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Abstract. Conceptual vectors can be used to represent thematic aspects of text
segments, which allow for the computation of semantic relatedness. We study the
behavior of conceptual vectors based on an ontology by comparing the results
to the Miller-Charles benchmark. We discuss the limits to such an approach due
to explicit mapping, as well as the viability of the Miller-Charles dataset as a
benchmark for assessing lexical semantic relatedness.

1 Introduction

Natural Language Processing (NLP) applications are often intended to be used via
human-computer interactions. Example scenarios include receiving a useful proposal
based on a goal and the available information (message planning); or to find the best
word in a target language (interactive machine translation). To provide helpful responses
to the user, it is important for such systems to be able to analyse or generate utterances
adequately, relative to a user’s intuitions about word meanings, or in particular the re-
latedness between the word meanings.

The Miller-Charles benchmark dataset [1] was compiled so that machine-computed
semantic similarity measures of word pairs may be compared to human judgements. We
use conceptual vectors to represent thematic aspects for text segments, with appropriate
definitions of distances to computate semantic relatedness. We study the behavior of
conceptual vectors based on an ontology by comparing the results to the Miller-Charles
benchmark, and examine the limits to such an approach. We also discuss the viability
of the Miller-Charles dataset as a benchmark for assessing lexical semantic relatedness.

2 Conceptual Vectors

2.1 Principle and Thematic Distance

Vectors have long been in use in NLP. The standard vector model (SVM) was first pro-
posed for information retrieval [2], while latent semantic analysis (LSA) was developed
for meaning representation [3]. They are inspired by distributional semantics [4] which



hypothesises that a word meaning can be defined by its context. For example, the mean-
ing of ↪milk↩ could be described by {↪cow↩, ↪cat↩, ↪white↩,↪cheese↩, ↪mammal↩, . . .}. Hence,
distributional vector elements correspond directly (SVM) or indirectly (LSA) to lexical
items from utterances.

The conceptual vector (CV) model is different as it is inspired by componential
linguistics [5] which holds that the meaning of words can be described with semantic
components. These can be considered as atoms of meaning [6], or as constituents of the
meaning [7]. For example, the meaning of ↪milk↩ could be described by {LIQUID, DAIRY

PRODUCT, WHITE, FOOD,. . .}. CVs model a formalism for the projection of this notion in a
vectorial space. Hence, CV elements correspond to concepts indirectly, as we will see
later. CVs can be associated to all levels of a text (word, phrase, sentence, paragraph,
text, . . . ). As they represent ideas, they correspond to the notion of semantic field, the
set of ideas conveyed by a term, at the lexical level; and also overall thematic aspects at
the level of the entire text. CVs can also be applied to lexical meanings. They have been
studied in word sense disambiguation using isotopic properties in a text, i.e. redundancy
of ideas [7]. The basic idea is to maximise the overlap of shared ideas between word
senses. This can be done by computing the angular distance between two CVs. For two
CVs X and Y , the Sim function (= cos(X̂, Y ) = X·Y

‖X‖×‖Y ‖ ) constitutes the thematic
proximity, and DA = arccos(Sim(A,B)) measures the angle between the two vectors
from a geometric point of view.

2.2 Operations on Vectors

Weak Contextualisation. When two terms are in presence of each other, some of the
ideas in each term are accentuated by those in the other term. The contextualisation
operation γ(X,Y ) = X ⊕ (X � Y ) emphasizes the features shared by both terms,
where ⊕ is the normalised vectorial sum, averaging the two operand vectors; and � is
the vectorial term-to-term product, highlighting their common ideas [8].

Partial Synonymy. The synonymy function SynR(X,Y,C) = DA (γ(X,C), γ(Y,C))
tests the thematic closeness of two meanings (X and Y ), each enhanced with what it
has in common with a third (C) [9]. The Partial Synonymy function, SynP (X,Y ) =
SynR(X,Y, γ(X,X ⊕ Y ) ⊕ γ(Y,X ⊕ Y )), is simply SynR where the context is the
sum of contextualisation of X and Y of their means (normalised sum) [10].

2.3 Properties and Construction

The construction of CVs assumes that ideas should be considered relative to each other.
It seems more relevant to compare the proportion of the different ideas conveyed by
terms or meanings. Following this idea, all conceptual vectors are normalised, i.e. they
have the same magnitude. Geometrically speaking, objects represented by a conceptual
vector are projected onto a hypersphere3.

CVs can be constructed based on definitions from different sources, including dic-
tionaries, synonym lists, manually crafted indices, etc. Definitions are parsed and the

3 A hypersphere is constituted with all points at the same distance d from an origin point in any
dimensional space.

154



allergist#1 Hippocrates#1

doctor#1

surgeon#1

medical man#1

hypernym

hypernym hypernym

has instancehospital#1 hospital#2

medical building#1 medical institution#1

hypernymhypernym

1 2

3

4

5

8 6

9 7

3
5

9

8

7

6
4

2

1

whole#2 entity#1

5 nodes3 nodes 6 nodes7 nodes

Fig. 1. Projecting WordNet concepts onto a hyperspace.

corresponding CV is computed. This approach fabricates, from existing CVs and defi-
nitions, new CVs. It requires a bootstrap with a kernel composed of pre-computed CVs.

2.4 Ontology-based Conceptual Vectors and Randomised Vectors by Emergence

An approach to induce CVs by emergence from randomised vectors was described in
[11, 8], as opposed to ontology- or taxonomic hierarchy-based vectors in [9]. The emer-
gence approach is attractive as the dimension of the vector space can be chosen freely.
Also, the lexical density in a vector space computed by emergence is more constant than
in a space with predefined concepts. However, as the iterative cycles of this approach
requires more time and computing resources, we decided to construct the vectors by
bootstrapping from an ontology.

3 Constructing Conceptual Vectors for WordNet Senses

WordNet (WN) [12] is a lexical semantic network comprising rich, explicit relations be-
tween English word senses. We construct a CV for each word sense in WN so that they
can be explored via the usual WN relations and also the neighbourhood that they occupy
in the hyperspace thus created. The right half of Fig. 1 shows several healthcare-related
senses in WN’s IS-A hierarchy. Visiting other related senses from one sense in the IS-A
hierarchy often involves a “long” journey. For example, the path from ↪doctor#n#1↩ to
↪hospital#n#2↩ is 14 nodes in length. However, once CVs (all of unit length) are con-
structed for these senses, we see (on the left of Fig. 1) that they are projected onto a
similar region in a hyperspace. In other words, these healthcare-related senses are now
semantically closer to each other in the hyperspace.

3.1 Vector Construction Process

Niles and Pease [13] annotated all WN senses with class labels from SUMO, an upper
ontology, and its related ontologies (including MILO) to aid the automatic processing
of free texts. For example, ↪doctor#n#1↩ is subsumed by the class MEDICALDOCTOR. We
describe the construction of CVs for WN senses from these sources below.

Vector Construction for Ontology Classes. We used 1992 classes from SUMO and
MILO for bootstrapping purposes: in other words, each CV will have 1992 vector com-
ponents. For each ontology class C, we initialise its vector V 0(C) to be a boolean vec-
tor, such that each component v0

i = 1 if vi corresponds to C, v0
i = 0 otherwise. The
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final vector for each ontology class C, V (C), is then computed with each component

vi(C) = v0
i (C) +

∑dim(V )
j=1

v0j (C)
2dist(C,Cj) . dim(V ) is the dimension of V (= 1992), Cj is

the j-th ontological class corresponding to vector component vj , and dist(M,N ) is
the path length connecting classesM and N in SUMO/MILO.

Kernel Vectors for WordNet Synsets. We set the kernel vector V 0(s) for each Word-
Net synset s to be V (C), where C is the SUMO/MILO class assigned to s in the data
made available by [13]. For example, V 0(↪doctor#n#1↩) = V 0(MEDICALDOCTOR).

Learning CVs for WN Senses. The CV for each WN sense V (s) is computed iter-
atively following [8, sect. 4], but where they used a randomly-generated vector as the
“seed”, we use the kernel vectors V 0 instead. This process was deployed on a grid
cluster environment to maximise the use of computing resources.

4 Proximity Measures and Comparison with Miller–Charles Set

Miller and Charles [1] asked 38 native English speakers to rate the similarity between
a chosen set of word pairs, on a scale of 0 to 4. The resultant dataset (hereafter M&C)
has been used as the benchmark in many semantic similarity measure studies.

To evaluate the CVs, we define two thematic proximity measures between lexi-
cal objects A and B: proxcv(A,B) = 1 −

(
DA(A,B)÷ π

2

)
; proxsyn(A,B) = 1 −(

SynP (A,B)÷ π
2

)
. For each word pair in the M&C dataset, we take the highest proxcv

and proxsyn values of all possible combinations of their noun senses in WN. The results
are shown in Table 1, comparing proxcv and proxsyn values with the human judgement
scores from M&C. The rows are sorted by decreasing “accumulated correlation coeffi-
cient” between our proximity values and the M&C ratings (re-scaled to [0, 1]).

5 Discussion

The correlation coefficients of proxcv and proxsyn to the M&C set are 0.644 and 0.634
respectively. While this does not seem impressive, a closer scrutiny reveals that they are
due to a few word pairs at the end of Table 1. We discuss some possible causes below.

Suitability of WN–SUMO Mappings for CVs. Our proximity values for ↪brother↩-
↪monk↩ was too low due to the very different WN–SUMO mapping: they are mapped
to the HUMAN and RELIGIOUSORGANISATION classes respectively. We also noticed that
many adjectives (and their morphologically-related nouns) are mapped to SUBJECTIVE-
ASSESSMENTATTRIBUTE, thus “overcrowding” that class, possibly skewing the proxim-
ity value for many other word pairs.

This may indicate that such explicit mapping data between a general domain lexical
resource (WN) and an ontology, particularly an upper ontology (SUMO), is not suitable
for the purpose of constructing CVs: such mapping efforts often have their own strict
guidelines and philosophies to adhere to, and do not always reflect topical relatedness.
On the other hand, while the word pairs ↪coast↩-↪hill↩, ↪forest↩-↪graveyard↩ and ↪coast↩-
↪forest↩ are deemed by human judges as very dissimilar, their proxcv and proxsyn values
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Table 1. Comparing similarity scores for the Miller–Charles dataset.

Word Pair M&C proxcv proxsyn
Corr. with M&C
proxcv proxsyn

automobile car 0.98 1.00 1.00 1.000 1.000
cord smile 0.03 0.48 0.57 1.000 1.000
glass magician 0.03 0.47 0.57 1.000 1.000
gem jewel 0.96 1.00 1.00 1.000 1.000
rooster voyage 0.02 0.44 0.53 0.999 0.998
magician wizard 0.88 0.90 0.92 0.997 0.997
bird crane 0.74 0.82 0.86 0.996 0.996
crane implement 0.42 0.60 0.68 0.989 0.991
noon string 0.02 0.38 0.47 0.988 0.988
bird cock 0.76 0.78 0.83 0.983 0.985
coast shore 0.93 0.86 0.89 0.980 0.982
journey voyage 0.96 0.85 0.88 0.974 0.976
midday noon 0.86 1.00 1.00 0.965 0.968
furnace stove 0.78 0.70 0.77 0.950 0.956
implement tool 0.74 0.67 0.74 0.936 0.944
brother lad 0.42 0.47 0.55 0.925 0.930
food rooster 0.22 0.34 0.43 0.920 0.921
lad wizard 0.11 0.20 0.30 0.915 0.911
asylum madhouse 0.90 0.70 0.76 0.901 0.897
food fruit 0.77 0.60 0.69 0.885 0.885
boy lad 0.94 0.62 0.70 0.856 0.860
monk slave 0.14 0.62 0.69 0.837 0.839
car journey 0.29 0.71 0.77 0.818 0.818
monk oracle 0.28 0.71 0.77 0.800 0.798
coast hill 0.22 0.71 0.77 0.777 0.774
forest graveyard 0.21 0.81 0.85 0.735 0.731
coast forest 0.11 0.70 0.77 0.711 0.704
brother monk 0.71 0.34 0.43 0.644 0.634

Corr. with M&C 0.644 0.634

are high as the LANDAREA class is very prominent in the conceptual vectors of these
lexical items. This is, again, due to the WN–SUMO mapping data.

Suitability of the M&C Set. Resnik [14] commented on the difference between the
notions of semantic relatedness and similarity: ↪cars↩ and ↪gasoline↩ are more closely
related than ↪cars↩ and ↪bicycles↩, but the latter pair is more similar. This is the reason for
the low human ratings of ↪car↩-↪journey↩ but high proxcv and proxsyn values: while the
meanings are very dissimilar, they are highly related.

This suggests that our thematic proximity measures do indeed indicate lexical se-
mantic relatedness, as opposed to the M&C experiments which are concerned with lex-
ical semantic similarity: Budanitsky and Hirst [15] commented that semantic similarity
is a special case of semantic relatedness, and that human judges in the M&C experi-
ment were instructed to assess similarity instead of generic relatedness. We are also of
the opinion that the M&C word pairs are more suitable for assessing similarity, but are
less helpful for assessing relatedness. Therefore, we propose that a future experiment
be conducted to collect human judgements of lexical semantic relatedness, with a more
suitable set of word pairs.

6 Conclusions and Future Work

We have shown how CVs can model the ideas conveyed by lexical meanings, how
they can be constructed based on ontological sources, and how they can be used to
measure lexical semantic relatedness. Although encouraging, our results confirm the
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weaknesses of a hierarchy-based vector construction approach as identified in [10, 11],
such as the non-standard density of the hierarchy, and different philosophies in map-
ping lexical senses to ontology classes. We therefore plan to explore the effect of using
hierarchy-free CVs, i.e. construction by emergence. Realising that the M&C study is
more concerned with lexical similarity, we will also collect human judgement ratings
pertaining to lexical semantic relatedness as a more suitable benchmark.
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