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Florence Levéa,b∗, Gianluca Micchib, and Jean-Paul Allouchec
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Dedicated to the memory of Laurence Maillard-Teyssier (1975–2020)

Qui de nous
A pu
S’affranchir de l’absence ?
(Eugène Guillevic)

A melody is often described as a line of music that evolves through time and, therefore, it
is possible to draw its 2D pitch-time representation as a series of points implicitly defining
a curve. We introduce to computational musicology a descriptor of this music curve: the
inconstancy, a function that gives information on the curve’s smoothness as well as some of
its topological properties. A mathematical analysis of the inconstancy of music is provided,
followed by a lengthy application of inconstancy to musicological tasks. We compare the
inconstancy of melodic lines with that of typical accompaniment patterns such as the Alberti
bass; this analysis, together with the case study of W.A. Mozart’s Variations on Ah! vous
dirai-je, maman, suggests a significant difference in the value of the inconstancy of a music line
depending on its function. The inconstancy seems to be correlated also with the compositional
style: the analysis on almost 10,000 musical themes of the common practice repertoire shows
that Baroque music has higher inconstancy. Finally, we also define a windowed version of the
inconstancy for studying longer scores and show the insights one can gain into, for example,
structural analysis and cadence detection.

1. Introduction

The computational analysis of music is moving steadily towards an ever-increasing use
of machine learning techniques, which have been applied to several different tasks in-
cluding, but not limited to, structure analysis (Ullrich, Schlüter, and Grill 2014; Buccoli
et al. 2016), chord analysis (for a survey, see Pauwels et al. 2019), and functional har-
monic analysis (Chen and Su 2018, 2019; Micchi, Gotham, and Giraud 2020). These
techniques proved themselves very useful whenever the performance of rule-based algo-
rithms was not satisfactory. For example, in the domain of functional harmonic analysis,
tools such as fully-connected neural networks, mixed convolutional-recurrent networks,
and transformer models have been proven to efficiently deal with non-chord tones (Ju
et al. 2017), key detection (Nápoles López et al. 2020) and Roman numeral annotation
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(Micchi, Gotham, and Giraud 2020).
Differently from the audio or visual domain, however, the domain of symbolic music

often needs to rely on a pre-processed representation of the input data, sometimes helped
by carefully engineered features. This is because symbolic data is too scarce to train a
completely automatic approach. Certainly, one can put special attention when design-
ing the model: compact, highly-optimised architectures can reduce the total number of
weights in the network, effectively reducing the need for data. Also, careful data sampling
for the training, validation, and test sets can reduce the bias inherently present in all
datasets and contribute to increasing the performance of models without increasing the
quantity of collected data (Huron 2013). Careful feature engineering, however, reducing
the complexity of the network in favour of an initial, controllable and deterministic anal-
ysis of the data inspired by expert knowledge, is one of the most common tools used to
reduce the difficulty of the task for the machine by limiting the scope of its investigation.
It also helps with the interpretation of the results: despite recent efforts on this subject,
machine learning models trained on raw data are notoriously hard to interpret (see for
example Mishra, Sturm, and Dixon 2017). On the contrary, the integration of musical
knowledge can help to evaluate the results in a more qualitative way (Carsault, Nika,
and Esling 2018), thus the use of features derived from music theory can bridge the
gap between mathematical or computational analysis and musical interpretation. For all
these reasons, there is still a lot of space for sensibly chosen musicological features as the
first step of the analysis algorithm, be they rule-based or statistical in nature (McKay,
Cumming, and Fujinaga 2018).

The features thus engineered need not be particularly complicated, as testified by
Rydén (2020). Here, the author takes a set of fugue subjects coming from different
composers and styles and analyses them according to only six global features: number
of notes, pitch range, unique pitch classes, initial interval, unique intervals, and largest
interval.

Bigo et al. (2018) instead propose a broad set of 44 binary features that can be derived
from symbolic scores and span primarily rhythm and voice leading or harmonic charac-
teristics: for example, rhythm-related features check whether the cadence happens on a
strong beat, or whether it is followed by rests, and voice-related or harmonic features
include whether the bass has a V-I leap or whether the arrival chord is a perfect triad.
All these features can be described as low-level because they are local (they take into
account a maximum of 3 nearby notes at a time) and they require simple arithmetic to
be derived. These features are chosen due to their expected importance for the task of
cadence detection; a different task, therefore, requires a different set of features. This is
apparent when considering a subsequent paper published by the same team in which the
authors analyse the sonata structure (Allegraud et al. 2019). In that paper, they use a
different set of 26 binary features: tonality, presence of a repeated pattern, presence of a
cadence, etc. These features are of a much higher level compared to the ones in the pre-
vious work, that is, they require a longer procedure to be derived starting from the score.
This is a standard pattern: a complex musicological result is more strongly connected to
higher-level features than to the basic ones, and the long-range global structure of the
composition is no exception to that.

Another example of how a complex task requires a set of higher-order features is given
by Kirlin and Yust (2016) for the task of Schenkerian analysis. In their paper, Kirlin and
Yust use 18 features derived from melodic, harmonic, metrical, and temporal analysis of
the music as input to a random forest tasked with making a Schenkerian reduction of
any given score.

In his book A Geometry of Music, Tymoczko (2011) uses a series of symmetry invari-
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ances to derive a representation of music that makes some of the important features more
apparent.

In this paper, we propose to use a quantity called inconstancy (see e.g. Allouche and
Maillard-Teyssier 2011). The inconstancy of a curve can be defined as the average num-
ber of intersection points of a curve with random straight lines. Essentially, if the curve
is very similar to a straight line, its inconstancy is low, while the inconstancy of a com-
plex “disheveled” curve is large. It turns out that the inconstancy of a curve is easy to
compute thanks to a theorem of Cauchy-Crofton, which gives its value in terms of the
length of the curve and the perimeter of its convex hull. Allouche and Maillard-Teyssier
(2011) indicated that this “measure of disorder” could possibly be used in biology or in
other fields. They ask, “are ‘large fluctuations’ of the Body Mass Index risk factors for
cardiovascular diseases in relation with the metabolic syndrome?”, or propose the use
of this measure for “analyzing fluctuations of the stock market”, or even for “quanti-
fying the ‘smoothness’ of musical themes” (p. 2269). To explore this last question, our
paper proposes, in a vein that might be reminiscent of Tymoczko’s book (see e.g. his
Chapter 3, Geometry of chords), to introduce the inconstancy function (Allouche and
Maillard-Teyssier 2011) as a feature extractor for monophonic music. Our goal is to
provide a measure that is easy to compute and that can provide some relevant musical
information.

We believe that such a quantitative approach can be applied to a variety of situations,
including but not limited to: detection of musical structure, for example for the identi-
fication of patterns; characterization of melodic lines, by means of contour analysis (i.e.
the sequence of pitch intervals shaping the melody) or simply in opposition to typical
accompaniment patterns; and generation of music, by use of an appropriate loss function,
to produce more stylistically accurate melodies.

The article is structured as follows. In Section 2 we introduce the concept of inconstancy
in music and discuss its mathematical properties, with particular attention to invariant
quantities. Section 3 shows the typical values of inconstancy on a series of small examples,
ranging from typical patterns such as scales and Alberti bass lines to simple melodies
taken from folk tunes. Section 4, instead, is a quick overview of possible usages of the
inconstancy function in a larger musicological scope: we define the inconstancy on sliding
windows of music and show its result on entire pieces from the Western common practice
repertoire.

2. The inconstancy of musical lines

2.1. The inconstancy

The inconstancy of a curve γ in a two-dimensional space is defined in two different
and equivalent ways (Allouche and Maillard-Teyssier 2011): (1) The average number of
points at which a random intersecting line touches or crosses the curve. (2) Twice the
ratio between the length of the curve l(γ) and the perimeter of its convex hull p (Hull(γ)),

I(γ) =
2l(γ)

p (Hull(γ))
· (1)

The inconstancy of a segment joining two points always equals 1. This can be shown
independently using both definitions. Considering definition (1), this result follows from
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the fact that two straight lines can only intersect once.1 Using definition (2), the convex
hull is simply the “closed” polygon that goes from one point to the other and back, so
its perimeter is exactly twice the length of the curve. We use this result to extend by
continuity the definition of the inconstancy on ever-shrinking segments and say that the
inconstancy of a curve γ made of a single point is equal to 1 (which is coherent with the
first definition).

The inconstancy of a curve γ joining N points always satisfies 1 ≤ I(γ) ≤ N − 1:
since the curve is made of N − 1 segments no straight line can intersect the curve in
more than N − 1 points. As a consequence, it is easy to show that the inconstancy is
a “non-additive” function in the sense that the inconstancy of the concatenation of two
sequences is not equal to the sum of the individual inconstancies. Indeed, let us consider
a curve made of two broken segments: while each segment has separately an inconstancy
of 1, the inconstancy of the total curve can take every value between 1 and 2, depending
on the angle at which the two segments join.

A typical use of the inconstancy is to study the property of a sequence (an)N. By defin-
ing an ordered set of points S = {(n; an) | n ∈ N}, one can define the total inconstancy
of the sequence I(S) to be the inconstancy of the curve γ joining each point of S with its
successor. It is also possible to study the evolution of the inconstancy along the sequence
by taking the inconstancy of all subsets containing only the first i points of S, with i
going from 1 to the total length of the sequence.

2.2. Inconstancy applied to music

Music is a very high-dimensional object. Even when analysing symbolic music — there-
fore discarding all information related to performance, instruments, and recording envi-
ronment — one needs lots of independent dimensions to fully describe a score: pitches,
time, dynamics, articulation, tempo, instruments, etc.

From an artistic point of view, each of these dimensions is necessary. However, a lot of
musicologically relevant work has been done by representing symbolic music as a set of
points2 in the standard piano roll notation, which stores only two dimensions: pitch and
time. To make a stronger analogy with number sequences, we use an adapted version of
the piano roll notation in which note durations are discarded. Therefore, each note is
represented as a point-like event at a given offset from the beginning of the score. Also,
we will only focus on monophonic data and discard occasional polyphony when analysing
musical scores (see Section 3.4.1 for a discussion on how we extract monophonic music
from polyphonic scores).

Given a musical score S made of a succession of N notes ni = (ti; pi), each described
by a time offset ti and a pitch pi, we can define the line γS that follows the score as
the concatenation of all segments joining pairs of successive points. The inconstancy of
the musical score S is then simply the inconstancy of γS . In contrast to Allouche and
Maillard-Teyssier (2011), we do not consider the origin of the axes as the first point of
the line.

As an example, we plot in Figure 1 the evolution of the inconstancy along the musical
line for the beginning of the French folk song Ah! vous dirai-je, maman.3

On the horizontal axis, we have plotted the musical time t (in measures) elapsed since

1Unless they are the same line in which there is a problem of defining intersections properly, but this case has

infinitesimal weight and can be discarded.
2Or better, segments, but in the following we will ignore note durations and focus only on their onset.
3We will go back to this melody in Section 3.4, where we analyse the inconstancy of the 12 variations that

Mozart wrote on this theme.
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Figure 1. Top: the first four measures from the French folk song Ah! vous dirai-je, maman. Middle: the represen-

tation of the score as a sequence. Bottom: inconstancy I(γS(t)) for the portion of the melody comprised between
time 0 and t (in measures). Dashed lines correspond to the polynomial approximation of the melody (see details in

the text); we sample the value of the approximation at the same times as the points in the original representation

and quantize the MIDI pitch number to the closest integer.

the beginning of the melody, while the vertical axis represents respectively the MIDI pitch
of the notes (top) and the value of the inconstancy of the melodic line up to offset time
t (bottom). Broken lines have been drawn to join the discrete values and help reading.

We can see two main features: first, the value of the inconstancy has a big jump at
measure t = 2.5, when the direction of the music is reversed for the first time (the G
descends from the A, instead of keeping the ascending movement); second, the incon-
stancy in the second half of the musical phrase does not change much in value. This is a
combined effect of the increased length of the score, as we will see in Section 2.6, and of
the general structure of the music, which resembles a straight segment (cf. top panel).

The inconstancy, therefore, is associated with the geometrical shape of the contour
of the melody. Melodic contour has been the subject of lots of research over time, for
example, the seminal work of Huron (1996), where melodies are classified according to
the general shape of the contour. We believe that inconstancy could help the classification
algorithm by providing an additional quantity to study since melodies with similar global
shapes share similar values of inconstancy. As an example of that, we calculated the
inconstancy of the polynomial approximation of Ah! vous dirai-je, maman (see Figure 1).
This approximation was introduced in Müllensiefen and Wiggins (2011) as the low-order
polynomial that minimizes the residues with the point-like representation of the melody.
As expected, the inconstancy of the original and approximated melody have quite similar
values, the biggest deviation happening at the beginning where the approximated melody
is much smoother.

2.3. Mathematical properties of the inconstancy of music

There is at least one fundamental difference between the inconstancy of a sequence of
numbers and the inconstancy of music: music has physical dimensions, therefore units of
measure, and the value of the inconstancy depends on the unit of measure chosen. For
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example, the time axis can be expressed in quarter lengths, but also in eighth lengths,
measures, beats, seconds; while the pitch axis is typically expressed with MIDI numbers,
but other admittable choices are, for example, the interval with respect to the first note
of the score and the fundamental frequency of each pitch.

It is therefore of the utmost importance to study how the inconstancy behaves under
the manipulation of the axes. Let us explore some of these properties.

2.3.1. Behaviour under translation

Since the result of Equation (1) is uniquely determined by a ratio of the sum of segment
lengths, it is preserved under transformations that preserve segment lengths such as
translations. This means, for example, that transposing the music to a different key does
not change its inconstancy.

2.3.2. Behaviour under orthogonal transformations

The inconstancy of a curve is invariant under orthogonal transformations such as ro-
tations or reflections, too. This follows from the fact that orthogonal transformations
preserve the inner product between two vectors and, therefore, also segment lengths.
Musically speaking, this means that contrapuntal techniques such as the vertical inver-
sion (all ascendant intervals become descendant) or the reversal (reading the music from
the right to the left) do not affect the inconstancy value. It is maybe useful to point
out that the intermediate values of the inconstancy along a musical line change when
considering the original melody and its reversed version, but only because the notes kept
are different.

2.3.3. Behaviour under isotropic scaling

Let us consider a transformation Tλ : R2 → R2 such that Tλ(x, y) = (λx, λy) with λ ∈ R,
λ 6= 0. Let us define by Tλγ the application of the transformation Tλ to the space where
γ is defined. Then I(γ) = I(Tλγ), since both the numerator and the denominator of
Equation (1) would be multiplied by a factor |λ|. This transformation has no direct
musical interpretation, but we will use it to determine what happens changing unit of
measure.

These three operations (translation, orthogonal transformation, and isotropic scaling)
are not sufficient to completely determine the behaviour of the inconstancy under an
arbitrary affine transformation in the 2D plane4. We still need a fourth, independent
operation.

2.4. Behaviour under stretching of one axis

This is probably the most important property of them all. It determines how the in-
constancy varies under a linear change in the unit of measure. For example, changing
a quarter note to a half note is equivalent to stretching the time axis by a factor of 2,
changing it to an eighth note is equivalent to stretching the time axis by a factor 0.5.

Throughout this section we will refer to the application of the inconstancy to the theme
of Chopin’s Nocturne Op. 9 No. 1 in Figure 2.

4We leave the study of non-linear transformation such as a conversion on the pitch axis from musical pitches

to fundamental frequency (exponential relation) to a future work.
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Figure 2. The first theme of Chopin’s Nocturne Op. 9 No. 1 in Bb minor. Each of the five lines corresponds to a
different value of the stretch coefficient, where stretch 1 means no stretch applied i.e. standard inconstancy, and

stretch 0 corresponds to projected inconstancy.

We define an operation Sλ so that Sλ(x, y) = (λx, y), with the constraint λ > 0. Let
γ be, as usual, the curve joining a set of points (xi, yi). We also define Sλγ as the curve
obtained by joining all the points Sλ(xi, yi). We call Sλ a stretch. It is sufficient to study
the stretch along the time axis since a stretch S′

λ along the pitch axis can be obtained,
for example, by means of stretch S1/λ on the time axis followed by a global scaling Tλ.

Let us start by finding what happens to the inconstancy when the parameter λ tends
to 0 or to +∞. We recall Equation (1), which says that the inconstancy of a curve γ is
the ratio between twice its length and the perimeter of its convex hull.

2.4.1. Limit when λ→ 0

In the case λ → 0, the curve Sλγ tends to a succession of a finite number of (possi-
bly overlapping) vertical segments. Therefore, the convex hull surrounding Sλγ is the
degenerate rectangle with zero-length horizontal edges and whose vertical edges both
coincide with the segment between ymin and ymax. The perimeter of the hull is, therefore,
p = 2(ymax− ymin) ≡ 2∆y, also known as the ambitus of music. The length of the curve,
instead, is given by the sum of the length of all the (possibly overlapping) vertical seg-

ments, l =
∑N

i=1 |yn+1 − yn| ≡ Nȳ, where ȳ is the average vertical distance of a segment
(or melodic interval) in the music. Therefore:

lim
λ→0
I(Sλγ) =

Nȳ

∆y
. (2)

This limit is used in the calculation of the projected inconstancy (see Section 2.5).

2.4.2. Limit when λ→ +∞.

As a first step, let us apply a global scaling of a factor 1/λ, under which the inconstancy
is invariant. After the stretch along the time axis, each point in the line γ, therefore, is
subject to the final transformation T 1

λ
Sλ(x, y) = (x, 1

λy). A discussion similar to the one

for the case λ → 0 follows. However, in the case of music, the x-axis encodes the time,
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and music is written in a time-ordered manner. This entails that γ is monotonic in x, a
condition that implies that no segments making up the compressed line limλ→+∞ T 1

λ
Sλγ

overlap.5 Therefore the total length of the curve is exactly half the perimeter of its hull
and the result for the inconstancy is

lim
λ→+∞

I(Sλγ) = lim
λ→+∞

I(T 1

λ
Sλγ) = 1. (3)

Figure 2 shows values for different stretch values. A stretch coefficient of 100 (not
included in the figure) gives an inconstancy of 1.0004 when considering the entire Chopin
theme.

2.4.3. What happens in between.

The inconstancy is a smooth function of the stretch parameter λ. This is due to two
considerations:

(1) the convex hull is defined in such a way that all points of the curve are either on the
hull or inside it: a stretch will not change this topological property and each point
will keep its relative position with respect to the hull;

(2) the length of a single segment is a smooth function of λ.

It follows that the inconstancy is the ratio of two smooth functions which are always
positive. As a recap, Figure 3 shows the inconstancy as a function of λ (solid lines) and
its derivative for the musical example of Figure 2. Besides what was already discussed,
we can see that the inconstancy has a small peak around λ ≈ 0.3) and its derivative
shows a clear minimum just above the value λ = 1.
Remark: despite it being continuous in the stretch coefficient λ, the inconstancy is not
a continuous function in general. Consider e.g. the following sequence of curves: C0 is
the upper half-circle of radius 1 and center 1; C1 consists of the two upper half-circles
of radii 1/2 and centers 1/2 and 3/2; for Cn we have 2n upper half-circles of radii 1/2n

with centers at 1/2n, 3/2n, . . . The length of each curve Cn is π, the inconstancy of Cn
tends to π/2, while Cn tends to the segment [0, 2] whose inconstancy is 1.

2.4.4. Stretched inconstancy.

In our experiment with the corpus of musical themes by Barlow and Morgenstern (1948),
we have calculated the inconstancy on all the themes after applying a stretching along
the time axis. We always find the derivative of the inconstancy as a function of the
stretch coefficient to show exactly one (very clear) global minimum. The existence of
this minimum is almost always guaranteed. This can be shown in three steps: (1) the
inconstancy is a continuously differentiable function of the stretch coefficient λ defined
for values of λ between zero and positive infinity; (2) on one side, the value of the
inconstancy at infinite stretch tends to one, therefore its derivative tends to zero; and
(3) on the other side, the value of the inconstancy at zero stretch is finite and greater
than or equal to one.

Let us take the case in which the limit when λ→ 0 is strictly greater than one. Since
the inconstancy is a continuous function of the stretch coefficient, the derivative must
take some negative value at some point. Therefore, it follows that it must have at least
one minimum, possibly at λ = 0.

5The same is not valid in general for the y-axis: all but the simplest pieces of music have melodic intervals in

both directions, and therefore the segments joining them overlap when projected on the y-axis.
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Figure 3. The inconstancy as a function of the stretch coefficient λ (solid line) and its derivative. Notice that the

x-axis representing the stretch coefficients is in a logarithmic scale, so the correspondence between the function

and its derivative is not obvious at first glance. As a guide, notice that the red line is initially increasing, which
is compatible with the blue line being above 0. It is also easy to directly map the position where the sign of the

derivative changes with the location of the maximum in the inconstancy value. Due to the logarithmic x axis,

it is more difficult to visually identify the position of maximum slope in the red line. The horizontal dotted line
corresponds to derivative zero, and the vertical dotted line to λ = 1, that is, no stretch applied.

In the other case, of inconstancy going to one when λ→ 0, the stretched inconstancy
can either be a constant as a function of λ, in which case we do not have to worry about
the choice of the unit of measure6; or it can vary. In this latter case, since it cannot get
to a value smaller than one, it must have a maximum at some finite value λm; hence, we
can apply the same reasoning as before to show that there must be a minimum in the
derivative to the right of λm.

For reason of mathematical parsimony, we define the time-independent stretch λ0 as the
smallest stretch at which the derivative of the inconstancy with respect to the stretch
coefficient λ has a minimum and the stretched inconstancy as the inconstancy of the
curve Sλ0

γ. By construction, the stretched inconstancy does not depend on the choice
of the unit of measure and therefore removes one degree of freedom from the problem.
As a consequence, it also is invariant with respect to compositional techniques such as
repeating a theme in rhythmic diminution or augmentation.

2.5. Projected inconstancy

Let ~a be the unitary vector defining the direction of an axis A. The projection of a point
P on axis A is defined in the standard way as

PA =
~p · ~a
||~a||

~a

||~a||
,

6As an example of a melody whose inconstancy is constantly equal to 1 for all values of the stretch coefficient,

we can take a melody that comprises a single pitch or, more generally, a melody in which the ratio between the
melodic and inter-offset intervals is constant.
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where ~p is the vector defined by the endpoint P .
Let us define the projection of the curve γ on the axis A as the curve γA that joins all

the projected points, and the projected inconstancy IA as the inconstancy of γA. In the
special case for which the projection axis is the y-axis, hence ~a = (0, 1), the projected
inconstancy Iy takes the value defined in Eq. 2. This quantity has the desired property
of being independent of the chosen units of measure. For the rest of the paper, when we
refer to the projected inconstancy without specifying which axis, we always understand
the y-axis.

The projected inconstancy measures how much the music folds onto itself, regardless
of the time dimension. It is a topological measure of the contour of the melody: a purely
ascending (descending) melody has a projected inconstancy of exactly 1, while a purely
convex (concave) melody — that is, a melody that ascends and descends (descends and
ascends) exactly once, going back to the initial pitch — has a projected inconstancy of
exactly 2.

2.6. Inconstancy as a function of the score length

Another fundamental characteristic of music is that, while it can be extended indefinitely
on the time axis by simply adding more notes to it, it is always limited in the pitch axis;
this limit is determined by the instruments that play that music. For example, in the
case of piano music, the maximum ambitus for pitches extends from 21 to 108.

This consideration suggests the study of the behaviour of the inconstancy function
when the ratio between the total duration of the music and its total pitch interval goes
to infinity in the absence of any stretch. Another way to express this constraint is

lim
ε→0
I(γ) =?, with ε =

∆y

∆x
, (4)

where ∆x and ∆y are the support of γ on x and y, respectively; that is, the total duration
and the total ambitus of pitches used.

Let us assume that the typical segment joining two successive notes in the curve has
components (x̄, ȳ). Let us also define η = ȳ/x̄ the ratio between these typical components.
The parameter η is a characteristic of the musical piece and the units of measure chosen.7

Since we are working with monophonic music, x̄ = ∆x/N and the typical length of a

segment can be written as l̄ = ∆x
√

1 + η2 /N . The total length of the curve is therefore

l = Nl̄ = ∆x
√

1 + η2.
On the other hand, instead, the convex hull of γ is reduced, at first order of approxima-

tion in ε� 1, to a rectangle of sides ∆x and ∆y. Hence, its perimeter is s = 2∆x(1 + ε).
Putting both together, Equation (4) becomes

lim
ε→0
I(γ) = lim

ε→0

2∆x
√

1 + η2

2∆x(1 + ε)
=

√
1 + η2. (5)

Therefore, the inconstancy tends to a finite value that does not depend on the number
of notes N when this goes to infinity. Let us point out how this result differs from the
one in Equation (3): a short piece of music that has been infinitely stretched along the

7To give an idea, on the Barlow dataset, comprising almost 10,000 musical themes, the average values of x̄
and ȳ are respectively 0.73 and 2.4, meaning that the average note length is a dotted eighth note and the average

distance between two consecutive notes is a little more than a whole tone.
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x-axis to enforce the constraint ε→ 0 while keeping a finite number of notes N will also
have η → 0, therefore inconstancy 1.

We conclude this section by briefly commenting on what happens to projected and
stretched inconstancy in the situation of long themes. For the former, it completely
disregards any temporal information and just adds up contributions from all notes. As the
music grows longer, its ambitus and average melodic interval tend to stabilize, therefore
their ratio becomes constant. Equation (2) then tells us that the projected inconstancy
grows linearly with N . The latter also seems to be almost linear in N . What happens is
that the time-independent stretch becomes extremely small for long themes so that the
stretched inconstancy approaches the projected inconstancy.

3. The inconstancy of musical patterns

This section is devoted to getting an intuitive grasp of inconstancy and its evolution along
a musical line. We will see the typical inconstancy of common musical patterns such as
scales, arpeggios, and Alberti bass before analysing some simple melodies. The section
ends with an analysis of the 12 variations written by Mozart on the French folk-song
Ah! vous dirai-je, maman (see theme in Figure 1).

3.1. Major scales.

We will start our examination with one basic musical sequence: a major scale, represented
in Figure 4.

Figure 4. Top: scale of C major. Bottom: evolution of its standard, projected, and stretched inconstancy.

The inconstancy is almost equal to 1 all the way to the highest pitch. This is because
the ascending movement is monotonic and can be represented with an almost straight
line: the rhythm is steady and the distance between successive pitches is almost constant
(often +2 semitones, sometimes +1).

When, starting from the C6 in measure 4 (offset 15), the direction is reversed, the
inconstancy begins to steadily increase. But while the standard inconstancy gets to a
plateau quite fast, the projected inconstancy increases until reaching a value of 2, as
was expected (see Sec. 2.5). This is a confirmation that the inconstancy can be used
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for a simple topological investigation of the properties of the sequence. The stretched
inconstancy follows quite closely the projected inconstancy. This is also quite intuitive:
the representation of the score is very similar to the two oblique edges of an isosceles
triangle; and this incomplete triangle, whose maximal inconstancy is 2 because it only
has 2 edges, can be stretched to two identical vertical segments, one “going up” and the
other “coming down”, for which the inconstancy is exactly 2.

3.2. Accompaniment patterns.

Other common musical sequences are the accompaniment patterns that are commonly
used to support a melody. In order to analyse their inconstancy, we have written four
different simple patterns based on the bassline of Pachelbel’s Canon in D, shown in
Figure 5 from top to bottom: one with repeated notes, two with different arrangements
of the Alberti bass, and one with arpeggios.

Figure 5. Inconstancy of four different realizations of the accompaniment for Pachelbel’s Canon in D. The vertical
lines separate different measures.

The plot shows once again that the inconstancy of long themes tends to saturate, but
not the projected inconstancy.

The first feature we focus on is the sudden decrease in value that the inconstancy has
at the beginning of each measure in the first half of the score. This decrease is especially
apparent in the projected inconstancy. The explanation is quite simple, once one consid-
ers Equation (2): at the beginning of each measure, at least for the first six measures,
the ambitus increases, therefore making the denominator a larger quantity. Notice, for
example, that at the beginning of measure five the dashed orange line corresponding to
the first arrangement of the Alberti bass, named Alberti1, does not take a hit: this is
because the ambitus of the music has not changed.

12
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Let us now focus on the classification of the patterns. It is very easy to recognize the
bass line made only of repeated notes because its inconstancy is very small all through
the piece. A very similar inconstancy would also be obtained for an even simpler bass
line made only of whole notes.

However, the inconstancy is not enough to tell apart arpeggios in triplets from Alberti
bass. The proof of that is in the fact that there is more difference between two different
realizations of Alberti bass than between one of those and an arpeggio. This is due to
the different use of inversions in the two instances of the Alberti bass. Geometrically, it
can be explained in an intuitive manner: if one were to draw a straight line through the
entire pattern, one would find that the notes in the second version of the Alberti bass
cross the line much more often than in the first line, where they tend to have sensibly
lower average value in the middle rather than on the sides (showing, therefore, a global
concave pattern).

It is instructive, however, to analyze the difference also from the segment length per-
spective. Let us do that for the projected inconstancy, which is the simplest of the lot.

The first Alberti bass only uses triads in their root position, which can be described
in pitch class notation as (0, 7, 4, 7) or (0, 7, 3, 7) for, respectively, major and minor
triads. The total length of the curve inside a single measure, therefore, is always equal
to 2× (7 + 3 + 3) + 7 = 33 for major triads and 2× (7 + 4 + 4) + 7 = 37 for minor.

The second Alberti bass, instead, also has chords in their first inversion (at measures
2, 4, and 6). The typical curve length for measures using first inversions is 44 for major
triads and 47 for minor.

The average intermeasure segment length, instead, is roughly the same, meaning that
the total curve is longer in the second case. Since the total length of the contour is also
almost invariant, we conclude that the second Alberti bass has a higher inconstancy.

Finally, let us take a look at the arpeggios. An upper bound for their projected incon-
stancy value is 32 because there are a total of 31 changes of direction in the melody. Its
actual value is 16.125 meaning that the overlap between different measures is just above
50%.

3.3. A simple melody.

We pass now to a less academic, albeit still very simple, example: the French folk song
Au clair de la lune, represented in Figure 6.

Let us focus on the standard inconstancy first (solid lines). The first note for which
the inconstancy is different from one is at offset t = 1.5, which corresponds to the fourth
note in the melody, i.e. the first D. This is understandable because the first three notes
are the same, so they generate two perfectly aligned segments which, combined, give
inconstancy 1. One can follow the inconstancy on the rest of the melody by comparing
it to the score. It increases sharply especially in two sections: between offsets 2 and 3
first, and then again between 4 and 5; these correspond to reversals in the direction of
the melody. On the other hand, when repeating notes or keeping the same direction, the
inconstancy tends to stay flat or even decrease.

The second section of the music, despite being identical to the first one, shows an
evolution of the inconstancy that is much flatter. This is a clear example of the effect
that the increasing length of the music has on the value of the inconstancy, as discussed
in Section 2.6.

This is no longer true when studying the projected and stretched inconstancy, for which
the evolution in the second half is very similar to the evolution in the first half.

13
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Figure 6. The first four measures of the French folk song Au clair de la lune.

3.4. A study on the variations Ah! vous dirai-je, maman

We conclude this introductory exploration by analysing the twelve variations that Mozart
wrote on the French folk song Ah! vous dirai-je, maman (already introduced in Fig. 1).

3.4.1. Monophonic melody extraction

Since these variations are polyphonic, we need to extract monophonic melodies before
calculating the inconstancy. We consider left and right hands separately and we apply to
each of them the all-mono algorithm presented by Uitdenbogerd and Zobel (1999). For
any offset, this algorithm takes the note with the highest pitch. It is therefore also known
as the skyline algorithm. A known issue with this algorithm is that it may still lead to
overlapping tones if a high note is kept for a long duration, while other lower notes are
played. To avoid this issue, we propose two versions of this algorithm. The first one, the
original one, stops the current note when a new note enters; the second one keeps the
current note for its entire duration, preventing other notes from being written before the
current one ends. Those two versions are exemplified in Fig. 7.

We can see that the choice of the algorithm makes a big difference, both in terms of
the music kept and in terms of the inconstancy. It is outside the scope of this paper to
discuss the best algorithm for monophonic extraction of melodies, but we want to show
that the inconstancy is definitely influenced by the chosen algorithm. With the opposite
perspective, the inconstancy could be used to direct the best choice for monophonic
melody extraction.

3.4.2. Their inconstancy

In Figure 8 we study the inconstancy of the first phrase (eight measures) from the theme
and each of the twelve variations that Mozart wrote for this folk melody. We apply the
modified version of the skyline algorithm to retrieve monophonic music.

All variations are written in 2/4 except for variation 12, which is written in 3/4. We
decided to align variation 12 to all the others by assigning to each inconstancy value
the number of measures elapsed and not the offset in quarter lengths. This means that
variation 12 is scaled on the time axis by a factor of 3, while all others by 2. This scaling
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Figure 7. Ah! vous dirai-je, maman, variation No 10 by W.A. Mozart. The top staff is the original score for the

right hand, the middle staff is the output of the skyline algorithm, and the last staff is from our modified version.

is performed after the calculation of the inconstancy. One could also decide to keep the
values on the x-axis as they are or to stretch the music before calculating the inconstancy.
Our choice was guided by the intuition that the metric structure offers a better case for
alignment than the absolute duration of notes. However, we leave the investigation of
this choice as an open research subject.

The inconstancy of the left hand is significantly and consistently larger than the one
of the right hand. As a tentative explanation we notice that, in this particular set of
variations, the right hand often has the melody, and the left hand the accompaniment.
For example, take variations 7 and 10, the two for which the inconstancy for the right
hand is the largest. A glance at the score8 shows that indeed, in these two cases, the
right hand includes some typical accompaniment patterns similar to Alberti bass lines.

Therefore, the inconstancy could help in the detection of melodies versus accompani-
ment, which is an active research topic (see Chemillier 1987; Rizo et al. 2006; Madsen
and Widmer 2007; and Guo, Herremans, and Magnusson 2019 for some approaches).

4. Applying the inconstancy to repertoire music

We use this section to give some ideas about how inconstancy could be used for more
complex musicological tasks. In the first part, we make a statistical analysis of themes
from the Barlow and Morgenstein corpus of musical themes; in the second part, we
analyse entire pieces coming from common practice repertoire.

8Our reference edition is the one coming from the Werner Icking Music Collection and available at

https://imslp.org/wiki/Special:ReverseLookup/228371.
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Figure 8. Inconstancy for the 12 Variations on Ah! vous dirai-je, maman by W.A. Mozart. The bottom plot

shows the inconstancy of the theme and each variation separately, both for the right hand and the left hand. The

top plot, instead, is the average over each hand of the interpolated inconstancies.

4.1. An exploration of inconstancy on a large collection of themes

When introducing a new feature, it is important to ask whether it helps in classification
tasks. To address this question, we experimented with the different inconstancy functions
proposed above on Barlow and Morgenstern’s corpus. In order to obtain readable figures,
we kept only the pieces of the composers that had more than 30 pieces in the corpus
(this threshold value has been chosen after considering the distribution of the number of
pieces for each composer in the corpus). It resulted in 65 composers from the Baroque
Era to the XXth century. Figure 9 shows the standard inconstancy value of the musical
themes grouped by composer. This figure shows that the inconstancy values go mostly
from 2 to 4. What strikes one, at first sight, is that some composers stand out from
the rest, as Couperin and Scarlatti for instance, or Delibes to a lesser extent. A first
look at the corresponding themes in the corpus indicates that it is due to the intensive
use of ornamentation and arpeggios. Moreover, almost all the excerpts of Delibes in the
corpus are from Ballets or dancing scenes in Operas. We did not further investigate
these observations for the moment. Outliers are like some pieces of Kachaturian which
are similar to arpeggios.

While observing Figure 9, we wondered whether the inconstancy could be in a certain
way representative of the style of a composing period. We summarize our results in
Table 1. We can see that the Baroque and Modern eras have a significantly higher
average inconstancy than the other periods.
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Figure 9. Standard inconstancy values grouped by composer in Barlow and Morgenstern’s themes corpus (outliers

with an inconstancy value above 8 are not shown).

Period Inconstancy St.Dev Average #pieces

Baroque 3.193 0.040 1,068
Classical 2.437 0.015 2,720

Pre-Romantic 2.257 0.026 948
Romantic 2.419 0.016 3,247

Post-Romantic 2.343 0.030 683
Modern 2.611 0.025 1,497

Table 1. Summary of the average inconstancy over different periods. The standard deviation is also expressed
not for the single piece but for the average over an entire period.

4.2. Sliding inconstancy for long music pieces

The results in Equation (5) seem to tell us that there is no point in studying the incon-
stancy of long pieces: if, after a certain duration, the inconstancy of music tends to a
constant, it means that the new music we add does not provide any additional informa-
tion. Therefore, the inconstancy of music is more informative when considered as a local
feature.

In this respect, akin to spectrograms in audio content analysis, we study the value
of inconstancy on sliding windows of music. We define a rectangular window of size W
that moves along the time axis. Starting from the beginning of the piece, we take all
notes with an offset between 0 and W and calculate their inconstancy. Then, we make
the window hop rigidly to the right by a quantity H, so to frame all notes between H
and W +H, and we repeat so until we reach the frame [L−W,L], where L is the total
length of the piece. The inconstancy-o-gram of music is thus the value obtained by this
procedure written as a function of the frame index.

4.2.1. Identification of melodic vs. accompaniment parts

In Figure 10 we plot the distribution of the average value of the inconstancy on each
frame for two corpora: the Barlow themes and Mozart’s string quartets, separated by
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musical instrument. The results are in accordance with a few basic musicological obser-
vations. First of all, the violoncello parts tend to have the smallest inconstancy: that is
compatible with the idea that cello parts tend to have longer notes, often repeated, to
sustain harmonically the ensemble. On the other end of the spectrum, the first violin has
the distribution that is the most similar to the one in the Barlow themes. Maybe because
it has the most melodic parts in the quartet?

Figure 10. Distribution of the inconstancies on the Barlow themes corpus plotted against the distribution on
Mozart quartets.

4.2.2. Structure analysis

In Figure 11 one can see the inconstancy-o-gram of the second movement of Mozart’s
K80 string quartet. The plotted inconstancy is the average over the inconstancies of the
four parts (Violin I, Violin II, Viola, Violoncello). At the bottom of the figure, there is
a line showing the structural segmentation of the music (a sonata form) and dots giving
the position of perfect authentic cadences and root-position imperfect authentic cadences
(Allegraud et al. 2019). It is apparent that the inconstancy is strongly correlated with
the structural segmentation: for example, the behaviour of inconstancy during segments
P to C and is very similar to the one between P′ and C′. We conducted an experiment
to introduce standard inconstancy as a feature for cadence detection in addition to the
features of Bigo et al. (2018) for the same set of 21 Haydn quartets and saw indeed an
improvement in the results: the number of false positives decreased from 28 to 21, showing
that inconstancy is indeed related to cadential writing (maybe due to increased harmonic
rhythm?). It would be interesting to study also the correlation between the inconstancy-
o-gram of the four separate parts. This could highlight the presence of repeated patterns
as peaks in the correlation function SIAIB(t, t′).

The inconstancy-o-gram can also be used to follow contrapuntal texture. For example,
the inconstancy-o-gram applied to the Fugue in C major from J.S. Bach’s Well-Tempered
Clavier book I highlights the initial exposition of the subject in all four voices (figure not
shown).
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Figure 11. Inconstancy-o-gram of the second movement of the string quartet K80 by W.A. Mozart. The line has

been smoothed with a Savitzky-Golay filter for better visualisation. The labels correspond to the several parts

in a sonata-form: Primary (P) and Secondary (S) themes, Transition (TR), Conclusion (C), and Medial Caesura
(MC), both in the exposition and in the recapitulation (same labels with primes), and Development (Dev). Labels

PAC and rIAC correspond to structural breaks: perfect authentic cadence and root position imperfect authentic

cadence.

5. Further work and conclusion

This paper introduced the notion of inconstancy for a monophonic musical line and
characterized some of its mathematical properties.

The introduction of a new tool always opens the way to lots of possibilities for new
investigations. Here we want to highlight the ones that seem more appealing to us. We
begin with a mathematical question: is there a relationship between inconstancy and en-
tropy, as was already discussed —although with a different name— in Denis and Crémoux
(2002)? Which kind of information can be obtained from the entropy of a musical piece?
Musically, it could also be worth studying how the inconstancy can be used to anal-
yse and classify melodic contours, in comparison with other classifications such as the
study of the melodic arch in (Huron 1996) on the Essen Folksong Collection (Schaffrath
and Huron 1995). Preliminary experiments show that the inconstancy could be useful
to identify specific contours that are not discriminated in Huron’s method, as highly
oscillating melodies, which could therefore guide us to an improvement in the classifica-
tion of melodies, at a small expense in the complexity of the system. Another task that
seems particularly interesting to us concerns the detection of phrase boundaries, and the
use of the inconstancy as an input feature to improve the accuracy of the LBDM model
(Cambouropoulos 2001). The analysis of structure is still one of the key challenges in
computational musicology, and we believe that the inconstancy can prove useful not only
to detect boundaries but also to classify the musical content inside the boundaries, as we
have briefly seen from the experiment on cadence detection reported in Figure 11. More
generally, we think that inconstancy could help to detect changes of texture, allowing to
capture the impression of stability or movement of the music. The inconstancy could also
play a role in machine learning models for music generation and analysis as a constraint
that generated melody should statistically satisfy. And, finally, a practical question is
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how to apply inconstancy to polyphonic music: by separately computing inconstancies
of, say, principal melody and bass line(s) if relevant? by “averaging” different voices? by
dismissing the notes with a long duration and only keeping the non-overlapping shortest
ones? A definitive answer to this question would render this new tool applicable to all
music pieces.
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identification in music symbolic files.” In Proceedings of the 19th International FLAIRS Conference,
254–259.

Rydén, Jesper. 2020. “On features of fugue subjects. A comparison of J.S. Bach and later composers.”
Journal of Mathematics and Music 14 (1): 1–20. https://doi.org/10.1080/17459737.2019.1610193.

Schaffrath, Helmut, and David Huron. 1995. The Essen folksong collection in the humdrum kern format.
Menlo Park, CA: Center for Computer Assisted Research in the Humanities.

Tymoczko, Dmitri. 2011. A Geometry of Music: Harmony and Counterpoint in the Extended Common
Practice. New York: Oxford University Press.

Uitdenbogerd, Alexandra, and Justin Zobel. 1999. “Melodic matching techniques for large music
databases.” In Proceedings of the seventh ACM international conference on Multimedia (Part 1),
MULTIMEDIA ’99, Orlando, Florida, USA, Oct., 57–66. https://doi.org/10.1145/319463.319470.
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