
HAL Id: hal-03319093
https://hal.science/hal-03319093

Submitted on 11 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upscaled model for unsteady slip flow in porous media
Didier Lasseux, Francisco J Valdés-Parada, Alessandro Bottaro

To cite this version:
Didier Lasseux, Francisco J Valdés-Parada, Alessandro Bottaro. Upscaled model for unsteady slip
flow in porous media. Journal of Fluid Mechanics, 2021, 923, pp.A37. �10.1017/jfm.2021.606�. �hal-
03319093�

https://hal.science/hal-03319093
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2021), vol. 923, A37, doi:10.1017/jfm.2021.606

Upscaled model for unsteady slip flow in porous
media

Didier Lasseux1, Francisco J. Valdés-Parada2 and Alessandro Bottaro3

1I2M, UMR 5295, CNRS, Univ. Bordeaux, 351, Cours de la Libération, 33405 Talence CEDEX, France 
2División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San 
Rafael Atlixco 186, col. Vicentina, 09340, Mexico
3Dipartimento di Ingegneria Civile, Chimica e Ambientale, Scuola Politecnica, Università di Genova, Via 
Montallegro 1, Genova 16145, Italy

This work reports on modelling unsteady gas flow in porous media at the macroscopic
scale in the slip regime, a topic of interest in a wide range of applications. The slip
effect is modelled by means of a Navier-type boundary condition. A macroscopic model is
derived from the initial-boundary-value problem governing unsteady, single-phase flow
of a Newtonian fluid through homogeneous porous media in the creeping, isothermal
and slightly compressible slip regime. For momentum transport, the macroscopic model
involves two terms. The first consists of a convolution product between the macroscopic
pressure gradient and the temporal derivative of an apparent dynamic permeability tensor;
the second accounts for the memory of the initial condition. Both contributions are
predicted from the solution of a unique closure problem that is independent of the initial
flow configuration and of the macroscopic pressure gradient. The accuracy of the model
is assessed by comparisons with direct numerical simulations performed at the pore-scale,
which find excellent agreement. The simulations also show that a classical heuristic model,
which is the consequence of assuming a separation of time scales between the pore-scale
and the macroscale, is inadequate, in general, to correctly predict the macroscopic velocity.
Results from this work provide a formal clear insight about unsteady flow in porous media
in the slip regime, motivating further theoretical and experimental work.
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1. Introduction

Gas flow in porous media in the presence of Knudsen effects, more particularly in 
the slip regime, has been the subject of considerable attention since the pioneering 
empirical work of Klinkenberg (1941). Whenever the Knudsen number, Kn, of the  flow,
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which may be defined as the ratio of the mean free path of the gas molecules to the 
pore-size, is not exceedingly small compared with unity, the no-slip boundary condition 
at the pore solid–fluid interfaces is inappropriate. For values of Kn up to approximately 
0.1, the pore-scale flow problem can be stated in the classical continuum mechanics 
framework. It consists of the Navier–Stokes equations for momentum transport along 
with a Navier (first-order) slip boundary condition (Navier 1822) at the solid–fluid 
interfaces, which reflects interactions between gas particles and the porous solid 
skeleton. At the macroscopic scale, this results in a modified Darcy’s law, in which the 
permeability is no longer intrinsic but Kn-dependent. While the popular one-dimensional 
Darcy–Klinkenberg form of the macroscopic momentum equation has been widely 
employed for homogeneous (Wu, Pruess & Persoff 1998; Hayek 2015) and heterogeneous 
(Chastanet, Royer & Auriault 2004) porous media, a detailed physically sound and 
complete (three-dimensional) macroscopic model was recently derived, which considers 
slightly compressible, but steady, creeping flow conditions for the gas (Lasseux et al. 2014; 
Lasseux, Valdés-Parada & Porter 2016). Homogenization was also used to upscale this 
problem with the classical Navier-type slip condition (Allaire 1991) as well as with a more  
complex slip boundary condition (Cioranescu, Donato & Ene 1996).

In many situations, however, the forcing may not be steady and, even if the flow 
remains in the creeping regime, the temporal acceleration term can be of importance in 
the momentum balance at the pore-scale. The question then arises about the appropriate 
macroscopic model applicable to an equivalent homogeneous medium. To the best of 
our knowledge, the derivation of a macroscale model for this situation has not yet been 
adequately addressed in the literature.

For incompressible flows in the absence of Knudsen effects, a common practice has 
been to employ a heuristic macroscopic model. This consists in empirically using an 
analogue of the unsteady Stokes (or Navier–Stokes) equations in which the pore-scale 
velocity is replaced by the superficial average (or filtration) velocity, and the forcing by 
the Darcy term corresponding to the average drag on the solid matrix of the porous 
medium (Polubarinova-Kochina 1962; Nield & Bejan 2013; Das, Mukherjee & Muralidhar 
2018). Such a model has been employed in several different situations, such as flows in 
fluid-porous media systems (Breugem, Boersma & Uittenbogaard 2006; Jin & Kuznetsov 
2017) and their stability analysis (Hill & Straughan 2008; Samanta 2020), fluid motion 
in a porous medium with slip at the macroscopic boundaries of the domain (Haddad, 
Al-Nimr & Sari 2007; Qayyum et al. 2015), and magnetohydrodynamic (MHD) flows 
(Ullah, Khan & Shafie 2017; Nandal, Kumari & Rathee 2019), among others. However, 
as suggested by Auriault (1980) and Allaire (1992), and further elaborated by Lasseux, 
Valdés-Parada & Bellet (2019) and Bottaro (2019) in a more general framework including 
inertial effects, the macroscopic model obtained by formal upscaling of the pore-scale 
equations, and validated by several numerical examples, does not correspond, in general, 
to the heuristic form, which relies on a separation of time scales between the pore-scale 
and the macroscale.

Straightforward extension of the heuristic macroscopic momentum equation to the case 
where a slip condition applies at the solid–fluid interfaces at the pore-scale may certainly 
be appealing. An attempt to obtain such a model, starting from the Boltzmann equations 
to account for the gas–solid interactions at the pore level, was proposed by Pavan & 
Oxarango (2007) (see their resulting equation (27)). However, no validation of this model 
was explored. In light of previous investigations carried out in the absence of slip, a more 
thorough analysis of the unsteady form of the macroscopic model when slip effects are 
present appears to be of major interest and motivates the present work.
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With this purpose in mind, the article is organized as follows. In § 2, the
pore-scale initial-boundary-value problem for unsteady, creeping, slightly compressible
and isothermal flow in a homogeneous porous material is presented. The equation of state
is formulated in a general framework, without assuming a special form a priori. The slip
boundary condition at this scale is a Navier-type condition. Although written in the context
of gas flow involving Knudsen effect, it may also be regarded as an effective one, resulting
from pre-upscaling of a no-slip condition over rough surfaces (see for instance Pasquier,
Quintard & Davit 2017). In § 3, this problem is upscaled using a modified version of the
volume averaging method (Whitaker 1999) combined with the associated fundamental
problem for the velocity Green’s function pair (Choi & Dong 2021) and Green’s formula
(derived in Appendix A), which results in an approach that is equivalent to the adjoint
homogenization method (Bottaro 2019), briefly reported in Appendix B. The two effective
parameters involved in the resulting average model operating at the macroscopic level
(namely an apparent dynamic permeability tensor and a vector accounting for the memory
effects of the initial condition) are obtained from the solution of a single and novel
closure problem that is independent of the initial conditions and forcings. Analysis of
the symmetry properties of the apparent dynamic permeability tensor is provided in
Appendix C. The proper expected convergence of the unsteady average model towards
its steady version (Lasseux et al. 2016), when steady conditions are met, is detailed in
Appendix D. The whole procedure leads to a closed set of macroscopic equations, which
include mass and momentum balance, as well as a generic equation of state, the closure
of which is detailed in Appendix E. Section 4 is dedicated to a validation of the averaged
model that is carried out through comparisons with direct numerical simulations (DNS) of
the pore-scale equations for a model problem. A further comparison is also provided with
the predictions of the heuristic model. Finally, conclusions are drawn in § 5.

2. Pore-scale model

Consider the single-phase flow of a Newtonian fluid in a rigid and homogeneous porous
medium, such as the one sketched in figure 1 in which β and σ respectively denote the
fluid and solid phases. The governing equation for mass transport at the pore-scale within
a periodic unit cell for this physical configuration is

∂ρ

∂t
+ ∇ · (ρv) = 0, in the β-phase. (2.1a)

Here v and ρ are the fluid velocity and density, respectively, and t is time. For momentum
transport, the creeping flow regime is assumed, i.e. the Reynolds number, defined as Re =
ρrv�β/μ, is small compared with unity. Here, ρr, �β and v are respectively a reference
density, the characteristic pore size and velocity magnitude. As a result, the convective
acceleration term is neglected with respect to the viscous term, which leads to the unsteady
Stokes equation:

∂ (ρv)

∂t
= −∇p + μ∇ ·

(
∇v + ∇vT

)
+
(
η − 2

3
μ

)
∇(∇ · v), in the β-phase. (2.1b)

In this momentum balance equation, p represents the pore-scale pressure, whereas μ and
η are respectively the shear and bulk viscosities, which are assumed constant in the rest of
this work.

Equations (2.1a) and (2.1b) are completed with an equation of state relating the fluid
density to pressure and temperature. Assuming isothermal flow, this relationship can be
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β-phase
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n = nβσ
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r0

Averaging domain, V

Macroscopic region

Figure 1. Sketch of a rigid porous medium system of characteristic length L saturated with a single fluid phase
and averaging domain of characteristic size r0. The characteristic lengths of the solid and fluid phases are �σ
and �β , respectively.

written as a functional dependence of ρ upon the pressure p. The developments that follow
do not require specifying a particular form of this function; hence it suffices here to write

ρ = F( p). (2.1c)

At the solid–fluid interface in the entire macroscopic system, AβσM , no mass flux is
assumed and the following first-order slip boundary condition is imposed (Navier 1822;
Lockerby et al. 2004; Lauga, Brenner & Stone 2007):

v = −ξλ(I − nn) ·
[
n ·

(
∇v + ∇vT

)]
, at AβσM. (2.1d)

In this relationship, ξ = (2 − σv)/σv , where σv is the tangential momentum
accommodation coefficient. In practice, ξ = O(1)with values ranging between 1.3 and 1.7
(see for e.g. Perrier et al. 2011). In addition, λ is the mean-free path of the fluid molecules
given by (Cowling 1950):

λ = M√
2 πNA ρ d2

m
, (2.1e)

where M is the molar mass of the gas, NA the Avogadro number and dm the particle 
diameter. Moreover, in the slip boundary condition, I is the identity tensor and n denotes 
the unit normal vector to AβσM , directed from the fluid-phase to the solid-phase (see 
figure 1). It should be noted that the formalism employed here refers to slip associated 
with Knudsen effects. However, this type of boundary condition may also be envisaged 
in a more general framework as the effective one resulting from an upscaling process, 
from the roughness scale to the pore-scale, of the no-slip boundary condition at rough 
pore–solid inclusions interfaces, as proposed by Pasquier et al. (2017).

A complete problem statement requires accounting for the boundary conditions 
applicable at the inlets and outlets of the macroscopic system. However, this information is
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not necessary for the developments that follow, which are restricted to a region sufficiently
far from these boundaries. Finally, the initial conditions for the pore-scale velocity and
density are given by

when t = 0, v = v0(r), ρ = ρ0(r). (2.1f )

Here v0 and ρ0 are known functions of position. Note that the choice is made to specify
the density at t = 0. An equivalent statement could have been made in terms of the initial
value of the pressure.

The purpose of this work is to derive the average flow model, i.e. the average mass and
momentum balances as well as the equation of state applicable in the porous medium bulk
(i.e. far from macroscopic boundaries). To this end, double scale periodic homogenization
could be considered as proposed, for instance, by Mikelić (1994) or Khuzhayorov, Auriault
& Royer (2000). In the present work, the volume averaging method (Whitaker 1999) is
employed to derive the macroscopic mass conservation equation, while the macroscopic
momentum balance equation and the equation of state are obtained by making use of
the fundamental problem for the velocity Green’s function pair and Green’s formula, an
approach similar to the adjoint homogenization method proposed by Bottaro (2019).

3. Derivation of the upscaled model

3.1. Preliminaries
Let the derivations begin by defining an averaging domain, V , of volume V which contains
portions of the fluid and solid phases (see figure 1). For this domain to be representative, its
characteristic size, r0, must be much larger than the largest of the characteristic sizes at the
pore-scale (i.e. �p = max(�β, �σ )) and, at the same time, much smaller than the smallest
length scale associated with the macroscale (L). This can be expressed in the following
form (Bear 2018):

�p � r0 � L. (3.1)

In terms of this averaging domain, it is possible to define the superficial and intrinsic
averaging operators that apply to any piecewise smooth function, ψ , defined everywhere
in the fluid phase as follows:

〈ψ〉 = 1
V

∫
Vβ

ψ dV, (3.2a)

〈ψ〉β = 1
Vβ

∫
Vβ

ψ dV, (3.2b)

where Vβ (of volume Vβ ) represents the space occupied by the fluid phase within the
averaging domain. These two averaging operators are related by

〈ψ〉 = ε〈ψ〉β, (3.3)

where ε = Vβ /V denotes the fluid volume fraction within the averaging domain, i.e. the 
porosity, which is assumed to be constant in both space and time in the rest of this 
work. Furthermore, in the volume averaging method, it is often required to interchange 
the operations of spatial integration and differentiation. This is achieved by means of 
the spatial averaging theorem (or Leibniz rule), which, for the gradient operator, can be
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expressed as (see e.g. Howes & Whitaker 1985)

〈∇ψ〉 = ∇〈ψ〉 + 1
V

∫
Aβσ

nψ dA. (3.4)

A similar form applies to the divergence operator.
To carry out the developments that follow, it is convenient to introduce the spatial

decomposition given by (see e.g. Gray 1975)

ψ = 〈ψ〉β + ψ̃. (3.5)

Here ψ̃ represents the spatial deviations of ψ with respect to its intrinsic average. In
essence, the decomposition operates a decoupling between the fast varying part, ψ̃ of
ψ , from its slow varying part, 〈ψ〉β , as in the homogenization method (Auriault, Boutin
& Geindreau 2009). With this in mind, it is important to note that while ψ is considered
at any position r within Vβ , 〈ψ〉 and 〈ψ〉β are dependent on x, which locates the centroid
of the averaging domain. As a corollary, it is pertinent to note that when the averaging
domain is representative (i.e. when the inequality given in (3.1) is met), average fields can
be assumed to be constant within Vβ so that the fields of the spatial deviations are bounded
by the following average constraint:

〈ψ̃〉β = 0. (3.6)

In the remainder of this work, the flow is assumed to be slightly compressible. This
hypothesis means that the density fluctuations ρ̃ satisfy the constraint,

ρ̃ � 〈ρ〉β, (3.7)

everywhere within the averaging domain, at any time. The supporting constraints and
assumptions justifying this hypothesis are available from the work of Lasseux et al. (2014).
As a result, the following approximation is employed:

ρ � 〈ρ〉β. (3.8)

3.2. Macroscopic mass equation
Due to the slightly compressible flow assumption expressed in (3.8), the pore-scale mass
balance equation (2.1a) may be rewritten within the averaging domain as

∂〈ρ〉β
∂t

+ ∇ · (〈ρ〉βv) = 0, in the β-phase. (3.9a)

Applying the superficial averaging operator to this equation, together with the spatial
averaging theorem, and using the fact that Vβ is constant in time, yields

ε
∂〈ρ〉β
∂t

+ ∇ · (〈ρ〉β〈v〉) + 〈ρ〉β
V

∫
Aβσ

n · v dA = 0. (3.9b)

Since the slip velocity at Aβσ is, by definition, tangential to the surface in accordance with
the fact that no mass is exchanged between the fluid and the solid phases, the macroscopic
mass balance equation takes the following final form:

ε
∂〈ρ〉β
∂t

+ ∇ · (〈ρ〉β〈v〉) = 0. (3.9c)
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3.3. Macroscopic momentum equation
In order to derive the macroscopic balance equation for momentum transport, it is
convenient to assume that the porous medium geometry contained in the averaging domain
can be represented by a periodic array of unit cells. The pore-scale equations presented
above are now considered in this unit cell. For the developments that follow, it is useful to
define the mass flux q as

q = 〈ρ〉βv; (3.10)

which allows writing the pore-scale mass conservation equation (3.9a) as

∂〈ρ〉β
∂t

+ ∇ · q = 0, in the β-phase. (3.11a)

Directing attention to the pore-scale momentum transport equation and introducing the
spatial decomposition of the pressure, while keeping in mind that 〈ρ〉β can be considered
as a constant within the unit cell, allows expression of the momentum balance in the
following form:

1
μ

∂q
∂t

= − 1
μ

∇p̃ + 1
〈ρ〉β∇ ·

(
∇q + ∇qT

)
+ κ

〈ρ〉β ∇(∇ · q)− 1
μ

∇〈p〉β, in the β-phase.

(3.11b)
with κ = η/μ− 2/3 a dimensionless modified viscosity coefficient.

In addition, the boundary condition at the solid–fluid interfaces contained in the unit
cell, Aβσ , can be rewritten, after replacing λ by λ̄, as

q = −ξ λ̄(I − nn) ·
[
n ·

(
∇q + ∇qT

)]
, at Aβσ , (3.11c)

where λ̄ is defined in terms of 〈ρ〉β using an approximation consistent with the slightly
compressible assumption, as explained in detail by Lasseux et al. (2014), i.e.

λ̄ = M√
2 πNA〈ρ〉βd2

m
. (3.11d)

For the problem to be well posed, the average constraint given in (3.6) is applied to the
pressure deviations,

〈p̃〉β = 0. (3.11e)

The initial conditions for the velocity and density in the periodic unit cell follow from
(2.1f ), i.e.

when t = 0, q = q0 ≡ 〈ρ0(r)〉βv0(r), 〈ρ〉β = 〈ρ0(r)〉β. (3.11f )

Finally, within the porous medium bulk, it is reasonable to assume that the pressure
deviations and velocity are periodic at the inlets and outlets of the unit cell. Consequently,
the following boundary conditions are imposed:

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = q, p̃, (3.11g)

r being a position vector locating any point at the boundaries of the unit cell within the
fluid phase and li denoting the unit cell lattice vectors.
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With the intention of deriving an upscaled momentum transport model, consider first
the following fundamental problem for the velocity Green’s function pair (Gv, gp) given
by (Choi & Dong 2021)

∇ · Gv = 0, in theβ-phase, (3.12a)

− 1
μ

∂Gv
∂t

= −∇gp + 1
〈ρ〉β∇ ·

(
∇Gv + ∇GT1

v

)
, in the β-phase, (3.12b)

Gv = −ξ λ̄ (I − nn) ·
[
n ·

(
∇Gv + ∇GT1

v

)]
, at Aβσ , (3.12c)

〈gp〉β = 0, (3.12d)

when t = tf , Gv = μ

〈ρ〉β δ(r − r0)I, (3.12e)

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = Gv, gp. (3.12f )

Here Gv ≡ Gv(r, r0, tf , t) and gp ≡ gp(r, r0, tf , t) are functions that map the influence of
a source located at r0 and tf onto the fluid velocity and the pressure deviations at r and
t, respectively. In (3.12b), the superscript T1 denotes the transpose of a third-order tensor
that permutes the two first indices, i.e. (∇GT1

v )ijk = (∇Gv)jik. In this problem, 〈ρ〉β and λ̄
are evaluated at x and t. Note that, although ∇ · (∇GT1

v ) = 0 since Gv is solenoidal, this
term is maintained in (3.12b) for convenience. Nevertheless, the term (κ/〈ρ〉β)∇(∇ · Gv)
was omitted because of this property on Gv . It should also be noted that Gv is a symmetric
tensor (Pozrikidis 1992; Haberman 2012) and, as a result, ∇gp is also symmetric.

Since the interest lies in the derivation of an expression for the average velocity, it is
more convenient to proceed with the adjoint problem of the original physical one by
carrying out an integration over Vβ(r0) of the above problem for the velocity Green’s
function pair. Denoting

M(r, tf , t) =
∫

Vβ(r0)
Gv(r, r0, tf , t) dV(r0) (3.13a)

and

m(r, tf , t) =
∫

Vβ(r0)
gp(r, r0, tf , t) dV(r0), (3.13b)

the following problem is obtained:

∇ · M = 0, in the β-phase, (3.14a)

− 1
μ

∂M

∂t
= −∇m + 1

〈ρ〉β∇ ·
(
∇M + ∇MT1

)
, in the β-phase, (3.14b)

M = −ξ λ̄ (I − nn) ·
[
n ·

(
∇M + ∇MT1

)]
, at Aβσ , (3.14c)

〈m〉β = 0, (3.14d)

when t = tf , M = μ

〈ρ〉β I, (3.14e)

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = M,m. (3.14f )

It must be emphasized that neither the general transport theorem nor the spatial averaging 
theorem are required to obtain the above equations. This is due to the fact that
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the integration domain is time-independent and that the differentiation operations are
performed relative to the position vector r, whereas integration is carried out with respect
to r0. Note that in this problem, M and m are functions of r, t and tf , whereas 〈ρ〉β and λ̄
are still considered at x and t. It should be noted that M is not a symmetric tensor, in the
general case.

At this point, it is convenient to use the following Green’s formula:∫
Vβ

[
q ·

(
∇ ·

(
∇M + ∇MT1

))
−
(
∇ ·

(
∇q + ∇qT

))
· M

]
dV

=
∫

Aβ

n ·
[
q ·

(
∇M + ∇MT1

)
−
(
∇q + ∇qT

)
· M

]
dA, (3.15)

where Aβ represents all the surfaces bounding Vβ within the unit cell, i.e. Aβ = Aβσ +
Aβe; Aβe denotes the entrance and exit surfaces of Vβ at the boundaries of the unit
cell. This formula is demonstrated in Appendix A, where it is further shown that, for
the problem under consideration, it reduces to

〈
q ·

(
∇ ·

(
∇M + ∇MT1

))
−
(
∇ ·

(
∇q + ∇qT

))
· M

〉
= 0. (3.16)

Replacing ∇ · (∇M + ∇MT1) and ∇ · (∇q + ∇qT) by equivalent expressions respectively
extracted from (3.14b) and (3.11b) leads to rewriting this formula as

0 = 1
μ

〈
MT

〉
· ∇〈p〉β + 1

μ

∂ 〈q · M〉
∂t

− 〈q · ∇m〉 + 1
μ

〈∇p̃ · M〉 − κ

〈ρ〉β 〈∇ (∇ · q) · M〉 . (3.17)

As shown in Appendix A, the three last terms on the right-hand side of this last expression
are zero, which allows the simplification of it to

0 = 1
μ

〈
MT (r, tf , t

)〉 · ∇〈p〉β ∣∣t + 1
μ

∂
〈
q|t · M

(
r, tf , t

)〉
∂t

, (3.18)

where the dependence on time and space of the different variables was made clear.
The expression for 〈v〉 can now be obtained by integrating the above equation between

t = 0 and t = tf , with tf some (arbitrarily chosen) final observation time. This gives

〈v〉|tf = − 1
μ

∫ t=tf

t=0

〈
MT (r, tf , t

)〉 · ∇〈p〉β ∣∣t dt + 〈ρ0〉β
μ

〈
v0 · M

(
r, tf , 0

)〉
. (3.19)

This result represents a closed form of the unsteady macroscopic momentum equation
requiring the field of M , that is the solution of the adjoint problem given in (3.14). The
same macroscopic model and ancillary microscale problem for m and M are available also
from the adjoint procedure (Bottaro 2019) (see details in Appendix B).

From a practical point of view, it is of interest to derive an alternative form of this
problem whose solution is more tractable. This can be achieved by first introducing a
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change of variable defined by

τ = tf − t, (3.20)

which allows rewriting the problem for M and m as

∇ · M = 0, in the β-phase, (3.21a)

〈ρ〉β
μ

∂M

∂τ
= −〈ρ〉β∇m + ∇ ·

(
∇M + ∇MT1

)
, in the β-phase, (3.21b)

M = −ξ λ̄ (I − nn) ·
[
n ·

(
∇M + ∇MT1

)]
, at Aβσ , (3.21c)

〈m〉β = 0, (3.21d)

when τ = 0, M = μ

〈ρ〉β I, (3.21e)

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = M,m. (3.21f )

It must be emphasized that both M and m are now functions of r and τ , whereas 〈ρ〉β and
λ̄ are still taken at x and t. With this change of variable, (3.19) can be written as

〈v〉|tf = − 1
μ

∫ τ=tf

τ=0

〈
MT (r, τ )

〉
· ∇〈p〉β ∣∣

τ
dτ + 〈ρ0〉β

μ

〈
v0 · M

(
r, tf

)〉
. (3.22)

In a second step, the Laplace transform of the problem given in (3.21) may be
considered. Keeping in mind that M(r, τ ) and m(r, τ ), τ � 0, while 〈ρ〉β(x, t) and λ̄(x, t),
the Laplace transform, ψ̂ , of ψ = M,m can be defined as ψ̂ = ∫∞

0 ψ(r, τ ) e−sτ dτ .
Consequently, (3.21) can be written in the Laplace domain as follows:

∇ · M̂ = 0, in the β-phase, (3.23a)

〈ρ〉β
μ

sM̂ = −〈ρ〉β∇m̂ + ∇ ·
(
∇M̂ + ∇M̂T1

)
+ I, in the β-phase, (3.23b)

M̂ = −ξ λ̄ (I − nn) ·
[
n ·

(
∇M̂ + ∇M̂T1

)]
, at Aβσ , (3.23c)

〈m̂〉β = 0, (3.23d)

ψ̂(r + li) = ψ̂(r), i = 1, 2, 3; ψ̂ = M̂, m̂. (3.23e)

At this point, the following changes of variables

sD̂ = M̂, and sd̂ = 〈ρ〉βm̂, (3.24a)

are employed in the above equations. Taking the inverse Laplace transform of the result,
with the choice

when t = 0, D = 0, (3.24b)
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yields the following problem on D and d, referred to as the closure problem:

∇ · D = 0, in the β-phase, t > 0, (3.25a)

〈ρ〉β
μ

∂D

∂t
= −∇d + ∇ ·

(
∇D + ∇DT1

)
+ I, in the β-phase, t > 0, (3.25b)

D = −ξ λ̄ (I − nn) ·
[
n ·

(
∇D + ∇DT1

)]
, at Aβσ , t > 0, (3.25c)

〈d〉β = 0, t > 0, (3.25d)

when t = 0, D = 0, (3.25e)

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = D, d. (3.25f )

In these equations, D and d can be defined from (3.24a), which, once divided by s and
inverse Laplace transformed, give

D(r, t) =
∫ τ=t

τ=0
M(r, τ ) dτ, (3.26a)

d(r, t) = 〈ρ〉β
∫ τ=t

τ=0
m(r, τ ) dτ. (3.26b)

Note that the above closure problem is defined for t > 0 in order to avoid involving the
Heaviside function in the source term in the momentum-like equation. Derivation with
respect to t of (3.26a) yields

M(r, t) = ∂D(r, t)
∂t

. (3.27)

When this last relationship is introduced back into (3.22) and after changing the notation
from tf to t, the final expression of 〈v〉 is obtained as

〈v〉|t = − 1
μ

∫ τ=t

τ=0

d
〈
DT 〉
dt

∣∣∣∣∣
t−τ

· ∇〈p〉β ∣∣
τ

dτ + 〈ρ0〉β
μ

〈
v0 · ∂D

∂t

∣∣∣∣
t

〉
. (3.28)

Despite the fact that the closure problem is defined for t > 0, it must be emphasized that
(3.28) is continuously valid at t = 0 and this can be easily inferred from the definition of
D given in (3.26a), together with the initial condition for M given in (3.21e).

The above result for 〈v〉 may be written in a compact form as

〈v〉 = − 1
μ

dK st

dt
∗ · ∇ 〈p〉β + αs, (3.29)

with the apparent dynamic permeability, K st, given by

K st = 〈D〉T , (3.30a)

and the contribution of the initial condition, αs, defined as

αs = 〈ρ0〉β
μ

〈
v0 · ∂D

∂t

〉
. (3.30b)

Both K st and αs include slip effects. In (3.29), the symbols *· denote the combined
convolution and dot product between two time-dependent tensors of any order, κ1 and
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κ2, defined as

κ1 ∗ · κ2 =
∫ τ=t

τ=0
κ1|t−τ · κ2|τ dτ =

∫ τ=t

τ=0
κ1|τ · κ2|t−τ dτ. (3.31)

It is worth mentioning that when the initial condition satisfies a Stokes model subject
to a given macroscopic pressure gradient ∇〈p0〉β , the macroscopic equation (3.28) can be
shown to take the following form (see details in Appendix A of Lasseux et al. 2019):

〈v〉 = − 1
μ

∂K st

∂t
∗ · ∇〈p〉β +

(
I − K st · K−1

s

)
· 〈v0〉, (3.32)

where K s is the apparent permeability tensor under steady conditions. Since 〈v0〉 =
−K s/μ · ∇〈p0〉β , the above expression can be rewritten as

〈v〉 = − 1
μ

∂K st

∂t
∗ · (∇〈p〉β − ∇〈p0〉β

) + 〈v0〉. (3.33)

β β

ˆ

ˆ

In this case, it is not necessary to compute the vector αs and the closure problem solution 
is only required to compute K st.

It should be noted that a similar approach to that followed by Lasseux et al. (2016) 
may be subsequently employed to express the slip effects as a corrective contribution to 
the intrinsic dynamic permeability and initial condition using a power-series expansion of 
the dimensionless form of the closure problem given in (3.25) in terms of the Knudsen 
number. For the sake of simplicity, this is not detailed here as the steps are identical to 
those reported in this reference.

Equation (3.29), which represents the salient result of this work, is the macroscopic 
momentum balance equation for unsteady, slightly compressible, slip flow in 
homogeneous porous media. It should be noted that this equation requires the solution of 
a unique closure problem given in (3.25) that is independent of the macroscopic pressure 
gradient and initial flow conditions.

At this point, it is of interest to investigate the symmetry properties of K st. This analysis 
is developed in Appendix C, where it is shown that, despite the fact that D is not a 
symmetric tensor, in the general case, K st is symmetric at any time and, in particular, 
in the limit of infinite time. In this limit, the closure problem given in (3.25) takes the 
steady form reported in the work of Lasseux et al. (2016) (see equation (3.7) in this 
reference). In addition, as t → ∞, D is constant in time, which yields limt→∞ αs = 0 
and limt→∞ K st = K s = limt→∞〈D〉. Accordingly, assuming that the macroscopic forcing
remains constant, equal to ∇〈p〉s , after a given time, i.e. that limt ∇〈p〉β = ∇〈p〉s , 
the macroscale equation (3.29) conveniently coincides with the s

→∞
teady macroscopic 

momentum equation derived by Lasseux et al. (2016) (see  equation (3.13b) in this  
reference). The proof of this is provided in Appendix D.

It should be noted that in the work on steady slip-flow reported by Lasseux et al. (2016)
(see also Lasseux & Valdés-Parada 2017), the symmetry of the apparent permeability 
tensor, K s, could not be demonstrated, in contrast with the proof provided here. The 
difference stems from the fact that, in these references, the symmetry analysis was 
performed on the basis of the momentum-like equation (3.23b) in which the term 
∇ · (∇MT1) was not included. Although this term, which originates from keeping the term 
∇ · ∇vT in the pore-scale momentum equation (2.1b), does not bring any contribution to 
the fields of M and m̂, its presence is formally necessary to demonstrate symmetry of 
the apparent permeability tensor (see (C2)). Without such a term, the expression of the
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apparent permeability tensor (see (A18) of Lasseux et al. 2016) does not allow reaching
this conclusion.

To complete the set of macroscopic equations, it is necessary to now focus on the closed
form of the equation of state, and this is the purpose of the next subsection.

3.4. Equation of state
Application of the intrinsic averaging operator to the equation of state (2.1c) leads to

〈ρ〉β = 〈F( p)〉β. (3.34)

When F is a linear operator, it is straightforward to deduce that 〈F( p)〉β = F(〈p〉β).
However, in a more general case, it is convenient to substitute the spatial decomposition
for the pressure in the above equation in order to obtain

〈ρ〉β = 〈
F
(〈p〉β + p̃

)〉β
. (3.35)

In order to close this equation, a relationship between p̃ and 〈p〉β is needed. In light of the
above developments, such a closure can be obtained and this is detailed in Appendix E,
where it is shown that p̃ can be expressed as

p̃ = −∂d
∂t

∗ · ∇〈p〉β + 〈ρ〉β
∫

Vβ(r0)
gp · q0 dV(r0). (3.36)

Here, it must be noted that the solution for p̃ given in the above equation requires the
solution of both the closure problem (3.25) for d and of the fundamental problem for the
velocity Green’s function pair provided in (3.12) for gp. As reported by Lasseux et al.
(2019), the last term on the right-hand side of (3.36) may be written in an alternative
form that requires the solution of an additional closure problem instead of the Green’s
functions problem. This alternative is appealing from a numerical point of view because
this additional closure problem is not written in terms of δ(r − r0).

The closed form of the equation of state that is obtained after substituting the expression
of p̃ from (3.36) into (3.35), shows that, in the general case, this macroscale equation of
state includes a memory effect embedding that of the initial condition.

Summing up, the complete upscaled model consists of the following set of closed
macroscale equations:

ε
∂〈ρ〉β
∂t

+ ∇ · (〈ρ〉β〈v〉) = 0, (3.37a)

〈v〉 = − 1
μ

dK st

dt
∗ · ∇ 〈p〉β + αs, (3.37b)

〈ρ〉β =
〈

F

(
〈p〉β − ∂d

∂t
∗ · ∇〈p〉β + 〈ρ〉β

∫
Vβ(r0)

gp · q0 dV(r0)

)〉β
. (3.37c)

Note that the final macroscopic expression for 〈ρ〉β requires F to be specified. The
substitution of the expression for the pressure deviations given in (3.36) does not constitute
a problem in terms of fast- and slow-varying variables because this operation is performed
within an averaging operator that plays the role of a filter.
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4. Results

The purpose of this section is twofold. First, the temporal evolutions of the
effective-medium coefficient, K st, and of the average term, αs, are predicted from the
closure problem solution in the simple geometric unit cell sketched in figure 2. Second,
the predictions of the average velocity resulting from the upscaled model are validated
by comparison with pore-scale numerical simulations. For the sake of simplicity, the
computations were performed assuming incompressible flow. Before detailing the results,
it is convenient to reformulate the closure problem and the upscaled model in terms of the
following dimensionless variables and parameters:

r∗ = r
�
; t∗ = μt

〈ρ〉β�2 ; D∗ = D

�2 ; d∗ = d
�
; λ̄∗ = λ̄

�
; K∗

st = K st

�2 ,

〈v∗〉 = 〈v〉
vref

; α∗
s = αs

vref
; v∗

0 = v0

vref
; 〈p∗〉β = �〈p〉β

μvref
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.1)

Here, � is the side length of the periodic unit cell (see figure 2) and vref = �2/μ‖∇〈p〉β‖,
‖∇〈p〉β‖ is the non-zero pressure gradient magnitude at a given arbitrary time. On the
basis of the above definitions, the dimensionless version of the closure problem is written
as

∇∗ · D∗ = 0, in the β-phase, t∗ > 0, (4.2a)

∂D∗

∂t∗
= −∇∗d∗ + ∇∗ ·

(
∇∗D∗ + ∇∗D∗T1

)
+ I, in the β-phase, t∗ > 0, (4.2b)

D∗ = −ξ λ̄∗ (I − nn) ·
[
n ·

(
∇∗D∗ + ∇∗D∗T1

)]
, at Aβσ , t∗ > 0, (4.2c)

〈d∗〉β = 0, t∗ > 0, (4.2d)

when t∗ = 0, D∗ = 0, (4.2e)

ψ(r∗ + l∗i ) = ψ(r∗), i = 1, 2, 3; ψ = D∗, d∗. (4.2f )

This problem was numerically solved using the finite element software Comsol
Multiphysics 5.6 using a segregated and direct solver. For the purposes of performing the
numerical solution, the terms on the right-hand side of the slip condition given in (4.2c)
were multiplied by a smooth and unitary step function at early dimensionless times (i.e. at
t∗ < 10−9). After performing standard meshing tests, it was verified that the results were
independent of this numerical degree of freedom. Once the closure problem solution was
achieved, the results were substituted into the following dimensionless expressions:

K∗
st = 〈D∗〉, (4.3a)

α∗
s =

〈
v∗

0 · ∂D∗

∂t∗

〉
. (4.3b)

Note that in the first of the above equations, the symmetric nature of the tensor, K st,
was taken into account. Finally, the dimensionless version of the upscaled model given
in (3.29) can be written as

〈v∗〉 = −dK∗
st

dt∗
∗ ·∇ 〈

p∗〉β + α∗
s . (4.4)

In the following subsections, the dynamic behaviour of K ∗st and αs
∗ is presented and 

discussed.
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L

β-phase

σ-phase

�σ

�

Unit cell

Figure 2. Sketch of the periodic unit cell used to numerically solve the closure problem.

4.1. Dynamic effective coefficients
Due to the geometry of the solid inclusion in the unit cell, tensor K st is isotropic and hence
only the xx-component needs to be reported. In this context, ex is taken as the unit vector
along the horizontal axis of the unit cell sketched in figure 2. In figure 3, the results of
K∗

stxx, as defined in (4.1), are represented versus the dimensionless time for two porosity
values of the unit cell, namely ε = 0.4 (figure 3a,c) and ε = 0.8 (figure 3b,d), varying the
slip coefficient ξ λ̄∗ between 0.01 and 0.5.

The closure problem given in (4.2) shows that the field of D∗ departs from a zero initial
value and increases over time, until reaching a steady-state value, which agrees with that
reported by Lasseux et al. (2016). As a consequence, the evolution of K∗

stxx reported in
figure 3 (from 0 to K∗

sxx) is expected and consistent with the proof provided in Appendix D.
Note that, at sufficiently small times, all the curves converge onto a single one as expected
from the initial condition for the closure problem. Moreover, the time at which slip effects
become significant in the dynamics of the apparent permeability decreases as the porosity
decreases.

The values of K∗
stxx increase with ξ λ̄∗ and, for ε = 0.4, the influence of slip is more

pronounced than for ε = 0.8. Interestingly, the time at which steady state is reached
increases with ξ λ̄∗. To better appreciate this effect, in figure 3(c,d), results are presented
normalized with respect to the steady-state value (K∗

sxx). These results clearly show
that interfacial slip tends to increase the time rate of change of the apparent dynamic
permeability, and this is easier to observe in figure 3(a) corresponding to ε = 0.4. In
this particular case, the time to reach steady state for the largest slip (i.e. ξ λ̄∗ = 0.5)
exhibits a delay of approximately one order of magnitude with respect to the no-slip
case. In contrast, for ε = 0.8, this characteristic time value is only doubled. For a given
value of ξ λ̄∗, the time at which K∗

stxx reaches its steady value, i.e. the relaxation time,
is larger when the porosity increases. To summarize, the dependence of the relaxation
time on both the porosity and ξ λ̄∗ can be explained by the fact that viscous drag (thus
viscous dissipation) decreases when slip effects increase and porosity increases and hence
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Figure 3. Temporal evolution of the xx-component of the dimensionless apparent dynamic permeability tensor
resulting from solving the closure problem (4.2) in the unit cell sketched in figure 2 with ε = 0.4 in panels (a,c)
and ε = 0.8 in panels (b,d), for different values of ξ λ̄∗. Results in panels (c,d) are normalized with respect to
the steady-state value, K∗

sxx.

the viscous relaxation time is lengthened. Finally, it must noted that the characteristic
dimensionless time for Kstxx to reach steady state is not necessarily of order 1. This
is expected since the choice of the time reference based on the unit cell size does not
represent an exact measure of the viscous relaxation time, which depends on slip effects
and porous structure. In fact, the latter has a considerable impact since this relaxation time
decreases by approximately one order of magnitude when the porosity is decreased from
0.8 to 0.4 for the geometry under consideration here. A relaxation time for K∗

stxx close to
the pore-scale viscous relaxation time, 〈ρ〉β�2/μ, (or even larger due to slip effects) may
be expected for a porosity value close to 1. This can be illustrated by considering a simple
structure made of a periodic repetition of plane-parallel plates oriented along ex. In that
case, K∗

stxx can be obtained analytically. It is given by

K∗
stxx = ε3

12
+ ε2

2
ξ λ̄∗ + 2

∞∑
n=1

An

βn
sin

(
βn
�∗β
2

)
e−β2

n t∗ . (4.5)

In this relationship, βn are the eigenvalues resulting from the solution of the following
equation:

cos

(
βn
�∗β
2

)
= ξ λ̄∗βn sin

(
βn
�∗β
2

)
, (4.6)
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Figure 4. Temporal evolution of the xx-component of the dimensionless apparent dynamic permeability tensor
resulting from the analytical solution of the closure problem in a unit cell consisting of two parallel plates with
(a) ε = 0.4 and (b) ε = 0.999, for different values of ξ λ̄∗.

and the coefficient An is

An = −
sin(βn�

∗
β/2)

β3
n‖ϕn‖2 , (4.7)

where ‖ϕn‖2 = �∗β(1 + 2ξ λ̄∗/(�∗β [(βnξ λ̄
∗)2 + 1]))/4. As shown in figure 4(a), for ε =

0.4, K∗
stxx behaves the same as for the structure made of parallel cylinders and its

dimensionless relaxation time is comparable. However, when the porosity is close to 1, as
in figure 4(b), the steady value is reached at t∗ � 0.7 under no-slip conditions and t∗ � 2
for ξ λ̄∗ = 0.5.

Directing attention to the computation of α∗
s , (4.3b) shows that its values depend upon

the choice of the initial condition of the pore-scale velocity, v∗
0. In figure 5, as well as in

the remainder of this work, for the sake of simplicity, results are reported taking v∗
0 as the

solution of the following dimensionless flow problem:

∇∗ · v∗
0 = 0, in the β-phase, (4.8a)

0 = −∇∗p̃∗
0 + ∇∗ ·

(
∇∗v∗

0 + ∇∗v∗T
0

)
− ∇∗〈p∗

0〉β, in the β-phase, (4.8b)

v∗
0 = −ξ λ̄∗(I − nn) ·

[
n ·

(
∇∗v∗

0 + ∇∗v∗T
0

)]
, at Aβσ , (4.8c)

〈p̃∗
0〉β = 0, (4.8d)

ψ(r∗ + l∗i ) = ψ(r∗), i = 1, 2, 3; ψ = v∗
0, p̃∗

0. (4.8e)

In (4.8b), the macroscopic pressure gradient was taken to be ∇∗〈p∗
0〉β = −0.1 ex. This

value of the initial macroscopic pressure gradient is chosen for the sake of consistency with
the analysis presented in § 4.2. It should be noted that, since v∗

0 obeys the Stokes problem
given in (4.8), α∗

s corresponds to the dimensionless form of the last term on the right-hand
side of (3.32). Nevertheless, it is of interest to analyse the influence of interfacial slip on
the temporal dependence of α∗

s .
The results reported in figure 5 are presented in a similar fashion as those for K∗

stxx, i.e.
in figure 5(a,b), α∗

sx, as defined in (4.1), is represented versus t∗ in order to appreciate the
effect of interfacial slip. In figure 5(c,d), α∗

sx is normalized by its initial value, α∗
sx(0), in

order to better highlight the slip effect on the dynamics of this effective term, in particular,
the time interval over which it plays a significant role on the flow.
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Figure 5. Temporal evolution of the x-component of the dimensionless vector αs. In  panels (a,c), ε = 0.4; in 
panels (b,d), ε = 0.8. Results in panels (c,d) are normalized with respect to their respective initial values.

The sigmoidal and time-decreasing shape down to zero of the predictions shown in 
figure 5 are physically sound. In fact, according to (4.3b), αs

∗ is the average of the inner 
product of the dimensionless initial fluid velocity and the time derivative of the closure 
variable D∗. The latter derivative is equal to I at t∗ = 0 and asymptotically reaches zero at 
steady state.

As expected, α∗
sx increases with ξ λ̄∗ and the influence is more significant for ε = 0.4. 

Indeed, the magnitude of α∗
sx is intimately linked to the initial condition of the velocity. 

Nevertheless, as indicated by the evolution of α∗
sx/α

∗
sx(0) represented in figure 5(c,d), the 

impact of slip on this effective term is more pronounced for small porosities. In addition, 
these results show that the presence of slip increases the time of action of this memory 
term, particularly for small ε. Consistently with the results shown in figure 3(c,d), the
characteristic time at which α∗

sx approaches zero increases by approximately one order of 
magnitude for ε = 0.4, and is only doubled for ε = 0.8, when ξ λ̄∗ goes from 0 to 0.5.

4.2. Upscaled model versus direct numerical simulations on a case study
To conclude this section, the predictions of the average velocity resulting from the 
dimensionless upscaled model, as written in (4.4), are compared, in the following 
paragraphs, with the results of DNS of the dimensionless pore-scale flow problem using a 
prescribed macroscopic pressure gradient. The purpose here is not to provide an exhaustive 
examination of responses to several macroscopic pressure gradient expressions. Rather, the
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objective is to validate the model with in silico experiments for a particular flow situation.
Among many possible alternatives for ∇∗〈p∗〉β (see e.g. § 4 in the work of Lasseux et al.
2019), the idea is to use a time dependent forcing leading to periodic flow regimes. With
this in mind, the following dimensionless macroscopic pressure gradient in the horizontal
direction is chosen:

− d〈p∗〉β
dx∗ =

{
0.1, t∗ � 0,
0.6 − 0.5 cos(ω∗t∗), t∗ > 0.

(4.9)

Note that no macroscopic pressure gradient is applied in the vertical direction, that the
function is continuous at t∗ = 0 and that the initial condition is consistent with that used
in the predictions of α∗

s reported above. In the above equation, the value of ω∗ was fixed to
103 and 102 for the simulations presented below. It is worth mentioning that in an infinitely
periodic porous medium, the DNS solution can be performed in only a single unit cell
and in this case, the matching between the upscaled model and in silico experiments is
guaranteed.

To carry out the comparison using a finite-size domain, DNS of the pore-scale flow
problem, as given by the incompressible (dimensionless) version of (2.1), were performed
in a horizontal array of N unit cells and the average velocity was computed over the
central one. Periodic boundary conditions on v∗ and p̃∗ were applied in the y-direction.
The macroscopic boundary conditions in the x-direction were the following:

at x∗ = 0, 〈p∗〉β = −N
d〈p∗〉β

dx∗ , (4.10a)

at x∗ = N, 〈p∗〉β = 0. (4.10b)

In this way, each one of the N unit cells experiences the dimensionless pressure gradient
given in (4.9). Note that due to incompressibility, it follows that ξλ∗ = ξ λ̄∗. The number
of unit cells used in the pore-scale simulations was fixed to N = 21 after verifying that
results were unchanged upon varying the number of unit cells. The porosity was set to
ε = 0.4.

In figure 6(a), the velocity profiles resulting from DNS are compared with the
predictions from the VAM given in (4.4) for ω∗ = 103. In order to carry out the
convolution product in the upscaled model, the dynamics of K∗

stxx were fitted using
exponential functions. This allowed computing analytically the convolution integral. As an
alternative, numerical quadratures could also have been used to compute the convolution
product. Consequently the computational time required to evaluate the upscaled model
derived here was considerably smaller than that required to perform DNS. As expected
from the previous results, the average velocity increases with ξ λ̄∗ and the characteristic
time at which a permanent oscillatory regime is established is delayed as ξ λ̄∗ is increased.
More importantly, it can be observed that the average velocity results predicted by the
VAM perfectly reproduces those obtained from DNS. In fact, the relative error between
modelling approaches remains below 2 % in all the cases under consideration, which
validates the upscaled model derived in this work.

As a final point of analysis, it is worth evaluating the performance of the dimensionless
heuristic model given by

d〈v∗〉β
dt∗

= −∇∗〈p∗〉β − εK∗−1
s · 〈v∗〉β, t∗ > 0. (4.11)
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Figure 6. Temporal evolution of the x-component of the dimensionless macroscale velocity resulting from
considering an oscillatory macroscopic pressure gradient. Comparison of the results obtained from DNS with
(a) the volume-averaged model (VAM) and (b) the heuristic model. Results are reported for different values of
the slip coefficient ξ λ̄∗, for ε = 0.4 and ω∗ = 103.

Here, again, K∗
s is the steady-state value of the apparent dynamic permeability tensor, K∗

st.
In addition, the above equation is subject to the following initial condition:

when t∗ = 0, 〈v∗〉 = 〈v∗
0〉. (4.12)

This model is the result of assuming that the pore-scale flow is quasi-steady with respect to 
the macroscopic fluid motion. However, this assumption is difficult to justify as both time 
scales are of the same order of magnitude (see e.g. Whitaker 1996). Hence, in general, the 
heuristic model can be expected to only partially capture the macroscopic flow dynamics. 
In particular, it is unlikely to appropriately reproduce it at any time shorter than the viscous 
relaxation time at the pore-scale, or whenever the macroscopic pressure gradient is varying 
over a characteristic period shorter than this relaxation time.

Since the macroscopic pressure gradient is applied in the x-direction, the only non-zero 
component of the average velocity is the horizontal one, along ex. Using the expression of
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Figure 7. Temporal evolution of the x-component of the dimensionless macroscale velocity resulting from
considering an oscillatory macroscopic pressure gradient. Comparison of the results obtained from DNS with
(a) the VAM and (b) the heuristic model. Results are reported for different values of the slip coefficient ξ λ̄∗,
ε = 0.4 and ω∗ = 102.

d〈p∗〉β/dx∗ given in (4.9), the analytical solution of the above problem for 〈v∗
x 〉 is

〈v∗
x 〉 = 〈v∗

0x〉 exp(−εt∗/K∗
sxx)+ 0.6K∗

sxx
[
1 − exp(−εt∗/K∗

sxx)
]

− 0.5K∗
sxx

1 +
(
ω∗K∗

sxx

ε

)2

[
cos(ω∗t∗)+ ω∗K∗

sxx

ε
sin(ω∗t∗)− exp(−εt∗/K∗

sxx)

]
. (4.13)

The comparison of the predictions resulting from this expression with DNS results is
reported in figure 6(b). Clearly, the heuristic model does not reproduce adequately the
velocity obtained from DNS. The largest deviations occur before regular time-periodic
oscillations are reached, and are more easily observable with the increase of ξ λ̄∗.
Moreover, it can be observed that the prediction from the heuristic model of the
characteristic time at which the periodic regime is obtained is much smaller than the actual
one. These observations are consistent with those reported by Lasseux et al. (2019) under
no slip and inertial conditions and confirm that the heuristic model is not adequate, in
general, to reproduce the macroscale velocity dynamics. The average velocity, obtained in
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the same conditions as those considered for the results reported in figure 6, with  ω∗ = 102, 
is represented versus time in figure 7. In that case, the oscillating period of ∇∗〈p∗〉β is
comparable to the relaxation time of Ks

∗
txx, at least for  ξ λ̄∗ smaller than 0.1. As can be 

seen in this figure, the prediction of the VAM is again in perfect agreement with the DNS 
results (see figure 7a). Figure 7(b) shows that the heuristic model reproduces correctly 
the macroscopic flow for values of ξ λ̄∗ smaller than the threshold value of 0.1. For more 
important slip effects, a clear discrepancy occurs and is maintained over time.

5. Conclusions

In this work, a macroscopic model was derived to describe unsteady and single-phase, 
slightly compressible creeping flow with interfacial slip conditions through homogeneous 
porous media, by upscaling the pore-scale governing equations. Slip at the boundary 
was treated by the use of a Navier-type equation, which may account for rarefied gas 
conditions as well as for the effective behaviour of the fluid in the proximity of rough 
surfaces. The macroscopic equation for mass conservation keeps a similar form as its 
pore-scale counterpart, whereas the macroscopic momentum transport equation does not 
correspond to the heuristic model commonly found in the literature. This equation contains 
two terms, the first consists of a convolution product between the temporal derivative of 
the apparent dynamic permeability tensor (K st) and the macroscopic pressure gradient. 
The second term, αs, is a memory term that accounts for the influence of the initial flow 
at the pore-scale.

The model was derived following a volume averaging procedure fully consistent with 
the adjoint homogenization strategy proposed by Bottaro (2019). The approach is novel in 
the sense that it departs from the fundamental problem for the velocity Green’s function 
pair associated to the flow equation written in a periodic unit cell. Then, from the use of 
Green’s formula, it directly leads to the upscaled momentum transport equation. A salient 
feature of this approach is that it only requires the solution of one closure problem in order 
to compute the values of K st and αs, independently of the initial flow distribution and 
macroscopic pressure gradient. Furthermore, from the analysis of the closure problem, it 
was concluded that the apparent dynamic permeability tensor is symmetric despite the 
presence of interfacial slip.

The numerical solution of the closure problem allowed prediction of the dynamics of 
K st and αs in particular flow conditions. Numerical simulations led to conclude that the 
apparent dynamic permeability increases at all times until its final steady-state value is 
reached. For a given configuration of the solid phase in the unit cell, the relaxation time 
of K st to its steady value increases with both porosity and slip effects. This is attributed to 
the fact that viscous dissipation decreases under these conditions and, as a consequence, 
the viscous relaxation time is lengthened. In addition, the magnitude of αs and the time 
range over which this memory term plays a role in the macroscopic momentum equation 
are amplified due to the slip effects.

Finally, the model predictions were validated by comparison with direct numerical 
simulations in which the pressure gradient is oscillatory. The average velocity resulting 
from pore-scale simulations and predicted from the upscaled model were found to be in 
excellent agreement. In contrast, the heuristic macroscopic model could not reproduce the 
results obtained from in silico experiments whenever the characteristic time of variation 
of the pressure gradient is smaller than the relaxation time of the apparent dynamic 
permeability. This leads to conclude that such a model is not adequate, in general, to study 
unsteady flow in porous media.
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The results from this work represent an important new contribution in upscaling 
momentum transport in porous media under unsteady slip conditions. The findings 
reported should motivate further experimental and theoretical research where this situation 
arises or even when it is coupled to other transport phenomena.

Appendix A

The objective of this appendix is to demonstrate Green’s formula given in (3.15), i.e.∫
Vβ

[
q ·

(
∇ ·

(
∇M + ∇MT1

))
−
(
∇ ·

(
∇q + ∇qT

))
· M

]
dV

=
∫

Aβ

n ·
[
q ·

(
∇M + ∇MT1

)
−
(
∇q + ∇qT

)
· M

]
dA, (A1)

where Aβ represents all the surfaces bounding Vβ within the unit cell, i.e. Aβ = Aβσ +
Aβe, Aβe being the entrance and exit surfaces of Vβ at the edges of the unit cell.

Preliminary tools to carry out the proof of this relationship are the following identities,
which are valid for any vector u, second-order tensors U and V , and third-order tensor W :

∇ · (u · W ) = ∇u : W + u ·
(
∇ · W T1

)
, (A2a)

∇ · (U · V ) = (∇ · U) · V + UT : ∇V , (A2b)

UT : W = U : W T1. (A2c)

In the above identities, the symbol : is the double dot product, defined in accordance
with the nesting convention adopted throughout this work, i.e. for instance, (∇u : W )k =
(∇u)ijWjik, where the Einstein notation is implied.

Identifying u to q and W to (∇M + ∇MT1) in (A2a) allows writing

∇ ·
(

q ·
(
∇M + ∇MT1

))
= ∇q :

(
∇M + ∇MT1

)
+ q ·

(
∇ ·

(
∇M + ∇MT1

))
.

(A3a)
Similarly, identifying U to (∇q + ∇qT) and V to M in (A2b) yields

∇ ·
((

∇q + ∇qT
)

· M
)

=
(
∇ ·

(
∇q + ∇qT

))
· M +

(
∇q + ∇qT

)
: ∇M, (A3b)

or, while making use of (A2c) in which U is taken as ∇q and W as ∇M ,

∇ ·
((

∇q + ∇qT
)

· M
)

=
(
∇ ·

(
∇q + ∇qT

))
· M + ∇q :

(
∇M + ∇MT1

)
. (A3c)

Subtracting (A3c) from (A3a), integrating the result over Vβ and making use of the
divergence theorem leads to the general Green’s formula expressed in (A1).

In the present work, a special expression of this formula, given in (3.16), can be achieved,
as shown below. The proof of this special form reduces to demonstrating that, for the
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physical problem under consideration, the area integral on the right-hand side of (A1) is
zero.

Due to the fact that both q and M are periodic, the part of this area integral over Aβe is
obviously zero. The proof hence amounts to demonstrating that∫

Aβσ

n ·
[
q ·

(
∇M + ∇MT1

)
−
(
∇q + ∇qT

)
· M

]
dA = 0. (A4)

With the purpose of simplifying notations, the following nomenclature is adopted:

A = ∇q + ∇qT , (A5a)

B = ∇M + ∇MT1, (A5b)

P = I − nn. (A5c)

It should be noted that A and P are second-order tensors, whereas B is a third-order tensor.
They satisfy the following symmetry conditions:

A = AT , (A6a)

P = PT , (A6b)

B = BT1. (A6c)

As a consequence of this last relationship, it can be shown that, for any vector u, the
following identity applies:

u · B = BT2 · u, (A6d)

where the superscript T2 represents the transpose of a third-order tensor, which permutes
the second and third indices, i.e. BT2

ijk = Bikj.
Using the boundary conditions for q and M at Aβσ , respectively given in (3.11c) and

(3.14c), the integrand on the left-hand side of (A4) takes the following form:

n · (q · B − A · M) = ξ λ̄n · [A · P · (n · B)− (P · (n · A)) · B] . (A7a)

Employing the property indicated in (A6d) in which u is identified as P · (n · A), this last
relationship can be equivalently expressed as

n · (q · B − A · M) = ξ λ̄
[
n · A · P · BT2 · n − n · BT2 · P · (n · A)

]
. (A7b)

Using now the identity V · u = u · V T , in which V is identified as n · BT2 · P and u as
n · A, an alternative equivalent form of the above relationship is

n · (q · B − A · M) = ξ λ̄

[
n · A · P · BT2 · n − n · A ·

(
n · BT2 · P

)T
]
, (A7c)

or, using the symmetry property of P (see (A6b)),

n · (q · B − A · M) = ξ λ̄

[
n · A · P · BT2 · n − n · A · P ·

(
n · BT2

)T
]
. (A7d)

However, employing the property of B (cf. (A6c)), leads to the following expression:(
n · BT2

)T = BT2 · n. (A7e)

This last result, once introduced back in (A7d), shows that n · (q · B − A · M) = 0 and
that (A1), upon dividing by the volume V of the averaging domain, takes the form given

923 A37-24
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in (3.16), i.e. 〈
q ·

(
∇ ·

(
∇M + ∇MT1

))
−
(
∇ ·

(
∇q + ∇qT

))
· M

〉
= 0. (A8)

To conclude this appendix, it is worth noting that the developments that follow from this
last formula involve the three terms 〈q · ∇m〉, 1/μ〈∇p̃ · M〉 and κ/〈ρ〉β〈∇(∇ · q) · M〉
(see (3.17)), and the objective of the next paragraphs is to show that these terms are all
equal to zero.

Term 〈q · ∇m〉
An equivalent form of this term is

〈q · ∇m〉 = 〈∇ · (qm)〉 − 〈∇ · qm〉 , (A9a)

or, upon using the averaging theorem (see (3.4)),

〈q · ∇m〉 = ∇ · 〈qm〉 + 1
V

∫
Aβσ

n · qm dA − 〈∇ · qm〉 . (A9b)

While noticing that both q and m are periodic fields and that q is tangential to the interface
Aβσ , the two first terms on the right-hand side of this last equation are zero. From the mass
conservation equation at the pore-scale (3.11a), the last term on the right-hand side can
equivalently be rewritten as 〈∇ · qm〉 = −∂〈ρ〉β/∂t〈m〉. Note that, here, the fact that 〈ρ〉β
can be considered as a constant within the unit cell was employed. Taking into account the
average constraint on m (see (3.14d)) allows one to finally write

〈q · ∇m〉 = 0. (A9c)

Term 1
μ
〈∇p̃ · M〉

The volume integral in this expression can be written as

〈∇p̃ · M〉 = 〈∇ · (p̃M)〉 − 〈p̃∇ · M〉 , (A10a)

or, after making use of the spatial averaging theorem,

〈∇p̃ · M〉 = ∇ · 〈p̃M〉 + 1
V

∫
Aβσ

n · p̃M dA − 〈p̃∇ · M〉 . (A10b)

Since p̃ and M are periodic, the divergence term on the right-hand side of this equation is
zero. The two remaining terms are also zero due to the tangential character of M at Aβσ

and to the solenoidal nature of M . This finally leads to
1
μ

〈∇p̃ · M〉 = 0. (A10c)

Term
κ

〈ρ〉β 〈∇(∇ · q) · M〉
The average term here can be equivalently written as

〈∇ (∇ · q) · M〉 = 〈∇ · (∇ · q M)〉 − 〈∇ · q∇ · M〉 . (A11a)

Since M is a divergence-free tensor, the second term on the right-hand side of this equation
is zero. Making use of the averaging theorem on the remaining term leads to

〈∇ (∇ · q) · M〉 = ∇ · 〈∇ · q M〉 + 1
V

∫
Aβσ

n · M∇ · q dA. (A11b)

Keeping in mind that both q and M are periodic fields, the first term on the right-hand side
of this relationship is zero. In addition, M has no normal component at Aβσ so that the
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area integral is also zero, which allows the conclusion that
κ

〈ρ〉β 〈∇ (∇ · q) · M〉 = 0. (A11c)

Appendix B

Here, the procedure from which the closure problem given in (3.14) and the macroscopic
momentum equation (3.19) arise when employing the adjoint approach is briefly outlined.
Equations (3.11a) and (3.11b) are multiplied by two test tensors, m (first order) and M
(second order), a priori unspecified, and the sum of the two is integrated over time and
over Vβ , to obtain

0 =
∫ t=tf

t=0

∫
Vβ

(
∂〈ρ〉β
∂t

+ ∇ · q
)

m +
[
− 1
μ

∂q
∂t

− 1
μ

∇p̃ + 1
〈ρ〉β∇ ·

(
∇q + ∇qT

)

+ κ

〈ρ〉β∇(∇ · q)− 1
μ

∇〈p〉β
]

· M dV dt. (B1)

The tensors m and M are assumed periodic in the unit cell and the constraint∫
Vβ

m dV = 0, (B2)

is enforced to ensure uniqueness of the solution of the auxiliary problem in the unit cell.
Integration by parts yields

0 =
∫ t=tf

t=0

∫
Vβ

−q · ∇m + 1
μ

q · ∂M

∂t
+ p̃
μ

∇ · M + 1
〈ρ〉β q ·

(
∇ ·

(
∇M + ∇MT1

))

+ κ

〈ρ〉β q · (∇(∇ · M))− 1
μ

∇〈p〉β · M dV dt −
∫

Vβ

1
μ

[
q · M

]t=tf
t=0 dV

−
∫ t=tf

t=0

∫
Aβσ

n ·
[
q ·

(
∇M + ∇MT1

)
−
(
∇q + ∇qT

)
· M

]
dA dt. (B3)

The auxiliary problem in the unit cell is chosen to satisfy

∇ · M = 0, (B4a)

− 1
μ

∂M

∂t
= −∇m + 1

〈ρ〉β∇ ·
(
∇M + ∇MT1

)
+ κ

〈ρ〉β∇(∇ · M)︸ ︷︷ ︸
=0

. (B4b)

On account of the above two equations, (B3) reduces to

0 =
∫ t=tf

t=0

∫
Vβ

− 1
μ

∇〈p〉β · M dV dt −
∫

Vβ

1
μ

[
q · M

]t=tf
t=0 dV

−
∫

Aβσ

n ·
[
q ·

(
∇M + ∇MT1

)
−
(
∇q + ∇qT

)
· M

]
dA. (B5)

This can be further simplified by enforcing

M = −ξ λ̄ (I − nn) ·
[
n ·

(
∇M + ∇MT1

)]
, at Aβσ . (B6)
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Under these circumstances, the boundary integral term in (B5) is zero, as this corresponds
to the proof of (A4) provided in Appendix A. Finally,

M = μ

〈ρ〉β I (B7)

is chosen as the terminal condition for the adjoint problem at t = tf , to arrive at the
dynamic Darcy’s equation

〈v〉|tf = − 1
μ

∫ t=tf

t=0

〈
MT

〉
· ∇〈p〉β dt + 1

μ

〈
MT · q

〉∣∣∣
t=0

. (B8)

This final result coincides with (3.19) in the main text.

Appendix C

The purpose of this appendix is to investigate the symmetry properties of K st. For
simplicity, it is convenient to carry out this analysis in the Laplace domain using the
problem given in (3.23). Indeed, because the Laplace transform does not alter the
symmetry properties of a tensor, any conclusion regarding this feature on K̂ st also applies
to K st.

The analysis follows the procedure reported by Lasseux & Valdés-Parada (2017). It
starts with the pre-multiplication of (3.23b) by M̂T and the application of the superficial
averaging operator to the result. This yields

〈ρ〉β
μ

s
〈
M̂T · M̂

〉
=
〈
M̂T ·

(
∇ · B̂

)〉
+ sK̂ st, (C1a)

with the same nomenclature as in Appendix A, i.e.

B̂ = ∇M̂ + ∇M̂T1. (C1b)

To arrive at (C1a), (3.25e), (3.27) and (3.30a) were employed. In addition, the fact that
the term 〈M̂T · ∇d̂〉 is zero was taken into account. This can be shown using the same
procedure as that employed in Appendix A regarding the term 〈∇p̃ · M〉 (i.e. the averaging
theorem together with the periodicity of M̂ and d̂, along with the fact that M̂ is tangential
at Aβσ and divergence free). This allows writing

sK̂T
st = 〈ρ〉β

μ
s
〈
M̂T · M̂

〉
−
〈(

∇ · B̂
)T · M̂

〉
. (C2)

Since 〈M̂T · M̂〉 is a symmetric tensor, the symmetry analysis of K̂ st reduces to that of
〈(∇ · B̂)T · M̂〉, or, equivalently, of 〈(∇ · B̂T2) · M̂〉 since it can be shown that (∇ · B̂)T =
∇ · B̂T2. Note that here, again, the superscript T2 represents the transpose of a third-order
tensor which permutes the second and third indices, i.e. B̂T2

ijk = B̂ikj. An alternative
expression of 〈(∇ · B̂T2) · M̂〉 can now be written as〈(

∇ · B̂T2
)

· M̂
〉
=
〈
∇ ·

(
B̂T2 · M̂

)〉
−
〈
∇M̂T3 : B̂

〉
. (C3)

The symbol : is the double dot product which, for two third-order tensors, κ1 and κ2, is
defined as (κ1 : κ2)ij = κ1iklκ2lkj where the Einstein notation is implied. Moreover, the
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superscript T3 is employed to denote the transpose of a third-order tensor which permutes
the first and third indices, i.e. B̂T3

ijk = B̂kji.
Equation (C3) can be reformulated by making use of the averaging theorem on the first

term on the right-hand side, and, after taking into account the fact that M̂ (and hence B̂) is
periodic, this gives〈(

∇ · B̂T2
)

· M̂
〉
= 1

V

∫
Aβσ

n · B̂T2 · M̂ dA −
〈
∇M̂T3 : B̂

〉
. (C4)

The ij-component of the second term on the right-hand side of this last expression is given
by 〈

∇M̂T3 : B̂
〉
ij

=
〈(

∇M̂
)

lki

(
∇M̂

)
lkj

〉
+
〈(

∇M̂
)

kli

(
∇M̂

)
lkj

〉
. (C5)

In this relationship, k and l are dummy indices that can be indifferently interchanged, in
particular in the second term on the right-hand side. This leads to the conclusion that
〈∇M̂T3 : B̂〉 is a symmetric tensor. Consequently, the only term whose symmetry remains
to be analysed is the area integral in (C4), or simply its integrand, n · B̂T2 · M̂ at Aβσ . For
this purpose, M̂ can be replaced by its expression given by the boundary condition at Aβσ

in (3.23c), which yields

n · B̂T2 · M̂ = −ξ λ̄n · B̂T2 · P ·
(

n · B̂
)
, (C6a)

with, as in Appendix A, P = I − nn. Noticing that P = P · P and that PT = P, this last
equation can also be written as

n · B̂T2 · M̂ = −ξ λ̄
(

n · B̂T2 · P
)

·
((

n · B̂
)T · P

)T

. (C6b)

However, (
n · B̂

)T = n · B̂T2, (C6c)

and this consequently allows rewriting equation (C6b) as

n · B̂T2 · M̂ = −ξ λ̄
(

n · B̂T2 · P
)

·
(

n · B̂T2 · P
)T
. (C6d)

The right-hand side of this last expression is the dot product between a second-order tensor
and its transpose, which shows that n · B̂T2 · M̂ is symmetric. This completes the proof that
K̂ st is symmetric and, consequently, that K st is also symmetric.

Appendix D
This appendix is dedicated to the proof that, in the limit of infinite time, and assuming 
that the macroscopic forcing remains constant after a given time, the macroscopic model 
provided in (3.29) coincides with the steady macroscopic momentum equation for slip 
flow reported in (3.13b) in the paper by Lasseux et al. (2016).
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For convenience, consider the Laplace transform of the unsteady macroscale equation
(3.29), i.e.

〈v̂〉 = − 1
μ

sK̂ st · ∇ 〈
p̂
〉β + α̂s. (D1)

Here, the fact that K st|t=0 = 〈D|t=0〉 is zero was taken into account. Multiplying (D1) by s
yields

s〈v̂〉 = − 1
μ

sK̂ st · s∇ 〈
p̂
〉β + sα̂s. (D2)

The application of the final value theorem to this last result, which consists in taking the
limit as s → 0, allows writing

lim
t→∞〈v〉 = − 1

μ
lim

t→∞K st · lim
t→∞∇ 〈p〉β + lim

t→∞αs. (D3)

Denoting by 〈v〉s the average velocity at steady state, i.e. 〈v〉s = limt→∞〈v〉, and taking
into account the fact that the macroscopic pressure gradient is constant and equal to ∇〈p〉βs
after a given time, together with the fact that limt→∞ αs = 0 and that limt→∞ K st = K s,
lead to rewriting (D3) as

〈v〉s = − 1
μ

K s · ∇ 〈p〉βs . (D4)

This shows that the steady slip flow model reported by Lasseux et al. (2016, (3.13b)) is
conveniently recovered from the unsteady macroscopic slip flow model at sufficiently long
time when the macroscopic forcing remains constant after a given time. In addition, in the
limit of t → ∞, the closure problem given in (3.25) reduces to that reported in (3.7) of the
paper by Lasseux et al. (2016).

Appendix E

The objective of this appendix is to derive a formal solution for the pressure deviations
in a periodic unit cell. To this end, it is convenient to start the derivations by noting that,
if Green’s formula is used to couple the associated fundamental problem for the velocity
Green’s function pair given in (3.12) and the pore-scale flow equations, the result is the
following expression for the fluid velocity:

v|tf = − 1
μ

∫ t0=tf

t0=0

∫
Vβ(r0)

GT
v

(
r, r0, tf , t0

)
dV(r0) · ∇〈p〉β ∣∣t0 dt0

+ 〈ρ0〉β
μ

∫
Vβ(r0)

v0 · Gv
(
r, r0, tf , 0

)
dV(r0), (E1)

which is analogous to (3.19) in the main text. The above equation can be written in terms
of q and τ = tf − t under the following form:

q|tf = −〈ρ〉β
μ

∫ τ=tf

τ=0

∫
Vβ(r0)

GT
v (r, r0, τ ) dV(r0) · ∇〈p〉β ∣∣tf −τ dτ

+ 〈ρ〉β
μ

∫
Vβ(r0)

q0 · Gv
(
r, r0, tf

)
dV(r0). (E2)

https://doi.org/10.1017/jfm.2021.606
https://cambridge.uam.elogim.com/core
https://cambridge.uam.elogim.com/core/terms


D. Lasseux, F.J. Valdés-Parada and A. Bottaro

Recalling that Gv(r, r0, τ ), 0 � τ � t, while 〈ρ〉β(x, t) allows writing the Laplace
transform of the above equation as follows:

q̂ = −〈ρ〉β
μ

∫
Vβ(r0)

ĜT
v (r, r0, s) dV(r0) · ∇〈p̂〉β + 〈ρ〉β

μ

∫
Vβ(r0)

q0 · Ĝv (r, r0, s) dV(r0).

(E3)
At this point, it is pertinent to direct attention to the momentum balance equation written
in terms of q given in (3.11b), which after use of (3.11a) and taking into account the fact
that 〈ρ〉β is evaluated at x, yields

1
μ

∂q
∂t

= − 1
μ

∇p̃ + 1
〈ρ〉β ∇2q − 1

μ
∇〈p〉β, in the β-phase. (E4)

Writing this equation in the Laplace domain and solving for ∇ ˆ̃p leads to the following
result:

∇ ˆ̃p = −(sq̂ − q0)+ μ

〈ρ〉β ∇2q̂ − ∇〈p̂〉β, in the β-phase. (E5)

Substitution of (E3) in the above expression allows ∇ ˆ̃p to be written in terms of the
physical sources and Ĝv as follows:

∇ ˆ̃p =
∫

Vβ(r0)

[
−s

〈ρ〉β
μ

Ĝv (r, r0, s)+ ∇2Ĝv (r, r0, s)+ δ(r − r0)I

]
· q0 dV(r0)

−
[∫

Vβ(r0)

[
−s

〈ρ〉β
μ

Ĝv (r, r0, s)+ ∇2Ĝv (r, r0, s)+ δ(r − r0)I

]
dV(r0)

]
· ∇〈p̂〉β.

(E6)

Note that in the last term, the symmetric character of Ĝv was taken into account. To
simplify this last equation it is convenient to apply the change of variable τ = tf − t in
(3.12b) and take the Laplace transform of the resulting expression to obtain

〈ρ〉β∇ĝp = −s
〈ρ〉β
μ

Ĝv + ∇2Ĝv + δ(r + r0)I, in the β-phase. (E7)

In this way, (E6) takes the form

∇ ˆ̃p = ∇
∫

Vβ(r0)
〈ρ〉β ĝp · q0 dV(r0)− ∇

∫
Vβ(r0)

〈ρ〉β ĝp dV(r0) · ∇〈p̂〉β. (E8)

Note that in this last result, the fact that the gradient is operating at r was taken into
account. From the above equation, the following expression for the pressure deviations in
the Laplace domain can be obtained:

ˆ̃p = 〈ρ〉β
∫

Vβ(r0)
ĝp · q0 dV(r0)− 〈ρ〉β

∫
Vβ(r0)

ĝp dV(r0) · ∇〈p̂〉β + c. (E9)

Here c is an arbitrary constant which can be demonstrated to be zero in order to meet the 
average constraints given in (3.11e) and (3.12d) written in the Laplace domain. Making use
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of the definitions reported in (3.13b) and (3.24a) allows expressing the above equation as
follows:

ˆ̃p = 〈ρ〉β
∫

Vβ(r0)
ĝp · q0 dV(r0)− sd̂ · ∇〈p̂〉β. (E10)

Applying the inverse Laplace transform to this result and choosing

when t = 0, d = 0, (E11)

leads to the final result

p̃ = 〈ρ〉β
∫

Vβ(r0)
gp · q0 dV(r0)−

∫ τ=t

τ=0

∂d
∂t

∣∣∣∣
t−τ

· ∇〈p〉β ∣∣
τ

dτ. (E12)

This expression is equivalent to that reported in (3.36) of the main text. It is worth
mentioning that the result given above can also be obtained by using an adjoint procedure
along the lines exposed in Appendix B. This approach involves the fundamental problem
for the pressure Green’s function pair (Choi & Dong 2021).
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