
HAL Id: hal-03318921
https://hal.science/hal-03318921

Submitted on 11 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the evaluation of research software: the CDUR
procedure

Teresa Gomez-Diaz, Tomas Recio

To cite this version:
Teresa Gomez-Diaz, Tomas Recio. On the evaluation of research software: the CDUR pro-
cedure. F1000Research, 2019, Research on Research, Policy & Culture gateway, 8, pp.1353.
�10.12688/f1000research.19994.2�. �hal-03318921�

https://hal.science/hal-03318921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

RESEARCH ARTICLE

 On the evaluation of research software: the CDUR

procedure [version 2; peer review: 2 approved]

Teresa Gomez-Diaz 1, Tomas Recio 2

1Laboratoire d'Informatique Gaspard-Monge, Centre National de la Recherche Scientifique, University of Paris-Est Marne-la-Vallée,
Marne-la-Vallée, France
2Universidad de Cantabria, Santander, Spain

First published: 05 Aug 2019, 8:1353
https://doi.org/10.12688/f1000research.19994.1
Latest published: 26 Nov 2019, 8:1353
https://doi.org/10.12688/f1000research.19994.2

v2

Abstract
Background: Evaluation of the quality of research software is a
challenging and relevant issue, still not sufficiently addressed by the
scientific community.

Methods: Our contribution begins by defining, precisely but widely
enough, the notions of research software and of its authors followed
by a study of the evaluation issues, as the basis for the proposition of
a sound assessment protocol: the CDUR procedure.

Results: CDUR comprises four steps introduced as follows: Citation, to
deal with correct RS identification, Dissemination, to measure good
dissemination practices, Use, devoted to the evaluation of usability
aspects, and Research, to assess the impact of the scientific work.

Conclusions: Some conclusions and recommendations are finally
included. The evaluation of research is the keystone to boost the
evolution of the Open Science policies and practices. It is as well our
belief that research software evaluation is a fundamental step to
induce better research software practices and, thus, a step towards
more efficient science.

Keywords
Scientific Software, Research Software, Research Software Citation,
Research Software Evaluation, Open Science, Research evaluation

This article is included in the Research on

Research, Policy & Culture gateway.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 2

(revision)
26 Nov 2019

report

version 1
05 Aug 2019 report report

Francisco Queiroz , University of Leeds,

Leeds, UK

1.

Jean-Pierre Merlet , Inria, Sophia-

Antipolis, Valbonne, France

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://f1000research.com/articles/8-1353/v2
https://f1000research.com/articles/8-1353/v2
https://orcid.org/0000-0002-7834-145X
https://orcid.org/0000-0002-1011-295X
https://doi.org/10.12688/f1000research.19994.1
https://doi.org/10.12688/f1000research.19994.2
https://f1000research.com/gateways/research_on_research
https://f1000research.com/gateways/research_on_research
https://f1000research.com/gateways/research_on_research
https://f1000research.com/articles/8-1353/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/8-1353/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-2685-2653
https://orcid.org/0000-0002-0401-5424
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.19994.2&domain=pdf&date_stamp=2019-11-26

Corresponding authors: Teresa Gomez-Diaz (teresa.gomez-diaz@univ-mlv.fr), Tomas Recio (tomas.recio@unican.es)
Author roles: Gomez-Diaz T: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project
Administration, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Recio T:
Conceptualization, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Validation, Visualization, Writing –
Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: Publication of this article is supported by the Gaspard-Monge computer science laboratory (LIGM) at the University
of Paris-Est Marne-la-Vallée.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2019 Gomez-Diaz T and Recio T. This is an open access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
How to cite this article: Gomez-Diaz T and Recio T. On the evaluation of research software: the CDUR procedure [version 2; peer
review: 2 approved] F1000Research 2019, 8:1353 https://doi.org/10.12688/f1000research.19994.2
First published: 05 Aug 2019, 8:1353 https://doi.org/10.12688/f1000research.19994.1

This article is included in the Mathematical,

Physical, and Computational Sciences

collection.

Page 2 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

mailto:teresa.gomez-diaz@univ-mlv.fr
mailto:tomas.recio@unican.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.19994.2
https://doi.org/10.12688/f1000research.19994.1
https://f1000research.com/collections/mpcsciences
https://f1000research.com/collections/mpcsciences
https://f1000research.com/collections/mpcsciences

1 Introduction
Scientific software is a key component in today’s science and
engineering development 1. As described in detail in the Research
software definition section a particular, yet fundamental, sub-
set of scientific software is the research software (RS)1 that is
developed and used by researchers in the process of doing
scientific research in public institutions or publicly funded
projects2.

Computer software was included among the positive spillovers
of knowledge production in 2 (p.508):

“What is alluded to here is that there may be important positive
spillovers across projects in the form of ‘learning effects’.
[...] which often remain in the region of tacit knowledge [...]
including the development of generic computer software for
performing data processing, storage, retrieval and network
transmission”.

Henceforth, its importance to the scientific enterprise is generally
accepted 3:

“Modern science depends on software. Software analyzes
data, simulates the physical world, and visualizes the results;
just about every step of scientific work is affected by software”

Similarly, most of the cited references in this work highlight the
central role of software development in science nowadays. As
this central role is increasingly assumed, it is also noticeable the
emergence of some serious drawbacks. For example, finding
scientific software can be a quite hard enterprise 4,5; and dif-
ficulties can also arise when dealing with software citations 6,7.
Moreover, in 3 we can find:

“Software is increasingly important to the scientific enterprise,
and science-funding agencies are increasingly funding
software work. Accordingly, many different participants
need insight into how to understand the relationship
between software, its development, its use, and its scientific
impact.”

Research quality evaluation is an intrinsically embedded com-
ponent of research itself, with deep impact ranging from the
enhancement of academic careers to boosting new knowledge

production 8. Accordingly, in the Key evaluation issues section
we discuss and develop the intricate notion of evaluation in the
context of research software, considering both the perspective of
the evaluators and of the evaluated researchers. In particular, we
clarify in the CDUR proposal section whether we are evaluating
research, software, or research software as a scientific output.
Likewise, in the same section we settle the basis to decide,
within a research software evaluation scheme, when and how we
are evaluating some software or its associated research.

Our goal is then to set up a basis for a simplified and flexible
protocol concerning research software evaluation: what we have
named as the CDUR procedure. It includes four stages, labelled
as Citation, Dissemination, Use and Research, that are thoroughly
developed in the CDUR proposal section. The procedure is meant
to help all the key actors involved in the evaluation process,
and it applies to any scientific area, as the considered research
software aspects are quite transversal. CDUR will provide insight
in the relationship between software, its development, its use,
and its scientific impact, as we will show in this work.

We are aware that there are plenty of references in specialized
journals regarding software quality, free/open source or edu-
cational software assessment methodologies (e.g. the related
Wikipedia pages or some of the Software Sustainability Insti-
tute (SSI) documents3). The testing, validation and verification of
such types of software are well established concepts that proceed
in a direction that we are not going to pursue in this work. There
are also different publications concerning research evaluation
(e.g. 8 for a recent study with more than 50 references on the
subject) and a very complete review on the literature for scientific
software testing can be found in 1.

Moreover, in the context of Open Science career assessment, the
European Commission report 9 considers as an evaluation cri-
teria the use and the development of free/open source software,
although without proposing any concrete method for achieving
such criterium; and similar considerations can be found in the
NASA report concerning open source software policies and
career credit 10 (p.74). Besides, the importance of the evaluation
step in the context of future scholarly communication and Open
Science is stressed in 11: “The conclusion is actually simple:
the evaluation of research is the keystone”.

Nevertheless, we have not been able to find publications address-
ing, in particular, evaluation of software developed for scientific
research, (not scientific software in general), or concerning the
evaluation of research software as a whole process (and not just
testing). Thus, in our opinion, there is a clear need to approach
the issue we are dealing with in this paper, concerning a more
precisely determined object (research software) although in a
wider evaluation context (as a global process).

Our contributions are distributed along this article as follows:
next, the Research software section is devoted to discuss the
different aspects related to the concept of research software
and its associated issues concerning the notions of authorship,
publication and citation. For the sake of completeness, a panoramic

1In what follows we will use often the acronym RS to refer to research software
in order to facilitate the reading of this article.

2Our work can be also extended to deal with software driven by technological
development – the development (D) in research and development (R&D), as
observed in 8 (p.595) – or with scientific software being developed in private
institutions or commercial enterprises, albeit requiring some specific adjustments,
as, for example, the adaptation of the Research step. 3 https://software.ac.uk/

 Amendments from Version 1

This version considers the comments of the reviewers to better
explain and illustrate some of the concepts presented in the
article. Figure 1 was updated for clarity. For example, section 4
includes now also a practical example to better illustrate the
application of the CDUR protocol to a hypothetical evaluation
example.

Any further responses from the reviewers can be found at the
end of the article

REVISED

Page 3 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://software.ac.uk/

report of the international scientific community that has grown
around research software has been included in the section entitled
A snapshot on the international RS landscape. Then, the section
Key evaluation issues develops a similar analysis of the key facts
concerning research software scientific evaluation, where we study
the evaluation methods and the key evaluation actors, as well as
the concepts of success and value of research software. Finally,
the CDUR proposal section is devoted to the presentation of
the proposed CDUR protocol. To facilitate the reader to reach
a global perspective of this proposal, this section begins with
a summary description of CDUR’s four components, and
then describes and studies in detail the main points of each of
these components, discussing the pros and cons, and provid-
ing a used case example. The article ends with some conclu-
sions and recommendations for the consideration of the scientific
community.

The findings presented in this work are based on the handling
of extensive literature, as well as on the first-hand, complemen-
tary experience of both authors. The first author is a research
engineer at the Gaspard-Monge Computer Science laboratory
(LIGM)4, where her mission is to render RS production visible
and accessible. There, she works on how to improve RS develop-
ment and dissemination conditions since 2006 and has also had
a similar role at national level during her participation at the
PLUME project during 2007–2013 12–15 (see the section
on Publication of research software). The second author has
life-long experience in research evaluation at local, national
and international level in all possible scholar evaluation con-
texts (recruitment, career evolution, peer review, editorial, etc.).
For example, he has been the mathematics coordinator for the
Spanish government funding agency Agencia Estatal de
Investigación5 and, with regards to RS, he was General Chair at
ISSAC in 20006. On the other hand, both authors have many
years of experience in RS development. For instance, the second
author has recently received a distinguished software demonstra-
tion award from ISSAC 20167.

2 Research software: definition, publication and
citation
In this section we examine a first block of the essential compo-
nents that are involved in the scientific software evaluation, such
as its definition, or more precisely, the definition of research soft-
ware, and what does it mean to be an author or a contributor to
this software. In the present work, we would like to highlight the
widespread importance of RS production as a research output,
and the relevance of the publication of software papers – as pub-
lication is an essential part of the evaluation protocol. We study as
well the relationship between references and citations. Note that to
cite general purpose software in scientific papers is different than
to cite scientific (or more precisely, research) software specifi-
cally developed to address a concrete research problem, which
is the issue here. For example, it is rather different to mention

commercial software (as could be scientific software well
known and widely used) in a publication than to cite the
particular packages developed by a research team8.

Under these premises, the following section entitled Key evalu-
ation issues will be devoted to discussing some main points
concerning the evaluation of RS in its own (methods, key actors,
paradigms).

2.1 Research software definition
Generally speaking (e.g. 1) authors consider scientific software
as the one widely used in science and engineering fields. More
precisely, in 16 (see also the summarized version in 17), we
can find the following definition:

“Scientific software is defined by three characteristics: (1) it
is developed to answer a scientific question; (2) it relies on
the close involvement of an expert in its scientific domain;
and (3) it provides data to be examined by the person who
will answer that question ...”

Or, as concisely described by 18, scientific software is “software
developed by scientists for scientists”. Note that 16 excludes the
following software types from the scientific software definition:

“... control software whose main functioning involves the
interaction with other software and hardware; user interface
software that may provide the input for and report of scientific
calculations; and any generalized tool that scientists may use
in support of developing and executing their software, but does
not of itself answer a scientific question.”

but, on the contrary, all these types could fit in the larger defini-
tion given in 1. On the other hand, the more precise term of
“research software” is also employed in the literature, a definition
can be found in 19:

“Research software (as opposed to simply software) is
software that is developed within academia and used for the
purposes of research: to generate, process and analyse results.
This includes a broad range of software, from highly
developed packages with significant user bases to short (tens
of lines of code) programs written by researchers for their
own use.”

and the NASA report 10 (p.26) mentions:

“Research software – that is, the software that researchers
develop to aid their science...”

The concept of RS is equally studied in 12 in the context of a
(French) research laboratory’s production:

“Logiciel d’un laboratoire : tout programme ou fragment de
programme utile pour faire avancer la recherche et qui a été
produit avec la participation d’un ou plusieurs membres du
laboratoire.”

[Software of a laboratory: every program or part of a
program useful to make research advance and that has been 4http://ligm.u-pem.fr/

5http://www.ciencia.gob.es/portal/site/MICINN/
6http://www.sigsam.org/issac/2000/committee.html
7http://issac-conference.org/2016/awards.php 8See some examples at https://www.issac-conference.org/2016/software.php

Page 4 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

http://ligm.u-pem.fr/
http://www.ciencia.gob.es/portal/site/MICINN/
http://www.sigsam.org/issac/2000/committee.html
http://issac-conference.org/2016/awards.php
https://www.issac-conference.org/2016/software.php

produced with the participation of one or several members of
a laboratory9.]

These RS definitions include some software productions that
would be excluded according to the framework described in 16,
such as, for example, software tools that scientists may use in
support of their own developments and that could be, as well,
object of research in other scientific labs.

A complete study of a lab’s RS production is achieved in 12
through the comparison of software and publications, consider-
ing the legal aspects and the governance main issues in both cases.
This comparison: software/publications, reconciles the different
views. For instance, among scientific publications we can find
preprints, articles published in conference proceedings or jour-
nals, book chapters and books. Similar diversity appears in the
large spectrum that begins with research software specifically
done by researchers as part of their research tasks, and that includes
as well the ample concept of scientific software, widely used in
science and engineering, or the notion of academic software,
developed to fit education or management needs or that is devel-
oped in public institutions or in publicly funded projects.

Finally, to complete the comparison between RS and publications
in the context of the study of the RS concept, let us mention that
it is a general practice of research institutions and funders to
evaluate the laboratories, institutes, research units... regularly.
The evaluation is carried out by committees selected by the cor-
responding leading institutions and include the assessment of the
list of publications, funded projects, PhD training, etc. Once the
evaluation is over, it is also a usual practice for the publication list
to become the official research output of the research unit during the
evaluated period. Similarly, we think that the RS production of a
research unit should be decided and proposed to the evaluation
committee and, thus, it should also become part of the official
research output list.

We remark that these definitions do not take into account the sta-
tus of the software: project, prototype, finished, publicly available;
nor its quality, scope, size, or existing documentation; it can be
used by a team, just for the purpose of achieving a publication or
it can be soundly installed in several labs, where it is used regu-
larly. Moreover, we think that these considerations equally apply
to software developed in any scientific area. Figure 1 shows some
of the interrelations between the different concepts involved
in this article.

Although we think that software development skills have improved
in the last decades in the scientific community, and more and
more research software developments arise from well-organized
teams with well-established testing, management, documen-
tation and dissemination procedures, the paradigmatic model
that we have here in mind is one that we feel it is still largely
present 12,16,17,20: software that is developed by small (per-
haps international) teams, or individually, usually with few
development skills, where the main goal is the research activity
itself. That is, software that mainly aims to give correct scientific
results of whatever kind 18,21 and not necessarily a sound software
“product”, well documented, tested, easily reusable or maintained.
Note that “If the software gives the wrong answer, all other quali-
ties become irrelevant” 16. In addition, we are well aware that part
of the available RS is not disseminated adequatedly nor well docu-
mented, tested, correctly licensed, or maintained. Work has been
done to raise awareness on these issues (see for example 13,14,22–
26 among much of the cited work in this paper) in order to improve
development and dissemination practices, but is the researcher’s
decision to balance the efforts between “software management
tasks” and research efforts.

It is also a reality that much of the RS currently available is already
obsolete, because of rapid software and hardware evolutions.
In our vision, it is not the researchers’ task to expend much time
on keeping the produced RS alive if it is not part of their current
research work. Our priority here, which is also that of Open Sci-
ence, is that the code is freely and openly available, which will
facilitate its examination and its adaptation to new hardware/
software evolutions or to new research contexts when needed. It
will also help to avoid the risk of science results based in black
boxes, see for example 27 or the work of Ben Goldacre’s team

9The authors provide their own translation to French citations. Authors prefer
to keep the original text for French readers to enjoy it, very much in line with
the Helsinki Initiative on Multilingualism in Scholarly Communication
(2019), see https://doi.org/10.6084/m9.figshare.7887059.

Figure 1. Interrelations between different software concepts appearing in this work.

Page 5 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://ebmdatalab.net/ben-goldacre/
https://doi.org/10.6084/m9.figshare.7887059

at the Evidence-Based Medicine DataLab (University of
Oxford)10. Note that RS sustainability issues are the subject of
study of institutes like SSI or URSSI as we will see in the
section A snapshot on the international RS landscape below.

As we can see in detail in the section Publication of research soft-
ware, there are several possibilities to publish software papers.
Software publications, as it happens already for research data
papers, are becoming progressively installed in some scien-
tific areas. However, in our opinion, there is still not a real RS
publication procedure of comparable status as the one achieved
for research articles, that is, well established and widely adopted
by the scientific community (see for example 28). Thus, we
cannot rely on the concept of a research software paper to fix
some features towards a precise RS definition.

Incidentally, note that “The original idea and its implementation
represent distinct kinds of contribution” 28, and that research
software can contain knowledge that is not otherwise published
or just difficult to extract 29 (even from the associated publi-
cations analyzed in the section about Publication of research
software) as for example: negative results, or modifications for
algorithms, either to make their implementation faster and
sounder or to correct problems that are arising during the coding
process and that can generate new scientific understanding,
etc. Code and theory can evolve side by side 30. An excellent
example to illustrate these interactions between research and
code development are found in 31 which specifically states:

“[...] j'aimerais aussi sougliner que, dans aucune des parties
de cette thèse, il ne me semble possible de séparer nettement les
“mathématiques” de l'“informatique” : C'est l'implantation
d'un algorithme aussi ancien que le calcul des développements
de Puiseux, qui a permis d'en découvrir une nouvelle propriété
mathématique.”

[I would like to highlight that nowhere in this dissertation seems
possible to consider the “mathematics” and the “informatics”
issues as something separate. It is the implementation of the
old algorithm to compute Puiseux series that has allowed us to
discover a new mathematical property of these series.]

Bearing all these facts into account, we conclude that the defi-
nition of research software we will deal with in this paper must
lie in the context of a research work, ongoing or already done,
and, thus, in relation with a research result that is published or in
construction.

Therefore, we will consider here that a research software is a well
identified set of code that has been written by a (again, well iden-
tified) research team. It is software that has been built and used
to produce a result published or disseminated in some article
or scientific contribution. Each research software encloses a set
(of files) that contains the source code and the compiled code.
It can also include other elements as the documentation, speci-
fications, use cases, a test suite, examples of input data and

corresponding output data, and even preparatory material. Note
the role of the preparatory material to set initial dates to the
software itself (see for example the Dates paragraph in 12).

As remarked by a reviewer of this article, a particular RS may
be considered part of a whole and may have little sense in its
own, as for example the RS developed to control a specific
robotic system or the distributed research software developed for
Internet of Things (IoT) platforms like BeC3 (Behaviour Crowd
Centric Composition)11. These cases are beyond the intention of
this work, and the evaluation protocols proposed here are to be
adapted in order to consider the whole set as a research out-
put, and not to take into account each component separately,
which depends deeply on the research community standard
practices.

2.2 Research software authors
The concept of author is an essential part of the definition of RS:
“developed by scientists for scientists” 18 or, simply, written by
members of a research lab 12.

This is a point where legal issues are important, as the con-
cept of author from the legal point of view might differ from the
author concept in the usual scientific practice. The author of a
painting is the one who holds the paintbrush, and the author of a
novel is the one who writes it, which also applies to code writ-
ing. However, it is very usual that the teams involved in RS devel-
opment include researchers that do not write much code, but the
software will simply not exist without their scientific contribu-
tion. On the other hand, should we consider that the person who
corrects a few code lines is an author? What happens if the code
of a contributor has been later on fully rewritten or translated
from, say, Fortran to C? In 12 we can find a complete study of
the concept of RS authoring in the scientific context, as well as a
study of the involved legal aspects (under the French authorship
law). Note that authorship roles can also be discriminated in
scientific publications, see for example 32.

As mentioned above, the role of contributors to a RS can be
manifold, for example, as responsible or head of the RS devel-
oper team, as main developer or as minor contributor, as writer
of an old part of the code or as the researcher supplying scientific
expertise, etc. In larger teams there can be specialized roles for
management, documentation writing or for testing issues. In
order to simplify the analysis of the evaluation aspects implied
by this concept, we have selected three main roles: (i) responsible
or leader for the RS, (ii) main contributor or (iii) minor contribu-
tor. We should bear in mind that it may happen that RS leaders
or scientific experts do not participate in writing the code, or just
participate with minor contributions to the code while having
other important roles in design, management, etc. They may also
participate in the code writing as the main contributors. A very
detailed view of several RS contribution roles can be found in 33,
see also 34.

10https://ebmdatalab.net/ 11https://bec3.univ-mlv.fr/

Page 6 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://ebmdatalab.net/
https://bec3.univ-mlv.fr/

In conclusion, in this paper we will consider the concept of RS
author as describing someone who fulfils any of the three selected
roles presented above. When the contribution is about code
writing, some percentage of code participation can be estimated,
although some special cases can be considered. For exam-
ple some percentage of code participation could be assigned
to the scientific leader of the RS development team, besides the
recognition of their role as coordinator or team leader.

2.3 A snapshot on the international RS landscape
In this section we would like to reflect the human component,
in the current landscape, that is most directly concerned with
research software, even if it is not always specifically related with
the evaluation issues that are the object of this work. Please recall
that this presentation only attempts to provide a partial view of a
much larger panorama.

As the RS activities evolve in the scientific community, there
is a growing organization among the RS developers and more
and more initiatives of different nature build up the current RS
community landscape. We can find national initiatives or insti-
tutes, national or international networks and workshops. These
initiatives deal with RS as a scientific output, usually without
focusing in specific scientific topics (that are out of the scope
of this study). In what follows, we will mention a few examples
from North America and Europe to give a glimpse of a very
rapidly evolving panorama.

The first one we will like to bring here is the Research Software
Engineers (RSE) initiative12, an international association that has
been launched by the UK. The last International RSE leaders
meeting has taken place in January 201813, gathering members
from Africa, America (North and South), Europe and Australia.

Again, in the UK, the Software Sustainability Institute (SSI)14
has been launched by the EPSRC15 in 201016 to help research-
ers build better software 22. Let us recall that the SSI is at
the origin of the UK-RSE community (see 35) and has launched
many other initiatives like the Journal of Open Science Research
(JORS) publication17, or the Fellowship Programme18. It also
organizes many workshops regularly.

A similar structure to SSI is currently under construction in
the USA, the US Research Software Sustainability Institute
(URSSI)19 that aims to develop a pathway to research software
sustainability.

From a different perspective, the Workshop on Sustainable Soft-
ware for Science: Practice and Experiences (WSSSPE)20 is an
international community-driven organization that promotes sus-
tainable research software by addressing challenges related to
its full lifecycle, through shared learning and community action.
It has organized workshops in USA and Europe since 2013.

The Software Citation Group has published the Software citation
principles in 2016 7. The group is now closed and has evolved
to the Software Citation Implementation Working Group21.
They are specialized communities, focusing on the particular
issue of software citation.

In France, the PLUME project (2006–2013)22 was launched by
the CNRS23 to promote economical, useful and maintained soft-
ware for the higher education and the research community, and
to promote the community’s own developments 13. PLUME had
a platform to publish software descriptions and reference cards
(fiches in French) and organized many workshops and training
activities around research software, see for example ENVOL
200824 or the Journées PLUME 22-23/09/09 : Pourquoi et comment
diffuser un développement logiciel de laboratoire ou d’université
en libre?25. PLUME has also published several studies regarding
RS issues that can be found under the title Patrimoine logiciel d’un
laboratoire26.

In France there is also the developers’ network named Réseau des
acteurs du DÉVeloppement LOGiciel au sein de l’Enseignement
Supérieur et de la Recherche (DevLOG)27 that was launched in
2011 to gather the actors of the software development in the aca-
demic community. It has regularly organised the JDEV conference
since 201128.

Canarie29 is Canada’s National Research and Education Network.
It is a funding agency with a Research Software Program30

12 https://rse.ac.uk/about/
13 https://rse.ac.uk/rse-international-leaders-meeting/
14 https://software.ac.uk/
15The Engineering and Physical Sciences Research Council, https://epsrc.ukri.
org/
16 https://software.ac.uk/news/2010-06-01-future-software
17 https://openresearchsoftware.metajnl.com/
18 https://software.ac.uk/programmes-and-events/fellowship-programme
19 http://urssi.us/

20 http://wssspe.researchcomputing.org.uk/
21 https://www.force11.org/group/software-citation-implementation-working-
group
22PLUME stands for Promouvoir les Logiciels Utiles, Maîtrisés et Economiques
dans la communauté de l’Enseignement Supérieur et de la Recherche. Although
the project and the platform are frozen, all the produced information is online,
see https://projet-plume.org/ and https://projet-plume.org/en and https://projet-
plume.org/en.
23Centre National de la Recherche Scientifique, http://www.cnrs.fr/
24ENVOL stands for dEveloppemeNt et la ValOrisation des Logiciels en
environement de recherche [software development and valorization in research
environment] and was a full training week organized by the PLUME team and
funded by the CNRS, see https://projet-plume.org/ENVOL_2008
25 https://projet-plume.org/ressource/journees-plume-diffuser-en-libre
26 http://www.projet-plume.org/patrimoine-logiciel-laboratoire
27 http://devlog.cnrs.fr/
28JDEV stands for Journées nationales du DEVeloppement logiciel and is a 4 day
national workshop that gathers developers in the research environment. See for
example JDEV 2017 at http://devlog.cnrs.fr/jdev2017
29 https://www.canarie.ca/
30 https://www.canarie.ca/software/

Page 7 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://rse.ac.uk/about/
https://rse.ac.uk/rse-international-leaders-meeting/
https://software.ac.uk/
https://epsrc.ukri.org/
https://epsrc.ukri.org/
https://software.ac.uk/news/2010-06-01-future-software
https://openresearchsoftware.metajnl.com/
https://software.ac.uk/programmes-and-events/fellowship-programme
http://urssi.us/
http://wssspe.researchcomputing.org.uk/
https://www.force11.org/group/software-citation-implementation-working-group
https://www.force11.org/group/software-citation-implementation-working-group
https://projet-plume.org/
https://projet-plume.org/en
https://projet-plume.org/en
https://projet-plume.org/en
http://www.cnrs.fr/
https://projet-plume.org/ENVOL_2008
https://projet-plume.org/ressource/journees-plume-diffuser-en-libre
http://www.projet-plume.org/patrimoine-logiciel-laboratoire
http://devlog.cnrs.fr/
http://devlog.cnrs.fr/jdev2017
https://www.canarie.ca/
https://www.canarie.ca/software/

that has organized the Canadian Research Software Conference
in 201831.

In Netherlands, the NL-RSE (Netherlands Research Software
Engineer community)32 was formed in April 2017, an initiative
launched by the Netherlands eScience Center33 and ePLAN34 and
had its first meeting in 2017. In Germany, the deRSE35 organized
its first Conference for Research Software Engineers in 201936.

Besides these initiatives, we can mention many different con-
ferences or workshops around research or academic soft-
ware, such as the Engineering Academic Software (Dagstuhl
Perspectives Workshop 16252)37 (June 2016) 23 or the DANS38
/SSI-Sustainable Software Sustainability Workshop39 (March
2017) with a follow up in 201940.

We consider that these references provide a relevant, albeit par-
tial, snapshot of a situation evolving towards an increasingly
internationalized structuration41.

2.4 Publication of research software
In this section we will present a partial panorama of the RS pub-
lication world. Research software papers, like research data
papers, are publications directly related with the description and
functioning of the RS, published in a scientific area’s specific
journal or in generic journals.

In order to give a glimpse of the current panorama for these pub-
lications, we can begin with the list that N. Chue Hong keeps in
the SSI platform42. Among the general scope journals mentioned
in N. Chue Hong’s list, Wiley’s Journal of Software: Practice and
Experience43 has published articles about software in science since
197944 and seems to be one of the oldest journals for this sub-
ject. On the other hand, the Research Ideas and Outcomes (RIO)
Journal45 has published, at the time of writing this paper, three
software descriptions and one software management plan, and

seems still too novel concerning this kind of publication. The
recent Software Impacts46 journal two first volumes are in
progress in October 2019.

In a similar mood regarding RIO’s RS descriptions, we can men-
tion the software publications by The Journal of Open Source
Software (JOSS)47 36, a “developer friendly” journal launched in
2016 that has review policies taking into account good dissemi-
nation practices (see for example 14,24). Reviewers are expected
to install the software they are reviewing and to verify the core
functionality of the software48.

Another journal considering RS submissions is the Elsevier
SoftwareX Journal49, launched in 2015, where the peer review
procedure requests the referees, among others tasks, to build,
deploy, install and run the software following the provided
documentation50. Similarly, JORS51 has published software meta-
papers since 2013 and also has a precise software peer review
procedure52.

In France, the PLUME project (2006–2013) 13,15 published soft-
ware papers of several kinds. We only describe here briefly two:
RS publications and validated software publications. We describe
first the RS description cards53 (also named reference cards or dév
Ens Sup - Recherche cards or fiches in French) that are short pub-
lications containing the software metadata, a brief description, and
links to related publications (see for example the Treecloud54 refer-
ence card in Figure 2). Similar descriptions can be also found at the
Netherlands eScience Center55.

The objective of these publications was to promote and increase
the visibility of RS, in order to favor scientific collaboration56:

“Ces fiches sont destinées à valoriser les productions
logicielles de la communauté ESR et à les faire connaître
auprès d’un public plus large dans un but d’augmenter les
collaborations scientifiques.”

[These description cards are intended to promote the software
production of the research community and to make it known to
a larger public in order to increase scientific collaboration.]

The other kind of software publications described here were
dedicated to software with the status “validated by the academic

31 https://www.canarie.ca/software/canadian-research-software-conference/canadian-
research-software-conference-2018/program/
32 http://nl-rse.org/pages/community.html
33 http://www.esciencecenter.nl/
34 https://escience-platform.nl/
35 https://www.de-rse.org/en/
36 https://www.de-rse.org/en/conf2019/index.html
37 https://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=16252
38DANS is the the Netherlands institute for permanent access to digital research
resources, see https://dans.knaw.nl/en
39 https://dans.knaw.nl/nl/actueel/software-sustainability-workshop-7-9-march
40 https://software.ac.uk/wosss19/agenda
41 https://researchsoftware.org/
42 https://www.software.ac.uk/resources/guides/which-journals-should-i-publish-
my-software
43 https://onlinelibrary.wiley.com/journal/1097024x
44Unfortunately, we have no free access to this journal, which hinders our goal of
presenting a short comparison with more recent approaches to RS publishing.
45 https://riojournal.com/

46 https://www.journals.elsevier.com/software-impacts/
47 http://joss.theoj.org/
48 https://joss.readthedocs.io/en/latest/review_criteria.html

49 https://www.journals.elsevier.com/softwarex/

50 https://www.elsevier.com/__data/assets/pdf_file/0010/97066/ReviewerForm.pdf

51 https://openresearchsoftware.metajnl.com/

52 https://openresearchsoftware.metajnl.com/about/editorialpolicies/

53 https://www.projet-plume.org/fiches_dev_ESR, http://www.projet-plume.org/en

54 https://projet-plume.org/en/relier/treecloud

55 https://research-software.nl/

56 https://www.projet-plume.org/types-de-fiches#dev_ens_sup_recherche

Page 8 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://www.canarie.ca/software/canadian-research-software-conference/canadian-research-software-conference-2018/program/
https://www.canarie.ca/software/canadian-research-software-conference/canadian-research-software-conference-2018/program/
http://nl-rse.org/pages/community.html
http://www.esciencecenter.nl/
https://escience-platform.nl/
https://www.de-rse.org/en/
https://www.de-rse.org/en/conf2019/index.html
https://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=16252
https://dans.knaw.nl/en
https://dans.knaw.nl/nl/actueel/software-sustainability-workshop-7-9-march
https://software.ac.uk/wosss19/agenda
https://researchsoftware.org/
https://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
https://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
https://onlinelibrary.wiley.com/journal/1097024x
https://riojournal.com/
https://www.journals.elsevier.com/software-impacts/
http://joss.theoj.org/
https://joss.readthedocs.io/en/latest/review_criteria.html
https://www.journals.elsevier.com/softwarex/
https://www.elsevier.com/__data/assets/pdf_file/0010/97066/ReviewerForm.pdf
https://openresearchsoftware.metajnl.com/
https://openresearchsoftware.metajnl.com/about/editorialpolicies/
https://www.projet-plume.org/fiches_dev_ESR
http://www.projet-plume.org/en
https://projet-plume.org/en/relier/treecloud
https://research-software.nl/
https://www.projet-plume.org/types-de-fiches#dev_ens_sup_recherche

Figure 2. Initial section of the TreeCloud reference card published in the PLUME project platform, see https://www.projet-plume.
org/en/relier/treecloud.

community in the sense of PLUME”. The concept of validated
software is a tricky one. Between the software developed by a
little team and a software widely known, adopted and used by a
large community, there is a whole range of possibilities. Where
should we put the limit in which a software can be declared vali-
dated? The choice of PLUME software was: if it is known to be
used regularly in at least three laboratories or institutions57. This
translates the question of how to declare a software to be vali-
dated by identified experts to the issue of finding how to get the
knowledge about its regular use in at least three academic insti-
tutions. In the case of PLUME, the team contacted (or was
approached by) experts that were willing to write validated
software descriptions and share their knowledge about the soft-
ware. We can emphasize that, although PLUME did not have a

57https://www.projet-plume.org/types-de-fiches#logiciel_valide)

software peer review procedure, the validated software publications
where reviewed and completed by identified users who also
had first-hand knowledge about the software (see 15 for a short
description of the validated software publication procedure).

The following statistics can be found in the PLUME platform:
406 validated software cards, 358 RS French reference cards
and 116 English RS reference cards where published before
the end of 2013 with the collaboration of 950 contributors.

Among the 406 validated software cards, 96 correspond to
research software58. This means that some RS had associated three

58Validated software descriptions are only available in the French side of the
platform. Part of these validated software were developed by researchers, see
https://www.projet-plume.org/fiches_logiciels_dev_internes for the list of RS
validated software descriptions published in French.

Page 9 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://www.projet-plume.org/en/relier/treecloud
https://www.projet-plume.org/en/relier/treecloud
https://www.projet-plume.org/types-de-fiches#logiciel_valide
https://www.projet-plume.org/fiches_logiciels_dev_internes

different fiches, which increased its visibility. See for example
the three publications associated to the Unitex software devel-
oped at the LIGM laboratory: the Unitex English reference card59
is a translation of the French card60 and both indicate that there
is a more detailed description card as a validated software61 (see
Figure 3).

The PLUME software publications are classified by subject
(maths, network, biology...) and by keyword tagging. For exam-
ple, a set of institutional keywords was used to identify the dév
Ens Sup - Recherche cards produced with the joint participation
of members of a laboratory or a research establishment. Both
approaches (subject classification, keywords) facilitate soft-
ware searching, as it is very difficult in general to find a specific
RS if one does not know its name or its developer’s team. For
instance, the difficulties of finding software of interest for scien-
tists and engineers have been thoroughly studied in 4,5, yielding
relevant inconveniences such as, for example, the risk of work
duplication, of reduced scientific reproducibility and of poor

return of funding agencies’ investment. Of course, the most
serious drawback is the real reduction of the RS’s potential
scientific impact.

Although it does not fall in the category of general journals,
we would also like to mention the Image Processing On Line
Journal (IPOL)62 (see 37), an Open Science and Reproducible
Research journal. IPOL publishes image processing and image
analysis articles, and the source code associated to the described
algorithms. Both the submitted article and the corresponding
software are reviewed together and published simultaneously
in the IPOL platform. The software can be tested to verify the cor-
rectness of the published results or to generate new knowledge
with other data.

Finally, as a general reflection regarding peer review proce-
dures specifically suited for research software articles, we would
like to highlight the “Peer Community in”63, a non-profit sci-
entific organization that aims to create specific communities of
researchers reviewing and recommending, for free, unpublished

59 https://projet-plume.org/en/relier/unitex
60 https://projet-plume.org/relier/unitex
61 https://projet-plume.org/fiche/unitex

Figure 3. Initial section of the Unitex validated software description card published in the French side of the PLUME project platform,
see the complete publication on https://projet-plume.org/fiche/unitex.

62 http://www.ipol.im/
63 https://peercommunityin.org/

Page 10 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://projet-plume.org/en/relier/unitex
https://projet-plume.org/relier/unitex
https://projet-plume.org/fiche/unitex
https://projet-plume.org/fiche/unitex
http://www.ipol.im/
https://peercommunityin.org/

preprints in a scientific area. This initiative seems to us an inter-
esting experience that could be well adapted to develop RS rec-
ommending and review. It also seems particularly well adapted
to declare some RS as validated by a well identified community.

Comparative software reviews are other forms of reviewing that
could be useful to improve RS assessment inside scientific com-
munities or for specific targeted topics, see 38 for counsel in
writing such reviews.

2.5 Referencing and citation of research software
Before the emergence of a specific approach to software papers
publication, as described in the previous section about Publi-
cation of research software, scientists used to present research
software through the usual scientific article media. For example,
we can find in 28:

�“Academic computer science has an odd relationship with
software: Publishing papers about software is considered
a distinctly stronger contribution than publishing the software.
The historical reasons for this paradox no longer apply, but
their legacy remains.”

 [...] Typically, scholars who develop software do not include
it as a primary contribution for performance reviews.
Instead, they write articles about the software and present the
articles as contributions.”

Many of these traditional articles did (and still do) present scien-
tific software to some extent, from a light mention of the involved
software within a more or less detailed description of the core sci-
entific work, to a very thorough explanation of the RS, including
its name, version and retrieval indications. Thus, quite a few of
these papers would have been considered today as RS papers, as
it might have happened that the corresponding reviewers have had
the opportunity to carefully check the involved RS or, at least,
they have had some first-hand knowledge about it (as users from
the corresponding research community, for example). That is, the
reviewers may actually have behaved, albeit informally, as true RS
reviewers, meeting current requirements of journals like JOSS or
JORS (see previous section).

What is, yet, less usual is to set a reference to one of these
papers as the reference for the RS being described in the arti-
cle. And, even when a reference is treated in this way, it is
still rare that it assigns, to the corresponding RS, the sta-
tus of a research output on its own, since the usual situation
is to understand that the most valuable contribution is the arti-
cle itself, as seen in 28. That is, the researcher, and its evalua-
tors, still consider that the value remains in having another article
added to the curriculum vitæ publication list, mostly forgetting
the relevance of adding a RS to the list of the research produc-
tion outcomes, or to take it into account in the evaluation process.
This is a serious drawback, both towards standardizing RS cita-
tion procedures as well as for its full recognition as a research
output, which is also remarked in 28: “This conflation of articles
and software serves neither medium well”, but it is nevertheless
accepted in this paper as a current practice.

Nowadays, as the community value perception switches
towards including RS, research data and other outputs as fully

recognized elements of research production, the issue of how to
properly cite these works sharply raises. Many scientific groups
currently deal with this question, mainly for research data.
For the case of research software we would like to mention, for
example, the Software Citation Group 7, the Software Citation
Implementation Working Group64 and the Dagstuhl Perspectives
Workshop 16252: Engineering Academic Software 23 and also the
RELIER Group65, the RS team of the PLUME project 15.

In general, we consider that the first step required to facili-
tate RS citation is to have associated, from the origin, each RS
with a clear reference. As it is explained in 39:

“... la différence entre référence et citation : l’acte de référence
relève d’un auteur donné alors que la citation est une nouvelle
propriété, éventuellement calculable, du texte source. Selon P.
Wouters (1999), ce renversement a radicalement modifié les
pratiques de référencement et littéralement créé une nouvelle
“culture de la citation”.”

[… the difference between reference and citation: the act
of reference is the responsibility of a given author while
the citation is a new property, possibly calculable, of the
source text. According to P. Wouters (1999), this reversal has
radically altered the practice of referral and has literally
created a new “culture of citation”.]

That is, to establish a precise reference is the authors’ task, so that
the interested public can use this reference to cite the correspond-
ing work. As stated in the above quotation, reference usage is
radically evolving and is creating a new citation culture.

In this paper we will consider a RS reference or citation form as
(see 40, section 6.1):

– the reference to a research software paper or other
kind of scientific publication that includes, and relies on, a
software peer review procedure, or

– the reference to a standard research article that
includes a description of the RS and the implemented
algorithms, explaining motivations, goals and results, or

– a typical label, associated to the RS itself, and that
identifies it as a research output, specifying its title,
authors, version, date, and the place the software
can be recovered from. In this respect it can be relevant
to make the code citable66 via repositories such as
Zenodo 41.

Note that a RS can have simultaneously more than one of these
types of reference forms, and, in fact, all three types can coex-
ist for the same RS. Moreover, concerning the second refer-
ence type, we remark that there can be several classic articles
associated to a single RS, and that could be used as its reference,
see for example many of the RS related articles published by the

64 https://www.force11.org/group/software-citation-implementation-working-
group
65https://www.projet-plume.org/relier
66 https://integrity.mit.edu/handbook/citing-your-sources/avoiding-plagiarism-
cite-your-source

Page 11 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://www.force11.org/group/software-citation-implementation-working-group
https://www.force11.org/group/software-citation-implementation-working-group
https://www.projet-plume.org/relier
https://integrity.mit.edu/handbook/citing-your-sources/avoiding-plagiarism-cite-your-source
https://integrity.mit.edu/handbook/citing-your-sources/avoiding-plagiarism-cite-your-source

Journal of Symbolic Computation67 or the articles listed in the
PLUME RS descriptions68. Thus, in order to facilitate RS citation
by others, it is advisable to choose the simplest reference form,
whenever this is feasible. This can be easy for a small RS that
has been produced and used for a unique purpose and described
in just one research article and that will not evolve any further.
But RS can be a living object with many evolutions, versions and
different references associated to it, making it harder to decide
on a single citation form.

A further issue concerning RS citation arises from the observa-
tion that, in the case of research papers, the classic publication
model attaches only one version and only one reference to each
paper. Thus, the paper and its reference act also as a timestamp
for a published scientific result. This model is still largely set in
place, but it is evolving and now journals like F1000 Research69
manage quite a few versions of the same article as part of its
open peer review practice 42. Furthermore, in 43, the sixth key
principle claims that “the idea of the journal article as a mono-
lithic object that will stand for all time unless formally retracted
has gone”. Indeed, unlike articles, software development has
never been associated to a monolithic object, and there exists RS
with a long life, involving several international collaborations,
with a large number of versions and of related publications that
could act as a reference. Moreover, some RS users would prefer to
cite a specific version of the RS, as the one that has been included
in other RS, or that has been used to obtain the published result.

The use of persistent identifiers70 such as DOIs facilitate RS
access and it is advisable to include these identifiers in the
citation formula.

A more complex way for RS identification than a citation form
is the use of metadatasets. The Software Citation Implemen-
tation Working Group is working over several possibilities
for software metadatasets71. The PRESOFT (Preservation for
REsearch SOFTware) metadataset proposed for RS in 40 is built
over the skeleton of the RS reference cards that where published
between 2008 and 2013 by the PLUME project 15. This meta-
dataset benefits from the PLUME experience, which validates
the proposed model, and sets a reasonable level of standards to
manage RS identification.

Further discussions on software reference and citation issues
can be found in 3,4,6,15,34,44–46 and a thorough digression on
software metadata appears in 47 section 6. We can also mention
that 48 addresses a related topic, namely, the proposition of a usage
format for CITATION files.

These works, among many others, as well as the contributions of
different software and data discussion groups, and the previous

reflections in this section show the complexity of the concept
of RS citation and its actual evolution towards a more well-
established future model(s).

Finally, let us recall the growing importance of citations,
DOIs and other tools to build Open Science Graphs, a subject
recently explored in the OS FAIR72. In particular the work 49
explores Software and their dependencies in Research Citation
Graphs.

3 Key evaluation issues
This section outlines the second block of issues that appear in
our conception of the CDUR procedure for RS evaluation, as
are the possible evaluation situations, the evaluation methods,
the main evaluation actors and the study of the concept of a suc-
cessful RS and its comparative value regarding other kind of
research contributions.

3.1 Evaluation situations
If we follow the academic life of a standard researcher, we can
appreciate that research evaluation starts with the doctoral the-
sis, followed by the recruitment period and continues, along the
years, with the career evolution. Subject to this research evaluation
are, in particular:

– articles and other publications with peer review
procedures,

– participation at congress and workshops requiring
invitations or with refereed submission procedures,

– applications at different competitive calls for project
funding, proposal and/or involvement in different
research projects (perhaps with the collaboration of other
colleagues, institutions or technological enterprises...),

– as well as the establishment and consolidation of a network
of students and of reputed colleagues, usually in an
international context and within a scientific area.

Collaborations tend to be more and more interdisciplinary,
which raises difficulties in the evaluation process, as evaluators
can be experts in one area but have little knowledge in the other
involved areas. As remarked in 50, there is also a lack of widely
agreed quality principles in interdisciplinary research, and review-
ers might lack cross-disciplinary experience and, maybe, do not
have shared understanding of quality. Interdisciplinary aspects
can appear in RS evaluation, as software conceived and devel-
oped in a specific research area can be easily used and adopted
(including with new developments) in many other areas. This
aspect is part of the usual research evaluation considerations.

Let us remark that the first evaluation that usually comes into
play is the one realised by the researcher in its own, as it is the
researcher that first considers if a result, a paper, a RS is ready to be
disseminated in a precise context, ready to be sent to a journal, or
if an idea of a project has any chance in a funding call. For

67https://www.journals.elsevier.com/journal-of-symbolic-computation
68https://www.projet-plume.org/en
69 https://f1000research.com
70 http://en.wikipedia.org/wiki/Persistent_identifier
71 https://www.force11.org/group/7784/google-forum

72https://www.opensciencefair.eu/workshops-2019/open-science-graphs-
interoperability-workshop

Page 12 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://www.journals.elsevier.com/journal-of-symbolic-computation
https://www.projet-plume.org/en
https://f1000research.com
http://en.wikipedia.org/wiki/Persistent_identifier
https://www.force11.org/group/7784/google-forum
https://www.opensciencefair.eu/workshops-2019/open-science-graphs-interoperability-workshop
https://www.opensciencefair.eu/workshops-2019/open-science-graphs-interoperability-workshop

example, a RS can be first disseminated with the goal to look
for collaborations, without giving any importance to its early
development status. It is the researcher who decides to disseminate
a result on a preprint deposited on arXiv73, or to send it for a more
sound publishing procedure in a scientific journal. It is also the
researcher who first evaluates when some work is ready for exter-
nal examination in one or other manner. Likewise, the researcher
decides if a preprint deposited in arXiv will be the object of future
work, or be forgotten forever, and similarly for RS, the researcher
decides which will be the effort to put in the software manage-
ment tasks (documentation, testing, versioning and maintenance).
These decisions usually can find variations following evolu-
tion in research interests, funding constraints and fluctuate when
facing evaluation issues such as recruitment.

On the other hand, as it is noted by a reviewer of this article, it
is also usual to work on several year projects, thesis, postdoctoral
positions and other temporary chairs. In this context, the evalua-
tion that comes into play is the final project evaluation, in the case
of funded projects, or the thesis defence. For other temporary
positions, it is the team evaluation that may come into play. For
example, if the work involves some RS development, the team
should verify if the RS works correctly and have enough docu-
mentation and testing procedures in order to facilitate the possi-
ble follow ups. This is to be done before the developer leaves the
team. Thus, even if there is not a real dissemination, some kind
of internal dissemination and examination procedure should
be considered, which applies to RS as well as other outputs, in
order not to hinder the future teamwork, avoid waste of time
and to maximize mutualisation.

Any dissemination procedure has its own goals. It also has a tar-
get public, even if it is a very restricted one: the collaborative
team, the thesis jury, the funded project evaluators, funders, etc.,
and the researcher prepares their work in adaptation to the
related evaluation or scrutiny surely raised by the dissemination
context.

3.2 Two evaluation methods
Generally speaking, we can identify two main methods to con-
duct research evaluation, both of which usually take into account
only the “paper” production (articles, books, presentations, project
proposals, etc.): a qualitative approach (sit and read to evaluate,
following a subjective criterion, the quality of the presented docu-
ments) and a quantitative estimation, by using established exter-
nal metrics such as the citation index, impact factor, number
of publications and other indices, and then adopting some
models of evaluation 8. Nevertheless it is widely known that indi-
cators and bibliometrics should be used with careful attention, as
remarked in 11,39,51–54.

Moreover, the community’s “social knowledge” can also occur
and influence evaluation practice, as stated by 55 (p.8) regard-
ing the review of mathematical statements in research papers:
“the methods of checking the proof are social rather than
formal”. That is, evaluation of the quality of a work can rely,

although maybe not intentionally, upon a community perceived
knowledge.

The extent of these social practices is very difficult to assess
but could be neutralized by increasing openness and transpar-
ency in the evaluation policies and by exercising special caution
during the evaluation committee selection, as recommended by 11
(p.9):

“Universities and research institutions should:
4. Strive for a balanced and diverse representation (including,
but not limited to, gender, geography and career stage) when
hiring, seeking collaborations, when organizing conferences,
when convening committees, and when assigning editors and
peer-reviewers, and building communities such as learned
societies.

[...] Research funders and policy-makers should:

2. When evaluating researchers, ensure that a wide range of
contributions (scholarly publications, but also data, software,
materials, etc.) and activities (mentoring, teaching, reviewing,
etc.) are considered, and that processes and criteria of
evaluation are both appropriate to the funder’s research
programme, and transparent.”

3.3 Key evaluation actors
As we have seen in the previous section, there are, all along a
research career, different key actors performing the evaluation
tasks at different stages: for example, the research community as
a whole, through its experts, regarding peer review procedures for
publications and journal editorial activities; the academic com-
munity of colleagues from universities, laboratories or research
units, involved in evaluation processes for recruitment and career
progress; the committees nominated by funders of scientific
activities at local, national and international level; and, finally,
the policy makers at any level, that set the policies that will be
applied by the selection, recruitment or the funding committees.

On the other hand, community evaluation appears while set-
ting new collaborations or in the gathering of a team looking for
some project funding. Besides, informal evaluation also happens
each time the reader of an article or a RS user weighs if further
attention to the research object is worth it: is this paper or
software interesting for my work/research?

A researcher aiming to achieve success during any evaluation of
whatever kind needs, first to submit good research outputs (arti-
cles, software…) and, then, to make public this work adequately
in order to facilitate the evaluator’s task. But it is not the same
to face a journal peer review procedure, a grant selection for
project funding, or to be involved in a recruitment process, etc.
Similarly, it is not the same to be subject to an evaluation by quali-
tative or quantitative methods. As a consequence, consciously
or not, author’s adaptations occur when facing evaluation
procedures and requirements 52.

On the side of policy makers, it is necessary to foresee and
to adapt to science evolutions, and these challenges also ask
for new evaluation policies and criteria. We would like to 73 http://www.arxiv.org

Page 13 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

http://www.arxiv.org

mention here three examples of the preparation of such policies.
The first one corresponds to the Expert group of the Euro-
pean Commission that has produced the report 11. This Expert
group has been set up to support the policy development of the
European Commission on Open Science, in order to assess the
current situation with regard to scholarly communication and
publishing mechanisms, as well as to propose the adoption of
some new, general, principles for the future. The second exam-
ple corresponds to the Committee on Best Practices for a Future
Open Code Policy for NASA Space Science that has produced the
report 10. This Committee was charged to investigate and recom-
mend best practices for the NASA, as it is under study whether to
establish an open code and open model policy, complementary to
its current open data policy. Both of these two reports do provide
recommendations regarding evaluation, RS and Open Science
(as we include open code in the general framework of Open Sci-
ence policies). The third example that we would like to men-
tion is slightly different, as it corresponds to the Symposium
organised by the French Académie des sciences (April 2nd 2019)
for Foresighting Open Science74. Among others, the goal of the
symposium was to look into the issues that the current Open
Science acceleration raises, such as science and researchers’ evalu-
ation. The Académie acts as an expert and advisory body for the
French public authorities. These examples show us how the
policy makers set expert committees or organize events to study
a particular subject and to seek counsel for the new policies
to be defined.

Another important role of the policy makers is to set the evalua-
tion committees, as there is a fundamental distinction between
who establishes the norms, policies or habits in the evaluation
procedures, and the evaluator or the evaluation’s committee,
who has to apply them. Yet, it can also happen that the roles of
the policy maker and the evaluator are concentrated in the same
person or persons. Policy makers set not only the evaluation
methods to be applied, but also the characteristics and criteria
of the jury’s selection and whether the committees are totally
independent and have the final decision or are just an advisory
board, etc.

In particular, issues such as gender, age, race, geography, etc.
biases can be better dealt with through committees with a balanced
representation of diversity 11 (p.9):

“Research funders and policy-makers should:

4. Consider how funding policies affect diversity and inclusivity
of research on a global scale. In particular, funders should
work to ensure that review boards, committees, panels, etc., are
diverse - in terms of gender, geography, and career stage.”

Further considerations on the evaluation role of universities, sci-
entific establishments, funders and policy makers are addressed
in the next section dedicated to the CDUR protocol.

Finally, let us to point out that when evaluating a publication
or when performing peer review of an article, the evaluator is
expected to have the necessary knowledge to recommend if the
document should be published. At the end of the review proc-
ess, the evaluator is expected to have a fair amount of knowledge
about the reviewed work. Similarly, in a recruitment procedure,
the evaluator is expected to have the necessary knowledge in
order to decide the best candidate for the position. But these argu-
ments are not obvious concerning RS evaluation, as we will detail
in the CDUR proposal section.

3.4 Towards a successful research software
Obviously, a good scientific software is one that has been writ-
ten by a scientific team to produce good, sound scientific results.
This is quite a circular definition, and other, more precise, criteria
should be taken into account. For instance we could consider as
a positive feature the RS availability, and the fact that it is ade-
quately disseminated, documented, licensed, version controlled,
and tested 19,25,28. In 56, the proposed criteria to assess RS are
Availability, Usability, Maintainability and Portability. Other
qualifying principles that are currently under discussion are the
Software Seal of Approval or those involved in the notion of
FAIR (Findable, Accessible, Interoperable and Re-usable)
software, as FAIR is already a very popular concept among the
research data communities 57.

What is less obvious is to determine how these criteria will be
concretely used in a specific evaluation context. In fact, setting
the list and the weight of the different criteria to determine what
should be understood as a good RS depends on three different
aspects:

– the evaluation context (peer review, funding, career...),

– the evaluation committee,

– the policy makers.

To continue the study of the criteria that could be considered
to declare a RS as successful, we can recall that the scientific
community has clearly established the difference between an
article and a preprint through the peer review process that is part
of the publication step and that is missing in the preprint case.
As a result, an article has a quality label that does not exist in the
preprint case.

Now, in the same way as preprints are made publicly available
through their deposit in arXiv or in many other popular plat-
forms, software can be also made publicly available in platforms
like Zenodo75, GitHub or many others. Although there may be
some control of what is deposited in these platforms, there is not
(as far as we know) a real scientific control of the deposits, or
something that approaches peer review procedures.

Again, a distinction similar to the one existing between a pre-
print and a published article can be claimed for software: there

74Agenda and videos are available at https://www.academie-sciences.fr/en/
Colloquia-Conferences-and-Debates/foresighting-open-science.html 75 https://zenodo.org/

Page 14 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://www.academie-sciences.fr/en/Colloquia-Conferences-and-Debates/foresighting-open-science.html
https://www.academie-sciences.fr/en/Colloquia-Conferences-and-Debates/foresighting-open-science.html
https://zenodo.org/

is a clear difference between RS publicly available through well
known platforms (or personal web pages) and RS that has been
the object of a publication of the kind detailed in the section of
Publication of research software. As we have seen there, RS
reviewers are generally expected to have both sound scientific
knowledge and enough software knowledge to be able to build,
deploy, install and run the software following the provided doc-
umentation. This is, then, a dual context where the evaluation
of purely software aspects has to go in parallel or, perhaps, get
mixed with the evaluation of scientific aspects.

This level of evaluation of software aspects can be adequate
for a RS paper, but it could be less adapted to recruitment or a
career evaluation process, where evaluators have got to achieve
a global vision of a curriculum vitæ.

Another relevant remark is related to the assessment of those RS
products which are already well known and popular within a sci-
entific community. Here, it could be more adequate to assess the
RS quality or its impact in some indirect way, by assessing the
quality of the related publications, or by the number of users and
collaborators that have been attracted, by the number of funded
projects, etc. (12, p.134). Yet, this quality test is to be carefully con-
sidered, as a RS considered as successful from the software point
of view is not necessarily good from the scientific perspective,
and vice versa (12, p.134).

In 26, a RS is considered as successful when it is delivered with
a base code that produces consistent, reproducible results, when
it is usable and useful, when it can be easily maintained and
updated, and has a reasonable shelf life. The French Inria insti-
tute uses a set of criteria for software “self-assessment” in career
evaluations in order to determine software quality 34,58. On the
other hand, as seen in section about Publication of research soft-
ware, PLUME handles the concept of validated software, based
in the verification of its regular use in at least three different
laboratories (avoiding in this case the need for a careful analy-
sis of the code). Going beyond PLUME’s concept of validated
software, a very successful RS could be simply defined as one
that is widely adopted and used by a scientific community.

Whether we are evaluating a RS or a contribution to a RS,
the RS needs to be well identified with a version number and a
date, that is, with a reference of the kind proposed in the section
about Referencing and citation of research software. The role of
the different agents contributing to the RS should also be clearly
presented, as seen in the section about RS authors.

Finally, concerning the role of policy makers and of evaluation
committees in setting and applying the different criteria used
in RS evaluation, we would like to emphasize that they should
clearly state the precise balance between the scientific and the
purely technical aspects that has been considered in the evalu-
ation process, as this is a key consideration to understand the
concept of successful RS that is behind the evaluation outcome.

Further considerations on this manifold notion are the object
of the CDUR procedure proposed in the next section.

3.5 The comparative value of research software
Once we have analyzed the different criteria to determine
when a given RS could be considered as good or successful, an
important issue that remains to be settled is how this success
should be reflected in the more general value scale of a research
evaluation process. To our knowledge, the question of the com-
parative weight between a relevant RS and a good research article
arises repeatedly: should the evaluators assign to the RS the
same value as to the article?

In this context, it seems relevant to analyze a similar situation that
happens in the well-established publication evaluation scheme76
when considering different publication outputs: preprint, confer-
ence proceedings, journal published article, book chapter, book...
It seems to us that, in this case, the value scale for the different
products is widely accepted in whatever scientific community,
although idiosyncratic variations can apply (for example, to man-
age a blog can be taken into consideration in Humanities and
Social Sciences evaluations, but not in Mathematics). For instance,
journal published articles are usually considered better if there
is a rigorous peer review procedure behind the acceptance pro-
cedure, but, again, the specific scientific ecosystem determines
the criteria to declare which journals are better than others
(leaving aside, voluntarily, the arguable journal impact factor
consideration).

In a similar way, we could tentatively try to set a RS value scale,
backed by the standard uses of a specific community. Say, propos-
ing a scale that would start with a RS with only one associated
article, followed by a RS with several associated articles by the
same team that has produced the RS, and then a RS that is used
by other teams to produce new published results, a RS that has
passed a strict software peer review (as in the section Publica-
tion of research software), and finally, up to a RS being the
object of international collaborations during months or years...
We think that a way to solve this problem of comparing the value
of publications and RS is to give each of them the value that they
have achieved in the corresponding, specific, scale. Likewise,
for other research outputs (data, prototypes...) that are not
publications or RS, they need to have their own scale of value
too. The policy makers should build the corresponding scales and
explain how they will be applied, mainly in comparison to the
publication scale, while respecting the traditions and functioning
of the involved research community or academic institution.

4 The CDUR proposal
In this section we detail our proposal for the evaluation of research
software. We have labelled our proposal with the acronym CDUR,
that stands for Citation, Dissemination, Use and Research.
In what follows we will introduce each of these items from multiple
perspectives, referring to the policy makers, to the evaluators and
to the evaluated researchers, that is, to the key evaluation actors,

76For a recent analysis of different behaviors regarding publication practices
and Open Science issues, you can see the (French) presentation of Jean-Pierre
Bourguignon, President of the European Research Council, the 2nd April 2019,
at the Académie de Sciences in Paris, https://public.weconext.eu/academie-
sciences/2019-04-02/video_id_010/index.html

Page 15 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://public.weconext.eu/academie-sciences/2019-04-02/video_id_010/index.html
https://public.weconext.eu/academie-sciences/2019-04-02/video_id_010/index.html

as seen in section about the Key evaluation actors. Moreover, we
have chosen to present our proposal, first, in a summarized way,
followed, then, by an extended description that develops in detail
a multiplicity of choices for a very flexible application of the
CDUR protocol. This extended description is followed by a practi-
cal use case example and some final considerations.

4.1 The CDUR procedure: a summary
The CDUR protocol contains four steps to be carried out in
the evaluation of a RS. These steps are to be applied in the
following chronological order: Citation, Dissemination, Use and
Research. For example, we consider that, to facilitate dissemina-
tion, a RS should be, first, a well identified object; and in order
to be correctly cited, the RS reference should be clearly indi-
cated, as argued in the section about Referencing and citation. Let
us introduce a resumed version of these four steps.

(C) Citation. This step measures to what extent the evaluated RS
is well identified as a research output, as a research object in its
own. It is also the step where RS authors are correctly identified
as well. We have seen in the RS publication section three dif-
ferent ways to establish a RS reference, in order to facilitate its
citation. Moreover, a more evolved RS identification level could
be provided in the form of a metadataset. Reference and meta-
data include, among other information, the list of the RS authors
and their affiliations, as seen in the section about RS authors.

(D) Dissemination. This step measures the quality of the
dissemination plan for the RS, involving actions such as (see
14,24):

– Choosing a license, with the agreement of all the
rightholders and authors. Consider, preferably, using
free/open source software licenses.

– Choosing a web site, forge, or deposit to distribute the
product; stating clearly licensing and conditions of use,
copy, modification, and/or redistribution.

– Creating and indicating a contact address.

This is the step related to legal issues dealing with the authors
and rightholders (as established in the Citation step) decid-
ing and installing the license(s) for the RS dissemination
12,14,59,60. This is also the step concerning Open Science, as the
RS license expresses its sharing conditions; and the step where
policy makers should establish the Open Science policies that
will be applied in the evaluation process.

Finally, let us recall that the inclusion of the list of related pub-
lications, data sets and other related works in the dissemination
procedure helps to prepare the reproducible science issues that
are to be taken into account in the Use step.

(U) Use. This step is devoted to the evaluation of the technical
software aspects. In particular, this step measures the quality of
the RS usage, considering that a performing RS is one that is both
correct and usable by the target scientific community.

The RS usability does not only refer to the quality of the scien-
tific output but also can deal with other matters, such as the

provided documentation, tutorials and examples (including both
inputs and outputs), an easy and intuitive manipulation, testing
and version management, etc. 25.

This is the reproducible science step, where the published results
obtained with the RS should be replicated and reproduced
37,61–63.

(R) Research. This step measures the impact of the scien-
tific research that has required in an essential way the RS under
consideration.

The evaluation of this item should follow whatever stand-
ards for scientific research quality in the concerned community
(e.g. 8,52,64,65).

This is the step where the RS related publications (as described
in the RS definition section) come into play, and where the evalu-
ation should consider the difficulty of the addressed scientific
problems, the quality of the obtained results, the efficiency of the
proposed algorithms, etc. The RS impact can also be assessed
through the research impact of the related publications, and
through its inclusion (or use) as software component in other RS.

Finally, the CDUR procedure is meant to assist the evalu-
ated researchers, the evaluator committees and the evaluation
policy makers. It can be easily adapted to many different RS
evaluation situations. It applies equally to any scientific area, as
we concentrate our evaluation protocol in the general RS aspects,
concentrating in the Research step those aspects specifically
related to some particular areas.

4.2 The CDUR protocol in detail
As we have seen in the previous summary, the CDUR’s RS evalu-
ation procedure considers a RS as a scientific output, measures
the way it is identified and disseminated, and then takes into
account the specific software and research aspects. We should
remark that the realization of some Software Management Plan
(SMP), such as those proposed in 40,66, can help the develop-
ment team to reflect on and to prepare the different evaluation
points. These plans can be made public and released jointly with
the RS. In this way, SMPs can also help evaluators to achieve a
better RS assessment. Note that the provision of such SMPs can be
part of the evaluation process policies, as it is already the case of
Data Management Plans when applying for EC funded projects
67.

Regarding precedents to the CDUR protocol we can mention the
Inria software description form 68, that was proposed in 2007
for RS assessment, where we can find points in common with
the CDUR protocol. Both, the Inria form and CDUR have com-
mon ground with the software peer review methods mentioned
in the RS publication section. In fact, to fill forms like the one
proposed at Inria can help in the preparation of the CDUR evalu-
ation. And, what is more relevant, as it happens with the SMPs,
such Inria forms might help yielding and guiding some key
reflection issues over the evaluated RS that could be, otherwise,
somehow forgotten by the RS development teams. The generalized

Page 16 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

use of these or other similar forms should be decided by the
RS evaluation committees or by the policy makers to set some
standards in the evaluation procedure.

In what follows we will analyze and develop in detail the different
points of the CDUR protocol.

(C) Citation. In order to facilitate the RS citation, authors must
set a reference. As we have seen in the Referencing and citation
section, there are at least three possibilities for RS referencing
and, moreover, they can cohabit. In order to facilitate the citation by
others, one reference form should be put forward.

The reference should indicate, among others, the RS authors
and their affiliations. In the case of a large list of contributors,
it should give the list of the main contributors and refer to other
documents (web page, RS documentation...) for the complete
list of contributors. This basic step could be completed with the
inclusion of DOIs or other persistent identifiers in the reference
form.

A more complex way for RS identification is the use of meta-
data sets. Note that the existing RS metadata sets can be adapted
or completed in order to fit many different evaluation situations.

We consider that it is the RS authors’ role to set the best way to
cite or identify their RS. On the other hand, and following the
software citation principles in 7 (see also 23), authors should cite
correctly other related works, with thorough attention to cite other
research software components that could have been included
in the RS or on which the RS depends upon.

Citation and metadata are the tools to measure how easy is
the access to RS. It is the role of the policy makers to set the
required citation or metadata level that is best adapted to the
evaluation context at stake, either by fixing a reference format or
with adapted metadata sets.

Finally, let us recall that evaluators should verify that the RS
under evaluation complies with the citation or metadata charac-
teristics required in the evaluation, and they should also check the
correctness of the citations, in the given RS, to other external RS
works.

(D) Dissemination. RS dissemination should take into account
that it can target different levels and types of public: from a very
restricted set of persons, such as the closest collaborators of
the RS team or the evaluation committee itself, up to the most
general collection of addressees, through the dissemination of the
RS via a web page, a software forge or deposit, either oriented
to a scientific area or to a very general public. Moreover, in
the case of a restricted dissemination of a RS having a widely
available reference (because of the existence of related publica-
tions, for example), it is advisable to include a RS mail contact
address to facilitate potential scientific collaborations.

In any dissemination procedure (as the ones proposed in 14,24)
the RS sharing conditions should be clearly stated, as the run-
ning, loading, reproducing, translating or arranging of a compu-
ter program can only be done upon the corresponding (written)
authorization, as stated by the law77. Thus, RS dissemination docu-
ments should include a license78 (or a written agreement, in the
case of a restricted public dissemination) establishing the shar-
ing conditions and describing the legal framework where the
RS can be used, compiled, reproduced, copied etc. 12,14,59,60.
Only the rightholders can decide and set the RS license, hence
the importance of including the list of authors and its affilia-
tions, as described in the Citation step. Note that the license
information could be included in the citation formula, and it is
usually included in the RS metadata (using for example standards
like SPDX (Software Package Data Exchange)79.

The license will determine if the software is free80 and open
source81, and whether, as a research output, its dissemination fits
the Budapest Open Access Initiative guidelines82. In this direc-
tion, the report 9 considers as a positive criterion in the evalua-
tion of research careers, the regular use and development of free/
open source software, fully acknowledging Open Science
practices.

As part of the RS dissemination procedure, it should be taken
into account the establishment of a list of related publications,
data sets and other related works, that could be disseminated
together with the RS, or that could be deposited elsewhere.
In the latter case, let us remark that the links among all these
objects will facilitate research reproducibility 37,61–63.

Strong dissemination methods can include the deposit of the
RS in places like the Agence pour la protection des programmes83
and the realization of Software Management Plans 40,66.

Finally, let us mention that it is the task of the policy mak-
ers to set the Open Science policies that should be applied in
the evaluation procedure, as well as to establish the required
dissemination level and related characteristics that are best adapted
to the evaluation context at stake, as mentioned in the above
considerations. Furthermore, evaluators should verify and check
that the presented RS complies with the established requirements
regarding free/open access and Open Science issues, as well as
with the dissemination practices set by the policy makers.

77See for example the Directive 2009/24/EC of the European Parliament and of
the Council from 23 April 2009 on the legal protection of computer programs,
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0024
78Please note that no license means All rights reserved.
79 https://spdx.org/
80Free software is defined by the Free Software Foundation (FSF) in https://www.
gnu.org/philosophy/free-sw.en.html
81Open source software is defined by the Open Source Initiative (OSI) in https://
opensource.org/docs/osd.
82 https://www.budapestopenaccessinitiative.org
83 https://www.app.asso.fr/en

Page 17 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0024
https://spdx.org/
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.org/docs/osd
https://opensource.org/docs/osd
https://www.budapestopenaccessinitiative.org
https://www.app.asso.fr/en

(U) Use. This is the step devoted to the more technical software
evaluation issues. The goal of this Use step is not to propose
some software performance evaluation estimations, as for RS
the most important characteristic is its scientific correctness, but
different levels of software quality can be taken into account here.

Evaluators considering a particular RS can have several approaches
in mind. For instance, to check published results obtained
through the use of the RS, in order to be able to find bugs or defects
in the program that could affect the published results; to explore
the scientific issues behind the RS computations (for example,
to get better understanding of the implemented algorithms and
the corresponding theoretical framework); to compare with other
RS products; to take into account reproducible research issues
37,61–63 to measure the potential of the RS for the production of
new scientific results...

In all these cases it is evident that the Use evaluation first goal
should be to assess how much the RS team has facilitated its use,
in concordance to the level of requirements set up by the policy
makers. This basic step involves (i) checking how easy/difficult
is to retrieve and install the RS, (ii) verifying if the RS has the
necessary documentation and instructions to install, run and
test the software, (iii) mentioning the requirements of the RS to
some computing environments and to components that should be
pre-installed, and (iv) providing the necessary examples and links
to articles and other data, in order to help users to launch the first
computations and to be able to verify and reproduce the already
published results. In this regard, RS development teams preparing
for a tough software examination procedure can find help in bib-
liographic references like 16,17,20,25,26,69–75 and the citations
therein.

Evaluators should launch the RS, run and verify some examples
and compare the output with the expected results. However, they
must also have a look to the code. In our vision, running some
examples do not dispense the evaluators from looking the RS
source code. This calls for evaluation committees provided
with some reasonable software skills. This Use evaluation basic
step could be facilitated if the RS is installed in platforms like
IPOL 37, where the software can be launched and the source
code is also available for its study in the same platform. This Use
step could also be helped if the software is declared validated by
some well identified research community as seen in the above
section Publication of research software.

But the notion of usability is also related to the concept of scien-
tific validation (12, p.133) and also to software verification and
validation, including the verification of the code correctness, clar-
ity and simplicity 76. RS verification and validation and RS code
correctness can be assessed, for example, by using software inspec-
tion techniques see 77 and also 78, with a comprehensive sur-
vey of “software inspection” (sometimes referred to as software
review or software peer review) literature during 1980–2008.
Correctness is the highest priority for scientific software, as
scientists do science rather than software 21,76.

Thus, before applying this Use step, it is required to establish
the level of exigence for the RS testing, that can go from launching

a few examples, to verifying if the RS provides a test suite
and has installed testing procedures 1, up to inspecting carefully
each line of the code.

As mentioned above, other points to be evaluated concern the
level of documentation of the RS, the management of versions, the
portability, bug tracking, user interfaces, governance, user
support... 25. In this Use step, software assessment proce-
dures can go quite way up, including, for instance, the verifica-
tion of the application of ISO/IEC standards84. See also 57 for a
discussion on FAIR software and the Software Seal of Approval.

Finally, another issue that could be taken into account here
concerns the relevance of the involved RS for technology
transfer and industrial applications.

Last, let us recall that policy makers should set the definition of
good/validated/successful RS that should be applied in the cor-
responding evaluation context, and they should as well indicate
the expected level of reasonable/good/best software develop-
ment practices. Besides, it is recommended that RS evaluators
consider setting an evaluation matrix taking into account the dif-
ferent software aspects to be evaluated and the rate scale to be
applied in each case.

(R) Research. This is the last step, the one where the stand-
ard research evaluation issues are to be taken into account
8,50,64,65, the place where the RS scientific value is to be
assessed. Hence, it is also the point where the scientific software
ecosystem requires full consideration 3 and where the related RS
publication(s) that appear in the RS definition given in the
definition dedicated section come into play, as their number,
quality and impact reflects the quality and impact of the RS.

As this is the step for the evaluation of the research carried out
with the RS and that is published in the related articles, the
evaluation of both, software and articles, can be confounded in this
global vision. Nevertheless, it is the intention of our proposition
to put the RS at the center of the research evaluation that is under
consideration, and policy makers and evaluators should decide
the right balance between associated articles and software
evaluation.

Moreover, this step includes the evaluation of the difficulty of
the addressed scientific problems, the quality of the obtained
results and theories, the efficiency of the proposed (and coded)
algorithms, the participation in funded projects, the measure of the
potential of the RS for the production of new scientific results, etc.

We consider that the basic level of this Research step should
rely on the number and quality of the related publications, and
on the number of their citations. In fact, the dissemination levels
of such documents provide indications about up to what point
the RS is being widely adopted by the scientific community,

84See for example ISO/IEC 9126 Software engineering - Product quality at
https://en.wikipedia.org/wiki/ISO/IEC_9126.

Page 18 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://en.wikipedia.org/wiki/ISO/IEC_9126

yielding, therefore, an estimation of the impact of the whole
research work (articles and software).

Nowadays, citation of software alone is still not a fairly well
adopted behavior by the scientific community, so we must rely
on the citations of the publications directly related to the RS. As
a rough approximation to quality, we can measure publications’
impact through the number of citations. Indeed, as concluded in 79,
“citation numbers approximate with good accuracy the perceived
impact of scientific publications”. On the other hand, as we can
see in 80, “results in both studies [...] indicate that papers with
code available online are more highly cited than those with-
out”. Thus, impact of some RS and impact of its related articles
are, again, confounded.

In this Research step we can also take into account another
evaluation item, namely to consider the estimated number of RS
users. A widely used software product can also attract new funding
and new collaborations 12 (point about quality and evaluation):

“La qualité d’un logiciel peut se mesurer par celle des articles
associés au logiciel, mais aussi par le nombre d’utilisateurs
qu’il est capable d’attirer, de collaborations et de contrats qu’il
est capable de générer.”

[The quality of a software can be measured by the quality of
its associated articles, but also by the number of users that it is
able to attract, and the collaborations and contracts that it is
able to generate.]

Note that the citation number of a publication provides some-
how an estimation of the number of its users, that is, the read-
ers of the publication. Likewise, the citations of the RS related
publications can provide another (rough) measure of the number of
RS users. Moreover, a RS can also be included as a component in
other RS, but this kind of impact is difficult to assess as, again, we
cannot rely on pure RS citation issues yet.

Thus, the basic level of this Research step should rely on the
number and quality of the related publications, the estimation of
the number of their citations and the estimation of the RS cita-
tions (as a research output or as an included component) when-
ever possible. Higher levels of research quality evaluation should
assess up to which point the RS is widely adopted by the scien-
tific community and the impact of the whole research work (articles
and software).

Similarly, to the previous Use step, the policy makers should
set the definition of good/validated/successful RS that would
be applied in the corresponding evaluation context as well as to
indicate the expected level of reasonable/good/best research prac-
tices. Besides, it is recommended that RS evaluators set an evalu-
ation matrix taking into account the different research aspects
to be evaluated and the rate scale to be applied.

4.3 CDUR: a use case step-by-step
In order to facilitate its adoption, we revisit here the steps
involved in the CDUR protocol in the following hypothetical
evaluation instance.

In our example, the evaluation context corresponds to the recruit-
ment, for a five-year research project, of a researcher with some
RS experience. Within the funded project context, publications
and some RS developments are expected as outputs that will
be disseminated following Open Science best practices. The
project funders set an evaluation committee with experts in both,
the research topic at stake and software skills, to examine the CVs
and the production presented by the candidates. The project grant
funders also set that the balance between candidates’ research
and software competency should bias to stress research knowl-
edge and experience, but also that RS development experience is
to be required for all admissible candidates. The quality evalua-
tion method will be applied, although a few impact stats could be
handled by the committee, if available for all the candidates at a
comparable level. Candidates are expected to have participated to
the development of a RS at least as minor code contributor, and as
a co-author of at least one associated research paper. The commit-
tee will set basic/good/excellent criteria for the CDUR procedure,
in agreement with the project funders.

Following the grant project funders’ instructions, the evaluation
committee will analyse in detail just one RS and its associated arti-
cles for each candidate, and candidates are expected to signal in
their CVs which is the work that is to be more thoroughly ana-
lysed by the committee. Then, the evaluation committee proposes
to the grant project funders the following checklist for the applica-
tion of the CDUR protocol to each RS:

(C) Citation.

1. Basic level: the RS has a well-established reference that
identifies correctly the RS, its authors, the last version and
related date. The role and the contribution of the candidate
is well described.

2. Good level: the RS also gives a clear list of references to
other RSs that have been included or that are necessary to
run it.

3. Excellent level: the RS identification includes a complete
metadataset or a software paper that complete the initial RS
reference.

(D) Dissemination.

1. Basic level: the RS is available for the committee.

2. Good level: the RS is disseminated under a FOSS license
following a procedure like the ones proposed in 14,24.

3. Excellent level: the RS has a SMP available for the evaluation
committee 40,66.

(U) Use.

1. Basic level: committee members are able to launch the
RS and test the provided examples without difficulty. The
published results can be reproduced.

2. Good level: the code identifies well the scientific work
and the implemented algorithms, giving the necessary
references.

3. Excellent level: the code has good management practices
that include a good documentation, testing procedures and
version management.

Page 19 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

(R) Research.

1. Basic level: the RS and the associated articles signed by
the candidate are of good quality. The candidate is a minor
code contributor and has reasonable software development
experience.

2. Good level: the RS has been used to produce several articles
and has been the object of a funded project. The candidate
is a major code contributor.

3. Excellent level: the RS is used by other research teams
and has been cited by their publications. The candidate is
a major code contributor and/or the responsible of the RS
project.

Finally, after having validated this checklist with the project grant
funders, the evaluation committee starts to analyse the different
candidates’ work to obtain relevant information about their RS
experience.

4.4 The CDUR protocol: final reflections
As we have already seen in the extended presentation of the CDUR
procedure, each step in the protocol proposes to consider differ-
ent elements of achievement. Each of these elements can reach
different levels and the corresponding scale is to be set up by
the policy makers considering a particular evaluation event. Thus,
our protocol can be easily adapted to different circumstances:
career evolution, recruitment, funding, RS peer review or other
procedures to be applied by universities and other research insti-
tutions, research funders, or scientific journals, and it can also be
adapted to different situations arising in different scientific areas.
As mentioned before in the detailed explanation, each CDUR
step is associated to some RS important issues:

(C) Citation. This step considers the citation issues that
require setting a reference, and the identification of RS authors.
The legal issues that appear in here correspond to the
intellectual property associated to the authors and their
affiliations.

(D) Dissemination. If the RS is disseminated, it should be
under a correct free/open source software license, and following
best dissemination practices. This is the step where Open
Science issues are most relevant.

(U) Use. This step is devoted to software use and correctness,
and it is also the step associated to reproducibility issues.
It can be enhanced with best software practices.

(R) Research. This is the step associated to research quality
and its impact.

In CDUR, each of these issues has been put in a particu-
lar place in the whole protocol, that is to be applied as a set of
chronologically ordered steps.

Let us remark here that the CDUR protocol is clear in discrimi-
nating the diverse roles of the evaluators, the policy makers and

the evaluated researchers, and identifies the level of policies
and the different actions to be put into place by the different key
evaluation actors.

In CDUR, policy makers should determine the relevance and
the balance between the pure technical software aspects and the
research aspects. RS development can involve high levels of
both, technical software skills and research expertise, and in
our view, it is important to recognise when the evaluation proc-
ess is dealing with software skills or with research. For example,
it is not the same to detect poor software practices in the recruit-
ment of a mathematics researcher than to detect that the produced
RS presents a severe lack of correctness. Besides, if good citation
practices are missing, this matter could be easily improved, mostly
if candidates know in advance which will be the good practices
that are to be taken into account.

So, in CDUR not only each step can be applied with flexibility, but
also the whole protocol can be adapted to different situations by
the evaluation committees, following the policy makers’ require-
ments. The only drawbacks that we have found are the neces-
sary transparency in the establishment of the applied protocol as
well as the necessity of balanced committees with both research
and software skills. On the other hand, to raise these draw-
backs and to understand when they are relevant in the evaluation
protocol also helps to tackle them correctly, which becomes
another of the CDUR’s benefits.

Finally, to complete the list of the protocol advantages, let us
consider CDUR in the context of the world brain vision of 11
(chapter 2). This chapter lists ten principles that can guide the
future of scholarly communication. But we note that, when
comparing article and RS dissemination, a fundamental differ-
ence arises. Up to now, RS dissemination is predominantly in the
hands of the RS producers, a rather different key actor than those
ruling journals in scholarly publishing. This is one of the reasons
why sound evaluation procedures are capital for the progress
of RS issues in the scientific ecosystem. Consequently, it is our
belief that the adoption of evaluation protocols like CDUR will
contribute to support the above mentioned principles, such as:

– maximize RS accessibility and usability,

– support and expand range of contributions with equity,
diversity and inclusivity criteria,

– support community building, and

– promote high-quality research with heightened integrity;

which will have repercussions in the whole scholarly
communication system.

5 Conclusion
In this paper we have analysed the concepts of research soft-
ware, its authors, and the issues related to RS publications, ref-
erencing and citing. Then we have studied the evaluation issues

Page 20 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

such as the existing methods and its key actors. Regarding more
specifically RS evaluation, we have detailed the ideas around the
concept of successful software and its value scale in a scientific
community. These preliminary steps open the path to the proposi-
tion of the CDUR protocol for RS evaluation, that comprises four
steps dealing with Citation, Dissemination, Use and Research,
and that are to be applied in this chronological order. This
protocol and its advantages have been thoroughly investigated,
including the different actions and decisions of the key actors
(policy makers, evaluators, evaluated researchers) and the wide
flexibility for its application in several contexts.

Research software production is already part of the daily
activities of many researchers, but it is still not sufficiently rec-
ognized in the research evaluation procedures that are being cur-
rently applied in the scientific world, as far as we know. On the
other hand, the difficulties of scientists and engineers in finding
software of their interest have been studied in 4,5 and involve a
collection of serious drawbacks affecting RS development such
as, for example, work duplication, reduced scientific reproduc-
ibility and poor return of funding agencies’ investment. Indeed,
RS limited visibility means that incentives to produce high-quality,
widely shared, and codeveloped software may be lacking.

Thus, we consider that it is in the interest of the research com-
munities and institutions to adopt clear and transparent proce-
dures for the evaluation of research software. Procedures like the
proposed CDUR protocol facilitate RS evaluation and will, as a
consequence, improve RS sharing and dissemination, RS cita-
tion practices and, thus, RS impact assessment. This is an impor-
tant step for the recognition of RS production and, therefore, to
help scientists towards better, more efficient research.

“Clearly, a policy is only as good as its enforcement” 4 (p.15).
Procedures such as CDUR are exigent regarding transparent
decisions. When seeking quality results, it is generally advis-
able to avoid having social factors to take a relevant role in the
evaluation process. Indeed, social evaluation methods could be
as good as any other, if they finally happen to lead to a similar
level of quality in the evaluation results, as with the qualitative or
quantitative methods. But the social methods should be applied
quite consciously rather than unconsciously, and the moment
when these practices come into play should be clearly detected
and highlighted. The main drawback is that, in this case, it is
usually difficult to refer to transparent policies and decisions. In
other words, when transparency is at stake, social influence in
evaluation procedures should be neutralized, as seen in the evalu-
ation section.

Many of the RS points discussed here have common issues
with research data evaluation. For example, as we remark in 14,
research data and RS could be disseminated following the same
procedure. Therefore, it is easy to conceive a similar CDUR
evaluation protocol for research data, suitably modified to take

into account some of its specific features, mainly by adapting the
Use step to data use. The other steps, Citation, Dissemination,
and Research can have a pretty similar presentation by changing
RS for research data, but taking into account the fundamental
differences that appear between software and data legal issues.

As proclaimed in 11, the evaluation of research is the keystone
for the evolution of the Open Science policies and practices.
It is our belief that research evaluation is also the keystone for
the evolution of research software practices and for the full
consideration of its role towards a more efficient science.

As a final conclusion, we hope that the adoption of protocols
such as CDUR will motivate and consolidate evaluation policies
and practices. This article wants to be a call for action to foster a
debate on RS evaluation protocols. A debate which, possibly, will
also require a careful observation of the practical applications
of such protocols and to analyse their adjustment to a scientific
landscape in constant and fast evolution. Yet, as warned in 10
(p.2), “Enacting any new policy that requires a shift in culture
also will require community support for successful and efficient
implementation”. Evolutions will come, some are already there.
Therefore, the future roles of the RS key evaluation actors are
likely to evolve and change current practices, which carries out
challenges and opportunities. The RS roles could evolve as part
of the whole scholarly communication or on their own, probably
both at the same time. There will be movement backwards and
forwards, but, in our view (and in agreement with the EC Expert
Group report 11) the success of the foreseen evolutions will be
associated to initiatives that put researchers’ aims at the center
of the various interests. Success will come if the different
actors participating to build the future will work closely
with the researchers, to create and to provide procedures and
services that are valued and trusted by them.

Data availability
Underlying data
All data underlying the results are available as part of the article
and no additional source data are required.

Acknowledgements
This work is partially in debt to the research software produc-
ers of the Gaspard-Monge computer science laboratory (LIGM)
at the University of Paris-Est Marne-la-Vallée, where the RS
production has been studied by the first author since 200685.
Authors also acknowledge referees’ suggestions and comments
as they have helped to clarify and improve several parts of this
work.

85http://igm.univ-mlv.fr/~teresa/2013octPostersAERES/PatrimoineLogicielLIGM/
LogicielsLIGMPlume2013_EN.pdf

Page 21 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

http://igm.univ-mlv.fr/%7Eteresa/2013octPostersAERES/PatrimoineLogicielLIGM/LogicielsLIGMPlume2013_EN.pdf
http://igm.univ-mlv.fr/%7Eteresa/2013octPostersAERES/PatrimoineLogicielLIGM/LogicielsLIGMPlume2013_EN.pdf

References

1. Kanewala U, Bieman JM: Testing Scientific Software: A Systematic Literature
Review. Inf Softw Technol. 2014; 56(10): 1219–1232.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Partha D, David PA: Toward a new economics of science. Res Policy. 1994;
23(5): 487–521.
Publisher Full Text

3. Howison J, Deelman E, McLennan MJ, et al.: Understanding the scientific
software ecosystem and its impact: Current and future measures. Res Evaluat.
2015; 24(4): 454–470.
Publisher Full Text

4. Howison J, Bullard J: Software in the scientific literature: Problems with seeing,
finding, and using software mentioned in the biology literature. J Assoc Inf Sci
Tec. 2016; 67(9): 2137–2155.
Publisher Full Text

5. Hucka M, Graham MJ: Software search is not a science, even among scientists:
A survey of how scientists and engineers find software. J Syst Software. 2018;
141: 171–191.
Publisher Full Text

6. Jackson M: How to cite and describe software. The Software Sustainability
Institute. 2012; (accessed 30 march 2019).
Reference Source

7. Smith AM, Katz DS, Niemeyer KE, et al.: Software citation principles. PeerJ
Comput Sci. 2016; 2: e86.
Publisher Full Text

8. Mårtensson P, Fors U, Wallin SB, et al.: Evaluating research: A multidisciplinary
approach to assessing research practice and quality. Res Policy. 2016; 45(3):
593–603.
Publisher Full Text

9. Cabello Valdes C, Rentier B, Kaunismaa E, et al.: Evaluation of research careers
fully acknowledging Open Science practices. Rewards, incentives and/or
recognition for researchers practicing Open Science. EU Publications. 2017.
Publisher Full Text

10. National Academies of Sciences, Engineering, and Medicine: Open Source
Software Policy Options for NASA Earth and Space Sciences. Washington, DC:
The National Academies Press. 2018.
Publisher Full Text

11. Guédon JC, Jubb M, Kramer B, et al.: Future of Scholarly Publishing and
Scholarly Communication. Report of the Expert Group to the European
Commission. 2019.
Publisher Full Text

12. Gomez-Diaz T: Article vs. Logiciel: questions juridiques et de politique
scientifique dans la production de logiciels. 1024 - Bulletin de la société
informatique de France. 2015; 5. First version initially published in the platform of the
PLUME project, October 2011. https://projet-plume.org/ressource/article-vs-logiciel.
Publisher Full Text | Reference Source

13. Archimbaud JL: PLUME : Promouvoir les Logiciels Utiles Maîtrisés et
Économiques dans l’Enseignement Supérieur et la Recherche. 10e Colloque
National en Calcul des Structures, May Giens, France, 2011.
Reference Source

14. Gomez-Diaz T: Free software, Open source software, licenses. A short
presentation including a procedure for research software and data
dissemination. 2014. Presented at the Workshop on open licenses: Data licencing
and policies, EGI Conference 2015, Lisbon, May 2015, https://indico.egi.eu/indico/
event/2452/session/75/. Spanish version: Software libre, software de código abierto,
licencias. Donde se propone un procedimiento de distribución de software y datos
de investigación, Septembre 2015, https://zenodo.org/record/31547/.
Reference Source

15. Gomez-Diaz T: Le Projet PLUME et le paysage actuel des logiciels de la
recherche dans la science ouverte. 2019.
Reference Source

16. Kelly D: An Analysis of Process Characteristics for Developing Scientific
Software. J Organ End User Com. 2011; 23(4): 64–79.
Publisher Full Text

17. Queiroz F, Spitz R: The Lens of the Lab: Design Challenges in Scientific
Software. The International Journal of Design Management and Professional
Practice. 2016; 10(3): 17–45.
Publisher Full Text

18. Sletholt MT, Hannay JE, Pfahl D, et al.: What Do We Know about Scientific
Software Development’s Agile Practices? Software Engineering for CSE
Computing in Science & engineering. 2012; 14(2).
Publisher Full Text

19. Hettrick S: Research Software Sustainability. Report on a Knowledge Exchange
Workshop. 2016.
Reference Source

20. Ahmed Z, Zeeshan S: Cultivating Software Solutions Development in the
Scientific Academia. Recent Patents on Computer Science. 2014; 7(1).
Publisher Full Text

21. Kelly D, Sanders R: Assessing the quality of scientific software. Proceedings
First International Workshop on Software Engineering for Computational Science
and Engineering, Leipzig, Germany, 2008.
Reference Source

22. Crouch S, Hong NC, Hettrick S, et al.: The Software Sustainability Institute:
Changing Research Software Attitudes and Practices. Comput Sci Eng. 2013;
15(6): 74–80.
Publisher Full Text

23. Alice A, Cecilia A, Christoph B, et al.: Engineering Academic Software (Dagstuhl
Perspectives Workshop 16252). Dagstuhl Manifestos. 2017; 6(1): 1–20.
Publisher Full Text

24. Jiménez RC, Kuzak M, Alhamdoosh M, et al.: Four simple recommendations to
encourage best practices in research software [version 1; peer review:
3 approved]. F1000Res. 2017; 6: pii: ELIXIR-876.
PubMed Abstract | Publisher Full Text | Free Full Text

25. Jackson M, Crouch S, Baxter R: Criteria-based and tutorial-based software
evaluation. The Software Sustainability Institute. 2011; (accessed 30 march 2019).
Reference Source

26. Baxter SM, Day SW, Fetrow JS, et al.: Scientific software development is not an
oxymoron. PLoS Comput Biol. 2006; 2(9): e87.
PubMed Abstract | Publisher Full Text | Free Full Text

27. Eklund A, Nichols TE, Knutsson H: Cluster failure: Why fMRI inferences for
spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;
113(28): 7900–7905.
PubMed Abstract | Publisher Full Text | Free Full Text

28. Hafer L, Kirkpatrick AE: Assessing open source software as a scholarly
contribution. Communications of the ACM. 2009; 52(12): 126–129.
Publisher Full Text

29. Kelly D, Smith S, Meng N: Software engineering for scientists. Comput Sci Eng.
2011; 13(5): 7–11.
Publisher Full Text

30. Sanders R, Kelly D: Dealing with Risk in Scientific Software Development.
Software, IEEE In Software, IEEE. 2008; 25(4): 21–28.
Publisher Full Text

31. Duval D: Diverses questions relatives au calcul formel avec des nombres
algébriques. Thèse d’Etat, Université de Grenoble. 1987.
Reference Source

32. Allen L, Scott J, Brand A, et al.: Publishing: Credit where credit is due. Nature.
2014; 508(7496): 312–313.
PubMed Abstract | Publisher Full Text

33. Smithies J: Research Software (RS) Careers: Generic Learnings from King’s
Digital Lab, King’s College London. (Version 6.2). Zenodo. 2019.
Reference Source

34. Alliez P, Di Cosmo R, Guedj B, et al.: Attributing and Referencing (Research)
Software: Best Practices and Outlook from Inria. 2019.
Reference Source

35. Switters J, Osimo D: Recognising the Importance of Software in Research
- Research Software Engineers (RSEs), a UK Example. 2019.
Reference Source

36. Smith AM, Niemeyer KE, Katz DS, et al.: Journal of Open Source Software
(JOSS): design and first-year review. PeerJ Comput Sci. 2018; 4: e147.
Publisher Full Text

37. Colom M, Kerautret B, Limare N, et al.: IPOL: A new journal for fully reproducible
research; analysis of four years development. In: 2015 7th International
Conference on New Technologies, Mobility and Security (NTMS). IEEE, 2015.
Publisher Full Text

38. Beeston A, Blazic L, Hong NC, et al.: Ten simple rules for writing a comparative
software review. PeerJ PrePrints. Sustainable Software Institute Collaborations
Workshop, Edinburgh, 2016; 4: e2221v1.
Reference Source

39. Pontille D, Torny D: La manufacture de l’évaluation scientifique: algorithmes,
jeux de données, outils bibliométriques. 2013; 31: 25–61.
Reference Source

40. Gomez-Diaz T, Romier G: Research Software management Plan Template V3.2.
Projet PRESOFT, Bilingual document (FR/EN). 2018.
Reference Source

41. Potter M, Smith T: Making code citable with Zenodo and GitHub. The Software
Sustainability Institute Blog. 2016, https://www.software.ac.uk/blog/2016-09-26-
making-code-citable-zenodo-and-github.
Reference Source

42. Ross-Hellauer T: What is open peer review? A systematic review [version 2;
peer review: 4 approved]. F1000Res. 2017; 6: 588.
PubMed Abstract | Publisher Full Text | Free Full Text

43. Barbour V, Bloom T, Lin J, et al.: Amending published articles: time to rethink
retractions and corrections? [version 1; peer review: 2 approved with
reservations]. F1000Res. 2017; 6: 1960.
Publisher Full Text

44. Howison J, Herbsleb JD: Scientific software production: incentives and
collaboration. In: Proceedings of the ACM Conference on Computer Supported
Cooperative Work. Hangzhou, China, 2011; 513–522.
Reference Source

45. Kai Li, Chen PY, Yan E: Challenges of measuring the impact of software: an
examination of the lme4 R package. arXiv preprint. 2018;
Reference Source

Page 22 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

http://www.ncbi.nlm.nih.gov/pubmed/25125798
http://dx.doi.org/10.1016/j.infsof.2014.05.006
http://www.ncbi.nlm.nih.gov/pmc/articles/4128280
http://dx.doi.org/10.1016/0048-7333(94)01002-1
http://dx.doi.org/10.1093/reseval/rvv014
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1016/j.jss.2018.03.047
https://www.software.ac.uk/how-cite-software
http://dx.doi.org/10.7287/PEERJ.PREPRINTS.2169V1
http://dx.doi.org/10.1016/j.respol.2015.11.009
http://dx.doi.org/10.2777/75255
http://dx.doi.org/10.17226/25217
http://dx.doi.org/10.2777/836532
https://projet-plume.org/ressource/article-vs-logiciel
http://www.societe-informatique-de-france.fr/wp-content/uploads/2015/04/1024-5-gomez-diaz.pdf
https://hal.archives-ouvertes.fr/hal-01158010
https://hal.archives-ouvertes.fr/hal-00592935
https://indico.egi.eu/indico/event/2452/session/75/
https://indico.egi.eu/indico/event/2452/session/75/
https://zenodo.org/record/31547/
http://zenodo.org/record/11709/
https://hal.archives-ouvertes.fr/hal-02069359
http://dx.doi.org/10.4018/joeuc.2011100105
http://dx.doi.org/10.18848/2325-162X/CGP/v10i03/17-45
http://dx.doi.org/10.1109/MCSE.2011.113
http://www.knowledge-exchange.info/event/software-sustainability
http://dx.doi.org/10.2174/2213275907666140612210552
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.526.5076&rep=rep1&type=pdf
http://dx.doi.org/10.1109/MCSE.2013.133
http://dx.doi.org/10.4230/DagMan.6.1.1
http://www.ncbi.nlm.nih.gov/pubmed/28751965
http://dx.doi.org/10.12688/f1000research.11407.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5490478
https://software.ac.uk/resources/guides-everything/software-evaluation-guide
http://www.ncbi.nlm.nih.gov/pubmed/16965174
http://dx.doi.org/10.1371/journal.pcbi.0020087
http://www.ncbi.nlm.nih.gov/pmc/articles/1560404
http://www.ncbi.nlm.nih.gov/pubmed/27357684
http://dx.doi.org/10.1073/pnas.1602413113
http://www.ncbi.nlm.nih.gov/pmc/articles/4948312
http://dx.doi.org/10.1145/1610252.1610285
http://dx.doi.org/10.1109/MCSE.2011.86
http://dx.doi.org/10.1109/ms.2008.84
https://www-fourier.ujf-grenoble.fr/?q=zh-hans/node/25065
http://www.ncbi.nlm.nih.gov/pubmed/24745070
http://dx.doi.org/10.1038/508312a
http://dx.doi.org/10.5281/zenodo.2564790
https://hal.archives-ouvertes.fr/hal-02135891
https://ec.europa.eu/info/sites/info/files/research_and_innovation/importance_of_software_in_research.pdf
http://dx.doi.org/10.7717/peerj-cs.147
http://dx.doi.org/10.1109/NTMS.2015.7266500
https://peerj.com/preprints/2221/
https://hal-mines-paristech.archives-ouvertes.fr/hal-00821956
https://hal.archives-ouvertes.fr/hal-01802565
https://www.software.ac.uk/blog/2016-09-26-making-code-citable-zenodo-and-github
https://www.software.ac.uk/blog/2016-09-26-making-code-citable-zenodo-and-github
https://zenodo.org/record/45042/
http://www.ncbi.nlm.nih.gov/pubmed/28580134
http://dx.doi.org/10.12688/f1000research.11369.2
http://www.ncbi.nlm.nih.gov/pmc/articles/5437951
http://dx.doi.org/10.12688/f1000research.13060.1
http://james.howison.name/pubs/HowisonHerbsleb2011SciSoftIncentives.pdf
http://arxiv.org/abs/1811.11270

46. Soito L, Hwang LJ: Citations for Software: Providing Identification, Access and
Recognition for Research Software. Int J Digit Curation. 2016; 11(2): 48–63.
Publisher Full Text

47. Brown C, Hong NC, Jackson M: Software Deposit and Preservation Policy and
Planning Workshop Report. DRAFT. 2018.
Reference Source

48. Druskat S, Bast R, Hong NC, et al.: A standard format for CITATION files. The
Software Sustainability Institute. 2017.
Reference Source

49. Druskat S: Software and their Dependencies in Research Citation Graphs. arXiv
preprint arXiv:1906.06141. 2019.
Reference Source

50. Belcher BM, Rasmussen KE, Kemshaw MR, et al.: Defining and assessing
research quality in a transdisciplinary context. Res Evaluat. 2016; 25(1): 1–17.
Publisher Full Text

51. Guédon JC: Open Access: Toward the Internet of the Mind. 2017.
Reference Source

52. Kemarrec AM, Faou E, Merlet JP, et al.: Que mesurent les indicateurs
bibliométriques? Document d’analyse de la Comision d’Evaluation de l’Inria. 2007,
https://www.inria.fr/institut/organisation/instances/commission-d-evaluation.
Reference Source

53. Hicks D, Wouters P, Waltman L, et al.: Bibliometrics: The Leiden Manifesto for
research metrics. Nature. 2015; 520(7548): 429–31.
PubMed Abstract | Publisher Full Text

54. Molas-Gallart J, Ràfols I: Why bibliometric indicators break down: unstable
parameters, incorrect models and irrelevant properties. Biblioteconomia i
Documentació. 2018.
Reference Source

55. Martin U: Computers, Reasoning and Mathematical Practice. In: Berger U,
Schwichtenberg H. (eds), Computational Logic. NATO ASI Series. 1999; 165:
301–346.
Publisher Full Text

56. Hong NC: Why do we need to compare research software, and how should we
do it? WSSSPE4, University of Manchester, CEUR Workshop Procedins. 2016.
Reference Source

57. Aerts PJC: Sustainable Software Sustainability - Workshop report. DANS. 2017.
Reference Source

58. Inria’s Evaluation Committee: Criteria for software self-assessment. 2011.
Reference Source

59. Morin A, Urban J, Sliz P: A Quick Guide to Software Licensing for the Scientist-
Programmer. PLoS Comput Biol. 2012; 8(7): e1002598.
PubMed Abstract | Publisher Full Text | Free Full Text

60. Perry M, Margoni T: Free-Libre Open Source Software as a Public Policy
Choice. International Journal on Advances in Internet Technology. 2010; 3(3 – 4):
212–222.
Reference Source

61. Donoho DL, Maleki A, Rahman IU, et al.: Reproducible Research in
Computational Harmonic Analysis. IEEE Computing in Science and Engineering.
2009; 11(1): 8–18.
Reference Source

62. LeVeque RJ, Mitchell IM, Stodden V: Reproducible Research for Scientific
Computing: Tools and Strategies for Changing the Culture. Comput Sci Eng.
2012; 14(4): 13–17.
Reference Source

63. Stodden V, Krafczyk MS, Bhaskar A: Enabling the Verification of Computational
Results: An Empirical Evaluation of Computational Reproducibility. In:
P-RECS’ 18: First International Workshop on Practical Reproducible Evaluation of

Computer Systems. Tempe, AZ, USA. ACM, New York, NY, USA, 2018; 5. http://
stanford.edu/~vcs/papers/P-RECS-2018-SKB-DOI.pdf.
Publisher Full Text

64. Penfield T, Baker MJ, Scoble R, et al.: Wykes. Assessment, evaluations, and
definitions of research impact: A review. Res Eval. 2014; 23(1): 21–32.
Publisher Full Text

65. Schimanski LA, Alperin JP: The evaluation of scholarship in academic
promotion and tenure processes: Past, present, and future [version 1; peer
review: 2 approved]. F1000Res. 2018; 7: 1605.
PubMed Abstract | Publisher Full Text | Free Full Text

66. Jackson M (ed.).: Checklist for a Software Management Plan V0.2. The Software
Sustainability Institute. (V0.1 dated 2016). 2018. https://www.software.ac.uk/
software-management-plans.
Reference Source

67. European Commission: Directorate-General for Research & Innovation.
Guidelines on FAIR Data Management in Horizon 2020, Version 3.0. 2016.
Reference Source

68. Margery D, Merlet JP, Schmid C, et al.: Évaluation des logiciels et autres
réalisations. Document d’analyse de la Commission d’Evaluation de l’INRIA. 2007.
https://www.inria.fr/institut/organisation/instances/commission-d-evaluation.
Reference Source

69. Artaza H, Chue Hong N, Corpas M, et al.: Top 10 metrics for life science
software good practices [version 1; peer review: 2 approved]. F1000Res. 2016;
5(ELIXIR): 2000.
PubMed Abstract | Publisher Full Text | Free Full Text

70. Eglen SJ, Marwick B, Halchenko YO, et al.: Toward standard practices for
sharing computer code and programs in neuroscience. Nat Neurosci. 2017;
20(6): 770–773.
PubMed Abstract | Publisher Full Text | Free Full Text

71. Hastings J, Haug K, Steinbeck C: Ten recommendations for software
engineering in research. GigaScience. 2014; 3(1): 31.
PubMed Abstract | Publisher Full Text | Free Full Text

72. Hong NC: Minimal information for reusable scientific software. 2014.
Reference Source

73. Prlić A, Procter JB: Ten simple rules for the open development of scientific
software. PLoS Comput Biol. 2012; 8(12): e1002802.
PubMed Abstract | Publisher Full Text | Free Full Text

74. Queiroz F, Silva R, Miller J, et al.: Good Usability Practices in Scientific Software
Development. arXiv preprint. 2017.
Reference Source

75. Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.
PubMed Abstract | Publisher Full Text | Free Full Text

76. Kelly D, Sanders R: The challenge of testing scientific software. Proceedings 3rd
Conference for the Association for Software Testing (CAST), Toronto, 2008; 30–36.
Reference Source

77. Kelly D, Shepard T: Eight maxims for software inspectors. Softw Test Verif Rel.
2004; 14(4): 243–256.
Reference Source

78. Kollanus S, Koskinen J: Survey of Software Inspection Research. The Open
Software Engineering Journal. 2009; 3: 15–34.
Reference Source

79. Radicchi F, Weissman A, Bollen J: Quantifying perceived impact of scientific
publications. J Informetr. 2017; 11(3): 704–712.
Publisher Full Text

80. Vandewalle P: Code sharing is associated with research impact in image
processing. Computing in Science and Engineering. 2012; 14(4): 42–47.
Publisher Full Text

Page 23 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

http://dx.doi.org/10.2218/ijdc.v11i2.390
http://dx.doi.org/10.5281/zenodo.1250310
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://arxiv.org/abs/1906.06141
http://dx.doi.org/10.1093/reseval/rvv025
https://www.budapestopenaccessinitiative.org/boai15/Untitleddocument.docx
https://www.inria.fr/institut/organisation/instances/commission-d-evaluation
http://www.mi.sanu.ac.rs/novi_sajt/news/an_doc/Dosen4.pdf
http://www.ncbi.nlm.nih.gov/pubmed/25903611
http://dx.doi.org/10.1038/520429a
http://dx.doi.org/10.1344/BiD2018.40.23
http://dx.doi.org/10.1007/978-3-642-58622-4_9
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf
http://dx.doi.org/10.17026/dans-xfe-rn2w
https://www.inria.fr/en/content/download/11783/409884/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22844236
http://dx.doi.org/10.1371/journal.pcbi.1002598
http://www.ncbi.nlm.nih.gov/pmc/articles/3406002
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1800902
http://stanford.edu/~vcs/papers/RRCiSE-STODDEN2009.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.5493&rep=rep1&type=pdf
http://stanford.edu/~vcs/papers/P-RECS-2018-SKB-DOI.pdf
http://stanford.edu/~vcs/papers/P-RECS-2018-SKB-DOI.pdf
http://dx.doi.org/10.1145/3214239.3214242
http://dx.doi.org/10.1093/reseval/rvt021
http://www.ncbi.nlm.nih.gov/pubmed/30647909
http://dx.doi.org/10.12688/f1000research.16493.1
http://www.ncbi.nlm.nih.gov/pmc/articles/6325612
https://www.software.ac.uk/software-management-plans
https://www.software.ac.uk/software-management-plans
https://doi.org/10.5281/zenodo.1460504
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf
https://www.inria.fr/institut/organisation/instances/commission-d-evaluation
https://www.inria.fr/content/download/60335/956383/version/1/ file/realisations.pdf
http://www.ncbi.nlm.nih.gov/pubmed/27635232
http://dx.doi.org/10.12688/f1000research.9206.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5007752
http://www.ncbi.nlm.nih.gov/pubmed/28542156
http://dx.doi.org/10.1038/nn.4550
http://www.ncbi.nlm.nih.gov/pmc/articles/6386137
http://www.ncbi.nlm.nih.gov/pubmed/25685331
http://dx.doi.org/10.1186/2047-217X-3-31
http://www.ncbi.nlm.nih.gov/pmc/articles/4326482
http://dx.doi.org/10.6084/m9.figshare.1112528
http://www.ncbi.nlm.nih.gov/pubmed/23236269
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://www.ncbi.nlm.nih.gov/pmc/articles/3516539
http://arxiv.org/abs/1709.00111
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.7432&rep=rep1&type=pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.295
https://benthamopen.com/ABSTRACT/TOSEJ-3-15
http://dx.doi.org/10.1016/j.joi.2017.05.010
http://dx.doi.org/10.1109/MCSE.2012.63

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 27 November 2019

https://doi.org/10.5256/f1000research.23236.r57114

© 2019 Queiroz F. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Francisco Queiroz
School of Design, University of Leeds, Leeds, UK

The authors have provided a revised article addressing the most important issues identified by the
previous report. Overall, the improvement of Figure 1, the inclusion of the use case, and the call
to action have made the article much more comprehensible and engaging – in which case I'd
recommend its approval without any reservations.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Digital and interactive design; UX; UI; Scientific Software usability

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 23 September 2019

https://doi.org/10.5256/f1000research.21946.r52525

© 2019 Merlet J. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Jean-Pierre Merlet
HEPHAISTOS Project, Inria, Inria, Sophia-Antipolis, Valbonne, France

This paper gives a good definition of what is a research software (RS) and I agree with the authors

Page 24 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://doi.org/10.5256/f1000research.23236.r57114
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2685-2653
https://doi.org/10.5256/f1000research.21946.r52525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0401-5424

that an extensive version of what is a RS. I have however various remarks:
A career of a researcher has extensively changed in the recent years: more chairs available
for a relatively short period of time (typically 5 years) are given so that in this limited
amount of time a relatively young researcher cannot afford to stand by the dissemination
and maintenance work required by the evaluation scheme provided by the authors

○

The authors still favor a specific type of RS, with availability, documented, licensed and with
versioning. This is dangerous as many RS do not enter in this category: software that is
produced to check a specific scientific result, software specifically designed to manage a
particular system etc.. These software are not intended to be disseminated either as they
are used only for checking and benchmarking or because they are very specific (for example
a real-time software where the purpose is to save as much as possible computation time so
that it cannot be general by essence as any general procedure will require tests that will
penalize the performances) and therefore cannot be reproducible. As developing software
is time intensive having too strict rule for the evaluation of software (such as documentation
and availability) may discourage researchers producing them although they provide some
good idea of the efficiency of the underlying theoretical work.

○

Citations of publications as a measure of impact is already questionable and I will say this is
even worse for RS. It is quite current in the computer science community to say that the
only good software is the one produced by the authors so that citations is limited and
usually not very positive.

○

I fully agree that software development may be a major component in the daily activity of a
researcher and therefore must be taken into account in our evaluation. However the
specificities of the RS and of the domain must also be taken into account in this evaluation.
The CDUR procedure proposed by the authors is very fine but can be applied only on a
limited number of RS types and his application will be disastrous for other types. For
example it is easy to find RS for which the CDU part is not relevant while the R part is the
only one of importance: for example a RS that performs the control of a specific robotic
system cannot be reproducible (unless the reviewer has at hand an exactly similar robot), its
use is limited to a specific prototype (and the RS has been designed for it) and has to bey
tailored to manage another system so it cannot be disseminated. Hence the only evaluation
criteria is the R part which is illustrated by the performance of the whole system, being
given the performance of the hardware.

○

I recognize that the authors are right in term of objectives: our current approach of RS
development may lead to a waste of time with researchers programming again and again
the same algorithms instead on focusing on their specific objectives. Some kind of
mutualization will be beneficial provided that he RS is sufficiently disseminated and open to
the community. But a researcher has to find the right balance between his/her research
activity and the time devoted to maintenance, documentation and dissemination, a balance
that greatly depends upon the domain. Furthermore good software practices for
development is also dependent of the domains.

○

In summary although the authors have been very careful in their definition and evaluation rules
and the absolute necessity of flexibility in the evaluation rules, they ended up with an evaluation
procedure that may lead researcher to avoid going into the business of RS development. But this
is nice paper that is worth being indexed for opening a discussion on RS evaluation according to

Page 25 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

the specific domain and context in which it has been developed.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computer science, robotics,mathematics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 13 September 2019

https://doi.org/10.5256/f1000research.21946.r53711

© 2019 Queiroz F. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Francisco Queiroz
School of Design, University of Leeds, Leeds, UK

Overall, this is a clear, well-written article outlining a novel procedure that could impact, in positive
ways, policies and practices regarding scientific software development and impact. However, I
believe there are some aspects of the article that could be either improved or clarified.

The study seems to be mostly based on secondary research – more specifically, arguments
and ideas are developed based on findings from literature. Moreover, it can be assumed,
the study is informed by the proximity of the authors to the academic/professional
environment it investigates. However, there is no clear indication on how the material that
serves as basis for the analysis was selected (indexed databases? specialized resources such

1.

Page 26 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://doi.org/10.5256/f1000research.21946.r53711
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2685-2653

as publications and conferences?), in which case it would be interesting to include a
justification on why those sources are relevant.

Additional material that could, potentially, be referenced are Chue Hong`s position paper on
the need for a framework for comparing software1; and also ESRC's plans of developing a
software accreditation framework2.

2.

In section 2, the authors write: "Note that to cite software in science is different to citing
scientific (or more precisely, research) software, which is the issue here". Perhaps the
difference could be clarified?

3.

In 2.1, the authors write: "in 12,13 we can find the following definition". Given that the
definition`s authorship is originally from 12, it would be probably more appropriate to write
something along the lines of "a definition elaborated by 12 was summarized by 13 as"

4.

There are several passages in both French and English. Wouldn't it be enough to keep the
English versions (along with an indication that they were translated from French by the
authors?)

5.

The authors write: "Finally, let us mention that, as in the case of publications, the research
software production of a laboratory is decided and proposed by the lab’s members, and it is
approved by the leading institutions during the usual laboratory evaluation and funding
procedures". Is that true for every case of research software production and are there any
references supporting that?

6.

Figure 1, illustrating concepts appearing in the study, could be improved, possibly by
matching label colors to the colors of the rectangles for easier identification.

7.

Is not clear why there are two screenshots of Plume (one in French and one in English). One
would probably be enough?

8.

The authors write: "(...) we remark that there can be several classic articles associated to a
single RS, and that could be used as its reference". Could references to some of
those classic articles be provided?

9.

The study ends without (i) considerations on future research, (ii) clear indications on
initiatives/pilots for the procedure, (iii) a call to action for the community to test it. Overall,
it's not clear what the next steps are.

10.

Regarding the applicability of the procedure, the article would benefit from including a table
or diagram (probably in Section 4) explaining the procedure, preferably featuring a
clear, step-by-step description of the process. That should clarify how CDUR could be
adopted, increasing the potential for its adoption and use.

11.

References
1. Chu Hong N: Why do we need to compare research software, and how should we do it? in
Proceedings of the Fourth Workshop on Sustainable Software for Science: Practice and

Page 27 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-53711-1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-53711-2

Experiences (WSSSPE4). University of Manchester, CEUR Workshop Proceedings. 2016.
2. EPSRC Software Infrastructure strategy 2018. EPSRC. 2018. Reference Source

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Digital and interactive design; UX; UI; Scientific Software usability.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Comments on this article
Version 2

Author Response 19 Oct 2020
Teresa Gomez-Diaz, University of Paris-Est Marne-la-Vallee, Marne-la-Vallée, France

While doing a presentation of this work at the University of Cantabria (Spain) in September 2020,
the former Professor of this University Carlos Ruiz de Velasco reminded us of the importance of
using the right data structures in research software (and in software in general).

This is why the final version of the slides (in Spanish), available at

http://igm.univ-
mlv.fr/~teresa/logicielsLIGM/conferenciasSeptiembre2020/20200903_CDUR_Final_ES.pdf

Page 28 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

https://epsrc.ukri.org/files/research/softwareinfrastructurestrategy2018/
http://igm.univ-mlv.fr/~teresa/logicielsLIGM/conferenciasSeptiembre2020/20200903_CDUR_Final_ES.pdf
http://igm.univ-mlv.fr/~teresa/logicielsLIGM/conferenciasSeptiembre2020/20200903_CDUR_Final_ES.pdf

include data structures at the (R) research step of the CDUR procedure (slide 14/15).

This also implies some corrections in the CDUR procedure proposed in this paper, as algorithms
and data structures should be considered at the same level and at the same time, mainly in the (U)
Use and the (R) Research steps.

With many thanks to our Professor, colleague and friend Carlos Ruiz de Velasco.

Competing Interests: No competing interests have been detected.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 29 of 29

F1000Research 2019, 8:1353 Last updated: 27 JUL 2021

mailto:research@f1000.com

