λ   −1/2 

− 
 
E1/2dE (52) 

σǁ=±1 
m 0 0 −θ0 H 0 

where the sum over the parallel velocity is two for trapped particles. Regarding the different terms of 
λK, considering only even terms in θ and the bounce-averaging formalism developed, one gets 

 
2π3ϵ 

 

 
 2 

  3/2   Σ 
 

 

∫ r0 
 

 

∫ (1−є)−1 

 
 

I2 ∫ ∞ 
 

 

  

  ∂  F    /E    − r̄ω̂∂   F    /qr  R  

  
p,0 σǁ=±1 

 
4π3ϵ 

 

 
 2  

  3/2 ∫ r0 

 

  

∫ (1−є)−1 

 
 

p   ǁ 0 

∫ ∞ ∂F  
 

 

2,p 0 
(53) 

where Ic =< cos θ >α2 ,  Ib =< 1 >α2 .  After little algebra,  one can show that these two expressions are 

identical to δW1 and δW2 [14]. This re-derivation has been done to obtain expressions suited for 
analytical/numerical computation. Since an analytical treatment is preferred for the energy integral, 
calculations have to be specific to a given equilibrium particles distribution function, which is done for 
an isotropic slowing-down distribution function in Appendix B. Now that the kinetic term has been 
derived, let us discuss the resolution of the dispersion relation 

 
3. Resolution of the dispersion relation with MHD-K and linear results 
3.1. MHD-K 
The linear code MHD-K solves equation (1) using a partial analytical approach. λK is integrated over  
all  phase  space,  however,  as  it  was  shown,  its  integrand  only  depends  on  the  triplet  (r̄, E, λ). As 
shown in Appendix B, given an equilibrium function for fast particles, one can solve analytically the 
energy integral. Such an analytical treatment of the resonance brings a great deal of precision in the 
computation of λK. This is due to the fact that a 3D grid would have been inaccurate, the poles of  
the  integrand  being  multiple  and  dependent  on  the  triplet  (r̄, E, λ).   The  other  integrals  over  the 
pitch-angle and radial position are solved numerically using elliptic integrals of the first and second 
kind, as presented in Appendix A. 

 
The fluid term λH = γMHDτA of the dispersion relation is calculated using the coupled codes CHEASE 
[26], that computes the 3D toroidal MHD equilibrium and XTOR-2F [27], that time iterates the equi- 
librium through the bi-fluid resistive extended MHD equations. All equilibrium quantities and profiles 
used in MHD-K are directly taken from CHEASE. It is important to note that γMHD is the linear 
growth rate computed by XTOR-2F for a given equilibrium in absence of fast particles. Therefore, it 
is assumed that the fast particle current is negligible regarding the total current. Fluid contributions are 
therefore not counted twice, since the total current response is present in δWMHD, and the fast particles’  
pressure  response  in  δWK  [14]. 

 
MHD-K assumes, as does the linear model, that the equilibrium has concentric circular magnetic 
flux surfaces without Shafranov shift. Therefore, CHEASE is used with circular plasma cross section. 
However with circular flux surfaces, a Shafranov shift is always present when solving Grad-Shafranov 
equation. This is handled in MHD-K by shifting its geometric axis to the magnetic axis of CHEASE, 
assuming a larger major radius than expected. 

 
Then,  (1) is solved through a method somewhat simpler than in [28].   Since the goal of the linear code 
is to verify non-linear hybrid kinetic-MHD codes, it is not necessary to use a complex algorithm locating 
the zeros of an analytic function. Instead, the value of the kinetic term λK is computed on a 2D grid 

K 
m 0 

r̄dr̄  
0 I

d 
0 Ê + δ  σ  (1 − q)E  |Ω̂ |Ê1/2  − E  ω̂ 

K 
m 0 

r̄dr̄  
0 0 

∫ ∫ ∫ 

0 
dλσIb E5/2 

dE 
s0r0B
2 

dλσIbI
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in the complex plane (ω, γ), then 1/|D(nh,0, ω + iγ)|2 is computed all over the grid, its maximum being 
considered as the solution of (1) for a given kinetic density on the magnetic axis nh,0. 
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By taking the maximum of 1/ D(nh,0, ω + iγ) 2 as the solution of (1), it is assumed that the solutions 
are unique, which is not necessarily the case. In fact, it has been observed that for the internal kink in 
presence of fast particles, two branches co-exist. The kink branch at low fast particles density, and the 
fishbone branch at high density.  But since the kink and fishbone branches are stabilized respectively at 
high and low density, only one branch exists in the unstable region γ > 0. Only the unstable solutions 
are of interest, since the goal of MHD-K is to be used as a tool to verify hybrid codes, where only 
unstable modes can exist. 

 
3.2. Effects of passing particles on the fishbone mode 
In the following, linear results obtained from MHD-K are presented. These results have been ob- 

tained  from  an  ITER-like  equilibrium  with  R0  =  6.2m, B0  =  5.3T, a  =  1.86m, S  =  1.107, ω∗i  =  0, 
parabolic-like q profile with q0 = 0.8 on the magnetic axis. Bulk and fast particles profiles have the 

form P = P0(1 − rα)β, where for the bulk density ni, ni,0 = 2.1019m−3, α = β = 2, for the bulk 
temperature Ti, Ti,0 = 30keV, α = β = 2 and for the fast particles density nh, nh,0 is a parameter and 
α = 2, β = 6. 

 
The fast particles are distributed along an isotropic slowing-down equilibrium distribution function, as 
presented in Appendix B. The peak energy of the particle is set to Eα = 3.5MeV , which is the energy 
of fusion-born alphas. In later comparison with hybrid codes, this peak energy might be decreased 
for precise comparisons between the linear model and numerical results. At high energy 1MeV , 
particles follow non-standard orbits known as potato orbits [29], as the particle’s orbit width increases 
with its energy. However, it has been assumed in the linear model that particles follows thin banana 

orbits, therefore lower energies ∼ 100keV would be preferred. 

By varying nh,0 from 0 to 12.1017m−3,  results shown in Figure 1 have been obtained Considering 
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Figure 1: Linear growth rate of the kinetic kink instability, βα the fast particles beta on the magnetic axis, 
considering respectively all particles, only passing particles and only trapped particles 

 
the full model curve in Figure 1, one can see that the typical behavior for the kinetic kink instability 
is retrieved.  At low fast particles density, the internal kink is stabilized and then, past a threshold in βα, 

βα/β ∼ 0.35 here, the fishbone mode is dominant and the kink instability is destabilized. 

The variation of γ regarding nh0 needs to be explained here. This variation is due to two competing 

physical  effects.   By  looking  closely  at  (1),  assuming  ω∗i  =  0,  γτA  =  γMHDτA + nh0Re[λ̃K (ω + iγ)], 

λ̃K   =  λK/nh0.   Only  a  variation  of  the  real  part  of  λK  can  explain  the  variation  of  γ.   As  it  can  be 
seen  on  Figure  2,  the  overall  (trapped  and  passing  particles)  fluid  term  inside  Re[λK ]  is  due  to  the 
negative density gradient and  the  mostly  positive  sign  of  Ic  in  the  (ψ, λ)  plane.  Therefore  it  is  not the 
one producing the stabilization. The real resonant term Re[λres] is mostly negative in phase space 

γ
τ
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according to the sign of Id. Then, the stabilization is produced by the non-reactive part, a fluid-like effect 
of Re[λres], since at low frequency it can be shown that in most of the phase space Re(ω) = n Ω. When 
the fast particles density is increased, this fluid-like effect competes with the resonant effect, because 
there are now significant zones of the phase space where Re(ω) = n Ω, leading to the desta- bilization. 
This  variation  of  Re[λres]  is  illustrated  in  Figure  2.  Physically,  it  can  be  explained  by the fact that 
at low density, the fast particles behave mostly as a fluid since few particles occupy the small regions 
in which they interact resonantly with the MHD mode. As the density is increased, more particles occupy 
the resonant zones, leading to a prevalence of the resonant effect on to the fluid effect. 

 
It can also be seen on Figure 1 that passing particles have a significant effect on the fishbone mode, 
since the results of the full model are not retrieved when only considering trapped particles. This 
can firstly be explained by the fact that fluid terms from passing particles are of the same order of 
magnitude as for the trapped particles, as shown in Figure 2. Secondly, as it will be shown in the 
following part, the MHD mode also reacts resonantly with passing particles.  This is also illustrated 
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Figure 2: Comparison of fluid and real resonant part of the kinetic term, underlying the competitive 
physical effects 

 
by Figure 3, where the pulsation of the MHD mode is presented for the three models. When solely 
considering passing or trapped particles, the MHD mode frequency is not as high as it is when all classes 
of particles are considered. This due to the fact that the kink instability has less resonant interactions 
with the energetic particles, which implies that resonant surfaces also exist inside the passing part of 
phase space. 

 
3.3. Resonances plane in phase space 
In  Figure  4,  the  resonance  curves  at  a  fixed  radial  position  r̄   =  0.8  rq=1  are  displayed.   They  are 
obtained by plotting the integrand of δWK  in the 3D space (r̄, E, λ).  Regarding (20), only two particle 
modes contribute here, n = (0, 1, 1) for passing particles and n = (0, 0, 1) for trapped particles. In the 
phase space zone concerned by passing particles, two different resonant curves, associated with the same 
particle mode, can be seen. They correspond to the co-passing and counter passing contributions to the 
mode. Regarding the amplitude of the curves, in most cases, the trapped curve has an amplitude up to 
five times higher that passing curves. However, passing curves usually cover a broader area in phase 
space. Therefore, this result underlines the necessity to consider passing particles in the linear model 
to properly describe the kinetic internal kink mode, since depending on the imposed equilibrium 
function in phase space, the resonant effects could be due entirely to passing particles. 
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Figure 3: Linear pulsation of the kinetic kink instability, βα the fast particles beta on the magnetix 
axis , considering respectively all particles, only passing particles and only trapped particles 

 

Figure 4:  Resonant  curves  in  the  (E, λ)  plane,  for  a  fixed  radial  position  r̄  = 0.8r0,  r0  being  the  q = 1 
radius 

 
 

4.  Conclusion 
A new linear model, including more physical effects than some previous ones, has been derived here us- 
ing a Hamiltonian angle-action formalism. On its basis, the linear code MHD-K has been developed, 
solving non-pertubatively the kinetic internal kink dispersion relation. The linear results obtained 
from MHD-K have shown the relevance of considering passing particles in linear models, since they 
are also a resonant drive to the emergence of the fishbone mode. This new linear tool aims at testing 
non-linear hybrid kinetic codes during their linear phase, in order to verify their correct implementa- 
tion. Such a verification is currently underway with the code XTOR-K [7][8], a hybrid kinetic-MHD 
using for the MHD part the solver from [27], and for the kinetic part a 6D PIC module. 
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Appendix A. Bounce-averaging formalism 
In this section, bounce-averaging calculations are detailed for both passing and trapped particles. Any 
bounce-averaged quantity < F > is calculated through 

< F >= 

∫

 
F 

dl/ 

C vǁ 

dl 

C vǁ 

 
(A.1) 

where is the path followed by the particle. The parallel velocity can be expressed as follows, 
considering E = 1/2mv2, µ = mv2 /2B, λ = µB0/E, H = R/R0 

⊥ 

  
2E 

  1/2 
λ 

 1/2 

 

Assuming circular flux surfaces, it yields, for θ0 the bounce angle for trapped particles and θ0 = π for 
passing ones 

∫ θ0 λ   −1/2 dθ   
∫ θ0 λ   −1/2 dθ 

< F >= 
 

using ϵ = r/R0, one has 

F 
−θ0 

1 − 
H

 / 
2π −θ0 

1 − 
H

 (A.3) 
2π 

λ −1/2  −1/2
 
 sin2(θ/2) 

 −1/2
 

 
 

1 − 
H

 

with y2 being expressed as 

=  1 − λ + ϵλ 1 − 
y2 (A.4) 

y2(x, λ) = 
1 − λ + ϵλ

 
2ϵλ 

(A.5) 

It can be noted that [12] uses a different definition for y2. One can distinguish passing from trapped 
particles by a simple condition on y2. Trapped particles are characterized by the existence of two turning 
points in the poloidal plane where their parallel velocity is null. Therefore, the condition on having 

trapped particles translates itself, according to (A.2), as (1 − λ/H)1/2 = 0, which implies, 
assuming λ < 1/1 − ϵ, that 0 < y2 < 1.  Passing particles are therefore characterized by 1 < y2 < +∞. 

From these conditions on y2, one can deduce the corresponding conditions on the pitch angle λ. 

Respectively, for y2  = 0, 1, +∞,  the  corresponding  λ  are  λ = 1/1 − ϵ, λ = 1/1 + ϵ, λ = 0.  Therefore, for 

trapped particles, 1/1 + ϵ < λ < 1/1 − ϵ, and for passing particles, 0 < λ < 1/1 + ϵ. 

These expressions enable to write < F > as 

 
< F >= 

 
θ0 

 
−θ0 

F 
  

1 − y−2 

 
sin2(θ/2) 

−1/2 dθ 
/
 

2π 

 
θ0 

1 − y−2 
−θ0 

 
sin2(θ/2) 

−1/2 
dθ 

(A.6) 
2π 

Let us now derive expressions for < cos θ >, < θ sin θ >, < v2 and < cos(qθ) > for both passing and 
ǁ 

trapped particles, which are appearing in the derivation of λK. 

 
Appendix A.1. Passing particles 
For passing particles, θ0 = π, the frequency to perform a poloidal revolution is defined as 

 

ωb (2E/m)1/2 
= 

2π qR0Ib,p 

 

(A.7) 
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∫     

vǁ = (A.2) 
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where 

∫ π    λ   −1/2 dθ −1/2 

∫ π/2
 

 
 

−2 2 

 

 
−1/2 dθ 

 
−1/2 2K(1/y2) 

 
 

Ib,p = 
−π 1 − 

H 2π  
= 4(1 − λ + ϵλ) (1    y 0 sin θ) 

2π 
= (1 − λ + ϵλ) 

π 
(A.8) 

K being  the  elliptic  integral  of  first  kind.  The  definition  of  a  bounce-averaged  quantity  is  then 
straightforward 

 

 
Therefore, knowing that 

< F (θ) >P = 

π/2 F (2θ)(1 y−2 sin2 θ)−1/2 

K(1/y2) 
dθ (A.9) 

cos 2θ = 1 − 2 sin2 θ = 2y2
   

1 −
 1  

sin2 θ
   

+ 1 − 2y2 (A.10) 
 

one has  

< cos θ >P = Ic,p = 2y 
2 E(1/y2) 2 

K(1/y2) 
+ 1 − 2y

 
(A.11) 

where E is the elliptic integral of the second kind. Moreover, noticing that 

∂θ 

h 
− 4y2(1 − y−2 sin2 θ)1/2

i 
= 2 sin 2θ(1 − y−2 sin2 θ)−1/2 (A.12) 

it implies, using an integration by parts 
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(1 − y−2

 sin2
 θ)1/2dθ 

 

Therefore, it yields 

< θ sin θ >P = Is,p = 4y 

For < v2 >, the derivation is straightforward 
ǁ 

 

E(1/y2)   π  

K(1/y2)  
− 

2K(1/y2)
(1 − y

 

 
−2)

 
 

(A.13) 
 

 
(A.14) 

2 4Eλϵy2  E(1/y2) 
< vǁ >= 

m K(1/y2) 
(A.15)

 

Finally, in order to obtain < cos(qθ) >P , one simply performs an expansion according to the small 

paramater (1 − q), reading 

< cos(qθ) >P = Iq,p  =< cos θ >P   +(1 − q) < θ sin θ >P = Ic,p  + (1 − q)Is,p (A.16) 

Appendix A.2. Trapped particles 
For trapped particles, θ0 can have any value in the interval [0, π]. In order to have explicit expressions 

for bounce-averaged terms, one needs to perform a change of variable. Considering the following one, 

(1/y) sin(θ/2) = sin u,  dθ =  2y/cos(θ/2)   cos u  du  and  knowing  that  cos(θ/2) = (1 − y2 sin2 u)1/2, and 

also noticing that θ [ θ0, θ0] u [ π/2, π/2] since the existence of a bounce angle implies 

that y2 = sin2 θ0/2, one has 

∫ θ0   

 
 

λ   −1/2 dθ  −1/2 
∫ π/2  

      4y du 
 

 

  r    −1/2 2K(y2) 
 

 

 

where the bounce frequency is given in this case by 

ωb (2E/m)1/2 

= 
2

− 

Ib,t = 
−θ0 0 0 

1− λ+(r/R0)λ 

2
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π 2qR0Ib,t  
(A.18) 
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c 

K 

∫ 
α

 
q 

c 

1 √ 

1 − 
H

 2λ 
R 

du = 4 
cos(θ/2) 

2λ 
R 

[2E(y  ) − K(y  )]  (A.19) 

1 − 
H

 2λ 
R 

sin (θ/2) 

< θ sin θ >T = Is,t = 
K(y2)

 
(1 − y2 sin2 u)1/2 

du = 4 
K(y2) 

+ 4(y
 

Feq (r̄, v) =  
4π ln[1 + (v 

Σ 

 

Moreover, knowing that cos θ = 2(1 − y2 sin2 u) − 1 

∫ θ0 

 

 

λ  −1/2   r     −1/2 
∫ π/2  

    cos θ  
 

  

  r    −1/2 
2 2

 

 

 

which gives  
E(y2) 

< cos θ >T = Ic,t = 2 
K(y2) 

− 1 (A.20) 

Performing the same integration by parts as before for < θ sin θ >T , where this time the first term is 

dropped since 1 − y−2 sin2 θ0/2 = 0 

∫ θ0 λ  −1/2   r   −1/2 
 

 

2 
∫ θ0   

 

 

 

−2 2 
 1/2 

 

Therefore, noticing that cos2 u = y−2(1 − y2 sin2 u) + 1 − y−2 

4y2 
∫ π/2 

 
 

cos2 u E(y2) 2 
 

For < v2 >, it can be shown easily, using the same expression for cos2 u, that 
ǁ 

< v2 >= 
Eλϵ 

< θ sin θ > (A.23) 
 

ǁ m 
 

The expression of < cos qθ > is defined identically for both passing and trapped particles. 

 
Appendix B. Kinetic contribution using a slowing down distribution 
Using a normalized slowing-down distribution function, different from [12] 

  3 m 
  3/2 

 

   

θ(vα − v) 
 

with vc the critical speed at which fast particles give out as much energy to bulk ions and electrons, 
expressed as, with mh the mass of hot particles 

3
√

π me 
  

2Te(r̄) 
 3/2

 

 

Considering  the  following  change  of  variable  Ê  =  v̂2  in  order  to  express  the  resonance  as  a  second 

order  polynom,  it  yields,  for  the  main  contribution  to  λres  proportional  to  ω∗,  using  v1 = (1 − q)|Ω̂2| 

 

λres,ω∗ = 

 

3π2ϵ0Eα 
 

 

r0 dn 
r̄dr̄  

∫ (1−є)−1 
 

dλσIb I
2 ∫ 1 

 
 

 

2v̂3 
 

dv̂ 

K 2s0r0B2 ln[1 + (vα/vc)3] σǁ=±1   0 dr̄   0 
Id    0 v̂2  + δpσǁE0v1v̂ − E0ω̂ 

(B.3) 
It should be noted that from the term 1/(v3 + v3), only the contribution 1/v3 has been kept. This is a 
reasonable approximation for highly energetic particles, such as fusion born alphas, since in this case 

(vc/vα)3 ∼ 10−1. For fast particles with lower energies (∼ 100keV ), the reverse needs to be done. 

One  now  needs  to  identify  the  resonant  roots,  that  are  functions  of  the  considered  (r̄, λ)  couple. 
Given  the  usual  determinant  ∆ = E0[δpE0v2 + 4ω̂],  the  roots  yields 

 
 

v̂± (r, λ) =  
−δpσǁv1(r̄, λ)E0(r̄, λ) ± ∆(r̄, λ) 2 

−θ0 0 0 0 

0 −θ0 

dθ (A.21) 

0 

α /vc)3] 2 v3 + v3 

p,0 

c 

cos θ dθ = 4 

−θ0 

θ sin θ dθ = 4 4y 1 − y 

— 1) (A.22) 

n(r) 

(B.1) 

v3(r̄) = 
4 mh m

e 

(B.2) 
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(B.4) 

In the general case, the roots are complex, since |v1E0| ∼ 1 for 1 − q ∼ 10−1, with opposed imaginary 
parts. It should be noted that for ITER like equilibrium and 1 − q ∼ 10−1, (1 − q)ωb ∼ ωd. In the 
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± 

| | | | ± 

p,0 

p0 

2 v̂

− 

2 v̂
+ 

λres,ω̂  = 0 
α dr̄ dλσIb 

q 

λint = − 0 

α r̄dr̄ σIb q dλ (B.9) 

IOP Conf. Series: Journal of Physics: Conf. Series 1125 (2018) 012003 doi:10.1088/1742-6596/1125/1/012003 

particular  case  of  trapped  particles,  the  roots  are  simply  given  by 
√

E0ω̂.  Then,  using  these  roots, 
one can perform a decomposition in simple elements, which yields, after straightforward algebra 

∫ 1 2v̂3   2  
 
 

 
 

∫ 1 v̂2 
∫ 1 v̂2 

 
 

v̂2  + δ  σ  E  v  v̂ − E  ω̂ 
dv̂ =  

(v̂ — v̂   ) v̂− v̂ − v̂ dv̂ − v̂+ v̂ − v̂ dv̂ (B.5) 

0 
 

which expands to 

p   ǁ   0   1 0 − + 0 − 0 + 

∫ 1 2v̂3   2  
v̂2  + δ  σ  E  v  v̂ − E  ω̂ 

dv̂ =  
(v̂    − v̂   ) 

×
 

0 p   ǁ   0  1  

v̂ 

0 
  1  

+ v̂ 

− 
h

1 + v̂ 

+ 

ln 
 

1 − 
 1   i  

− v̂ 
  1  

+ v̂ 
h 
+ v̂ ln 

 
1 −

 1   i
    

(B.6) 

 

When computing this integral, one needs to handle carefully the complex logarithm cut-off. When 
varying  (r̄, λ)  to  solve  the  remaining  integrals,  the  resonant  roots  need  to  vary  continuously.    For 
a cut-off located on the negative part of the real axis in the complex plane, it can be shown that 

the cut off happens when Im(v±) switches sign while Re(1 − 1/v±) < 0. Since the complex loga- 
rithm is given by lnC z = ln z + 2i arctan(Im(z)/[Re(z) + z ]), a factor 2iπ is added to the complex 
logarithm when the poles are crossing the cut off half axis, the sign depending on the crossing direction. 

 

The resonant term has been divided in two parts regarding the diamagnetic frequency and the mode 
frequency. The contribution proportional to the mode frequency is supposed to be lower than the 
other, but it is derived here anyway 

 
3π2ϵ2ω̂E 

 

  

Σ ∫ r0 x2n 
∫ (1−є)−1 I2 

 
  

 

   
 

 
  1  3 

∫ 1    v̂  ×   
1 + δ  σ  E  v   − E  ω̄  

+  
2 v̂2  + δ  σ  E  v  v̂ − E  ω̄ 

dv̂
 (B.7) 

 
with 

p   ǁ   0   1 0 0 p   ǁ   0   1 0 

∫ 1    v̂dv̂    1  
 

v̂2  + δ  σ  E  v  v̂ − E  ω̂  
=  

v̂    − v̂ ×  v̂− ln(1 − 1/v̂−) − v̂+ ln(1 − 1/v̂+) 
(B.8) 

The interchange term simply reads 

3π2ϵ E 
 

 

∫ r0 dn 
 

  

∫ (1−є)−1 I2 
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