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HIGH-DIMENSIONAL GAUSSIAN SAMPLING: A REVIEW
AND A UNIFYING APPROACH BASED ON A STOCHASTIC

PROXIMAL POINT ALGORITHM

MAXIME VONO∗, NICOLAS DOBIGEON† , AND PIERRE CHAINAIS‡

Abstract. Efficient sampling from a high-dimensional Gaussian distribution is an old but high-
stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which
can rapidly become prohibitive in high dimension. To tackle these issues, multiple methods have
been proposed from different communities ranging from iterative numerical linear algebra to Markov
chain Monte Carlo (MCMC) approaches. Surprisingly, no complete review and comparison of these
methods have been conducted. This paper aims at reviewing all these approaches by pointing out
their differences, close relations, benefits and limitations. In addition to this state of the art, this
paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of
the celebrated proximal point algorithm in optimization. This framework offers a novel and unifying
revisit of most of the existing MCMC approaches while extending them. Guidelines to choose the
appropriate Gaussian simulation method for a given sampling problem in high dimension are proposed
and illustrated with numerical examples.

Key words. Gaussian distribution, high-dimensional sampling, linear system, Markov chain
Monte Carlo, proximal point algorithm.

AMS subject classifications. 65C10, 68U20, 62H12

1. Introduction. If there was only one continuous probability distribution to
know, it would certainly be the Gaussian (also known as normal) distribution. Many
nice properties of the Gaussian distribution can be listed such as its infinite divisibility,
maximum entropy property or its description thanks to the use of the first two cumu-
lants only (mean and variance). However, its popularity and ubiquity certainly result
from two essential properties, namely the central limit theorem and the statistical
interpretation of ordinary least squares, which often motivate its use to describe ran-
dom noises or residual errors in various applications (e.g., inverse problems in signal
and image processing). The first one originates from the gambling theory. The bino-
mial distribution, that models the probabilities of successes and failures after a given
number of trials, was approximated by a Gaussian distribution in the seminal work by
de Moivre [73]. This famous approximation is a specific instance of the central limit
theorem which states that the sum of a sufficiently large number of independent and
identically distributed (i.i.d.) random variables with finite variance converges in dis-
tribution towards a Gaussian random variable. Capitalizing on this theorem, a lot of
complex random events have been approximated by using the Gaussian distribution,
sometimes called the bell curve. Another well-known reason for using the Gaussian
distribution has been the search for an error distribution in empirical sciences. For
instance, since the end of the 16th century, astronomers have been interested in data
summaries to describe their observations. They found that the estimate defined by
the arithmetic mean of the observations was related to the resolution of a least-mean
square problem under the assumption of Gaussian measurement errors [45]. The as-
sumption of Gaussian noise has now become so usual that it is sometimes implicit in
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many applications.
Motivated by all these features, the Gaussian distribution is omnipresent in prob-

lems far beyond the statistics community itself. In statistical machine learning and
signal processing, Gaussian posterior distributions commonly appear when hierar-
chical Bayesian models are derived [36,67,80,83], in particular when the exponential
family is involved. As archetypal examples, models based on Gaussian Markov random
fields or conditional auto-regressions assume that parameters of interest (associated
to observations) come from a joint Gaussian distribution with a structured covari-
ance matrix reflecting their interactions [92]. Such models have found applications
in spatial statistics [12, 23], image analysis [35, 56], graphical structures [38] or semi-
parametric regression and splines [28]. We can also cite the discretization schemes
of stochastic differential equations involving Brownian motions which led to a Gaus-
sian sampling step [26, 89, 106], texture synthesis [33] and time series prediction [16].
Indeed, the Gaussian distribution is also intimately connected to diffusion processes
and statistical physics.

When the dimension of the problem is small or moderate, sampling from this
distribution is an old solved problem that raises no particular difficulty. In high-
dimensional settings this multivariate sampling task can become computationally de-
manding, which may prevent us from using statistically sound methods for real-world
applications. Therefore, even recently, a host of works have focused on the derivation
of efficient high-dimensional Gaussian sampling methods. Before summarizing our
contributions and main results, in what follows, we discuss what we mean by com-
plexity and efficiency, in light of the most common sampling technique, i.e., exploiting
the Cholesky factorization.

Computational and storage complexities: notations. In the following, we will
use the mathematical notations Θ(·) and O(·) to refer to the complexities of the
computation and the storage required by the sampling algorithms. We recall that
f(d) = O(g(d)) if there exists c > 0 such that f(d) ≤ cg(d) when d → ∞. We
use f(d) = Θ(g(d)) if there exist c1, c2 > 0 such that c1g(d) ≤ f(d) ≤ c2g(d) when
d→∞.

Table 1: Vanilla Cholesky sampling. Computational and storage requirements to
produce one sample from an arbitrary d-dimensional Gaussian distribution.

d
Vanilla Cholesky sampler

Θ(d3) flops Θ(d2) memory requirement

103 3.34× 108 4 MB

104 3.33× 1011 0.4 GB

105 3.33× 1014 40 GB

106 3.33× 1017 4 TB

Algorithmic efficiency: definition. To sample from a given d-dimensional Gaus-
sian distribution, the most common sampling algorithm is based on the Cholesky fac-
torization [91]. Let us recall that the Cholesky factorization of a symmetric positive-
definite matrix Q ∈ Rd×d is a decomposition of the form [92, Section 2.4],

(1.1) Q = CC>,
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where C ∈ Rd×d is a lower triangular matrix with real and positive diagonal entries.
The computation of the Cholesky factor C requires Θ(d3) floating point operations
(flops), that is arithmetic operations such as additions, subtractions, multiplications
or divisions [40], see also subsection 3.1.1 for details. In addition, the Cholesky fac-
tor which involves at most d(d+ 1)/2 non-zero entries must be stored. In the general
case, this implies a global memory requirement of Θ(d2). In high-dimensional settings
(d � 1), both these numerical complexity and storage requirement rapidly become
prohibitive for standard computers. Table 1 illustrates this claim by showing the
number of flops (using 64-bit numbers also called double precision) and storage space
required by the vanilla Cholesky sampler in high dimension. Note that for d ≥ 105,
which is for instance classical in image processing problems, the memory require-
ment of the Cholesky sampler exceeds the memory capacity of nowadays standard
laptops. To mitigate these computational issues, many works have focused on the
derivation of surrogate high-dimensional Gaussian sampling methods. Compared to
Cholesky sampling, these surrogate samplers involve additional sources of approxima-
tion in finite-time sampling and as such intend to trade-off computation and storage
requirements against sampling accuracy. Throughout this review, we will say that
a Gaussian sampling procedure is “efficient” if, in order to produce a sample with
reasonable accuracy, the number of flops and memory required are significantly lower
than that of the Cholesky sampler. For the sake of clarity, at the end of each section
presenting an existing Gaussian sampler, we will highlight its theoretical relative effi-
ciency with respect to (w.r.t.) vanilla Cholesky sampling with a dedicated paragraph.
As a typical example, some approaches reviewed in this paper will only require O(d2)
flops and Θ(d) storage space, which are lower than Cholesky complexities by an order
of magnitude.
Contributions. Up to authors’ knowledge, no systematic comparison of existing
Gaussian sampling approaches is available in the literature. This is probably due
to the huge number of contributions from distinct communities related to this task.
Hence, it is not always clear which method is best suited to a given Gaussian sampling
task in high dimensions, and what are the main similarities and differences between
them. To this purpose, this paper both reviews the main sampling techniques ded-
icated to an arbitrary high-dimensional Gaussian distribution (see Table 7 p.32 for
a synthetic overview) and derives general guidelines for practitioners to choose the
appropriate sampling approach when Cholesky sampling is not possible (see Figure 12
p.44 for a schematic overview). On top of that review, we propose to put most of
the state-of-the-art Markov chain Monte Carlo (MCMC) methods under a common
umbrella by deriving a unifying Gaussian sampling framework.
Main results. Our main results are summarized hereafter.

• At the expense of some approximation, we show that state-of-the-art Gaus-
sian sampling algorithms are indeed more efficient than Cholesky sampling in
high dimension. Their computational complexity, memory requirement and
accuracy are summarized in Table 7.

• Among existing Gaussian samplers, some provide i.i.d. samples while oth-
ers (e.g., MCMC-based ones) produce correlated samples. Interestingly, we
show in section 6 on several experiments that MCMC approaches might per-
form better than samplers providing i.i.d. samples. This relative efficiency is
particularly important in the case where many samples are required.

• In section 5, we show that most of existing MCMC approaches can be seen
as special instances of a unifying framework which stands for a stochastic
counterpart of the proximal point algorithm (PPA) [90]. The proposed Gaus-
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sian sampling framework also allows to both extend existing algorithms by
proposing new sampling alternatives, and to draw a one-to-one equivalence
between MCMC samplers proposed by distinct communities such as those
based on matrix splitting [31,54] and data augmentation [66,67].

• Finally, we show that the choice of an appropriate Gaussian sampling ap-
proach stands for a subtle compromise between several quantities such as the
need to obtain accurate samples or the existence of a natural decomposition
of the precision matrix. We provide in Figure 12 simple guidelines for prac-
titioners in the form of a decision tree to choose the appropriate Gaussian
sampler based on these parameters.

Structure of the paper. This paper is structured as follows. In section 2, we
present the considered multivariate Gaussian sampling problem along with its simple
and more complicated instances. In particular, we will list and illustrate the main
difficulties associated to the sampling from a high-dimensional Gaussian distribution
with an arbitrary covariance matrix. These difficulties motivated many works to
propose surrogate sampling approaches. The latter are presented in section 3 and
section 4. More precisely, section 3 presents Gaussian sampling schemes which have
been derived by adapting ideas from numerical linear algebra. In section 4, we re-
view another class of sampling techniques, namely MCMC approaches, which build
a Markov chain admitting the Gaussian distribution of interest (or a close approx-
imation) as stationary distribution. In section 5, we propose to shed new light on
most of these MCMC methods by embedding them into a unifying framework based
on a stochastic version of the PPA. In section 6, we illustrate and compare the re-
viewed approaches w.r.t. archetypal experimental scenarios. Finally, section 7 draws
concluding remarks. A guide to the notation used in this paper and technical details
associated to each section are given in the appendix p.47.
Software. All the methods reviewed in this paper have been implemented and made
available in a companion package written in Python called PyGauss. In addition,
PyGauss contains a Jupyter notebook which allows to reproduce all the figures and
numerical results in this paper. This package and its associated documentation can
be found online1.

2. Gaussian sampling: problem, instances and issues. This section high-
lights the considered Gaussian sampling problem, its already-surveyed special in-
stances and its main issues. By recalling these specific instances, this section will
also define the limits of this paper in terms of reviewed approaches. Note that for the
sake of simplicity, we shall abusively use the same notation for a random variable and
its realization.

2.1. Definitions and notation. Throughout this review, we will use capital
letters (e.g., Π) to denote a probability distribution and corresponding small letters
(e.g., π) to refer to its associated probability density function (p.d.f.). We address the
problem of sampling from a d-dimensional Gaussian distribution Π , N (µ,Σ) where
d may be large. Its p.d.f. with respect to the d-dimensional Lebesgue measure, for all
θ ∈ Rd, writes

(2.1) π(θ) =
1

(2π)d/2det(Σ)1/2
exp

(
−1

2
(θ − µ)>Σ−1(θ − µ)

)
,

1http://github.com/mvono/PyGauss

http://github.com/mvono/PyGauss
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where µ ∈ Rd and Σ ∈ Rd×d respectively stand for the mean vector and the covariance
matrix of the considered Gaussian distribution. Assume throughout that the covari-
ance matrix Σ is positive definite, that is for all θ ∈ Rd \ {0d}, θ>Σθ > 0. Hence,
its inverse Q = Σ−1, called the precision matrix, exists and is also positive definite.
Unless explicitly specified, we assume in the sequel that the covariance matrix has
full rank. When Σ is not of full rank, the distribution Π is said to be degenerate and
does not admit a density w.r.t. the d-dimensional Lebesgue measure.

For some approaches and applications, working with the precision Q rather than
with the covariance Σ will be more convenient (e.g., for conditional auto-regressive
models or hierarchical Bayesian models; see also section 4). In this paper, we choose
to present existing approaches by working directly with Q for the sake of simplicity.
When Q is unknown but Σ is available instead, simple and straightforward algebraic
manipulations can be used to implement the same approaches without increasing their
computational complexity. Sampling from N

(
µ,Q−1

)
raises several important issues

which are mainly related to the structure of Q. In the following paragraphs, we will
detail some special instances of (2.1) and well-known associated sampling strategies
before focusing on the general Gaussian sampling problem considered in this paper.

2.2. Usual special instances. For completeness, this subsection recalls special
cases of Gaussian sampling tasks that will not be detailed later but are usual common
building blocks. Instead, we point out appropriate references for the interested reader.
These special instances include basic univariate sampling and the scenarios where Q
is (i) a diagonal matrix, (ii) a band-matrix or (iii) a circulant Toeplitz matrix. Again,
with basic algebraic manipulations, the same samplers can be used when Σ has one
of these specific structures.

2.2.1. Univariate Gaussian sampling. The most simple Gaussian sampling
problem boils down to drawing univariate Gaussian random variables with mean
µ ∈ R and precision q > 0. Generating the latter quickly and with high accuracy
has been the topic of much research works in the last 70 years. Such methods can
be loosely speaking divided into four groups namely (i) cumulative density function
(c.d.f.) inversion, (ii) transformation, (iii) rejection and (iv) recursive methods; they
are now well-documented. Interested readers are invited to refer to the comprehensive
overview in [101] for more details. For instance, Algorithm 2.1 details the well-known
Box-Muller method which transforms a pair of independent uniform random variables
into a pair of Gaussian random variables by exploiting the radial symmetry of the
two-dimensional normal distribution.

Algorithm 2.1 Box-Muller sampler

1: Draw u1, u2
i.i.d.∼ U((0, 1]).

2: Set ũ1 =
√
−2 log(u1).

3: Set ũ2 = 2πu2.

4: return (θ1, θ2) =
(
µ+ ũ1√

q sin(ũ2), µ+ ũ1√
q cos(ũ2)

)
.

2.2.2. Multivariate Gaussian sampling with diagonal precision matrix.
Let us extend the previous sampling problem and now assume that one wants to
generate a d-dimensional Gaussian vector θ with mean µ and diagonal precision ma-
trix Q = diag(q1, · · · , qd). The d components of θ being independent, this problem
is as simple as the univariate one since we can sample the d components in parallel
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independently. A pseudo-code of the corresponding sampling algorithm is given in
Algorithm 2.2.

Algorithm 2.2 Sampler when Q is a diagonal matrix

1: for i ∈ [d] do . In some programming languages, this loop can be vectorized.
2: Draw θi ∼ N

(
µi, 1/qi

)
.

3: end for
4: return θ = (θ1, · · · , θd)>.

Algorithmic efficiency. By using for instance Algorithm 2.1 for step 2, Algo-
rithm 2.2 admits a computational complexity of Θ(d) and a storage capacity of Θ(d).
In this specific scenario, these requirements are significantly lesser than that of vanilla
Cholesky sampling whose complexities are recalled in Table 1.

When Q is not diagonal, we can no longer sample the d components of θ indepen-
dently. Thus more sophisticated sampling methods must be used. For well-structured
matrices Q, we show in the following sections that it is possible to draw the random
vector of interest more efficiently than vanilla Cholesky sampling.

2.2.3. Multivariate Gaussian sampling with sparse or band matrix Q.
A lot of standard Gaussian sampling approaches leverage on the sparsity of the matrix
Q. Sparse precision matrices appear for instance when Gaussian Markov random fields
(GMRFs) are considered, as illustrated in Figure 1. In this figure, German regions
are represented graphically where each edge between two regions stands for a common
border. These edges can then be described by an adjacency matrix which plays the
role of the precision matrix Q of a GMRF. Since there are few neighbors for each
region, Q is symmetric and sparse. By permuting the rows and columns of Q, one
can build a so-called band matrix with minimal bandwidth b where b is the smallest
integer b < d such that Qij = 0, ∀i > j + b [91]. Note that band matrices also
naturally appear in specific applications, e.g., when the latter involve finite impulse
response linear filters [49]. Problems with such structured (sparse or band) matrices
have been extensively studied in the literature and as such this paper will not cover
them explicitly. We provide in Algorithm 2.3 the main steps to obtain a Gaussian
vector θ from N (µ,Q−1) in this scenario and refer the interested reader to [92] for
more details.

Algorithmic efficiency. Algorithm 2.3 is a specific instance of Cholesky sampling
for band precision matrices. In this specific scenario, Algorithm 2.3 admits a com-
putational complexity of Θ(b2d) flops and a memory space of Θ(bd) since the band
matrix Q can be stored in a so-called “Q.array” [40, Section 1.2.5]. When b� d, one
observes that these computational and storage requirements are smaller than those of
vanilla Cholesky sampling by an order of magnitude w.r.t. d. Similar computational
savings can be obtained in the sparse case [92].

2.2.4. Multivariate Gaussian sampling with block circulant (Toeplitz)
matrix Q with circulant (Toeplitz) blocks. An important special case of (2.1)
which has already been surveyed [92] is when Q is a block circulant matrix with
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Fig. 1: From left to right: example of an undirected graph defined on the 544 regions
of Germany where those sharing a common border are considered as neighbors, its
associated precision matrix Q (bandwidth b = 522), its re-ordered precision matrix
PQP> (b = 43) where P is a permutation matrix and a drawing of a band matrix.
For the three matrices, the white entries are equal to zero.

Algorithm 2.3 Sampler when Q is a band matrix

1: Set C = chol(Q). . Build the Cholesky factor C of Q, see [92, Section 2.4].
2: Draw z ∼ N (0d, Id).
3: for i ∈ [d] do . Solve C>w = z w.r.t. w by backward substitution.
4: Set j = d− i+ 1.
5: Set m1 = min{j + b, d}.

6: Set wj =
1

Cjj


zj −

m1∑

k=j+1

Ckjwk


.

7: end for
8: return θ = µ+ w.

circulant blocks, that is

(2.2) Q =




Q1 Q2 . . . QM

QM Q1 . . . QM−1
...

...
...

...
Q2 Q3 . . . Q1




,

where {Qi}i∈[M ] are M circulant matrices. Such structured matrices frequently ap-
pear in image processing problems since they translate the convolution operator cor-
responding to linear and shift-invariant filters. As an illustration, Figure 2 shows
the circulant structure of the precision matrix associated to the Gaussian distribu-
tion with density π(θ) ∝ exp(−‖∆θ‖2 /2). Here, the vector θ ∈ Rd stands for an
image reshaped in lexicographic order and ∆ stands for the Laplacian differential
operator with periodic boundaries, also called Laplacian filter. In this case the pre-
cision matrix Q = ∆>∆ is a circulant matrix [78] so that it is diagonalizable in
the Fourier domain. Therefore, sampling from N (µ,Q−1) can be performed in this
domain as shown in Algorithm 2.4. For Gaussian distributions with more general
Toeplitz precision matrices, Q can be replaced by its circulant approximation and
then Algorithm 2.4 can be used, see [92] for more details. Although not considered in
this paper, other approaches dedicated to generate stationary Gaussian processes [59]
have been considered, such as the spectral [71, 97] and turning bands [65] methods.
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Fig. 2: From left to right: example of a 3×3 Laplacian filter, the associated circulant
precision matrix Q = ∆>∆ for convolution with periodic boundary conditions and its
counterpart diagonal matrix FQFH in the Fourier domain, where F and its Hermitian
conjugate FH are unitary matrices associated with the Fourier and inverse Fourier
transforms.

Algorithmic efficiency. Thanks to the use of the fast Fourier transform [25, 109],
Algorithm 2.4 admits a computational complexity of O(d log(d)) flops. In addition,
note that only d-dimensional vectors have to be stored which implies a memory re-
quirement of Θ(d). Overall, these complexities are significantly smaller than those of
vanilla Cholesky sampling and as such Algorithm 2.4 can be considered as “efficient”.

Algorithm 2.4 Sampler when Q is a block circulant matrix with circulant blocks

Input: M and N , the number of blocks and the size of each block, respectively.

1: Compute F = FM ⊗ FN . . FM is the M ×M unitary matrix associated to the
Fourier transform and ⊗ denotes the tensor product.

2: Draw z ∼ N (0d, Id).
3: Set Λq = diag(q). . q is the d-dimensional vector built by stacking the first

columns of each circulant block of Q.

4: Set θ = µ+ FHΛ
−1/2
q Fz.

5: return θ.

2.2.5. Truncated and intrinsic Gaussian distributions. Eventually, note
that several works have focused on sampling from various probability distributions
closely related to the Gaussian distribution on Rd. Two cases are worth being men-
tioned here, namely the truncated and so-called intrinsic Gaussian distributions.
Truncated Gaussian distributions on D ⊂ Rd admit, for any θ ∈ Rd, probability
density functions of the form

(2.3) πD(θ) = 1D(θ) · Z−1D exp

(
−1

2
(θ − µ)>Σ−1(θ − µ)

)
,

where ZD is the appropriate normalizing constant and 1D(θ) = 1 if θ ∈ D and 0
otherwise. The subset D is usually defined by equalities and/or inequalities. As

archetypal examples, truncations on the hypercube are such that D =
∏d
i=1[ai, bi],

(ai, bi) ∈ R2, 1 ≤ i ≤ d or D = {θ ∈ Rd |∑d
i=1 θd = 1} that limits the domain to the

simplex. Rejection and Gibbs sampling algorithms dedicated to these distributions
can be found in [5, 60, 107]. Intrinsic Gaussian distributions are such that Q is not
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of full rank, that is Q may have eigenvalues equal to zero. This yields an improper
Gaussian distribution often used as a prior in GMRFs to remove trend components
[92]. Sampling from the latter can be done by identifying an appropriate subspace
of Rd where the target distribution is proper and then sampling from the proper
Gaussian distribution on this subspace [12,81].

All the usual special sampling problems above will not be considered in the fol-
lowing since they have already been exhaustively reviewed in the literature.

2.3. Problem statement: sampling from a Gaussian distribution with
an arbitrary precision matrix Q. From now on, we will consider and review
approaches aiming at sampling from an arbitrary non-intrinsic multivariate Gaus-
sian distribution N (µ,Q−1) with density defined in (2.1), i.e., without assuming any
particular structure of the precision or covariance matrix. If Q is diagonal or well-
structured, we saw in subsection 2.2 that sampling can be performed more efficiently
than vanilla Cholesky sampling, even in high dimension. When this matrix is un-
structured and possibly dense, these methods with reduced numerical and storage
complexities cannot be used anymore. In such settings the main challenges for Gaus-
sian sampling are directly related to handling the precision Q (or covariance Σ) matrix
in high dimension. Typical issues include the storage of the d2 entries of the matrix
Q (or Σ) and expensive operations of order Θ(d3) flops such as inversion or square
root which become prohibitive when d is large. These challenges are illustrated below
with an example that typically arises in statistical learning.

Example 2.1 (Bayesian ridge regression). Let us consider a ridge regression prob-
lem from a Bayesian perspective [13]. For the sake of simplicity and without loss of
generality, assume that the observations y ∈ Rn and the known predictor matrix
X ∈ Rn×d are such that

n∑

i=1

yi = 0 ,

n∑

i=1

Xij = 0 , and

n∑

i=1

X2
ij = 1 , for j ∈ [d] .(2.4)

Under these assumptions, we consider the following statistical model associated with
observations y which writes

(2.5) y = Xθ + ε ,

where θ ∈ Rd and ε ∼ N (0n, σ
2In). In this example, the standard deviation σ is

known and fixed. The conditional prior distribution for θ is chosen as Gaussian i.i.d.,
that is

p(θ | τ) ∝ exp

(
− 1

2τ
||θ||2

)
,(2.6)

p(τ) ∝ 1

τ
1R+\{0}(τ) ,(2.7)

where τ > 0 stands for an unknown variance parameter which is given a diffuse and
improper (i.e., non-integrable) Jeffrey’s prior [53, 86]. The Bayes’ rule then leads to
the target joint posterior distribution with density

p(θ, τ | y) ∝ 1

τ
1R+\{0}(τ) exp

(
− 1

2τ
||θ||2 − 1

2σ2
||y −Xθ||2

)
.(2.8)

Sampling from this joint posterior distribution can be conducted using a Gibbs sam-
pler [35, 87] which sequentially samples from the conditional posterior distributions.
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Fig. 3: Examples of precision matrices X>X for three datasets. Left: MNIST dataset
[57]. Only the predictors associated to the digits 5 and 3 have been taken into account
for the MNIST dataset [57]. Middle: leukemia dataset [6]. For the leukemia dataset
[6], only the first 5,000 predictors (out of 12,600) have been taken into account. Right:
CoEPrA dataset [52].

In particular, the conditional posterior distribution associated to θ is Gaussian with
precision matrix and mean vector

Q =
1

σ2
X>X + τ−1Id ,(2.9)

µ =
1

σ2
Q−1X>y .(2.10)

Challenges related to handling the matrix Q already appear in this classical and
simple regression problem. Indeed, Q is possibly high-dimensional and dense which
potentially rules out its storage, see Table 1. The inversion required to compute the
mean (2.10) may be very expensive as well. In addition, since τ is unknown, its value
changes at each iteration of the Gibbs sampler used to sample from the joint distri-
bution with density (2.8). Hence, pre-computing the matrix Q−1 is not possible. As
an illustration on real data, Figure 3 represents three examples of precision matrices2

X>X for the MNIST [57], leukemia [6] and CoEPrA [52] datasets. One can note that
these precision matrices are potentially both high-dimensional and dense penalizing
their numerical inversion at each iteration of the Gibbs sampler.

Hosts of contributions have been related to high-dimensional Gaussian sampling:
it is impossible to cite them in an exhaustive manner. As far as possible, the fol-
lowing review aims at gathering and citing the main contributions. We refer the
reader to references therein for more details. Next section 3 and section 4 review the
two main families of approaches that deal with the sampling issues raised above. In
section 3, we deal with approaches derived from numerical linear algebra. On the
other hand, section 4 deals with Markov chain Monte Carlo (MCMC) sampling ap-
proaches. Later, section 5 will propose a unifying revisit of Gibbs samplers thanks
to a stochastic counterpart of the proximal point algorithm (PPA). Similarly to sub-
section 2.2, computational costs, storage requirements and accuracy of the reviewed
Gaussian sampling approaches will be detailed for each method in a dedicated para-
graph entitled Algorithmic efficiency. For a synthetic summary and comparison of
these metrics, we refer the interested reader to Table 7.

2When considering the dataset itself, X>X is usually interpreted as the empirical covariance of
the data X. The reader should not be disturbed by the fact that, turning to the variable θ to infer,
X>X will however play the role of a precision matrix.
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3. Sampling algorithms derived from numerical linear algebra. This sec-
tion presents sampling approaches which stand for direct adaptations of classical tech-
niques used in numerical linear algebra [40]. They can be divided into three main
groups: (i) factorization methods which consider appropriate decompositions of Q,
(ii) inverse square-root approximation approaches where approximations of Q−1/2 are
used to obtain samples from N (µ,Q−1) at a reduced cost compared to factorization
approaches and (iii) conjugate gradient-based methods.

3.1. Factorization methods. We begin this review with the most basic but
computationally involved sampling techniques namely factorization approaches which
have been already introduced in section 1. These methods exploit the positive def-
initeness of Q to decompose it as a product of simpler matrices and are essentially
based on the celebrated Cholesky factorization [20]. Albeit helpful for problems in
small or moderate dimension, these basic sampling approaches fail to address, in high-
dimensional scenarios, the computational and memory issues raised in subsection 2.3.

3.1.1. Cholesky factorization. Since Q is symmetric and positive definite,
we noted in section 1, eq. (1.1), that there exists a unique lower triangular matrix
C ∈ Rd×d, called Cholesky factor, with positive diagonal entries such that Q = CC>

[40]. It is also known as the LU decomposition since Q is expressed as the product of
a lower triangular matrix C and an upper one C>. Algorithm 3.1 details how such a
decomposition3 can be used to obtain a sample θ from N (µ,Q−1).

Algorithmic efficiency. In the general case where Q presents no particular struc-
ture, the computational cost is Θ(d3) and the storage requirement is Θ(d2), see also
section 1 and Table 1. If the dimension d is large but the matrix Q has a sparse
structure, the computational and storage requirements of the Cholesky factorization
can be reduced by re-ordering the components of Q to design an equivalent band
matrix [91], see subsection 2.2 and Algorithm 2.3.

Algorithm 3.1 Cholesky sampler

1: Set C = chol(Q). . Build the Cholesky factor C of Q, see [92, Section 2.4].
2: Draw z ∼ N (0d, Id).
3: Solve C>w = z w.r.t. w.
4: return θ = µ+ w.

3.1.2. Square root factorization. The Cholesky factorization in the previous
paragraph was used to decompose Q into a product of a triangular matrix C and
its transpose. Then, a Gaussian sample was obtained by solving a triangular linear
system. An extension of this approach has been considered in [24] by performing a
singular value decomposition (SVD) of the Cholesky factor C which yields Q = B2

with B = UΛ1/2U> where Λ is diagonal and U is orthogonal. Similar to the Cholesky
factor and given z ∼ N (0d, Id), this square root can then be used to obtain an
arbitrary Gaussian sample by solving Bw = z w.r.t. w and computing θ = µ+ w.

Algorithmic efficiency. Although the square root factorization is interesting for
establishing the existence of B, the associated sampler is generally as computation-
ally demanding as Algorithm 3.1 since the eigendecomposition of Q is not cheaper
than finding its Cholesky factor. To avoid these computational problems and since

3When working with the covariance matrix rather than with the precision matrix, the Cholesky
decomposition Σ = LL> leads to the simpler step 3: w = Lz.
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samplers based on B boil down to compute θ = µ+B−1z, some works focused on ap-
proximations of the inverse square root B−1 of Q which require smaller computational
and storage complexities.

3.2. Inverse square root approximations. This idea of finding an efficient
way (compared to the costs associated to factorization approaches) to approximate
the inverse square root B−1 dates back at least to the work of Davis [24], in the 1980s,
who derived a polynomial approximation of the function x 7→ x1/2 to approximate the
square root of a given covariance matrix. Other works used Krylov-based approaches
building on the Lanczos decomposition to approximate directly any matrix-vector
product B−1z involving the square-root B. The two following paragraphs review
these methods.

3.2.1. Polynomial approximation. In subsection 3.1, we showed that the
square root of Q writes B = UΛ1/2U>, which implies that Q = UΛU>. If f
stands for a real continuous function, Q and f(Q) = Uf(Λ)U> are diagonalizable
with respect to the same eigenbasis U, where f(Λ) , diag(f(λ1), . . . , f(λd)). This is
a well-known result coming from the Taylor expansion of a real continuous function
f . Hence, a function f such that f(Q) is a good approximation of B−1 = Q−1/2 has
to be such that

f(λi) ≈ 1/
√
λi , ∀i ∈ [d] .

Since f only needs to be evaluated at the points corresponding to the eigenval-
ues {λi}i∈[d] of Q, it suffices to find a good approximation of B−1 on the interval
[λmin, λmax] whose extremal values can be lower and upper-bounded easily using the
Gershgorin circle theorem [40, Theorem 7.2.1]. In the literature [24,50,82], the func-
tion f has been built using Chebyshev polynomials [70] which are a family (Tk)k∈N

of polynomials defined over [-1,1] by

Tk(x) = cos(kα) , where ∀α ∈ R, x = cos(α) ,

or by the recursion

(3.1)





T0(x) = 1
T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x) (∀k ≥ 1) .

This family of polynomials (Tk)k∈N exhibits several interesting properties: uniform
convergence of the Chebyshev series towards an arbitrary Lipschitz-continuous func-
tion over [-1,1] and near minimax property [70], along with fast computation of the
coefficients of the series via the fast Fourier transform [84]. Algorithm 3.2 describes
the steps to generate arbitrary Gaussian vectors using this polynomial approximation.

Algorithmic efficiency. Contrary to factorization methods detailed in subsec-
tion 3.1, Algorithm 3.2 does not require the storage of Q since only the computation of
matrix-vector products of the form Qv with v ∈ Rd is necessary. Assuming that these
operations can be computed efficiently in O(d2) flops with some black-box routine,
e.g., a fast wavelet transform [64], Algorithm 3.2 admits an overall computational cost
of O(Kchebyd

2) flops and storage capacity of Θ(d), where Kcheby is a truncation pa-
rameter standing for the order of the polynomial approximation. When Kcheby � d,
Algorithm 3.2 becomes more computationally efficient than vanilla Cholesky sampling
while admitting a reasonable memory overhead. For a sparse precision matrix Q com-
posed of nnz non-zero entries, the computational complexity can be reduced down to
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O(Kchebynnz) flops. Note that compared to factorization approaches, Algorithm 3.2
involves an additional source of approximation coming from the order of the Cheby-
shev series Kcheby. Choosing this parameter in an adequate manner involves some
hand-tuning or additional computationally intensive statistical tests [82].

Algorithm 3.2 Approx. square root sampler using Chebyshev polynomials

1: Set λl = 0 and λu = max
i∈[d]

∑

j∈[d]

|Qij |.

2: for j ∈ J0,KchebyK do . Do the change of interval.

3: Set gj =

[
cos
(
π 2j+1

2Kcheby

) (λu − λl)
2

+
λu + λl

2

]−1/2
.

4: end for
5: for k ∈ J0,KchebyK do. Compute coefficients of the Kcheby-truncated Chebyshev

series.

6: Compute ck =
2

Kcheby

Kcheby∑

j=0

gj cos

(
πk

2j + 1

2Kcheby

)
.

7: end for
8: Draw z ∼ N (0d, Id).

9: Set α =
2

λu − λl
and β =

λu + λl
λu − λl

.

10: Initalize u1 = αQz− βz and u0 = z.

11: Set u =
1

2
c0u0 + c1u1 and k = 2.

12: while k ≤ Kcheby do . Compute the Kcheby-truncated Chebyshev series.
13: Compute u′ = 2(αQu1 − βu1)− u0.
14: Set u = u + cku

′.
15: Set u0 = u1 and u1 = u′.
16: k = k + 1.
17: end while
18: Set θ = µ+ u. . Build the Gaussian vector of interest.
19: return θ.

3.2.2. Lanczos approximation. Instead of approximating the inverse square-
root B−1, some approaches approximate directly the matrix-vector product B−1z
by building on the Lanczos decomposition [7, 21, 50, 51, 98, 99]. The corresponding
simulation-based algorithm is described in Algorithm 3.3. It iteratively builds an
orthonormal basis H = {h1, . . . ,hKkryl

} ∈ Rd×Kkryl with Kkryl ≤ d for the Krylov

subspace KKkryl
(Q, z) , span{z,Qz, . . . ,QKkryl−1z}, and a tridiagonal matrix T ≈

H>QH ∈ RKkryl×Kkryl . Using the orthogonality of H, z = He1 where e1 is the first
canonical vector of RKkryl , and the final approximation is

(3.2) B−1z = Q−1/2z ≈ ‖z‖HT−1/2H>He1 = ‖z‖HT−1/2e1 .

As highlighted in (3.2), the main idea of the Lanczos approximation is to transform
the computation of Q−1/2z into the computation of T−1/2e1 which is expected to be
simpler since T is tridiagonal and of size Kkryl ×Kkryl.

Algorithmic efficiency. Numerous approaches have been proposed to compute
T−1/2e1 exactly or approximately and they generally require O(K2

kryl) flops [22, 43],
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Algorithm 3.3 Approx. square root sampler using Lanczos decomposition

1: Draw z ∼ N (0d, Id).

2: Set r(0) = z, h(0) = 0d, β
(0) =

∥∥∥r(0)
∥∥∥ and h(1) = r(0)/β(0).

3: for k ∈ [Kkryl] do

4: Set w = Qh(k) − β(k−1)h(k−1).
5: Set α(k) = w>h(k).
6: Set w = w − α(k)h(k). . Gram–Schmidt orthogonalization process.
7: Set β(k) = ‖w‖.
8: Set h(k+1) = w/β(k).
9: end for

10: Set T = tridiag(β,α,β).
11: Set H = (h(1), . . . ,h(Kkryl)).
12:

13: Set θ = µ+ β(0)HT−1/2e1, where e1 = (1, 0, . . . , 0)> ∈ RKkryl .
14: return θ.

see also Algorithm 3.2. By using such approaches, Algorithm 3.3 admits a computa-
tional complexity of O(Kkryld

2) and a memory requirement of O(Kkryld). Similarly
to Kcheby in Algorithm 3.2, one can note that Kkryl stands for a trade-off between
computation, storage and accuracy. As emphasized in [7, 98], adjusting this trunca-
tion parameter can be achieved by using the conjugate gradient (CG) algorithm. In
addition to stand for an approximate sampling technique when Kkryl < d, the main
and well-known drawback of Algorithm 3.3 is that the basis H loses orthogonality in
floating point arithmetic due to round-off errors. Some possibly complicated proce-
dures to cope with this problem are surveyed in [100]. Finally, one major problem of
the Lanczos decomposition is the construction and storage of the basis H ∈ Rd×Kkryl

which becomes as large as Q when Kkryl tends to d. Two main approaches have
been proposed to deal with this problem, namely a so-called 2-pass strategy and a
restarting strategy both reviewed in [7,51,98]. We eventually point out that precondi-
tioning methods have been proposed to reduce the computational burden of Lanczos
samplers [21].

3.2.3. Other square-root approximations. At least two other methods have
been proposed to approximate the inverse square-root B−1. Since these approaches
have been less used than others, only their main principle is given and we refer the
interested reader to the corresponding references. The first one is the rational ap-
proximation of B−1 based on numerical quadrature of a contour integral [44] while
the other one stands for a continuous deformation method based on a system of ordi-
nary differential equations [4]. These two approaches are reviewed and illustrated on
numerical examples in [7].

3.3. Conjugate gradient-based samplers. Instead of building on factoriza-
tion results, some approaches start from the finding that Gaussian densities with
invertible precision matrix Q can be re-written in a so-called information form, that
is

(3.3) π(θ) ∝ exp

(
−1

2
θ>Qθ + b>θ

)
,
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where b = Qµ is called the potential vector. If one is able to draw a Gaussian vector
z′ ∼ N (0d,Q), then a sample θ from N (µ,Q−1) is obtained by solving the linear
system

(3.4) Qθ = b + z′ ,

where Q is positive definite so that conjugate gradient methods are relevant. This
approach uses the affine transformation of a Gaussian vector u = b + z′: if u ∼
N (Qµ,Q), then Q−1u ∼ N (µ,Q−1).

3.3.1. Perturbation before optimization. A first possibility to handle the
perturbed linear problem (3.4) consists in first computing the potential vector b, then
perturbing this vector with the Gaussian vector z′, and finally solving the linear system
with numerical algebra techniques. This approach is detailed in Algorithm 3.4. While
the computation of b is not difficult in general, drawing z′ might be computationally
involved. Hence, this sampling approach is of interest only if we are able to draw
efficiently (i.e., in O(d2) flops) the Gaussian vector z′. This is for instance the case
when Q = Q1 + Q2 with Qi = G>i Λ−1i Gi (i ∈ [2]), provided that the symmetric and
positive definite matrices {Λi}i∈[2] have simple structures, see subsection 2.2. Such
situations often arise when Bayesian hierarchical models are considered [86, Chap.
10]. In these scenarios, an efficient way to compute b + z′ has been proposed in [79]
and is based on a local perturbation of the mean vectors {µi}i∈[2]. Such an approach

Algorithm 3.4 Perturbation-optimization sampler

1: Draw z′ ∼ N (0d,Q). . with local perturbation as in [79].
2: Set η = b + z′.
3: Solve Qθ = η w.r.t. θ. . with the CG solver for instance [46].
4: return θ.

has been coined perturbation-optimization (PO) since it draws perturbed versions of
the mean vectors involved in the hierarchical model before using them to define the
linear system to solve [79].

Algorithmic efficiency. If K ∈ N∗ iterations of an appropriate linear solver (e.g.,
the conjugate gradient (CG) method) are used for step 3 in Algorithm 3.4, the global
computational and storage complexities of this algorithm are of order O(Kd2) and
Θ(d). Regarding sampling accuracy, while Algorithm 3.4 in theory stands for an exact
approach, the K-truncation procedure implies an approximate sampling scheme [77].
A solution to correct this bias has been proposed in [36] by building upon a reversible-
jump approach [42].

3.3.2. Optimization with perturbation. Alternatively, (3.4) can be seen as
well as a perturbed version of the linear system Qθ = b. Thus some works have fo-
cused on modified versions of well-known linear solvers such as the conjugate gradient
(CG) [81,91,95]. Actually, only one additional line of code standing for an univariate
Gaussian sampling step (perturbation) is required to turn out the classical CG solver
into a CG sampler [81, 95], see step 8 in Algorithm 3.5. This perturbation step se-
quentially builds a Gaussian vector with a covariance matrix being the best k-rank
approximation of Q−1 in the Krylov subspace Kk(Q, r(0)) [81]. Then a perturbation
vector y(KCG) is simulated before addition to µ so that finally θ = µ+ y(KCG).

Algorithmic efficiency. From a computational point of view, the CG sampler in-
herits the benefits of the CG solver: only matrix-vector products involving Q and
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Algorithm 3.5 Conjugate gradient sampler

Input: Threshold ε > 0, fixed initialization ω(0) and random vector c ∈ Rd.

1: Set k = 1, r(0) = c−Qω(0), h(0) = r(0), d(0) = h(0)>Qh(0) and y(0) = ω(0).

2: while
∥∥∥r(k)

∥∥∥ ≥ ε do

3: Set γ(k−1) =
r(k−1)>r(k−1)

d(k−1)
.

4: Set r(k) = r(k−1) − γ(k−1)Qh(k−1).

5: Set η(k) = − r(k)>r(k)

r(k−1)T r(k−1)
.

6: Set h(k) = r(k) − η(k)h(k−1).
7: Set d(k) = h(k)>Qh(k).

8: Set y(k) = y(k−1) +
z√

d(k−1)
h(k−1) where z ∼ N (0, 1).

9: k = k + 1.
10: end while
11: Set θ = µ+ y(KCG) where KCG is the number of CG iterations.
12: return θ.

the storage of two d-dimensional vectors are needed, and one exact sample from
N (µ,Q−1) is obtained after at most KCG = d iterations. This yields an approxi-
mate computational cost of O(KCGd

2) flops and a storage requirement of Θ(d) where
KCG is the number of CG iterations [46]. The CG sampler belongs to the family of
Krylov-based samplers (e.g., Lanczos). As such, it suffers from the same numerical
problem due to finite machine precision and the KCG-truncation procedure. In ad-
dition, the covariance of the generated samples depends on the distribution of the
eigenvalues of the matrix Q. Actually, if these eigenvalues are not well spread out,
Algorithm 3.5 stops after KCG < d iterations which yields an approximate sample
with the best KCG-rank approximation of Q−1 as the actual covariance matrix. In
order to correct this approximation, re-orthogonalization schemes can be employed
but could become as computationally prohibitive as Cholesky sampling when d is
large [95]. These sources of approximation are detailed in [81]. A generalization of
Algorithm 3.5 has been considered in [29] where a random set of K ′ mutually conju-
gate directions {h(k)}k∈[K′] is considered at each iteration of a Gibbs sampler.

4. Sampling algorithms based on MCMC. The previous section presented
existing Gaussian sampling approaches by directly adapting ideas and techniques from
numerical linear algebra such as matrix decompositions and matrix approximations.
In this section, we will present another family of sampling approaches, namely MCMC
approaches, which build a discrete-time Markov chain (θ(t))t∈N having N (µ,Q−1) (or
a close approximation of N (µ,Q−1)) as its invariant distribution [87]. In the sequel,
we state that a MCMC approach is exact if the associated sampler admits an invariant
distribution which coincides with N (µ,Q−1). Contrary to the approaches reviewed
in section 3 which produce i.i.d. samples from N (µ,Q−1) or a close approximation to
it, MCMC approaches produce correlated samples that are asymptotically distributed
according to their invariant distribution. Hence, at a first glance, it seems natural
to think that MCMC samplers are less trustworthy since the number of iterations
required until convergence is very difficult to assess in practice [48]. Interestingly, we
will show numerically in section 6 that MCMC methods might perform better than
i.i.d. samplers in some cases and as such might stand for serious contenders for the
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most efficient Gaussian sampling algorithms, see also [31]. On top of that review, we
will also show that most of these MCMC approaches can be unified via a stochastic
version of the proximal point algorithm [90]. This framework will be presented and
detailed in section 5.

4.1. Matrix splitting. We begin the review of MCMC samplers by detailing so-
called matrix splitting (MS) approaches that build on the decomposition Q = M−N
of the precision matrix. As we shall see, both exact and approximate MS samplers
have been proposed in the existing literature. These methods embed one of the
simplest MCMC method, namely the component-wise Gibbs sampler [35]. Similarly
to Algorithm 3.1 for samplers in section 3, it can be viewed as one of the simplest and
straightforward approaches to sample from a target Gaussian distribution.

4.1.1. Exact matrix splitting. Given the multivariate Gaussian distribution
N (µ,Q−1) with density π in (2.1), an attractive and simple option is to sequentially
draw one component of θ given the others. This is the well-known component-wise
Gibbs sampler, see Algorithm 4.1 [34,35,92]. The main advantage of Algorithm 4.1 is
its simplicity and the low cost per sweep (i.e., internal iteration) of O(d2) flops which
is comparable with Cholesky applied to Toeplitz covariance matrices [102]. More
generally, one can also consider random sweeps over the d components of θ or block-
wise strategies which update simulteanously several components of θ. The analysis
of these strategies and their respective convergence rates are detailed in [88].

Algorithm 4.1 Component-wise Gibbs sampler

Input: Number T of iterations and initialization θ(0).

1: Set t = 1.
2: while t ≤ T do
3: for i ∈ [d] do
4: Draw z ∼ N (0, 1).

5: Set θ
(t)
i =

[Qµ]i
Qii

+
z√
Qii
− 1

Qii


∑

j>i

Qijθ
(t−1)
j +

∑

j<i

Qijθ
(t)
j


.

6: end for
7: Set t = t+ 1.
8: end while
9: return θ(T ).

In [1,10,41], the authors showed by rewriting Algorithm 4.1 using a matrix formu-
lation that it actually stands for a stochastic version of the Gauss-Seidel linear solver
that relies on the decomposition Q = L + D + L> where L and D are the strictly
lower triangular and diagonal parts of Q, respectively. Indeed, each iteration solves
the linear system

(4.1) (L + D)θ(t) = Qµ+ D1/2z− L>θ(t−1) ,

where z ∼ N (0d, Id). By setting M = L + D and N = −L> so that Q = M−N, the
updating rule (4.1) can be written as solving the usual Gauss-Seidel linear system

(4.2) Mθ(t) = Qµ+ z̃ + Nθ(t−1) ,

where N = −L> is strictly upper triangular and z̃ ∼ N (0d,D) is easy to sample.



18 M. VONO, N. DOBIGEON, AND P. CHAINAIS

Interestingly, (4.2) stands for a perturbed instance of MS schemes which are a
class of linear iterative solvers based on the splitting of Q into Q = M −N [40, 93].
Capitalizing on this one-to-one equivalence between samplers and linear solvers, the
authors in [31] extended Algorithm 4.1 to other MCMC samplers based on different
matrix splittings Q = M−N. They are reported in Table 2 and yield Algorithm 4.2.
The acronym SOR stands for successive over-relaxation.

Algorithm 4.2 MCMC sampler based on exact matrix splitting

Input: Number T of iterations, initialization θ(0) and splitting Q = M−N.

1: Set t = 1.
2: while t ≤ T do
3: Draw z̃ ∼ N (0d,M

> + N).

4: Solve Mθ(t) = Qµ+ z̃ + Nθ(t−1) w.r.t. θ(t).
5: Set t = t+ 1.
6: end while
7: return θ(T ).

Algorithmic efficiency. Similarly to linear solvers, Algorithm 4.2 is guaranteed
to converge towards the correct distribution N (µ,Q−1) if ρ

(
M−1N

)
< 1 where ρ(·)

stands for the spectral radius of a matrix. In practice, Algorithm 4.2 is stopped after
T iterations and the error between the distribution of θ(T ) and N (µ,Q−1) can be
assessed quantitatively, see [31]. The computational efficiency of Algorithm 4.2 is

directly related to the complexity of solving the linear systems Mθ(t) = Qµ + z̃ +
Nθ(t−1), similar to (4.2), and the difficulty of sampling z̃ with covariance M> + N.
As pointed out in [31], the simpler M, the denser M>+ N and the more difficult the
sampling of z̃. For instance, Jacobi and Richardson schemes yield a simple diagonal
linear system requiring O(d) flops but one has to sample from a Gaussian distribution
with an arbitrary covariance matrix, see step 3 of Algorithm 4.2. Iterative samplers
requiring at least K steps such as those reviewed in section 3 can be used. This yields a
computational burden of O(KTd2) flops for step 3 and as such Jacobi and Richardson
samplers admit a computational cost of O(KTd2) and a storage requirement of Θ(d).
On the other hand, both Gauss-Seidel and SOR schemes are associated to a simple
sampling step which can be performed in O(d) flops with Algorithm 2.2 but one
has to solve a lower triangular system which can be done in O(d2) flops via forward
substitution. In order to mitigate the trade-off between steps 3 and 4, approximate
MS approaches have been proposed recently [9, 54], see subsection 4.1.2.
Polynomial accelerated Gibbs samplers. When the splitting Q = M − N is
symmetric, that is both M and N are symmetric matrices, the rate of convergence
of Algorithm 4.2 can be improved by using polynomial preconditioners [31]. For
the ease of presentation, we will first explain how such a preconditioning accelerates
linear solvers based on matrix splitting, before building upon the one-to-one equiv-
alence between linear solvers and Gibbs samplers to show how Algorithm 4.2 can
be accelerated. Given a linear system Qθ = v for v ∈ Rd, linear solvers based
on the matrix splitting Q = M − N consider the recursion, for any t ∈ N and
θ(0) ∈ Rd, θ(t+1) = θ(t) + M−1(v − Qθ(t)). The error at iteration t defined by

e(t+1) = θ(t+1) − Q−1v can be shown to be equal to (Id −M−1Q)te(0) [40]. Since
this error is a t-th order polynomial of M−1Q, it is then natural to wonder whether
one can find another t-th order polynomial Pt that achieves a lower error that is
ρ(Pt(M

−1Q)) < ρ((Id −M−1Q)t). This can be accomplished by considering the
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Table 2: Examples of MS schemes for Q which can be used in Algorithm 4.2. The
matrices D and L denote the diagonal and strictly lower triangular parts of Q, re-
spectively. The vector z̃ is the one appearing in step 3 of Algorithm 4.2 and ω is a
positive scalar.

Sampler M N cov(z̃) = M> + N convergence

Richardson Id/ω Id/ω −Q 2Id/ω −Q 0 < ω < 2/ ‖Q‖

Jacobi D D−Q 2D−Q |Qii| >
∑
j 6=i |Qij | ∀i ∈ [d]

Gauss-Seidel D + L −L> D always

SOR D/ω + L 1−ω
ω

D− L> 2−ω
ω

D 0 < ω < 2

second-order iterative scheme defined, for any t ∈ N, by [8]

θ(t+1) = αtθ
(t) + (1− αt)θ(t−1) + βtM

−1(v −Qθ(t)) ,

where (αt, βt)t∈N are a set of acceleration parameters. This iterative method yields
an error at step t given by e(t+1) = Pt(M

−1Q)e(0) where Pt stands for a scaled
Chebyshev polynomial, see Equation (3.1). Optimal values for (αt, βt)t∈N are given
by [8]

αt = τ1βt and βt =
(
τ1 − τ22βt−1

)−1
,

τ1 = [λmin(M−1Q) + λmax(M−1Q)]/2 and τ2 = [λmax(M−1Q) − λmin(M−1Q)]/4.
Note that these optimal choices suppose that the minimal and maximal eigenvalues
of M−1Q are real-valued and available. The first requirement is for instance satisfied
if the splitting Q = M−N is symmetric while the second one is met by using the CG
algorithm as explained in [31]. In the literature [31,88], a classical symmetric splitting
scheme that has been considered is derived from the SOR splitting and as such called
symmetric SOR (SSOR). Denote by MSOR and NSOR the matrices involved in the
SOR splitting such that Q = MSOR − NSOR, see row 4 of Table 2. Then for any
0 < ω < 2, the SSOR splitting is defined by Q = MSSOR −NSSOR with

MSSOR =
ω

2− ωMSORD−1M>
SOR and NSSOR =

ω

2− ωNSORD−1N>SOR .

By resorting to the one-to-one equivalence between linear solvers and Gibbs samplers,
[30,31] showed that the above acceleration via Chebyshev polynomials can be applied
to Gibbs samplers based on a symmetric splitting. In this context, the main challenge
when dealing with accelerated Gibbs samplers compared to accelerated linear solvers
is the calibration of the noise covariance to ensure that the invariant distribution
coincides with N (µ,Q−1). For the sake of completeness, the pseudo-code associated
to an accelerated version of Algorithm 4.2 based on the SSOR splitting is detailed
in Algorithm 4.3. Associated convergence results and numerical studies associated to
this algorithm can be found in [30,31].

Algorithmic efficiency. Similarly to Algorithm 4.2, Algorithm 4.3 is exact in the
sense that it admitsN (µ,Q−1) as invariant distribution. [31] gave guidelines to choose

the truncation parameter T such that the error between the distribution of θ(T ) and
N (µ,Q−1) is sufficiently small. Regarding computation and storage, since triangular
linear systems can be solved in O(d2) flops by either back or forward substitution,
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Algorithm 4.3 Chebyshev accelerated SSOR sampler

Input: SSOR tuning parameter 0 < ω < 2, extreme eigenvalues λmin(M−1
SSORQ)

and λmax(M−1
SSORQ) of M−1

SSORQ, number T of iterations, initialization w(0), diagonal
D of Q and SOR splitting Q = MSOR −NSOR.

1: Set Dω = (2/ω − 1)D.
2: Set

√
δ = (λmax(M−1

SSORQ)− λmin(M−1
SSORQ))/4.

3: Set τ = 2/(λmax(M−1
SSORQ) + λmin(M−1

SSORQ)).
4: Set β = 2τ , α = 1, e = 2/α− 1, c = (2/τ − 1)e and κ = τ .
5: Set t = 1.
6: while t ≤ T do
7: Draw z1 ∼ N (0d, Id).

8: Solve MSORx1 = MSORw(t−1) +
√
eD

1/2
ω z1 −Qw(t−1) w.r.t. x1.

9: Draw z2 ∼ N (0d, Id).

10: Solve M>
SORx2 = M>

SOR(x1 −w(t−1)) +
√
cD

1/2
ω z2 −Qx1 w.r.t. x2.

11: if t = 1 then
12: Set w(t) = α(w(t−1) + τx2).

13: Set θ(t) = µ+ w(t).
14: else
15: Set w(t) = α(w(t−1) −w(t−2) + τx2) + w(t−2).

16: Set θ(t) = µ+ w(t).
17: end if
18: Set β = 1

1/τ−βδ , α = β
τ , e = 2κ(1−α)

β + 1, c = 2
τ − 1 + (e− 1)( 1

τ + 1
κ − 1) and

κ = β + (1− α)κ.
19: Set t = t+ 1.
20: end while
21: return θ(T ).

Algorithm 4.3 admits a computational cost of O(Td2) and a storage requirement of
Θ(d).

4.1.2. Approximate matrix splitting. Motivated by efficiency and parallel
computations, the authors in [9] and [54] proposed to relax exact MS and introduced
two MCMC samplers whose invariant distributions are approximations of N (µ,Q−1).

First, in order to solve efficiently the linear system Mθ(t) = Qµ+z̃+Nθ(t−1) involved
in step 4 of Algorithm 4.2, these approximate approaches consider MS schemes with
diagonal matrices M. For exact samplers, e.g., Richardson and Jacobi, we saw in the
previous paragraph that such a convenient structure for M implies that the drawing of
the Gaussian vector z̃ becomes more demanding. To bypass this issue, approximate
samplers draw Gaussian vectors z̃′ with simpler covariance matrices M̃ instead of
M> + N. Again, attractive choices for M̃ are diagonal matrices since the associated
sampling task then boils down to Algorithm 2.2. This yields Algorithm 4.4 which
is highly amenable to parallelization since both the covariance matrix M̃ of z̃′ and
the matrix M involved in the linear system to solve are diagonal. Table 3 gathers
the respective expressions of M, N and M̃ for the two approaches introduced in [54]
and [9] and coined “Hogwild sampler” and “clone MCMC”, respectively.

Algorithmic efficiency. Regarding sampling accuracy, the Hogwild sampler and
clone MCMC define a Markov chain whose invariant distribution is Gaussian with the
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Algorithm 4.4 MCMC sampler based on approximate matrix splitting

Input: Number T of iterations, initialization θ(0) and splitting Q = M−N.

1: Set t = 1.
2: while t ≤ T do
3: Draw z̃′ ∼ N (0d, M̃). . M̃ = D or 2 (D + 2ωId), see Table 3.

4: Solve Mθ(t) = Qµ+ z̃′ + Nθ(t−1).
5: Set t = t+ 1.
6: end while
7: return θ(T ).

Table 3: MS schemes for Q which can be used in Algorithm 4.4. The matrices D
and L denote the diagonal and strictly lower triangular parts of Q, respectively. The
vector z̃′ is the one appearing in step 3 of Algorithm 4.4 and ω > 0 is a tuning
parameter controlling the bias of those methods. Sufficient conditions to guarantee
ρ(M−1N) < 1 are given in [9, 54].

Sampler M N cov(z̃′) = M̃

Hogwild with blocks of size 1 [54] D −L− L> D

Clone MCMC [9] D + 2ωId 2ωId − L− L> 2 (D + 2ωId)

correct mean µ but with precision matrix Q̃MS, where

Q̃MS =

{
Q
(
Id −D−1(L + L>)

)
for the Hogwild sampler

Q
(
Id − 1

2 (D + 2ω−1Id)
−1Q

)
for clone MCMC.

Contrary to the Hogwild sampler, clone MCMC is able to sample exactly from
N (µ,Q−1) in the asymptotic scenario ω → 0 since in this case Q̃MS → Q. While
keeping a memory requirement of Θ(d), the induced approximation yields a highly
parallelizable sampler. Indeed, compared to Algorithm 4.2, the computational com-
plexities associated to step 3 and the solving of the triangular system in step 4 are
decreased by an order of magnitude to O(d). Note that the overall computational

complexity of step 4 is still O(d2) because of the matrix-vector product Nθ(t−1).

4.2. Data augmentation. Since the precision matrix Q has been assumed to be
arbitrary, the MS schemes Q = M−N in Table 2 were not motivated by its structure
but rather by the computational efficiency of the associated samplers. Hence, inspired
by efficient linear solvers, relevant choices for M and N given in Table 2 and Table 3
have been considered. Another line of search explores schemes specifically dedicated
to precision matrices Q of the form

(4.3) Q = Q1 + Q2 ,

where, contrary to the MS schemes discussed in the previous section, the two matrices
Q1 and Q2 are not chosen by the user but directly result from the statistical model
under consideration. In particular, such situations arise when deriving hierarchical
Bayesian models (see, e.g., [49,78,92]). By capitalizing on possible specific structures
of {Qi}i∈[2], it may be desirable to separate Q1 and Q2 in two different hopefully sim-
pler steps of a Gibbs sampler. To this purpose, this section discusses data augmenta-
tion (DA) approaches which introduce one (or several) auxiliary variable u ∈ Rk such
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that the joint distribution of the couple (θ,u) yields simple conditional distributions
thus sampling steps within a Gibbs sampler [9, 66, 67, 104]. Then a straightforward
marginalization of the auxiliary variable u permits to retrieve the target distribution
N (µ,Q−1), either exactly or in an asymptotic regime depending on the nature of the
DA scheme. Both exact and approximate DA methods have been proposed.

4.2.1. Exact data augmentation. This paragraph reviews some exact DA
approaches to obtain samples from N (µ,Q−1). The term exact means here that the
joint distribution of (θ,u) admits a density π(θ,u) which satisfies almost surely

(4.4)

∫

Rk

π(θ,u) = π(θ) ,

and yields proper marginal distributions. Figure 4 describes the directed acyclic
graphs (DAG) associated with two hierarchical models proposed in [66, 67] to de-
couple Q1 from Q2 by involving auxiliary variables. In the following, we detail the
motivations behind these two data augmentation schemes. Among the two matrices
Q1 and Q2 involved in the composite precision matrix Q, without loss of general-
ity, we assume that Q2 presents a particular and simpler structure (e.g., diagonal or
circulant) than Q1. We want now to benefit from this structure by leveraging the
efficient sampling schemes previously discussed in subsection 2.2 and well suited to
handle a Gaussian distribution with a precision matrix only involving Q2. This is
the aim of the first data augmentation model called EDA which introduces the joint
distribution with p.d.f.

π(θ,u1) ∝ exp

(
−1

2

[
(θ − µ)>Q(θ − µ) + (u1 − θ)>R(u1 − θ)

])
,(4.5)

with R = ω−1Id −Q1 and 0 < ω < ‖Q1‖−1, where ‖·‖ is the spectral norm. The re-
sulting Gibbs sampler (see Algorithm 4.5) relies on two conditional Gaussian sampling
steps whose associated conditional distributions are detailed in Table 4. This scheme
has the great advantage of decoupling the two precision matrices Q1 and Q2 since they
are not simultaneously involved in any of the two steps. In particular, introducing
the auxiliary variable u1 permits to remove the dependence in Q1 when defining the
precision matrix of the conditional distribution of θ. While efficient sampling from
this conditional is possible, we have to ensure that sampling the auxiliary variable u1

can be achieved with a reasonable computational cost. Again, if Q1 presents a nice
structure, the specific approaches reviewed in subsection 2.2 can be employed. If this
is not the case, the authors in [66,67] proposed a generalization of EDA, called GEDA,
to simplify the whole Gibbs sampling procedure when Q arises from a hierarchical
Bayesian model. In such models, Q1, as a fortiori Q2, naturally admits an explicit
decomposition which writes Q1 = G>1 Λ1G1, where Λ1 is a positive definite (and very
often diagonal) matrix. By building on this explicit decomposition, GEDA introduces
an additional auxiliary variable u2 such that the augmented p.d.f. writes

π(θ,u1,u2) ∝ exp

(
−1

2

[
(θ − µ)>Q(θ − µ) + (u1 − θ)>R(u1 − θ)

])

× exp

(
−1

2
(u2 −G1u1)>Λ1(u2 −G1u1)

)
.(4.6)

The associated joint distribution yields conditional Gaussian distributions with di-
agonal covariance matrices for both u1 and u2 that can be sampled efficiently with
Algorithm 2.2, see Table 4.
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u1 θ

θ ∼ N
(
µ,Q−1

)

u1 | θ ∼ N
(
θ,R−1

)
, R = ω−1Id −Q1

(a) Hierarchical EDA model

u2 u1 θ

θ ∼ N
(
µ,Q−1

)

u1 | θ ∼ N
(
θ,R−1

)

u2 | u1 ∼ N
(
G1u1,Λ

−1
1

)

(b) Hierarchical GEDA model

Fig. 4: Hierarchical models proposed in [66,67] where ω is such that 0 < ω < ‖Q1‖−1.

Table 4: Conditional probability distributions of θ | u1, u1 | θ,u2 and u2 | u1 for the
exact data augmentation schemes detailed in subsection 4.2.1. The parameter ω is
such that 0 < ω < ‖Q1‖−1. For simplicity, the conditioning is notationally omitted.

Sampler θ ∼ N (µθ,Q
−1
θ ) u1 ∼ N (µu1

,Q−1
u1

) u2 ∼ N (µu2
,Q−1

u2
)

EDA

Qθ = ω−1Id + Q2 Qu1 = R -

µθ = Q−1
θ (Ru1 + Qµ) µu1

= θ -

GEDA

Qθ = ω−1Id + Q2 Qu1
= ω−1Id Qu2

= Λ1

µθ = Q−1
θ (Ru1 + Qµ) µu1

= θ − ω(Q1θ −G>1 Λ−1
1 u2) µu2

= G1u1

Algorithmic efficiency. First, both EDA and GEDA admit N (µ,Q−1) as invari-
ant distribution and hence are exact. Regarding EDA, since the conditional distribu-
tion of u1 | θ might admit an arbitrary precision matrix in the worst-case scenario, its
computational and storage complexities are O(KTd2) and Θ(d) where K stands for
a truncation parameter associated to one of the algorithms reviewed in section 3. On
the other hand, GEDA benefits from an additional data augmentation which yields
reduced computational and storage requirements of O(Td2) and Θ(d).

Algorithm 4.5 Gibbs sampler based on exact data augmentation (G)EDA

Input: Number T of iterations and initialization θ(0), u
(0)
1 .

1: Set t = 1.
2: while t ≤ T do
3: Draw u

(t)
2 ∼ N (µu2

,Q−1u2
). . Only if GEDA is considered.

4: Draw u
(t)
1 ∼ N (µu1

,Q−1u1
).

5: Draw θ(t) ∼ N (µθ,Q
−1
θ ).

6: Set t = t+ 1.
7: end while
8: return θ(T ).
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4.2.2. Approximate data augmentation. An approximate data augmenta-
tion scheme inspired by variable-splitting approaches in optimization [2, 3, 15] was
proposed in [104]. This framework, also called asymptotically exact data augmenta-
tion (AXDA) [105], was initially introduced to deal with any target distributions, not
limited to Gaussian ones; it therefore a fortiori applies to them as well. An auxiliary
variable u ∈ Rd is introduced such that the joint p.d.f. of (θ,u) writes

π(θ,u) ∝ exp

−1

2

[
(θ − µ)>Q2(θ − µ) + (u− µ)>Q1(u− µ) +

‖u− θ‖2

ω

] ,(4.7)

where ω > 0. The main idea behind (4.7) is to replicate the variable of interest θ in
order to sample via a Gibbs sampling strategy two different random variables u and
θ with covariance matrices involving separately Q1 and Q2. This algorithm, coined
split Gibbs sampler (SGS), is detailed in Algorithm 4.6 and sequentially draws from
the conditional distributions

u | θ ∼ N
(

(ω−1Id + Q1)−1(ω−1θ + Q1µ), (ω−1Id + Q1)−1
)
,(4.8)

θ | u ∼ N
(

(ω−1Id + Q2)−1(ω−1u + Q2µ), (ω−1Id + Q2)−1
)
.(4.9)

Again, this approach has the great advantage of decoupling the two precision matrices
Q1 and Q2 defining Q since they are not simultaneously involved in any of the two
steps of the Gibbs sampler. In [66], the authors showed that exact DA schemes
(i.e., EDA and GEDA) generally outperform AXDA as far as Gaussian sampling is
concerned. This was expected since the AXDA framework proposed is not specifically
designed for Gaussian targets but for a wide family of distributions.

Algorithmic efficiency. The sampling efficiency of Algorithm 4.6 depends upon
the parameter ω which controls the strength of the coupling between u and θ as well
as the bias-variance trade-off of this method; it yields exact sampling when ω → 0.
Indeed, the marginal distribution of θ under the joint distribution with density defined
in (4.7) is a Gaussian with the correct mean µ but with an approximate precision

matrix Q̃DA which admits the closed-form expression

(4.10) Q̃DA = Q2 +
(
Q−11 + ωId

)−1
.

In the worst-case scenario where Q1 is arbitrary, sampling from the conditional dis-
tribution (4.8) can be performed with an iterative algorithm running K iterations as
those reviewed in section 3. Hence Algorithm 4.6 admits the same computational and
storage complexities as EDA (see Algorithm 4.5), that is O(KTd2) and Θ(d).

Algorithm 4.6 Gibbs sampler based on approximate data augmentation

Input: Number T of iterations and initialization θ(0).

1: Set t = 1.
2: while t ≤ T do
3: Draw u(t) ∼ N (µu,Q

−1
u ) in (4.8).

4: Draw θ(t) ∼ N (µθ,Q
−1
θ ) in (4.9).

5: Set t = t+ 1.
6: end while
7: return θ(T ).
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5. A unifying revisit of Gibbs samplers via a stochastic version of the
PPA. Section 3 and section 4 showed that numerous approaches have been proposed
to sample from a possibly high-dimensional Gaussian distribution with density (2.1).
This section proposes to unify these approaches within a general Gaussian simulation
framework which actually stands for a stochastic counterpart of the celebrated proxi-
mal point algorithm (PPA) in optimization [90]. This viewpoint will shed new light on
the connections between the reviewed simulation-based algorithms, and particularly
between Gibbs samplers.

5.1. A unifying proposal distribution. The approaches described in section 4
use surrogate probability distributions (e.g., conditional or approximate distributions)
to make Gaussian sampling easier. In the following, we show that most of these sur-
rogate distributions can be put under a common umbrella by considering the density

(5.1) κ(θ,u) ∝ π(θ) exp

(
−1

2
(θ − u)>R(θ − u)

)
,

where u ∈ Rd stands for an additional (auxiliary) variable and R ∈ Rd×d is a sym-
metric matrix acting as a preconditioner such that κ defines a proper density on an
appropriate state space. More precisely, in the following, depending on the definition
of the variable u, the probability density κ in (5.1) shall refer to either a joint p.d.f.
π(θ,u) or a conditional probability density π(θ | u). Contrary to MCMC samplers
detailed in section 4, the methods described in section 3 do not use explicit surro-
gate distributions to simplify the sampling procedure. Instead, they directly perturb
deterministic approaches from numerical linear algebra without explicitly defining a
simpler surrogate distribution at each iteration. This feature can be encoded with the
choice R → 0d×d so that these methods can be described by this unifying model as
well. Then, the main motivation for using the surrogate density κ is to precondition
the initial p.d.f. π to end up with simpler sampling steps as in section 4.

5.2. Revisiting MCMC sampling approaches. This section builds on the
probability kernel density (5.1) to revisit, unify and extend the exact and approxi-
mate approaches reviewed in section 4. We emphasize that exact approaches indeed
target the distribution of interest N (µ,Q−1) while approximate ones only target an
approximation of N (µ,Q−1).

5.2.1. From exact data augmentation to exact matrix splitting. We as-
sume here that the variable u refers to an auxiliary variable such that the joint
distribution of the couple (θ,u) has a density given by π(θ,u) , κ(θ,u). In addition,
we restrict here R to be positive definite. It follows that

(5.2)

∫

Rd

π(θ,u)du = Z−1π(θ)

∫

Rd

exp

(
−1

2
(θ − u)>R(θ − u)

)
du = π(θ)

holds almost surely with Z = det(R)−1/2(2π)d/2. Hence, the joint density (5.1)
yields an exact DA scheme whatever the choice of the positive definite matrix R.
We will show that the exact DA approaches schemed by Algorithm 4.5 precisely fit
the proposed generic framework with a specific choice for the preconditioning matrix
R. We will then extend this class of exact DA approaches and show a one-to-one
equivalence between Gibbs samplers based on exact MS (see subsection 4.1.1) and
those based on exact DA (see subsection 4.2.1).
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To this purpose, we start by making the change of variable v = Ru. Combined
with the joint probability density (5.1), it yields the two following conditional proba-
bility distributions:

v | θ ∼ N (Rθ,R) ,(5.3)

θ | v ∼ N
(

(Q + R)−1(v + Qµ), (Q + R)−1
)
.(5.4)

As emphasized in subsection 5.1, the aim of introducing the preconditioning matrix R
is to yield simpler sampling steps. In the general case where Q = Q1+Q2 with Q1 and
Q2 two matrices that cannot be easily handled jointly (e.g, because not diagonalized
in the same basis), an attractive option is R = ω−1Id−Q1. Indeed, this choice ensures
that Q1 and Q2 are separated and are not simultaneously involved in any of the two
conditional sampling steps. Note that this choice yields the EDA scheme already
discussed in subsection 4.2.1, see Table 4. Now we relate this exact DA scheme to an
exact MS one. By re-writing the Gibbs sampling steps associated with the conditional
distributions (5.3) and (5.4) as an auto-regressive process of order 1 w.r.t. θ [14], it
follows that an equivalent sampling strategy writes

z̃ ∼ N (Qµ, 2R + Q) ,(5.5)

θ(t) = (Q + R)
−1
(
z̃ + Rθ(t−1)

)
.(5.6)

Defining M = Q + R and N = R, or equivalently Q = M−N, it yields

z̃ ∼ N
(
Qµ,M> + N

)
,(5.7)

θ(t) = M−1
(
z̃ + Nθ(t−1)

)
,(5.8)

which boils down to the Gibbs sampler based on exact MS discussed in subsection 4.1.1
(see Algorithm 4.2).

To illustrate the interest of this rewriting when considering the case of two matri-
ces Q1 and Q2 that cannot be efficiently handled in the same basis, Table 5 presents
two possible choices of R which relate two MS strategies with their DA counterparts.
First, one particular choice of R (row 1 of Table 5) directly shows that the Richardson
MS sampler can be rewritten as the EDA sampler. More precisely, the auto-regressive
process of order 1 w.r.t. θ defined by EDA yields a variant of the Richardson sampler.
This finding relates two different approaches proposed by authors from distinct com-
munities (numerical algebra and signal processing). Secondly, the proposed unifying
framework also permits to go beyond existing approaches by proposing a novel exact
DA approach via a specific choice for the precision matrix R driven by an existing MS
method. Indeed, following the same rewriting trick with another particular choice of
R (row 2 of Table 5), an exact DA scheme can be easily derived from the Jacobi MS
approach. Up to our knowledge, this novel DA method, referred to as EDAJ in the
table, has not been documented in the existing literature.

Finally, this table reports two particular choices of R which lead to revisit existing
MS and/or DA methods. It is worth noting that other relevant choices may be
possible, which would allow to derive new exact DA and MS methods or to draw
further analogies between existing approaches. Note also that Table 5 shows the
main benefit of an exact DA scheme over its MS counterpart thanks to the decoupling
between Q1 and Q2 in two separate simulation steps. This feature can be directly
observed by comparing the two first columns of Table 5 with the third one.
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Table 5: Equivalence relations between exact DA and exact MS approaches. The
matrices Q1 and Q2 are such that Q = Q1 + Q2. The matrix D1 denotes the
diagonal part of Q1, and ω > 0 is a positive scalar ensuring the positive definiteness
of R. Bold acronyms refer to novel samplers which derive from the proposed unifying
framework.

R = cov(v|θ) (Q + R)−1 = cov(θ|v) M> + N = cov(z̃) DA sampler MS sampler

Id

ω
−Q1

(
Id

ω
+ Q2

)−1 2Id

ω
+ Q2 −Q1 EDA [66] Richardson [31]

D1

ω
−Q1

(
D1

ω
+ Q2

)−1 2D1

ω
+ Q2 −Q1 EDAJ Jacobi [31]

5.2.2. From approximate matrix splitting to approximate data aug-
mentation. We now build on the proposed unifying proposal (5.1) to extend the class
of samplers based on approximate matrix splitting and reviewed in subsection 4.1.2.
With some abuse of notation, the variable u in (5.1) now refers to an iterate associ-

ated to θ. More precisely, let define u = θ(t−1) to be the current iterate within an
MCMC algorithm and κ to be

(5.9) κ(θ,u) , p
(
θ|u = θ(t−1)

)
∝ π(θ) exp

(
−1

2

(
θ − θ(t−1)

)>
R
(
θ − θ(t−1)

))
.

Readers familiar with MCMC algorithms will recognize in (5.9) a proposal density
that can be used within Metropolis-Hastings schemes [87]. However, unlike the
usual random-walk algorithm which considers the Gaussian proposal distribution
N (θ(t−1), λId) with λ > 0, the originality of (5.9) is to define the proposal by com-
bining the Gaussian target density π with a term that is equal to a Gaussian kernel
density when R is positive definite. If we always accept the proposed sample obtained
from (5.9) without any correction, that is θ(t) = θ̃ ∼ P (· | u = θ(t−1)) with density
(5.9), this directly implies that the associated Markov chain converges in distribution

towards a Gaussian random variable with distribution N (µ, Q̃−1) with the correct
mean µ but with precision matrix

Q̃ = Q
(
Id + (R + Q)−1R

)
.(5.10)

This algorithm is detailed in Algorithm 5.1. Note again that one can obtain samples
from the initial target distribution N (µ,Q−1) by replacing step 4 with an accep-
tance/rejection step, see [87] for details.

Moreover, the instance (5.9) of (5.1) paves the way to an extended class of sam-
plers based on approximate matrix splitting. More precisely, the draw of a proposed
sample θ̃ from (5.9) can be replaced by the following two-step sampling procedure:

z̃′ ∼ N (Qµ,R + Q) ,(5.11)

θ(t) = (Q + R)
−1
(
z̃′ + Rθ(t−1)

)
.(5.12)

The matrix splitting form with M = Q + R, N = R writes

z̃′ ∼ N (Qµ,M) ,(5.13)

θ(t) = M−1
(
z̃′ + Nθ(t−1)

)
.(5.14)



28 M. VONO, N. DOBIGEON, AND P. CHAINAIS

Algorithm 5.1 MCMC sampler based on (5.9).

Input: Number T of iterations and initialization θ(0).

1: Set t = 1.
2: while t ≤ T do

3: Draw θ̃ ∼ P
(
· | u = θ(t−1)

)
in (5.9).

4: Set θ(t) = θ̃.
5: Set t = t+ 1.
6: end while
7: return θ(T ).

Table 6: Extended class of Gibbs samplers based on approximate MS with Q =
M−N with N = R and approximate DA. The matrices D and L denote the diagonal
and strictly lower triangular parts of Q, respectively. ω is a positive scalar. Bold
names and acronyms refer to novel samplers which derive from the proposed unifying
framework.

1
2
M = cov(v′|θ) 1

2
M−1 = cov(θ|v′) M = cov(z̃′) MS sampler DA sampler

1
2
D 1

2
D−1 D Hogwild [54] ADAH

Id

2ω

ωId

2

Id

ω
approx. Richardson ADAR

D

2ω

ωD−1

2

D

ω
approx. Jacobi ADAJ

This recursion defines an extended class of approximate MS-based samplers and en-
compasses the Hogwild sampler reviewed in subsection 4.1.2 by taking R = −L−L>.
In addition to the existing Hogwild approach, Table 6 lists two other and new approx-
imate MS approaches resulting from specific choices of the preconditioning matrix R.
They are coined approximate Richardson and Jacobi samplers since the expressions
for M and N are very similar to the ones associated to their exact counterparts, see
Table 2. For those two samplers, note that the approximate precision matrix Q̃ tends
towards 2Q in the asymptotic regime ω → 0. Indeed, for the approximate Jacobi
sampler, we have

Q̃ = Q

(
Id + ω

(
Id
ω
−Q

))

= Q (2Id − ωQ)

→
ω→0

2Q .

In order to retrieve the original precision matrix Q when ω → 0, [9] proposed an
approximate data augmentation strategy which can be related to the work of [105].

In subsection 5.2.1, we showed that exact DA approaches can be rewritten to
recover exact MS approaches. In the following, we will take the opposite path to
show that approximate MS approaches admit approximate DA counterparts, which
are highly amenable to distributed and parallel computations. Using the fact that
z′ = Qµ+z1 +(Q+R)z2 where z1 ∼ N (0d,

1
2 (R+Q)) and z2 ∼ N (0d,

1
2 (R+Q)−1),
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the recursion (5.14) can be equivalently written as

θ̃ = (Q + R)
−1
(
Qµ+ Rθ(t−1) + z1

)
+ z2 .

By introducing an auxiliary variable v′ defined by v′ = Rθ(t−1) + z1, the resulting
two-step Gibbs sampling relies on the conditional sampling steps

v′ | θ ∼ N
(

Rθ,
1

2
(R + Q)

)
,

θ | v′ ∼ N
(

(Q + R)−1(v′ + Qµ),
1

2
(R + Q)−1

)
,

and targets the joint distribution with density π(θ,v′). Compared to exact DA ap-
proaches reviewed in subsection 4.2.1, the sampling difficulty associated to each con-
ditional sampling step is the same and only driven by the structure of the matrix
M = R + Q. In particular, this matrix becomes diagonal for three specific choices
listed in Table 6. These choices lead to three new sampling schemes that we name
ADAH, ADAR and ADAJ since they stand for the DA counterparts of the approxi-
mate MS samplers discussed above. Interestingly, these DA schemes naturally emerge
here without assuming any explicit decomposition Q = Q1 + Q2 or including an ad-
ditional auxiliary variable (as in GEDA). Finally, as previously highlighted, when
compared to their exact counterpart, these DA schemes have the great advantage
of leading to Gibbs samplers suited for parallel computations, hence simplifying the
sampling procedure.

5.3. Gibbs samplers as stochastic versions of the PPA. This section aims
at drawing new connections between optimization and the sampling approaches dis-
cussed in this paper. In particular, we will focus on the proximal point algorithm
(PPA) [90]. After briefly presenting this optimization method, we will show that
the Gibbs samplers based on the proposal (5.9) can be interestingly interpreted as
stochastic counterparts of the PPA. Let assume here that R is positive semi-definite
and define the weighted norm w.r.t. R for all θ ∈ Rd by

(5.15) ‖θ‖2R , θ>Rθ .

The proximal point algorithm (PPA). The PPA [90] is an important and widely
used method to find zeros of a maximal monotone operator K, that is to solve problems
of the form

(5.16) Find θ? ∈ H such that 0d ∈ K(θ?) ,

where H is a real Hilbert space. For simplicity, we will take here H = Rd equipped
with the usual Euclidean norm and focus on the particular case K = ∂f where f is
a lower semicontinuous (l.s.c.), proper, coercive and convex function and ∂ denotes
the subdifferential operator, see Appendix B. In this case, the PPA is equivalent to
the proximal minimization algorithm [68,69] which aims at solving the minimization
problem

(5.17) Find θ? ∈ Rd such that θ? = arg min
θ∈Rd

f(θ) .

This algorithm is called the proximal point algorithm in reference to the work by
Moreau [76]. For readability reasons, we refer to Appendix B for details about this
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Algorithm 5.2 Proximal point algorithm (PPA)

1: Choose an initial value θ(0), a positive semi-definite matrix R and a maximal
number of iterations T .

2: Set t = 1.
3: while t ≤ T do

4: θ(t) = arg min
θ∈Rd

f(θ) +
1

2

∥∥∥θ − θ(t−1)
∥∥∥
2

R
.

5: end while
6: return θ(T ).

algorithm for a general operator K and refer the interested reader to the comprehensive
overview in [90] for more information.

The PPA is detailed in Algorithm 5.2. Note that instead of directly minimizing
the objective function f , the PPA adds a quadratic penalty term depending on the
previous iterate θ(t−1) and then solves an approximation of the initial optimization
problem at each iteration. This idea of successive approximations is exactly the
deterministic counterpart of (5.9) which proposes a new sample based on successive
approximations of the target density π via a Gaussian kernel with precision matrix
R. Actually, searching for the maximum a posteriori estimator under the proposal
distribution P (· | θ(t−1)) with density p(· | θ(t−1)) in (5.9) boils down to solving

(5.18) arg min
θ∈Rd

− log π(θ)︸ ︷︷ ︸
f(θ)

+
1

2

∥∥∥θ − θ(t−1)
∥∥∥
2

R
,

which coincides with step 4 in Algorithm 5.2 by taking f = − log π. This puts a
first emphasis on the tight connection between optimization and simulation that we
already highlighted in previous sections.

The PPA, ADMM and the approximate Richardson Gibbs sampler. An
important motivation of the PPA is also related to the preconditioning idea used in the
unifying model proposed in (5.1). Indeed, the PPA has been extensively used within
the alternating direction method of multipliers (ADMM) [15,32,39] as a preconditioner
in order to avoid high-dimensional inversions [17, 19, 27, 58, 110]. The ADMM [15]
stands for an optimization approach that solves the minimization problem in (5.17)
when g(θ) = g1(Aθ) + g2(θ), A ∈ Rk×d, via the following iterative scheme

z(t) = arg min
z∈Rk

g1(z) +
1

2ρ

∥∥∥z−Aθ(t−1) − u(t−1)
∥∥∥
2

(5.19)

θ(t) = arg min
θ∈Rd

g2(θ) +
1

2ρ

∥∥∥Aθ − z(t) + u(t−1)
∥∥∥
2

(5.20)

u(t) = u(t−1) + Aθ(t) − z(t),(5.21)

where z ∈ Rk is a splitting variable, u ∈ Rk is a scaled dual variable and ρ is a positive
penalty parameter. Without loss of generality4, let assume that g2 is a quadratic
function, that is for any θ ∈ Rd, g2(θ) = (θ − θ̄)>(θ − θ̄)/2. Even in this simple

4If g2 admits a non-quadratic form, an additional splitting variable can be introduced and the
following comments would still hold.
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case, one can notice that the θ-update (5.20) involves a matrix A operating directly
on θ preluding an expensive inversion of a high-dimensional matrix associated to A.
To deal with such an issue, Algorithm 5.2 is considered to solve approximately the
minimization problem in (5.20). The PPA applied to the minimization problem (5.20)
reads

(5.22) θ(t) = arg min
θ∈Rd

1

2
(θ−θ̄)>(θ−θ̄)+

1

2ρ

∥∥∥Aθ − z(t) + u(t−1)
∥∥∥
2

+
1

2

∥∥∥θ − θ(t−1)
∥∥∥
2

R
.

In order to draw some connections with (5.9), we set Q = ρ−1A>A + Id and µ =
Q−1[A>(u(t−1) − z(t))/ρ+ θ̄] and rewrite (5.22) as

(5.23) θ(t) = arg min
θ∈Rd

1

2
(θ − µ)>Q(θ − µ) +

1

2

∥∥∥θ − θ(t−1)
∥∥∥
2

R
.

Note that (1/2)(θ − µ)>Q(θ − µ) stands for the potential function associated to
π in (2.1) and as such (5.23) can be seen as the deterministic counterpart of (5.9).

By defining R = ω−1Id − Q, where 0 < ω ≤ ρ ‖A‖−2 ensures that R is positive
semi-definite, the θ-update in (5.22) becomes (see Appendix B)

(5.24) θ(t) = arg min
θ∈Rd

1

2ω

∥∥∥∥θ − ω
(
Rθ(t−1) + Qµ

)∥∥∥∥
2

Note that (5.24) boils down to solving ω−1θ = Rθ(t−1) + Qµ, which is exactly the
deterministic counterpart of the approximate Richardson Gibbs sampler in Table 6.
This highlights even more the tight links between the proposed unifying framework
and the use of the PPA in the optimization literature. It also paves the way to
novel sampling methods inspired by optimization approaches which are not necessarily
dedicated to Gaussian sampling; this goes beyond the scope of the present article.

6. A comparison of Gaussian sampling methods with numerical sim-
ulations. This section aims at providing readers with a detailed comparison of the
reviewed Gaussian sampling techniques discussed in section 3 and section 4. In partic-
ular, we summarize the benefits and bottlenecks associated to each method, illustrate
some of them on numerical applications and propose an up-to-date selection of the
most efficient algorithms for archetypal Gaussian sampling tasks. General guidelines
resulting from this review and numerical experiments are gathered in Figure 12.

6.1. Summary, comparison and discussion of existing approaches. Ta-
ble 7 lists and summarizes the main features of the sampling techniques reviewed
above. In particular, for each approach, this table recalls its exactness (or not), its
computational and storage costs, the most expensive sampling step to compute, the
possible linear system to solve and the presence of tuning parameters. This table aims
at making a synthesis of the main pros and cons of each class of samplers. Regarding
MCMC approaches, the computational cost associated to the required sampling step
is not taken into account in the column “compt. cost” since it depends upon the
structure of Q. Instead, the column “sampling” indicates the type of sampling step
required by the sampling approach.

Rather than conducting a one-to-one comparison between samplers, we make the
choice of focusing on selected important questions raised by the taxonomy reported
in this table. Concerning more technical or in-depth comparisons between specific
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approaches, we refer the interested reader to the appropriate references, see for in-
stance those highlighted in section 3 and section 4. These questions of interest will
lead to scenarios that will motivate dedicated numerical experiments conducted in
subsection 6.2. Then subsection 6.3 will gather guidelines to choose an appropriate
sampler for a given sampling task. Here are the typical questions. Question 1:

In which scenarios iterative approaches become interesting compared to factorization
approaches?

In section 3, one can notice that square root, CG and PO approaches bypass the
computational and storage costs of factorization thanks to an iterative process of K
cheaper steps, with K ∈ N∗. A natural question is: in which scenarios does the total
cost of K iterations remain efficient when compared to factorization methods? Table 7
tells us that high-dimensional scenarios (d � 1) are in favour of iterative methods
as soon as memory needs of order Θ(d2) become prohibitive. If this storage is not
an issue, iterative samplers become interesting only if the number of iterations K is
such that K � (d+ T − 1)/T . This inequality is verified only in cases where a small
number of samples T is required (T � d), which in turn imposes K � d. Note that
this condition remains similar when a Gaussian sampling step is embedded within a
Gibbs sampler with a varying covariance or precision matrix (see Example 2.1): the
condition on K is K � d, whatever the number T of samples, since it is no longer
possible to pre-compute the factorization of Q.

Question 2: When should we prefer an iterative sampler from section 3 or an MCMC
sampler from section 4?

Table 7 shows that iterative samplers reviewed in section 3 have to perform K
iterations to generate one sample. In contrast, most of MCMC samplers generate
one sample per iteration. However, these samples are distributed according to the
target distribution (or an approximation of it) only in an asymptotic regime, i.e.,
when T →∞ and in practice after a burn-in period. If one considers a burn-in period
of length Tbi whose samples are discarded, MCMC samplers are interesting w.r.t.
iterative ones only if T + Tbi � KT . Since most often K � Tbi, this condition goes
in favour of MCMC methods when a large number T & Tbi of samples is desired.
When a small number T . Tbi/K of samples is desired, one shall prefer iterative
methods. In intermediate situations, the choice depends on the precise number of
required samples T , mixing properties of the MCMC sampler and the number of
iterations K of the alternative iterative algorithm. Question 3: When is it efficient

to use a decomposition Q = Q1+Q2 of the precision matrix in comparison with other
approaches?

Section 3 and section 4 have shown that some sampling methods, such as Al-
gorithm 3.4 and Algorithm 4.5, exploit a decomposition of the form Q = Q1 + Q2

to simplify the sampling task. Regarding the pertubation-optimization approaches,
the main benefit lies in the cheap computation of the vector z′ ∼ N (0d,Q) before
solving the linear system Qθ = z′, see [79] for more details. On the other hand,
MCMC samplers based on exact data augmentation yield simpler sampling steps a
priori and do not require to solve any high-dimensional linear system. However, the
Achille’s heel of MCMC methods is that they only produce samples of interest in the
asymptotic regime where the number of iterations tends towards infinity. For a fixed
number of MCMC iterations, dependent samples are obtained and their quality highly
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depends upon the mixing properties of the MCMC sampler. Numerical experiments
in subsection 6.2 allow discussion on this point.

6.2. Numerical illustrations. This section aims at illustrating the main dif-
ferences between the methods reviewed in section 3 and section 4. The main purpose
is not to give an exhaustive one-to-one comparison between all approaches listed in
Table 7. Instead, these methods are compared in light of three experimental scenarios
that address the questions raised in subsection 6.1. More specific numerical simula-
tions can be found in cited works and references therein. Since the main challenges
of Gaussian sampling are related to the properties of the precision matrix Q, or the
covariance Σ (see subsection 2.2), the mean vector µ is set to 0d and only centered
distributions are considered. For the first two scenarios associated with Questions 1
and 2, the unbiased estimate of the empirical covariance matrix will be used to assess
the convergence in distribution of the samples generated by each algorithm:

(6.1) Σ̂T =
1

T − 1

T∑

t=1

(θ(t) − θ̄)(θ(t) − θ̄)> ,

where θ̄ = T−1
∑T
t=1 θ

(t) stands for the empirical mean. Note that other metrics
(such as the empirical precision matrix) could have been used to assess that these
samples are distributed according to a sufficiently close approximation of the target
distribution N (µ,Q−1). Among available metrics, we chose the one that has been
the most used in the literature, that is (6.1) [9, 31,36].

For the scenario 3 associated with the corresponding last question, the consid-
ered high-dimensional setting will preclude the computation of exact and empirical
covariance matrices. Instead, MCMC samplers will be rather compared in terms of
computational efficiency and quality of the generated chains (see subsection 6.2.3 for
details).

The experimental setting is the following. To ensure fair comparisons, all al-
gorithms have been implemented on equal grounds, with the same quality of opti-
mization. The programming language is Python and all loops have been carefully
replaced by matrix-vector products as far as possible. Simulations have run on a
computer equipped with an Intel Xeon 3.70 GHz processor with 16.0 GB of RAM,
under Windows 7. Among the infinite set of possible examples, we chose exam-
ples of Gaussian sampling problems that often appear in applications and that have
been previously considered in the literature so that they stand for good tutorials
to answer the question raised by each scenario. The code to reproduce all the fig-
ures of this section is available in a Jupyter notebook format available online at
https://github.com/mvono/PyGauss/tree/master/notebooks.

6.2.1. Scenario 1. This first set of experiments addresses Question 1 about it-
erative versus factorization approaches. We consider a sampling problem also tackled
in [81] to demonstrate the performances of Algorithm 3.5 based on the conjugate gra-
dient. For the sake of clarity, we divide this scenario into two sub-experiments.

Comparison between factorization and iterative approaches. In this first
sub-experiment, we compare so-called factorization approaches with iterative ones on
two Gaussian sampling problems. We consider first the problem of sampling from
N (0d,Q

−1) where the covariance matrix Σ = Q−1 is chosen as a squared exponential
matrix that is commonly used in applications involving Gaussian processes [47,63,85,

https://github.com/mvono/PyGauss/tree/master/notebooks
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Fig. 5: Scenario 1. Results of the three considered samplers for the sampling from
N (0d,Σ) in dimension d = 100 with Σ detailed in (6.2).

96,103,108]. Its coefficients are defined by

(6.2) Σij = 2 exp

(
− (si − sj)2

2a2

)
+ εδij , ∀i, j ∈ [d] ,

where {si}i∈[d] are evenly spaced scalars on [−3, 3], ε > 0 and the Kronecker symbol
δij = 1 if i = j and zero otherwise. In (6.2), the parameters a and ε have been set to
a = 1.5 and ε = 10−6 which yields a distribution of the eigenvalues of Σ such that the
large ones are well separated while the small ones are clustered together near 10−6,
see Figure 5 (1st row). We compare the Cholesky sampler (Algorithm 3.1), the ap-
proximate inverse square root sampler using Chebyshev polynomials (Algorithm 3.2)
and the conjugate gradient (CG) based sampler (Algorithm 3.5). The sampler us-
ing Chebyshev polynomials needs Kcheby = 23 iterations on average while the CG
iterations have been stopped once loss of conjugacy occurrs, following the guidelines
of [81], that is at Kkryl = 8. In all experiments, T = 105 samples have been simulated
in dimensions ranging from 1 to several thousands.

Figure 5 shows the results associated to these three direct samplers in dimension
d = 100. The generated samples indeed follow a target Gaussian distribution admit-
ting a covariance matrix close to Σ. This is attested by the small residuals observed
between the estimated covariance and the true ones. Based on this criterion, all ap-
proaches successfully sample from N (0d,Σ). This is emphasized by the spectrum of

the estimated covariance matrices Σ̂T which coincides with the spectrum of Σ for
large eigenvalues. This observation ensures that most of the covariance information
has been captured. However, note that only the Cholesky method is able to recover
accurately all the eigenvalues, including the smallest ones.

Figure 6 compares the previous direct samplers in terms of central processing unit
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Fig. 6: Scenario 1. Comparison between the three considered direct samplers in terms
of CPU time for the sampling from N (0d,Σ) with Σ detailed in (6.2).

(CPU) time. To generate only one sample (T = 1), as expected, one can observe that
the Cholesky sampler is faster than the two iterative samplers in small dimension d
and becomes computationally demanding as d grows beyond a few hundreds. Indeed,
for small d the cost implied by several iterations (Kcheby or Kkryl) within each iterative
sampler dominates the cost of the factorization in Algorithm 3.1 while the contrary
holds for large values of d. Since the Cholesky factorization is performed only once, the
Cholesky sampler becomes attractive over the two other approaches as the sample size
T increases. However, as already pointed out in subsection 2.3, it is worth noting that
pre-computing the Cholesky factor is no longer possible once the Gaussian sampling
task involves a matrix Σ which changes at each iteration of a Gibbs sampler, e.g.,
when considering a hierarchical Bayesian model with unknown hyperparameters (see
Example 2.1). We also point out that a comparison between direct samplers reviewed
in section 3 and their related versions was conducted in [7] in terms of CPU and
GPU times. In agreement with the findings reported here, this comparison essentially
showed that the choice of the sampler in small dimension is not particularly important
while iterative direct samplers become interesting in high-dimensional scenarios where
Cholesky factorization becomes impossible.

We complement our analysis by focusing on another sampling problem which
now considers the matrix defined in (6.2) as a precision matrix instead of a covariance

matrix: we now want to generate samples from N (0d, Σ̃) with Σ̃ = Σ−1. This

sampling problem is expected to be more difficult since the largest eigenvalues of Σ̃
are now clustered, see Figure 7 (1st row). Figure 7 (2nd row) shows that the CG
and Chebyshev samplers fail to capture covariance information as accurately as the
Cholesky sampler. The residuals between the estimated covariance and the true ones
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Fig. 7: Scenario 1. Results of the three considered samplers for the sampling from
N (0d, Σ̃) in dimension d = 100 .

remain important on the diagonal: variances are inaccurately under-estimated. This
observation is in line with [81] who showed that the CG sampler is not suitable for the
sampling from a Gaussian distribution whose covariance matrix has many clustered
large eigenvalues, probably as a consequence of the bad conditioning of the matrix. As
far as the Chebyshev sampler is concerned, this failure was expected since the interval
[λl, λu] on which the function x 7→ x−1/2 has to be well-approximated becomes very

large with an extent of about 106. Of course the relative error between Σ̃ and its
estimate can be decreased by sufficiently increasing the number of iterations Kcheby

but this is possible only at a prohibitive computational cost.
On the choice of the metric to monitor convergence. We saw on Figure 5 and

Figure 7 that the covariance estimation error was small if the large values of the
covariance matrix were captured and large in the opposite scenario. Note that if
the precision estimation error was chosen as a metric, we would have observed similar
numerical results: if the largest eigenvalues of the precision matrix were not captured,
the precision estimation error would have been large. Regarding the CG sampler, Fox
and Parker for instance in [30] highlighted this fact and illustrated it numerically (see
equations (3.1) and (3.2) in that paper).
Comparison between Chebyshev and CG-based samplers. In order to discrim-
inate the two iterative direct samplers Algorithm 3.2 and Algorithm 3.5, we consider
a toy example in dimension d = 15. The covariance matrix Σ is chosen as diagonal
with diagonal elements drawn randomly from the discrete set J1, 5K. As shown in
Figure 8, Σ has repeated and large eigenvalues. Because of that, the CG sampler
stopped at Kkryl = 5 (the number of distinct eigenvalues of Σ) and failed to sample
accurately from N (0d,Σ) while the sampler based on Chebyshev polynomials yields
samples of interest. Hence, although the CG sampler is an attractive iterative option,
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Fig. 8: Scenario 1. Results of the three considered direct samplers for the sampling
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its accuracy is known to be highly dependent on the distribution of the eigenvalues
of Σ which is in general unknown in high-dimensional settings. Preconditioning tech-
niques to spread out these eigenvalues can be used but might fail to reduce the error
significantly as shown in [81].

6.2.2. Scenario 2. Now we turn to Question 2 and compare iterative to MCMC
samplers. In this scenario, we consider a precision matrix Q which is commonly used
to build Gaussian Markov random fields (GMRFs) [92]. Before defining this matrix,
we introduce some notations. Let G = (V, E) an undirected 2-dimensional graph, see
Figure 9, where V stands for the set of d nodes in the graph and E for the edges
between the nodes. We say that nodes i and j are neighbors and write i ∼ j if there
is an edge connecting these two nodes. The number of neighbors of node i is denoted
ni; it is also called the degree. Using these notations, we set Q to be a second order
locally linear precision matrix [47,92] associated to the two-dimensional lattice shown
in Figure 9, which writes

(6.3) Qij = εδij +





φni if i = j
−φ if i ∼ j
0 otherwise

,∀i, j ∈ [d] ,

where we set ε = 1 (actually ε > 0 suffices) and φ > 0 to ensure that Q is a non-
singular matrix yielding a non-intrinsic Gaussian density w.r.t. the d-dimensional
Lebesgue measure, see subsection 2.2. Note that this precision matrix is band-limited
with bandwidth of the order O(

√
d) [92] preluding the possible embedding of Algo-

rithm 2.3 within the samplers considered in this scenario. Related instances of this
precision matrix have also been considered in [31,51,81] in order to show the benefits
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with non-zero correleations, that is 1 ≤ i, j ≤
√
d.

of both direct and MCMC samplers. In the sequel, we consider the sampling from
N (0d,Q

−1) for three different scalar parameters φ ∈ {0.1, 1, 10} leading to three co-
variance matrices Q−1 with different correlation structures, see Figure 9. This will be
of interest since it is known that the efficiency of Gibbs samplers is highly dependent
on the correlation between the components of the Gaussian vector θ ∈ Rd [87, 92].

For this scenario, we set d = 100 in order to provide complete diagnostics for eval-
uating the accuracy of the samples generated by each algorithm. We implemented the
four MCMC samplers based on exact matrix splitting (see Table 2) without consider-
ing a burn-in period (i.e., Tbi = 0). These MCMC algorithms are compared with the
direct samplers based on Cholesky factorization and Chebyshev polynomials, see sec-
tion 3. Since the matrix Q is strictly diagonally dominant, that is |Qii| >

∑
j 6=i |Qij |

for all i ∈ [d], the convergence of the MCMC sampler based on Jacobi splitting is
ensured [31,40]. Based on this convergence property, we can use an optimal value for
the parameter ω appearing in the MCMC sampler based on successive over-relaxation
(SOR) splitting, see Appendix C.

Figure 10 shows the relative error between the estimated covariance matrix and
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the true one w.r.t. the number of samples generated with i.i.d. samplers from sec-
tion 3 and MCMC samplers from section 4. Regarding MCMC samplers, no burn-in
has been considered here to emphasize that these algorithms do not yield i.i.d. sam-
ples from the first iteration compared to samplers reviewed in section 3. This behavior
is particularly noticeable when φ = 10 where one can observe that both Gauss-Seidel,
Jacobi and Richardson samplers need far more samples than Chebyshev and Cholesky
samplers to reach the same precision in terms of covariance estimation. Interestingly,
this claim does not hold for “accelerated” Gibbs samplers such as the SOR (accelerated
version of the Gauss-Seidel sampler) and the Chebyshev accelerated SSOR samplers.
Indeed, for φ = 1, one can note that the latter sampler is as efficient as i.i.d. samplers.
On the other hand, when φ = 10, these two accelerated Gibbs samplers manage to
achieve lower relative covariance estimation error than the Chebyshev sampler when
the number of iterations increases. This behavior is due to the fact that the Chebyshev
sampler involves a truncation procedure and as such provides approximate samples
from N (µ,Q−1), compared to exact MCMC schemes which produce asymptotically
exact samples. These numerical findings match observations made by [31] who ex-
perimentally showed that accelerated Gibbs approaches can be considered as serious
contenders for the fastest samplers in high-dimensional settings compared to i.i.d.
methods.

Table 8 complements these numerical findings by reporting the spectral radius
of the iteration operator M−1N associated to each MCMC sampler. This radius is
particularly important since it is directly related to the convergence factor of the
corresponding MCMC sampler [31]. In order to provide quantitative insights about
the relative performance of each sampler, Table 8 also shows the number of samples
T and corresponding CPU time such that the relative error between the covariance
matrix Σ and its estimate Σ̂T computed from T samples generated by each algorithm
is lower than 5 × 10−2, i.e., a relative error of 5%. Thanks to the small bandwdith
(b = 11) of Q, the covariance matrix M> + N of the vector z̃ appearing in step 3
of Algorithm 4.2 is also band-limited with b = 11 for both Jacobi and Richardson
splitting. Hence Algorithm 2.3 specifically dedicated to band matrix can be used
within Algorithm 4.2 for these two splitting strategies. Although the convergence
of these samplers is slower than that of the Gauss-Seidel sampler, their CPU times
become roughly equivalent. Note that this computational gain is problem dependent
and cannot be ensured in general. Cholesky factorisation appears to be much faster in
all cases when the same constant covariance is used for many samples. Next scenario
will precisely consider high dimensional scenarios where Cholesky factorization is not
possible anymore.

6.2.3. Scenario 3. Finally, we deal with Question 3 above to assess the benefits
of samplers which take advantage of the decomposition structure Q = Q1 +Q2 of the
precision matrix. As motivated in subsection 6.1, we will focus here on exact data
augmentation approaches detailed in subsection 4.2 and compare the latter to iterative
samplers which produce uncorrelated samples, such as those reviewed in section 3.

To this purpose, we consider Gaussian sampling problems in high dimensions
d ∈ [104, 106] for which Cholesky factorization is both computationally and memory
prohibitive when a standard computer is used. This sampling problem commonly
appears in image processing [37,67,78,104] and arises from the linear inverse problem,
usually called deconvolution or deblurring in image processing:

(6.4) y = Sθ + ε ,
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Fig. 10: Scenario 2. Relative error associated to the estimation of the covariance
matrix Q−1 defined by ‖Q−1 − var(θ(1:t))‖2/‖Q−1‖2 w.r.t. the number of iterations
t in Algorithm 4.2, with d = 100 (left: φ = 1, right: φ = 10). We also highlighted the
relative error obtained with an increasing number of samples generated independently
from Cholesky and Chebyshev samplers. The results have been averaged over 30
independent runs. The standard deviations are not shown for readability reasons.

where y ∈ Rd refers to a blurred and noisy observation, θ ∈ Rd is the unknown original
image rearranged in lexicographic order, ε ∼ N (0d,Γ) with Γ = diag(γ1, . . . , γd)
stands for a synthetic structured noise such that γi ∼ 0.7δκ1 + 0.3δκ2 , for all i ∈ [d].
In the sequel, we set κ1 = 13 and κ2 = 40. The matrix S ∈ Rd×d stands for a circulant
convolution matrix associated to the space-invariant box blurring kernel 1

913×3 where
1p×p stands for the p × p-matrix filled with ones. We adopt a smoothing conjugate
prior distribution on θ [61,74,75], already introduced in subsection 2.2 and Figure 2,
which writes N (0d, (

ξ0
d 1d×d + ξ1∆

>∆)−1) where ∆ is the discrete two-dimensional
Laplacian operator; ξ0 = 1 ensures that this prior is non-intrinsic while ξ1 = 1 controls
the smoothing. Bayes’ rule then yields the Gaussian posterior distribution

(6.5) θ | y ∼ N
(
µ,Q−1

)

where

Q = S>∆−1S +
ξ0
d

1d×d + ξ1∆
>∆(6.6)

µ = Q−1S>∆−1y .(6.7)

Sampling from (6.5) is challenging since the size of the precision matrix forbids its
computation. Moreover, the presence of the matrix Γ rules out the diagonalization
of Q in the Fourier basis and therefore the direct use of Algorithm 2.4. In addition,
resorting to MCMC samplers based on exact matrix splitting to sample from (6.5)
raises several difficulties. First, both Richardson and Jacobi-based samplers involve a
sampling step with an unstructured covariance matrix, see Table 2. This step can be
performed with one of the direct samplers reviewed in section 3 but this implies an
additional computational cost. On the other hand, although Gauss-Seidel and SOR-
based MCMC samplers involve a simple sampling step, they require to have access
to the lower triangular part of (6.6). In this high-dimensional scenario, the precision
matrix cannot be easily computed on a standard desktop computer and this lower
triangular part must be found with surrogate approaches. One possibility consists in
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Table 8: Scenario 2. Comparison between Cholesky, Chebyshev and MS-based Gibbs
samplers for d = 100. The samplers have been run until the relative error between
the covariance matrix Q−1 and its estimate is lower than 5× 10−2. For Richardson,
SOR, SSOR and Cheby-SSOR samplers, the tuning parameter ω is the optimal one,
see Appendix C. The results have been averaged over 30 independent runs.

Sampler φ ω ρ(M−1N) T CPU time [s]

Cholesky
0.1 - - 6.3× 104 0.29
1 - - 1.3× 104 0.06
10 - - 2.9× 103 0.01

Chebyshev (K = 21)
0.1 - - 6.4× 104 2.24
1 - - 1.3× 104 0.44
10 - - 2.5× 103 0.19

M
C

M
C

M
S

-b
as

ed
sa

m
p

le
rs

0.1 0.6328 0.3672 6.7× 104 5.44
Richardson 1 0.1470 0.8530 3.8× 104 3.03

10 0.0169 0.9831 4× 104 3.31
0.1 - 0.4235 6.8× 104 5.72

Jacobi 1 - 0.8749 3.9× 104 3.24
10 - 0.9856 4.6× 104 3.69
0.1 - 0.1998 6.5× 104 8.48

Gauss-Seidel 1 - 0.7677 2.5× 104 3.34
10 - 0.9715 2.5× 104 3.32
0.1 1.0494 0.1189 6.4× 104 8.40

SOR 1 1.3474 0.4726 1.6× 104 1.31
10 1.7110 0.7852 5.4× 103 0.71
0.1 0.9644 0.0936 6.4× 104 19.65

SSOR 1 1.3331 0.4503 1.6× 104 4.91
10 1.7101 0.9013 9.3× 103 2.86
0.1 0.9644 0.0246 6.3× 104 9.17

Cheby-SSOR 1 1.3331 0.1485 1.3× 104 1.89
10 1.7101 0.5213 4.5× 103 0.65

computing each non-zero coefficient of this triangular matrix following the matrix-
vector products e>i Qej for all i, j ∈ [d] such that j ≤ i where we recall that ei is the
i-th canonical vector of Rd. These quantities can be pre-computed when Q remains
constant along the T iterations but, again, becomes computationally prohibitive when
Q depends on unknown hyperparameters to be estimated within a Gibbs sampler.

Nonetheless, since the precision matrix (6.6) can be decomposed as Q = Q1 +Q2

with Q1 = S>Γ−1S and Q2 = ξ0
d 1d×d+ξ1∆

>∆, we can apply Algorithm 4.5 to sam-
ple efficiently from (6.5). This algorithm is particularly interesting in this example
since the three sampling steps involve two diagonal and one circulant precision matri-
ces, respectively. For the two first ones, one can use Algorithm 2.2 while Algorithm 2.4
can be resorted to sample from the last one.

In the sequel, we compare Algorithm 4.5 with the CG direct sampler defined by
Algorithm 3.5. Since we consider high-dimensional scenarios, the covariance estimate
in (6.1) cannot be used to assess the convergence of these samplers. Instead, we
compare the respective efficiency of the considered samplers by computing the effective
sample size ratio per second (ESSR). For an MCMC sampler, the ESSR gives an
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Fig. 11: Scenario 3. (left) ESS ratio per second (ESSR); (right) autocorrelation
function ρt shown for d = 104. For both figures, we used the slowest component of θ
as the scalar summary ϑ.

estimate of the equivalent number of i.i.d. samples that can be drawn in one second,
see [55,62]. It is defined as

(6.8) ESSR(ϑ) =
1

T1

ESS(ϑ)

T
=

1

T1


1 + 2

∞∑

t=1

ρt(ϑ)




where T1 is the CPU time in seconds required to draw one sample and ρt(ϑ) is the
lag-t autocorrelation of a scalar parameter ϑ. A variant of the ESSR has for instance
been used in [36] in order to measure the efficiency of an MCMC variant of the PO
algorithm (Algorithm 3.4). For a direct sampler providing i.i.d. draws, the ESSR
(6.8) simplifies to 1/T1 and represents the number of samples obtained in one second.
In both cases, the larger the ESSR, the more computationally efficient is the sampler.

Figure 11 shows the ESSR associated to the two considered algorithms for d ∈
[104, 106]. The latter has been computed by choosing the “slowest” component of θ as
the scalar summary ϑ, that is the one with the largest variance. As in the statistical
software Stan [18], we truncated the infinite sum in (6.8) at the first negative ρt. One
can note that for the various high-dimensional problems considered here, the GEDA
sampler exhibits good mixing properties which, combined with its low computational
cost per iteration: it yields a larger ESSR than the direct CG sampler. Hence, in this
specific case, building on both the decomposition Q = Q1+Q2 of the precision matrix
and an efficient MCMC sampler is highly beneficial compared to directly using Q in
Algorithm 3.5. Obviously, this gain in computational efficiency w.r.t. direct samplers
is not guaranteed in general since GEDA relies on an appropriate decomposition
Q = Q1 + Q2.

6.3. Guidelines to choose the appropriate Gaussian sampling approach.
In this section, we provide the reader with some insights about how to choose the
most appropriate sampler for a given Gaussian simulation task when vanilla Cholesky
sampling cannot be envisioned. These guidelines are formulated as simple binary
questions of a decision tree, see Figure 12, to determine which class of samplers is of
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potential interest. We choose to start5 from the existence of a natural decomposition
Q = Q1 + Q2 since some existing approaches are specifically dedicated to this sce-
nario. Then, we discriminate existing sampling approaches based on several criteria
which have been discussed throughout this review such as the prescribed accuracy,
the number of desired samples or the eigenvalue spectrum of the precision matrix Q.
Regarding sampling accuracy, we highlight sampling approaches that are expected or
not to yield samples with arbitrary accuracy more efficiently than vanilla Cholesky
sampling, see Table 1. MCMC approaches introduced in section 4 and iterative i.i.d.
samplers of section 3 are distinguished depending on the number of desired samples T
and their relative efficiency measured via the burn-in period Tbi for MCMC samplers
and via a truncation parameter K ∈ N∗ for i.i.d. samplers. The last guidelines follow
from remarks highlighted in section 3 and section 4 and from the numerical results in
subsection 6.2.

As already mentioned in subsection 2.3, we emphasize that this review only aims
at referring to the main approaches dedicated to high-dimensional Gaussian sampling
which arises in many different contexts. Therefore, it remains difficult to enunci-
ate precise rules for each context. Thus, the guidelines in Figure 12 correspond to
general principles to guide the practitioner towards an appropriate class of sampling
approaches which is reviewed and complemented by additional references provided in
this paper.

7. Conclusion. Given the ubiquity of the Gaussian distribution and the huge
number of related contributions, this paper aimed at proposing an up-to-date review
of the main approaches dedicated to high-dimensional Gaussian sampling in a single
venue. To this purpose, we first presented the Gaussian sampling problem at stake
as well as its specific and already-reviewed instances. Then we pointed out the main
difficulties when the associated covariance matrix is not structured and the dimen-
sion of the problem increases. We reviewed two main classes of approaches from the
literature, namely approaches derived from numerical linear algebra and those based
on MCMC sampling. In order to help practitioners in choosing the most appropriate
algorithm for a given sampling task, we compared the reviewed methods by highlight-
ing and illustrating their respective pros and cons. Eventually, we provided general
insights about how to select one of the most appropriate samplers by proposing a
decision tree, see Figure 12. On top of that, we also unified most of the reviewed
MCMC approaches under a common umbrella by building upon a stochastic counter-
part of the celebrated proximal point algorithm that is well known in optimization.
This permitted to shed a new light on existing sampling approaches and draw further
links between them. To promote reproducibility, this article is completed by a com-
panion package written in Python named PyGauss6; it implements all the reviewed
approaches.
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Appendix A. Guide to notations. The following table lists and defines all
the notations used in this paper.

N (· | µ,Σ)
Multivariate Gaussian probability distribution
with mean µ and covariance matrix Σ.

M> Transpose of matrix M.

f(d) = O(d) Order of the function f when d→∞ up to constant factors.

f(d) = Θ(d)
There exists C1, C2 ∈ R such that C1d ≤ f(d) ≤ C2d
when d→∞.

det(M) Determinant of the matrix M.

, By definition.

0d Null vector on Rd.

0d×d Null matrix on Rd×d.

Id Identity matrix on Rd×d.

‖·‖ The L2 norm.

diag(v)
The d× d diagonal matrix
with diagonal elements v = (v1, . . . , vd)

>.

Q = M−N Matrix splitting decomposition of the precision matrix Q.

Appendix B. Details and proofs associated to subsection 5.1. First,
we briefly recall some useful definitions associated to monotone operators. For more
information about the theory of monotone operators in Hilbert spaces, we refer the
interested reader to the book [11].

General definitions.

Definition B.1 (Operator). Let the notation 2Rd

stands for the family of all

subsets of Rd. An operator or multi-valued function K : Rd → 2Rd

maps every point
in Rd to a subset of Rd.

Definition B.2 (Graph). Let K : Rd → 2Rd

. The graph of K is defined by

(B.1) gra(K) = {(θ,u) ∈ Rd × Rd | u ∈ K(θ)}.

Definition B.3 (Monotone operator). Let K : Rd → 2Rd

. K is said to be mono-
tone if

(B.2) ∀(θ,u) ∈ gra(K) and ∀(y,p) ∈ gra(K), 〈θ − y,u− p〉 ≥ 0.

Definition B.4 (Maximal monotone operator). Let K : Rd → 2Rd

be monotone.

Then K is maximal monotone if there exists no monotone operator P : Rd → 2Rd

such
that gra(P) properly contains gra(K), i.e., for every (θ,u) ∈ Rd × Rd,

(B.3) (θ,u) ∈ gra(K)⇔ ∀(y,p) ∈ gra(K), 〈θ − y,u− p〉 ≥ 0.

Definition B.5 (Nonexpansiveness). Let K : Rd → 2Rd

. Then K is nonexpansive
if it is Lipschitz continuous with constant 1, i.e, for every (θ,y) ∈ Rd × Rd,

(B.4)
∥∥K(y)− K(θ)

∥∥ ≤ ‖y − θ‖ ,
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where ‖·‖ is the standard Euclidean norm.

Definition B.6 (Domain). Let K : Rd → 2Rd

. The domain of K is defined by

(B.5) dom(K) = {θ ∈ Rd | K(θ) 6= ∅}.

The PPA. For λ > 0, let define the Moreau-Yosida resolvent operator associated to
K as the operator L defined by

(B.6) L = (Id + λK)−1,

where Id is the identity operator. The monotonicity of K implies that L is nonexpansive
and its maximal monotonicity yields dom(L) = Rd [72], where the notation “dom”
stands for the domain of the operator L. Therefore, solving the problem (5.16) is
equivalent to solve the fixed point problem for all θ ∈ Rd,

(B.7) θ = L(θ).

This result suggests that finding the zeros of K can be achieved by building a sequence
of iterates {θ(t)}t∈N such that for t ∈ N,

(B.8) θ(t+1) = (Id + λK)−1(θ(t)).

This iteration corresponds to the PPA with an arbitrary monotone operator K.

Proof of (5.23). Applying the PPA with R = W − ρ−1A>A to (5.20) leads to

θ(t+1) = argmin
θ∈Rd

g2(θ) +
1

2ρ

∥∥∥Aθ − z(t+1) + u(t)
∥∥∥2 + 1

2

∥∥∥θ − θ(t)
∥∥∥2
R

= argmin
θ∈Rd

g2(θ) +
1

2ρ

∥∥∥Aθ − z(t+1) + u(t)
∥∥∥2 + 1

2

〈
R
(
θ − θ(t)

)
,θ − θ(t)

〉

= argmin
θ∈Rd

g2(θ) +
1

2

(
θ>
[
1

ρ
A>A+R

]
θ − 2θ>

[
1

ρ
A>

{
z(t+1) − u(t)

}
+R>θ(t)

])

= argmin
θ∈Rd

g2(θ) +
1

2

(
θ>Wθ − 2θ>

[
Wθ(t) +

1

ρ
A>

{
z(t+1) − u(t) −Aθ(t)

}])

= argmin
θ∈Rd

g2(θ) +
1

2

∥∥∥∥∥θ −
(
θ(t) +

1

ρ
W−1A>

[
z(t+1) − u(t) −Aθ(t)

])∥∥∥∥∥
2

W

.

Appendix C. Details associated to subsection 6.2.2.
The optimal value of the tuning parameter ω for the two matrix splitting schemes

SOR and Richardson are given by

(C.1) ω∗SOR =
2

1 +

√
1− ρ (Id −D−1Q)

2
,

where D stands for the diagonal part of Q. Regarding the MCMC sampler based on
Richardson splitting, we used the optimal value

(C.2) ω∗Richardson =
2

λmin(Q) + λmax(Q)
,
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where λmin(Q) and λmax(Q) are the minimum and maximum eigenvalues of Q, re-
spectively. Finally, for the samplers based on SSOR splitting including Algorithm 4.3,
we used the optimal relaxation parameter

(C.3) ω∗SSOR =
2

1 +
√

2(1− ρ
(
D−1(L + L>)

)
)
,

where L is the strictly lower triangular part of Q.
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[56] J. Kittler and J. Föglein, Contextual classification of multispectral pixel data, Image Vis.
Comput., 2 (1984), pp. 13–29, https://doi.org/10.1016/0262-8856(84)90040-4.

[57] Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE, 86 (1998), pp. 2278–2324, https://doi.org/10.1109/5.
726791.

[58] M. Li, D. Sun, and K. Toh, A Majorized ADMM with Indefinite Proximal Terms for Linearly
Constrained Convex Composite Optimization, SIAM J. Optim., 26 (2016), pp. 922–950,
https://doi.org/10.1137/140999025.

[59] S. Z. Li, Markov Random Field Modeling in Image Analysis, Springer, 3rd ed., 2009.
[60] Y. Li and S. K. Ghosh, Efficient Sampling Methods for Truncated Multivariate Normal and

Student-t Distributions Subject to Linear Inequality Constraints, J. Stat. Theory Pract.,
9 (2015), pp. 712–732, https://doi.org/10.1080/15598608.2014.996690.

[61] A. C. Likas and N. P. Galatsanos, A variational approach for Bayesian blind image de-
convolution, IEEE Trans. Signal Process., 52 (2004), pp. 2222–2233.

[62] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, 2001.
[63] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms, Cambridge Uni-

versity Press, Cambridge, UK, 2003.
[64] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, Academic

Press, Inc., USA, 3rd ed., 2008.
[65] A. Mantoglou and J. L. Wilson, The Turning Bands Method for simulation of random

fields using line generation by a spectral method, Water Resour. Res., 18 (1982), pp. 1379–
1394, https://doi.org/10.1029/WR018i005p01379.

[66] Y. Marnissi, D. Abboud, E. Chouzenoux, J.-C. Pesquet, M. El-Badaoui, and
A. Benazza-Benyahia, A Data Augmentation Approach for Sampling Gaussian Models
in High Dimension, in Proc. European Signal Process. Conf. (EUSIPCO), Coruna, Spain,
2019.

[67] Y. Marnissi, E. Chouzenoux, A. Benazza-Benyahia, and J.-C. Pesquet, An Auxiliary
Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension, Entropy,
20 (2018), https://doi.org/10.3390/e20020110.
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