
HAL Id: hal-03319127
https://hal.science/hal-03319127

Submitted on 11 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An accuracy comparison of piecewise linear
reconstruction techniques for the characteristic finite

volume method for two-dimensional convection-diffusion
equations

Kanokwarun Para, Bubpha Jitsom, Robert Eymard, Surattana Sungnul,
Sekson Sirisubtawee, Sutthisak Phongthanapanich

To cite this version:
Kanokwarun Para, Bubpha Jitsom, Robert Eymard, Surattana Sungnul, Sekson Sirisubtawee, et
al.. An accuracy comparison of piecewise linear reconstruction techniques for the characteristic fi-
nite volume method for two-dimensional convection-diffusion equations. Journal of Applied Math-
ematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2021, 101 (12),
�10.1002/zamm.201900245�. �hal-03319127�

https://hal.science/hal-03319127
https://hal.archives-ouvertes.fr


An accuracy comparison of piecewise linear reconstruction

techniques for the characteristic finite volume method for

two-dimensional convection-diffusion equations

Kanokwarun Para∗, Bubpha Jitsom∗, Robert Eymard†,
Surattana Sungnul∗, Sekson Sirisubtawee∗and Sutthisak Phongthanapanich‡

August 11, 2021

Abstract

In this paper, we apply the characteristic finite volume method (CFVM) for solving a
convection-diffusion problem on two-dimensional triangular grids. The finite volume method
is used to discretize the equation while the finite element method is applied to estimate
the gradient quantities at cell faces. The numerical analysis of the convergence has been
implemented for the CFVM in one-dimension. The approximate L2 norm of the error is
derived to determine the errors for the approximate solution. The accuracy of four piecewise
linear reconstruction techniques, namely, Frink, Holmes-Connell, Green-Gauss, and least-
squares methods are investigated on structured triangular grids. Numerical evidence shows
that the least-squares method is the most accurate of all methods for smooth initial condition
problems. For discontinuous initial condition problems, the Frink and the Holmes-Connell
methods give a spurious oscillating solution in the vicinity of the discontinuity upstream of
the discontinuity, and the Green-Gauss and least-squares methods give a spurious oscillating
solution in the vicinity of the discontinuity downstream of the discontinuity. Moreover, the
amplitude of the oscillation could be amplified on the finer grid sizes.

Keywords: characteristic finite volume method, convection-diffusion equation, piecewise linear
reconstruction, two-dimensional triangular grid

1 Introduction

Research on numerical methods for solving convection-diffusion equations is of great importance
since these equations are a basis for describing physical phenomena where particles, energy,
or other physical quantities are transferred inside a physical system due to diffusion and con-
vection processes. These equations are also used to describe advection-diffusion processes in
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environmental science, e.g., pollutant transport in the atmosphere, oceans, rivers, or groundwa-
ter [25, 12, 5]. Convection is usually defined as the movement of a fluid due to heat, advection
is usually defined as the movement of a substance due to the movement of a fluid transport
medium, and diffusion refers to the dispersion of some substance through the physical domain
of some other substance, e.g., the dispersion of a pollutant through a river. Generally, the scale
of the diffusion is smaller by several orders of magnitude compared to the size of the advective
flow field. The accurate simulation of such processes requires numerical methods that are able
to compute if sharp layers exist without the occurrence of spurious oscillations.
Many methods have been proposed to overcome the instability and inaccuracy of numerical
solutions of convection-diffusion equations. Methods which are usually used to solve convection-
diffusion equations include the finite difference method, the finite element method, and the finite
volume method. The principle of the finite difference method is to select some discretization
points, then to assign one discrete unknown and write one equation per discretization point [18].
Also, the derivatives of the unknown are replaced by finite differences using a Taylor-series
expansion. The finite difference method becomes difficult to use when the coefficients involved
in the equation are discontinuous. For the finite element method, the domain of the convection-
diffusion equation is discretized into a set of elements and the method of weighted residuals is
usually applied to obtain a set of equations for each element, which are then assembled to form
the system of equations. The solution at the element nodes are then obtained by solving the
system of equations [19, 35]. The accuracy and the stability of this method needs to be further
improved to achieve an accurate transient convection-diffusion solution [8]. For the finite volume
method, the domain is discretized into a set of regions called control volumes. The divergence
theorem is then applied to derive the system of equations. Higher-order temporal and spatial
discretizations can also be used to obtain a more accurate solution. In the finite-volume method,
discontinuities of coefficients are not a problem if the mesh is chosen so that the discontinuities
of the coefficients occur on the boundaries of the control volumes [9].
In recent years, many researchers have used finite volume methods. Some examples of this re-
search are as follows. In 2003, Aboubacar and Webster [1] proposed a cell-vertex hybrid finite
volume-element method that is implemented on triangles and applied to the numerical solution
of Oldroyd model fluids in contraction flows. They found that a linear finite volume stress rep-
resentation with discontinuous stress gradients, and incorporating locally reduced quadrature at
the re-entrant corner could enhance the stability properties of the numerical scheme. In 2006,
Pudykiewicz [24] derived a finite volume algorithm for obtaining the solution of an advection-
diffusion equation on a sphere based on the principle of semi-discretization. The monotonicity
of the scheme was achieved with explicit adaptive dissipation. In 2008, Gao and Yuan [13] pre-
sented a characteristic finite volume element method for multiple space, nonlinear, convection-
dominated diffusion problems. The calculus of variations, the commutating operator, and the
theory of prior estimates was adopted in their proposed scheme. In 2011, Ten Thije Boonkkamp
and Anthonissen [28] proposed a finite volume scheme for advection-diffusion-reaction equa-
tions. Their scheme included a new integral representation for the flux of the one-dimensional
advection-diffusion-reaction equation which was derived from the solution of a local boundary
value problem for the entire equation including the source term. In 2012, Zhang et al. [34]
presented a fourth-order finite volume method for solving the advection-diffusion equation with
an AMR-enabled multigrid solver. The fourth-order Runge-Kutta method was used for the time
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integration. The fourth-order accuracy was used to approximate face-averaged values from cell-
averaged values. In 2013, Filimon et al. [10] proposed an iterated defect correction approach
to achieve higher-order accuracy for the approximation of steady-state solutions. The scheme
applied a posteriors to estimate the local discretization error of the lower-order finite volume
scheme. This estimate was then used to iteratively shift the solution to higher-order accuracy
by polynomial reconstruction. In 2013, Chen et al. [6] presented the concept of a two-grid fi-
nite volume element method combined with a modified method of characteristics for analyzing
semi-linear, time-dependent, advection-dominated diffusion equations in two space dimensions.
The solution of a nonlinear system on the fine-grid space was reduced to the solution of non-
linear and linear systems on the coarse-grid and the fine-grid, respectively. In 2014, Arachchige
and Pettet [2] introduced a new method for numerically solving the advection-reaction-diffusion
systems in one space dimension based on the usual finite volume method with a third order un-
winding scheme for discretizing the advection term in space. A new linearization technique for
the temporal integration of the nonlinear source terms was proposed to provide a very effective
method in terms of computational cost for the simulations. In 2015, Liu et al. [17] applied a
two-grid algorithm to decompose a nonlinear advection-dominated diffusion-reaction equation
into a small nonlinear system on a coarse grid and a linear system on a fine grid, as previously
proposed by Chen et al. [6]. The modified upwind finite volume element method was then used
to approximate the solution of the systems. In 2016, Tambue [27] applied a finite volume method
with a two-point flux approximation on regular meshes to solve an advection-diffusion-reaction
problem with a nonlinear reaction term. Exponential time differencing of order one was then
applied for temporal discretization. In 2017, Lin and Zhang [16] proposed a high-order finite-
volume scheme for solving a steady-state advection-diffusion equation with nonlinear Robin
boundary conditions. A generic algorithm for generating third-order, fourth-order, and even
higher-order explicit ghost-filling formulas was used to enforce the nonlinear Robin boundary
conditions in multiple dimensions under the framework of finite volume methods. In 2017, Yang
and Tine [33] proposed a hybrid finite volume scheme where the construction of the numerical
flux appeared as a combination of the WENO and Anti Dissipative Method fluxes for transport
type equations. This property of the numerical flux is very suitable for deriving the long term
asymptotic behavior of the solution of population dynamics models as previously shown in nu-
merical simulations of polymerization/depolymerization type models. In 2018, Xu [32] proposed
a modified finite volume method to solve convection-diffusion-reaction problems. The scheme
was much more accurate and stable than the conventional finite volume method without widen-
ing the computational stencil. Some undetermined coefficients were introduced in discretizing
the equation and then determined analytically by making the truncation error of the numerical
scheme vanish and by expressing the higher order derivatives of the unknown function with lower
order ones through the governing equation. Recently, Lan et al. [15] proposed a new positive
finite volume scheme for two-dimensional convection-diffusion equations on deformed meshes.
The convective flux was approximated using available information of the diffusive flux to keep
the upwind property and obtain second-order accuracy. This method did not need to introduce
any slope limiting technique.
The outline of this paper is as follows. In section 2, we summarize an explicit characteristic-
based finite volume element method developed by Phongthanapanich and others that can pro-
vide stabilized numerical solutions for pure advection and advection-dominated diffusion prob-
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lems [20, 13, 21, 22, 23]. The idea of this method is to derive a convection-diffusion equation
along a characteristic path. The explicit cell-centered finite volume method is then employed
to discretize this characteristic-based equation. The weighted residuals finite element method is
then used to approximate cell-face gradient quantities. In Section 3, we analyze the convergence
of the method for a one-dimensional example. In section 4, we examine the accuracy and ro-
bustness of four piecewise linear reconstruction techniques, e.g., Frink [11], Holmes-Connell [14],
Green-Gauss [4], and least-squares methods [3] on structured triangular grids for three test
cases. These cases consist of (1) mixing of hot with cold fronts [20, 29], (2) rotation of a
Gaussian pulse [22], and (3) triangular wave flow [29]. Finally, in section 5, we give conclusions.

2 The Numerical Scheme

2.1 The characteristic unsteady convection-diffusion equation

The governing partial differential equation for the two-dimensional unsteady convection-diffusion
problem is

∂φ

∂t
+∇ · (vφ− ε∇φ) = 0 in Ω× T,

φ(x, 0) = φ0(x) x ∈ Ω,Ω ⊂ R2,
(1)

where φ is the scalar quantity, v = v(x) is the given convection velocity vector, ε ≥ 0 is the
diffusion coefficient, and t ∈ (0, T ] for T <∞. The boundary conditions are

φ = gD in ∂ΩD,

ε
∂φ

∂n
= gN in ∂ΩN ,

(2)

with ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD ∪ ∂ΩN = ∅.
If a moving coordinate is assumed along the path of the characteristic wave, x′ with a speed of
v, the change of variable x to x′ is expressed by dx′ = dx - vdt. By applying a characteristic
approximation to trace advection in time as explained in Refs.[20, 22, 23] to Equation (1), we
obtain

∂φ

∂t
−∇′ ·

(
ε∇′φ

)
= 0, (3)

where all terms are to be evaluated at x′=x′(t). We then discretize the time with time steps ∆t
and define φn = φ(tn), where tn = n∆t, n = 0, 1, 2, . . .. Then, by carrying out a Taylor-series
expansion, the convection term reappears in the equation along with an additional second-
order term. This term acts as a smoothing operator that reduces the oscillations arising from
the spatial discretization of the convection term. The fully explicit characteristic unsteady
convection-diffusion equation is then given by

φn+1 − φn = −∆t (v · ∇φn) + ε∇ · ∇φn +
(∆t)2

2
v · ∇ (v · ∇φn) . (4)

Together with the use of the divergence-free assumption (∇·v = 0), Equation (4) can be written
finally in the conservation form as

φn+1 − φn = −∆t [∇ · (vφn − ε∇φn)] +
(∆t)2

2
∇ · [v (v · ∇φn)] . (5)

4



2.2 The finite volume method

The computational domain is first discretized into a collection of non-overlapping control volumes
Ωi = Ω, i = 1, ..., N, that completely cover the domain such that Ω = ∪Ni=1Ωi,Ωi 6= 0 and
Ωi ∩Ωj = 0 if i 6= j. To obtain the finite volume equation, Equation (5) is then integrated over
the control volume Ωi to yield∫

Ωi

(
φn+1 − φn

)
dA =

∫
Ωi

(
−∆t [∇ · (vφn − ε∇φn)] +

(∆t)2

2
∇ · [v (v · ∇φn)]

)
dA. (6)

Then the divergence theorem is applied to the spatial terms to yield a fully explicit characteristic-
based scheme for solving Equation (5) in the form

φn+1
i = φni −

∆t

| Ωi |

Nf∑
j=1

| Γij | n̂ij ·
[(
vnijφ

n
ij − ε∇φnij

)
− ∆t

2
vnij (vni · ∇φni )

]
, (7)

where Nf is the number of adjacent cell faces, |Ωi| is the measure of Ωi, Γij is the segment of
the boundary ∂Ωi between the two adjacent control volumes Ωi and Ωj and |Γij | is the measure
of Γij . The quantities at the time tn are defined by

φni = φi(t
n) =

1

|Ωi|

∫
Ωi

φ(x, tn)dx, (8)

and
φnij = φij(t

n). (9)

Finally, the scalar quantities at the cell faces, φnij , are approximated by applying a Taylor-series
expansion in space such that

φnij =

{
φni + (xij − xi) · ∇φni , vnij · n̂ij ≥ 0

φnj + (xij − xj) · ∇φnj , otherwise
, (10)

where vnij is the scaled normal velocity at Γij , and | Γcij | is the cell characteristic length.
Moreover, the gradient term, ∇φnij , is approximated by the weighted residuals method which
is commonly used in the finite element technique [29], and the time-step within each control
volume i for Equation (7) is determined from

∆t = C min
i

(
| Ωi |

maxj=1,...,Nf
| vnij |

,
| Γcij |2

2ε

)
, (11)

where 0 < C ≤ 1.
The upwind schemes require flow states to be specified on the left and the right of a control
surface. The first-order accurate spatial discretization gives a constant solution inside each
control volume. The piecewise linear reconstruction must be applied to each control volume to
achieve second-order accuracy. The main aim of this research is to compare the accuracy and
robustness of four piecewise linear reconstruction techniques, e.g., Frink, Holmes-Connell, Green-
Gauss, and least-squares methods for a computational domain discretized into a triangular grid.

5



Frink’s linear-reconstruction method [11] can explicitly evaluate the gradient for a triangular
grid due to the invariant geometric properties of the grid, e.g., a line from a node through the
cell-centroid will intersect the midpoint of the opposite face, and the distance from the cell-
centroid to the face-midpoint is one-third of the distance from the face-midpoint to the opposite
node. The scalar values at the cell-face of two adjacent grids (φL, φR) are calculated by

φL = φi +
Ψi
3

[
(φi1 + φi2)

2
− φi3

]
,

φR = φj +
Ψj
3

[
(φj1 + φj2)

2
− φj3

]
,

(12)

where φi and φj are assumed to be the solutions at the cell-centroids, φik, φjk, where k = 1, 2, 3,
are the solutions at the nodes of the left and right cells, respectively, and Ψi and Ψj are limiter
functions [4, 30, 26]. The value at a node may be computed by inverse-distance weighting or by
the pseudo-Laplacian method [11]. The inverse-distance weighting from a cell-centroid to the
cell nodes that preserves the principle of positivity can be expressed as

φn =

Nc∑
j=1

φj
|rj |

/

Nc∑
j=1

1

|rj |
, (13)

where φj are the surrounding cell-centered values of the node n , |rj | is the distance from the
cell-centroid to node n, and Nc is the number of the surrounding cells.
Otherwise, the pseudo-Laplacian method proposed by Holmes and Connell [14] can be used to
determine nodal quantities such that

φn =

Nc∑
j=1

(wjφj)/

Nc∑
j=1

φj , (14)

where the weights wj are determined from

wj = 1 + λx(xj − xn) + λy(yj − yn), (15)

and the Lagrange multipliers, λx and λy are defined by

λx =

Nc∑
j=1

(xj − xn)(yj − yn)

Nc∑
j=1

(yj − yn)−
Nc∑
j=1

(yj − yn)2
Nc∑
j=1

(xj − xn)

Nc∑
j=1

(xj − xn)2
Nc∑
j=1

(yj − yn)2 −

 Nc∑
j=1

(xj − xn)(yj − yn)

2 ,

λy =

Nc∑
j=1

(xj − xn)(yj − yn)

Nc∑
j=1

(xj − xn)−
Nc∑
j=1

(xj − xn)2
Nc∑
j=1

(yj − yn)

Nc∑
j=1

(xj − xn)2
Nc∑
j=1

(yj − yn)2 −

 Nc∑
j=1

(xj − xn)(yj − yn)

2 .

(16)
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The Green-Gauss approach [4] approximates the gradient of φ as the surface integral of the
product of φ with an outward unit normal vector over a control volume such that

∇φ =
1

Ω

∫
∂Ω
φndS. (17)

For the center-centered scheme, the gradient at the center of cell i of the triangular grid [4] can
be obtained from

∇φi =
1

2Ω

3∑
k=1

(φi + φk)nik∆Sik, (18)

where the summation extends over all faces of the cell with volume Ω. The nik is the outward
unit normal vector and ∆Sik is the k-face area of the cell i.
Lastly, the least-squares approach [3] is based on the use of a Taylor-series expansion for each
edge which is incident to the cell-centered i. The linear reconstruction term along the common
edge between control volume i and j can be computed as

∇φi · rij = φj − φi, (19)

where rij is the vector from cell-centered i to j. By applying Equation (19) to three neighboring
cells, we obtain the following system of linear equations∆xi1 ∆yi1

∆xi2 ∆yi2
∆xi3 ∆yi3

{ ∂φi
∂x
∂φi
∂y

}
=


φ1 − φi
φ2 − φi
φ3 − φi

 . (20)

Finally, it is worth comparing the finite volume method (FVM) and discontinuous Galerkin
method (DGM) concerning their efficiency. Moreover, DGM gives error estimates in stronger
norms and with less regularity [7]. They are identical to finite volume schemes in the case of
the formal first order (degree k = 0), and their computational costs are the same. However,
for higher-order, DGM uses nonconformal ansatz functions whose restrictions to single cells are
higher-degree polynomials. DGM with k = 1 may yield similar results as a piecewise linear
reconstruction technique, but the effort for computing the fluxes for DGM is higher than for
FVM.

3 Convergence of the characteristic finite volume method for
one-dimensional convection

The analysis of the convergence of the scheme defined by (7) presents a few difficulties, that we
analyse for the case of a one-dimensional problem and a non-uniform mesh. Let Ω = R. We
intend to approximate the pure convection equation with a constant convection velocity v > 0,

∂φ

∂t
+∇ · (vφ) =

∂φ

∂t
+ v

∂φ

∂x
= 0. (21)

We remark that, defining φini(x) = φ(x, 0) for all x ∈ R, the solution of (21) is given by
φ(x, t) = φini(x− vt).
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Although we don’t include a diffusion term in the continuous equation, we include in the scheme
a diffusion term, which is vanishing with the size of the mesh, and which plays a central role in
the convergence proof. We assume that an increasing sequence (xi+ 1

2
)i∈Z ⊂ R is given such that

limi→±∞ xi+ 1
2

= ±∞, we define hi = xi+ 1
2
−xi− 1

2
. We assume that there exist h > 0, measuring

the size of the mesh, and β ∈ (1,+∞), measuring the regularity of the mesh, such that

βh ≥ hi ≥
1

β
h for all i ∈ Z. (22)

This means that the ratio of the sizes of any pair of control volumes is bounded by below and
above. We then define the mesh (Ωi)i∈Z by Ωi = (xi− 1

2
, xi+ 1

2
). The center of gravity of Ωi is

xi = 1
2(xi− 1

2
+ xi+ 1

2
), and there holds |Ωi| = hi. Then, for i ∈ Z, we let xij = xi± 1

2
for j = i± 1.

The initial condition is approximated by

∀i ∈ Z, φ0
i = φini(xi), (23)

and Equation (7) becomes, in this 1D case,

∀i ∈ Z, ∀n ∈ N, |Ωi|
φn+1
i − φni

∆t
+
∑
j=i±1

|Γij |n̂ij
(
vnij
(
φnij −

∆tvni
2
∇φni

)
− ε∇φnij

)
= 0. (24)

with |Γij | = 1, vnij = v, vni = v, n̂ij = ±1 for j = i± 1, and

∇φni :=
φni+1 − φni−1

xi+1 − xi−1
, ∇φnij :=

φnj − φni
xj − xi

.

The vanishing diffusion term is defined by ε = vβh. For j = i + 1, using the fact that the
upwinding direction is from i to i+ 1, we can write

φnij = φni + (xij − xi)∇φni = φni +
hi
2

φni+1 − φni−1

xi+1 − xi−1
.

We then set

φn
i+ 1

2

:= φnij −
∆tv

2
∇φni −

ε

v
∇φnij = φni + αi(φ

n
i+1 − φni−1) + θi+ 1

2
(φni − φni+1), (25)

with αi = hi−∆tv
2(xi+1−xi−1) and θi+ 1

2
= βh

xi+1−xi . In the following, we will assume that

v∆t ≤ Ccflh, (26)

for the value Ccfl (which only depends on β) defined below in (34). Using Ccfl ≤ 1
β , xi+1 − xi =

1
2(hi + hi+1) and xi+1 − xi−1 = 1

2(hi−1 + hi+1) + hi, we obtain

0 ≤ αi ≤
1

2
and 1 ≤ θi+ 1

2
≤ β2. (27)
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From (25) and (24), we get

∀i ∈ Z, ∀n ∈ N, hi
φn+1
i − φni

∆t
+ v(φn

i+ 1
2

− φn
i− 1

2

) = 0. (28)

Note that (28) makes clear the finite volume structure of Scheme (24) and that, due to the
negative coefficient in the dependence of φn

i− 1
2

with respect to φni−2, no L∞ bound can be proved

on the scheme.
We can state the following convergence result.

Theorem 3.1 Let us assume that, letting φ be the solution to (21) and defining φini(x) = φ(x, 0)
for all x ∈ R, the function φini ∈ C2(R) has a compact support. Let T > 0 and β ∈ (1,+∞) be
given, and let h ∈ (0, 1) and N ∈ N? be given such that ∆t = T/N satisfies (26) where Ccfl is
defined by (34). For a given mesh defined as above, and satisfying (22), let φni , for all i ∈ Z and
n ∈ N, be the solution of Scheme (23), (25) and (28). Then there exists C > 0, only depending
on T , v, φini and β such that

‖eN‖L2 ≤ Ch, (29)

where ‖eN‖L2, the approximate L2 norm of the error at time T , is defined by

‖eN‖2L2 =
∑
i∈Z

hi(φ
N
i − φ(xi, T ))2.

Proof
Let us compute the consistency error, obtained by replacing φni in the scheme by φ̂ni := φ(xi, n∆t).
We obtain

∀i ∈ Z, ∀n ∈ N, hi
φ̂n+1
i − φ̂ni

∆t
+ v(φ̂n

i+ 1
2

− φ̂n
i− 1

2

) = vhiR
n
i , (30)

with

φ̂n
i+ 1

2

= φ̂ni +αi(φ̂
n
i+1− φ̂ni−1)+θi+ 1

2
(φ̂ni − φ̂ni+1), φ̂n

i− 1
2

= φ̂ni−1 +αi−1(φ̂ni − φ̂ni−2)+θi− 1
2
(φ̂ni−1− φ̂ni ).

Expressing φ̂nj = φini(xj − vn∆t), for any j = i − 2, . . . , i + 1, as a Taylor expansion from
xi,0 = xi − vn∆t, we find that

φ̂n
i+ 1

2

= φini(xi,0) + (
1

2
(hi −∆tv)− βh)φ′ini(xi,0) + hiR

n
i,+

and

φ̂n
i− 1

2

= φini(xi,0) + (
1

2
(−hi −∆tv)− βh)φ′ini(xi,0) + hiR

n
i,−,

with
∀i ∈ Z, ∀n ∈ N, |Rni,±| ≤ C0,xh,

for some C0,x > 0, depending only on a bound of |φ′′ini|, on v and on β. This leads to

v(φ̂n
i+ 1

2

− φ̂n
i− 1

2

) = hiv(φ′ini(xi,0) +Rni,+ −Rni,−).
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We have
φ̂n+1
i − φ̂ni

∆t
= −vφ′ini(xi,0) + vRn,+i ,

with
∀i ∈ Z, ∀n ∈ N, |Rn,+i | ≤ C0,t∆t,

for some C0,t > 0, depending only on a bound of |φ′′ini| and on v. Gathering the above results,
we get that there exists C0 > 0, depending only on a bound of |φ′′ini|, on v and on β, such that

∀i ∈ Z, ∀n ∈ N, |Rni | ≤ C0h.

Accounting for the fact that the support of φini is compact, and assuming that h ≤ 1, we get
that there exists C1 > 0, only depending on a bound of |φ′′ini|, on the support of φini, on v and
on β, such that

∀n ∈ N,
∑
i∈Z

hi (Rni )2 ≤ C1h
2. (31)

We then denote eni = φ̂ni − φni , and we obtain, by subtracting (28) from (30),

∀i ∈ Z, ∀n ∈ N, hi
en+1
i − eni

∆t
+ v(en

i+ 1
2

− en
i− 1

2

) = vhiR
n
i , (32)

with

en
i+ 1

2

= eni + αi(e
n
i+1 − eni−1) + θi+ 1

2
(eni − eni+1), en

i− 1
2

= eni−1 + αi−1(eni − eni−2) + θi− 1
2
(eni−1 − eni ),

and
∀i ∈ Z, e0

i = 0. (33)

Let us notice that, due to the compact support assumption, for any n ∈ N, the number of i ∈ Z
such that eni 6= 0 or Rni 6= 0 is finite. We multiply (32) by ∆teni , and we sum on i ∈ Z and on
n = 0, . . . , N − 1. This leads to T1 + T2 = T3 with

T1 =

N−1∑
n=0

∑
i∈Z

hi(e
n+1
i − eni )eni ,

T2 = ∆tv
N−1∑
n=0

∑
i∈Z

(en
i+ 1

2

− en
i− 1

2

)eni ,

and

T3 = ∆tv
N−1∑
n=0

∑
i∈Z

hie
n
i R

n
i .

We have, thanks to a discrete integration by parts, that

T2 = ∆tv
N−1∑
n=0

∑
i∈Z

en
i+ 1

2

(eni − eni+1).

10



Since there holds

eni (eni − eni+1) =
1

2
(eni )2 − 1

2
(eni+1)2 +

1

2
(eni − eni+1)2,

we get

T2 = ∆tv

N−1∑
n=0

∑
i∈Z

(
(
1

2
+ θi+ 1

2
− αi)(eni − eni+1)2 + αi(e

n
i − eni−1)(eni − eni+1)

)
.

Using the inequality

(eni − eni−1)(eni − eni+1) ≥ −1

2
((eni − eni−1)2 + (eni − eni+1)2),

we obtain, using (27),

T2 ≥ ∆tv

N−1∑
n=0

∑
i∈Z

(
1

2
+ θi+ 1

2
− αi −

1

2
(αi + αi+1))(eni − eni+1)2 ≥ 1

2
∆tv

N−1∑
n=0

∑
i∈Z

(eni − eni+1)2.

Using the relation

(en+1
i − eni )eni =

1

2
(en+1
i )2 − 1

2
(eni )2 − 1

2
(en+1
i − eni )2,

we get

T1 =
∑
i∈Z

hi
2

(eNi )2 −
N−1∑
n=0

∑
i∈Z

hi
2

(en+1
i − eni )2.

We now use (32) and (27). We get

hi|en+1
i − eni | ≤ v∆t

(
β2|eni − eni+1|+ (

3

2
+ β2)|eni − eni−1|+

1

2
|eni−1 − eni−2|+ hi|Rni |

)
.

Applying the Cauchy-Schwarz inequality, we obtain

− hi(en+1
i − eni )2 ≥ −v

2∆t2

hi
(2 + 2β2 + hi)

×
(
β2(eni − eni+1)2 + (

3

2
+ β2)(eni − eni−1)2 +

1

2
(eni−1 − eni−2)2 + hi(R

n
i )2
)
.

This yields, under the condition h < 1,

T1 ≥
∑
i∈Z

hi
2

(eNi )2 − βv2∆t2

2h
(2 + 2β2 + β)

(
(2 + 2β2)

N−1∑
n=0

∑
i∈Z

(eni − eni+1)2 +

N−1∑
n=0

∑
i∈Z

hi(R
n
i )2
)
.

We now choose Ccfl in (26) such that the terms in (eni − eni+1)2 in T1 + T2 are non-negative.
Indeed, there holds

v∆t

2
− βv2∆t2

2h
(2 + 2β2 + β)(2 + 2β2) ≥ 0,

11



under condition (26), provided that

Ccfl =
1

β(2 + 2β2 + β)(2 + 2β2)
which is such that Ccfl <

1

β
. (34)

We thus obtain the existence of C2, only depending on β such that

T1 + T2 ≥
∑
i∈Z

hi
2

(eNi )2 − C2v∆t
N−1∑
n=0

∑
i∈Z

hi(R
n
i )2.

Gathering the above relations, we obtain∑
i∈Z

hi
2

(eNi )2 − C2v∆t
N−1∑
n=0

∑
i∈Z

hi(R
n
i )2 ≤ v∆t

N−1∑
n=0

∑
i∈Z

hi|eni ||Rni |.

We apply the inequality ab ≤ 1
2(a2 + b2) to the right-hand-side of the above inequality, and we

multiply by 2, which yields∑
i∈Z

hi(e
N
i )2 ≤ v∆t

N−1∑
n=0

∑
i∈Z

hi(e
n
i )2 + (1 + 2C2)v∆t

N−1∑
n=0

∑
i∈Z

hi(R
n
i )2.

Applying (31), we deduce∑
i∈Z

hi(e
N
i )2 ≤ v∆t

N−1∑
n=0

∑
i∈Z

hi(e
n
i )2 + (1 + 2C2)vTC1h

2.

We remark that all the preceding inequalities hold, replacing N by any value in {1, . . . , N}.
Therefore we can apply Lemma 3.1, and we obtain∑

i∈Z
hi(e

N
i )2 ≤ evT (1 + 2C2)vTC1h

2.

This proves (29), and concludes the proof of the theorem.

Theorem 3.1 (Discrete Gronwall lemma) Let N ∈ N?, T > 0 and ∆t = T/N . Let b ≥ 0
and v > 0 be given, and let (an)n=0,...,N be non-negative real values with a0 = 0 and

an ≤ v∆t

n−1∑
k=0

ak + b for n ∈ {0, . . . , N}

Then
aN ≤ bevT .

Proof
We set An =

∑n−1
k=0 ak for n = 1, . . . , N and A0 = 0. We then have

An −An−1 ≤ v∆tAn−1 + b,

and therefore An ≤ (1 + v∆t)nA0 + b((1+v∆t)n−1)
1+v∆t−1 = b((1+v∆t)n−1)

v∆t ≤ b(evT−1)
v∆t since A0 = 0 (recall

that (1 + x
N )n ≤ ex for x ≥ 0 and n ≤ N). This finally leads to

aN ≤ v∆tAN + b ≤ b(evT − 1) + b = bevT .

12



4 Test Problems

In this section, three examples of pure convection and convection-dominated diffusion problems
are examined to evaluate the accuracy and robustness of four piecewise linear reconstruction
methods. These examples are (1) the mixing of hot with cold fronts, (2) the rotation of a
Gaussian pulse, and (3) triangular wave flow. All examples in this section were tested on
structured triangular grids. For all numerical solutions, we use a triangular grid discretization
of the domain, and assume that the limiter function Ψ = 1 (equation (12)).

4.1 Mixing of hot with cold fronts

The first example is a pure-convection problem of the mixing of hot with a cold fronts [20, 29].
The computational domain is Ω = (−4,−4)× (4, 4) and the velocity field is given by

v = −y
r

ft
0.385

i +
x

r

ft
0.385

j, (35)

where r =
√
x2 + y2 is the distance from the origin and ft = tanh(r)

cosh2(r)
. The initial condition is

specified by

φ0(x) = − tanh(
y

2
). (36)

The exact solution is

φ(x, t) = − tanh

(
y

2
cos

(
ft

0.385r
t

)
− x

2
sin

(
ft

0.385r
t

))
. (37)

The 2D and 3D plots of the exact solution at the final time t = 4 are shown in Figures 1 and 2,
respectively. The corresponding numerical solutions obtained from the three uniform grids S1
(16×16), S2 (32 × 32), and S3 (64 × 64) compared to the exact solution along the line y = 0
are depicted in Figures 3- 5, respectively. The L2-norm error of the solutions obtained by using
four piecewise linear reconstruction techniques are shown in Table 1. We can see that the Frink
and Holmes-Connell methods gave the most accurate solutions on grids S1 and S2, while the
least-squares method gave the most accurate solution on grid S3. The Green-Gauss method
gave the worst solution on all grid sizes.

Table 1: Comparison of L2-norm errors for problem 4.1.
||e||L2 S1 S2 S3

Frink 0.004848248 0.001285789 0.0002236133

Holmes-Connell 0.004848264 0.001285792 0.0002236136

Green-Gauss 0.005117222 0.001370439 0.0002785007

Least-Squares 0.004879665 0.001295393 0.0002080393

13



Figure 1: Exact solution at the final time of problem 4.1: 2D plot.

Figure 2: Exact solution at the final time of problem 4.1: 3D plot.

4.2 Rotation of Gaussian pulse

The second example is the rotation of a Gaussian pulse around the domain Ω = (−0.5,−0.5)×
(0.5, 0.5). We started the test using the pure convection problem with the initial condition
φ(x, 0) given as [22]

φ(x, 0) = exp

(
−(x− xc)2 + (y − yc)2

2σ2

)
, (38)

14
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Figure 3: Comparison of the solutions of problem 4.1 on grid S1
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Figure 4: Comparison of the solutions of problem 4.1 on grid S2

where (xc, yc) = (−0.25, 0) and σ = 0.0447 are the center coordinates and the standard deviation,
respectively. The rotating velocity field v(x), with the angular velocity of 4 rad/s is given by

u(x) = −4y and v(x) = 4x. (39)

The 2D and 3D plots of the exact solution at the final time t = π/2 are shown in Figures 6 and
7, respectively. The comparison between exact and numerical solutions obtained from the grids
S2, S3, and S4 (128×128) along the line y = 0 are illustrated in Figures 8- 10, respectively. The
comparison of the L2-norm errors in the solutions is given in Table 2. We may conclude that
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Figure 5: Comparison of the solutions of problem 4.1 on grid S3

the last-squares method gave the most accurate solution and the Green-Gauss method gave the
least accurate solution. On grid S4, the L2-norm error value of the solution obtained using the
least-square methods is about 100% better than the Frink and the Holmes-Connell methods,
and 440% better than the Green-Gauss method.

Table 2: Comparison of the L2-norm errors for problem 4.2: Pure convection.
||e||L2 S2 S3 S4

Frink 0.001100730 0.0002354509 0.00003324699

Holmes-Connell 0.001100731 0.0002354509 0.00003324699

Green-Gauss 0.001080318 0.0002938341 0.00007430981

Least-Squares 0.0008085976 0.0001357213 0.00001689011

This example is repeated again as a convection-dominated diffusion problem by setting the
diffusion coefficient of ε = 10−4. The exact solution of this test at the same final time is
determined by [31, 22] as

φ(x, 0) =
2σ2

2σ2 + 4tε
exp

(
−(x− xc)2 + (y − yc)2

2σ2 + 4tε

)
. (40)
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Figure 6: 2D plot of the exact solution at the final time of problem 4.2: Pure convection.

Figure 7: 3D plot of the exact solution at the final time of problem 4.2: Pure convection.

The 2D and 3D plots of the exact solution, are shown in Figures 11 and 12, respectively. The
comparison between exact and numerical solutions obtained from the grids S2, S3 and S4 are
illustrated in Figures 13- 15. The comparison of the L2-norm errors, are shown in Table 3. As
we found for the pure convection case, the least-squares method gave the most accurate solution
for all grids. On grid S4, the L2-norm error values of the solutions obtained by the least-squares
method is about 123% better than the Frink and the Holmes-Connell methods, and 530% better
than the Green-Gauss method. Finally, we note that the Frink and the Holmes-Connell methods
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Figure 8: Comparison of the solutions of problem 4.2 on grid S2: Pure convection.
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Figure 9: Comparison of the solutions of problem 4.2 on grid S3: Pure convection.

gave the same L2-norm errors for these tests.
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Figure 10: Comparison of the solutions of problem 4.2 on grid S4: Pure convection.

Figure 11: 2D plot of the exact solution at the final time of problem 4.2: Convection-Diffusion.
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Figure 12: 3D plot of the exact solution at the final time of problem 4.2: Convection-Diffusion.
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Figure 13: Comparison of the solutions of problem 4.2 on grid S2: Convection-Diffusion.

4.3 Triangular wave flow

The last example is the so-called triangular wave flow problem [29]. This is a pure-convection
problem with an initial discontinuous flow profile. The computational domain is a unit square
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Figure 14: Comparison of the solutions of problem 4.2 on grid S3: Convection-Diffusion.
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Figure 15: Comparison of the solutions of problem 4.2 on grid S4: Convection-Diffusion.

of Ω = (0, 1)× (0, 1). For the initial condition, φ0(x) is set to zero. The boundary conditions at
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Table 3: Comparison of L2-norm errors for problem 4.2: Convection-Diffusion.
||e||L2 S2 S3 S4

Frink 0.0009283025 0.0001863148 0.00002602896

Holmes-Connell 0.0009283033 0.0001863148 0.00002602896

Green-Gauss 0.0009172858 0.0002428729 0.00006169527

Least-Squares 0.0006557170 0.0001008259 0.00001165540

t = 0 are prescribed by

φ(0, y) =


2 (y − 0.25) , 0.25 ≤ y ≤ 0.50

2 (0.75− y) , 0.50 ≤ y ≤ 0.75

0, otherwise

. (41)

The velocity field is given by v = 0.05i.
This example is used to evaluate the robustness of the piecewise linear reconstruction techniques
against the scalar discontinuity on four grids (S1,S2,S3,S4). For the coarse grid S1 (Figure 16), all
methods gave nearly identical solutions without oscillation. For grid size S2, a slight oscillation
occurs as shown in Figure 17. For S2, the Frink and the Holmes-Connell methods gave identical
solutions along the line y = 0.5 with relatively small oscillations, while the solutions for the
Green-Gauss and the least-squares methods gave larger oscillations. For the finer grids S3 and
S4, the oscillations were apreciably larger as shown in Figures 18 and 19. Finally, the results
in Figures 18 and 19 show that the Frink and the Holmes-Connell methods gave oscillating
solutions downstream of the discontinuity while the Green-Gauss and the least-squares gave an
oscillating solution upstream of the discontinuity.
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Figure 16: Comparison of the solutions of problem 4.3 on grid S1.
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5 Conclusions

This paper presents an explicit characteristic finite volume method for solving the convection-
diffusion equation in a two-dimensional domain. The method combines the characteristic-based
scheme developed for the finite element method with the finite volume method for deriving
the discretized equations from the convection-diffusion equation. The convergence of numerical
solutions of the finite volume equations has been studied for four piecewise linear reconstruction
techniques, namely, Frink [11], Holmes-Connell [14], Green-Gauss [4], and least-squares [3]. An
analysis of the convergence of the scheme for a one-dimensional problem has been given in
Section 3. The accuracy and robustness of the four linear construction techniques has been
tested on three examples, namely, mixing of hot with cold fronts [20, 29], rotation of a Gaussian
pulse [22] and triangular wave flow [29], for the special case of a triangular grid discretization of
the domain. It was found that the least-squares method provided the most accurate solution for
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Figure 17: Comparison of the solutions of problem 4.3 on grid S2.
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Figure 18: Comparison of the solutions of problem 4.3 on grid S3.
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Figure 19: Comparison of the solutions of problem 4.3 on grid S4.

all examples, with the Frink and the Holmes-Connell methods giving nearly identical solutions
of lower accuracy. For all examples, the Green-Gauss method gave the least accurate solutions.
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