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Abstract 

Soliton crystal micro-combs are powerful tools as sources of multiple wavelength channels for 

radio frequency (RF) signal processing. They offer a compact device footprint, large numbers 

of wavelengths, very high versatility, and wide Nyquist bandwidths. Here, we demonstrate 

integral order RF signal processing functions based on a soliton crystal micro-comb, including 

a Hilbert transformer and first- to third-order differentiators. We compare and contrast results 

achieved and the tradeoffs involved with varying comb spacing, tap design methods, as well as 

shaping methods.  
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1. Introduction 

RF signal processing functions, including the Hilbert 

transform and differentiation, are building blocks of advanced 

RF applications such as radar systems, single sideband 

modulators, measurement systems, speech processing, signal 

sampling, and communications [1-42]. Although the electronic 

digital-domain tools that are widely employed enable versatile 

and flexible signal processing functions, they are subject to the 

bandwidth bottleneck of analog-to-digital convertors [4], and 

thus face challenges in processing wideband signals.  

Photonic RF techniques [1-3] have attracted great interest 

during the past two decades with their capability of providing 

ultra-high bandwidths, low transmission loss, and strong 

immunity to electromagnetic interference. Many approaches to 

photonic RF signal processing have been proposed that take 

advantage of the coherence of the RF imprinted optical signals 

– thereby inducing optical interference. These coherent 

approaches map the response of optical filters, implemented 

through optical resonators or nonlinear effects, onto the RF 

domain [7-12]. As such, the ultimate performance of the RF 

filters largely depends on the optical filters. State-of-art 

demonstrations of coherent photonic RF filters include those 

that use integrated micro-ring resonators, with Q factors of > 1 

million, as well as techniques that employ on-chip (waveguide-

based) stimulated Brillouin scattering [10-12]. Both of these 

approaches have their unique advantages - the former uses 

passive devices and so can achieve very low power 

consumption, while Brillouin scattering can achieve a much 

higher frequency selectivity, reaching a 3 dB bandwidth 

resolution as low as 32 MHz. 

Coherent approaches generally focus on narrow-band 

applications where the frequency range of concern is narrow 

and the focus is on frequency selectivity, and where the filters 

are generally band-pass or band-stop in nature. In contrast, 

incoherent approaches that employ transversal filtering 

structures can achieve a very diverse range of functions with a 

much wider frequency range, such as Hilbert transforms and 

differentiators. The transversal structure originates from the 

classic digital finite impulse response filter, where the transfer 

function is achieved by weighting, delaying and summing the 

input signals. Unlike digital approaches that operate under von-

Neumann protocols, photonic implementations achieve the 

entire process through analog photonics, where the weighting, 

delaying and summing happens physically at the location of the 

signals, instead of reading and writing back-and-forth from 

memory.  

To achieve the transversal structure optically, four steps are 

required. First, the input RF signals are replicated, or multicast, 

onto multiple wavelengths simultaneously using wavelengths 

supplied from either multiple single wavelength, or single 

multiple wavelength, sources. Next, the replicated signals are 

assigned different weights for each wavelength and then the 

composite signal is progressively delayed where each 

wavelength is incrementally delayed relative to the next. 
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Finally, the weighted replicas are summed together by 

photodetecting the entire signal. The underpinning principle to 

this process is to physically achieve multiple parallel channels 

where each channel carries and processes one replica of the RF 

signal. In addition to wavelength multiplexing techniques, this 

can also be accomplished with spatial multiplexing, such using 

an array of fibre delay lines to spatially achieve the required 

parallelism. Although this is straightforward to implement, it 

suffers from severe tradeoffs between the number of channels 

and overall footprint and cost. Exploiting the wavelength 

dimension is a much more elegant approach since it makes 

much better use of the wide optical bandwidth of over the 10 

THz that the telecommunications C-band offers, and thus is 

more compact. However, traditional approaches to generating 

multiple optical wavelengths have been based on discrete laser 

arrays, [6-9] and these face limitations in terms of a large 

footprint, relatively high cost, and challenges in terms of 

accurate control of the wavelength spacing.  

Optical frequency combs - equally spaced optical frequency 

lines - are a powerful approach to implementing incoherent 

photonic RF filters since they can provide a large number of 

wavelength channels with equal frequency spacings, and in a 

compact scheme. Among the many traditional methods of 

achieving optical frequency combs, electro-optic (EO) 

techniques have probably experienced the widest use for RF 

photonics. By simultaneously driving cascaded EO modulators 

with a high-frequency RF source, a large number of comb lines 

can be generated, and these have been the basis of many 

powerful functions. However, EO combs are not without 

challenges. On the one hand, they generally have a small 

Nyquist zone (half of the frequency spacing), limited by the RF 

source. On the other hand, the employed bulky optical and RF 

devices are challenging to be monolithically integrated. As 

such, to overcome the hurdles of size, reliability and cost-

effectiveness of bulky photonic RF systems, integrated 

frequency combs would represent a highly attractive approach.  

Integrated Kerr optical frequency combs [47-76], or micro-

combs, that originate via optical parametric oscillation in 

monolithic micro-ring resonators (MRRs), have recently come 

into focus as a fundamentally new and powerful tool due to 

their ability to provide highly coherent multiple wavelength 

channels in integrated form, from a single source. They offer a 

much higher number of wavelengths than typically is available 

through EO combs, together with a wide range of comb 

spacings (free spectral range (FSR)) including ultra-large FSRs, 

as well as greatly reduced footprint and complexity. Micro-

combs have enabled many fundamental breakthroughs [50] 

including ultrahigh capacity communications [77-79], neural 

networks [80-82], complex quantum state generation [83-97] 

and much more. In particular, micro-combs have proven to be 

very powerful tools for a wide range of RF applications such as 

optical true time delays [31], transversal filters [34, 38], signal 

processors [29, 32], channelizers [37] and others [15, 18, 26-

28, 36, 39-41]. They have greatly enhanced the performance of 

RF signal processors in terms of the resolution (for coherent 

systems) and operation bandwidth (for incoherent systems). 

In one of the first reports of using micro-combs for RF signal 

processing, we demonstrated a Hilbert transformer based on a 

transversal filter that employed up to 20 taps, or wavelengths. 

[36] This was based on a 200 GHz FSR spaced micro-comb 

source that operated in a semi-coherent mode that did not 

feature solitons. Nonetheless, this provided a low enough noise 

comb source to enable very attractive performance, achieving a 

bandwidth of over 5 octaves in the RF domain. Subsequently, 

[15] we demonstrated 1st 2nd and 3rd order integral 

differentiators based on the same 200 GHz source, achieving 

high RF performance with bandwidths of over 26 GHz, as well 

as a range of RF spectral filters including bandpass, tunable 

bandpass and gain equalizing filters [32, 33].  

Recently, a powerful category of micro-combs — soliton 

crystals — has been reported [59, 76, 98]. It features ultra-low 

intensity noise states and straightforward generation methods 

via adiabatic pump wavelength sweeping. Soliton crystals are 

 
Fig. 1. (a) Schematic of the micro-ring resonator. (b) Drop-port transmission spectrum of the integrated MRR with a span of 5 nm, showing an optical 

free spectral range of 48.9 GHz. (c) A resonance at 193.429 THz with a full width at half maximum (FWHM) of ~94 MHz, corresponding to a quality 

factor of ~2×106. 
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unique solutions to the parametric dynamics governed by the 

Lugiato-Lefever equation. They are tightly packaged solitons 

circulating along the ring cavity, stabilized by a background 

wave generated by a mode-crossing. Due to their much higher 

intra-cavity intensity compared with the single-soliton states of 

DKS solitons, thermal effects that typically occur during the 

transition from chaotic to coherent soliton states are negligible, 

thus alleviating the need for complex pump sweeping methods.  

We have exploited soliton crystal states generated in record 

low FSR (49 GHz) micro-ring resonators (MRRs), thus 

generating a record large number of wavelengths, or taps, to 

achieve a wide range of high performance RF signal processing 

functions. These include RF filters [35], true time delays [30], 

RF integration [42], fractional Hilbert transforms [27], 

fractional differentiation [41], phase-encoded signal generation 

[26], arbitrary waveform generation [43], filters realized by 

bandwidth scaling [38], and RF channelizers [44] and much 

more including quantum optical devices [99-174]. 

In this work, we further examine transversal photonic RF 

signal processors that exploit soliton crystal micro-combs. We 

demonstrate Hilbert transformers as well as 1st, 2nd, and 3rd 

order integral differentiators and explore in detail the trade-offs 

inherent between using differently spaced soliton crystal micro-

combs as well as different numbers of tap weights and design 

methods. Our study sheds light on the optimum number of taps, 

while the experimental results agree well with theory, verifying 

the feasibility of our approach towards the realization of high-

performance photonic RF signal processing with potentially 

reduced cost, footprint and complexity.  

 

 

 
Fig. 2. Schematic illustration of the integrated MRR for generating the Kerr frequency comb and the optical spectrum of the generated soliton crystal 

combs with a 100-nm span. 
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2. Operation principle  

The generation of micro-combs is a complex process that 

generally relies on a high nonlinear material refractive index, 

low linear and nonlinear loss, as well as engineered anomalous 

dispersion [59-64]. Diverse platforms have been developed for 

micro-comb generation [58], such as silica, magnesium 

fluoride, silicon nitride, and doped silica glass. The MRR used 

to generate soliton crystal micro-combs is shown in Fig. 1 (a). 

It was fabricated on a high-index doped silica glass platform 

using CMOS compatible processes. Due to the ultra-low loss 

of our platform, the MRR features narrow resonance 

linewidths, corresponding to quality factors as high as 1.5 

million, with radii of ~592 µm, which corresponds to a very 

low FSR of ~0.393 nm (~48.9 GHz) (Fig. 1 (b)) [54-55, 39-40]. 

First, high-index (n = ~1.7 at 1550 nm) doped silica glass films 

were deposited using plasma-enhanced chemical vapour 

deposition, followed by patterning with deep ultraviolet stepper 

mask photolithography and then etched via reactive ion etching 

followed by deposition of the upper cladding. The device 

architecture typically uses a vertical coupling scheme where the 

gap (approximately 200 nm) can be controlled via film growth 

– a more accurate approach than lithographic techniques. The 

advantages of our platform for optical micro-comb generation 

include ultra-low linear loss (~0.06 dB‧cm-1), a moderate 

nonlinear parameter (~233 W-1‧km-1) and, in particular, a 

negligible nonlinear loss up to extremely high intensities (~25 

GW‧cm-2) [65-76]. After packaging the device with fibre 

pigtails, the through-port insertion loss was as low as 0.5 

dB/facet, assisted by on-chip mode converters.  

To generate soliton crystal micro-combs, we amplified the 

pump power up to 30.5 dBm. When the detuning between the 

pump wavelength and the cold resonance became small 

enough, such that the intra-cavity power reached a threshold 

value, modulation instability (MI) driven oscillation was 

initiated. Primary combs were thus generated with a spacing 

determined by the MI gain peak – mainly a function of the intra-

cavity power and dispersion. As the detuning was changed 

further, distinctive ‘fingerprint’ optical spectra were observed 

(Fig. 2), similar to what has been reported from spectral 

interference between tightly packed solitons in a cavity – so-

called ‘soliton crystals’ [55-56]. The second power step jump 

in the measured intra-cavity power was observed at this point, 

where the soliton crystal spectra appeared. We found that it was 

not necessary to achieve any specific state, including either 

soliton crystals or single soliton states, in order to obtain high 

performance – only that the chaotic regime [59] should be 

avoided. Nonetheless, the soliton crystals states provided the 

lowest noise states of all our micro-combs and have also been 

used as the basis for a microwave oscillator with low phase-

noise [28]. This is important since there is a much wider range 

of coherent low RF noise states that are more readily accessible 

than any specific soliton related state [59]. 

 
Fig. 3. Conceptual diagram of the transversal structure. 

 
Fig. 4. Free spectral range of the RF transversal signal processor 

according to the length of fibre and comb spacing. Here we used single 

mode fibre with the second order dispersion coefficient of β = ~17.4 

ps/nm/km at 1550 nm for the calculation of FSRRF.  
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Figure 3 illustrates the conceptual diagram of the transversal 

structure. A finite set of delayed and weighted replicas of the 

input RF signal are produced in the optical domain and then 

combined upon detection. The transfer function of a general 

transversal signal processor can be described as  

𝐻(𝜔) = ∑ 𝑎𝑛𝑒
−𝑗𝜔𝑛𝑇𝑁−1

𝑛=0   (1) 

 

where N is the number of taps, ω is the RF angular frequency, 

T is the time delay between adjacent taps, and an is the tap 

coefficient of the nth tap, which is the discrete impulse response 

of the transfer function F(ω) of the signal processor. The 

discrete impulse response an can be calculated by performing 

the inverse Fourier transform of the transfer function F(ω) of 

the signal processor [11]. The free spectral range of the RF 

signal processor is determined by T, since FSRRF = 1/T. As the 

multi-wavelength optical comb is transmitted through the 

dispersive medium, the time delay can be expressed as  

𝑇 = 𝐷 × 𝐿 × ∆𝜆  (2) 

 

where D denotes the dispersion coefficient, L denotes the length 

of the dispersive medium, and Δλ represents the wavelength 

spacing of the soliton crystal micro-comb, as shown in Fig. 4, 

which indicates the potentially broad bandwidth RF signal that 

the system can process. From Figure 4 we can see the 

relationship between the wavelength spacing of the comb, the 

total delay of the fibre, and the resulting RF FSR, or essentially 

Nyquist zone. The operation bandwidth can be easily adjusted 

by changing the time delay (i.e., using different delay 

elements). The maximum operational bandwidth of the 

transversal signal processor is limited by the comb spacing (i.e., 

the Nyquist frequency, or half of the comb spacing). Thus, 

employing a comb shaping method to achieve a larger comb 

spacing could enlarge the maximum operational bandwidth, 

although at the expense of providing fewer comb lines/taps 

across the C-band. Hence, the number of comb lines/taps as 

well as the comb spacing, are key parameters that determine the 

performance of the signal processor. We investigate this 

tradeoff in detail in this paper.  

Figures 5 and 6 show the theoretically calculated 

performance of the Hilbert transformer with a 90° phase shift 

together with the 1st, 2nd and 3rd order integral differentiators in 

terms of their filter amplitude response, as a function of the 

number of taps. Note that a Hamming window [11] is applied 

in Fig. 5 (a) in order to suppress the sidelobes of the Hilbert 

transformer. As seen in Fig. 7, the theoretical 3 dB bandwidth 

increases rapidly with the number of taps. 

 

 
Fig. 6. Theoretical and simulated RF magnitude according to the number 

of taps and ideal phase response of (a) first-order differentiator. (b) 

second-order differentiator. (c) third-order differentiator.   

 
Fig. 5. Theoretical and simulated RF magnitude according to the number 

of taps and ideal phase response of Hilbert transformer with 90° phase 

shift. (a) With a hamming window applied. (b) Without window method 

applied.  
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3. Experiment 

 Figure 8 shows the experimental setup of the transversal 

filter signal processor based on a soliton crystal micro-comb. It 

consists mainly of two parts  - comb generation and flattening 

followed by the transversal structure. In the first part, the 

generated soliton crystal micro-comb was spectrally shaped 

with two WaveShapers to enable a better signal-to-noise ratio 

as well as a higher shaping accuracy. The first WaveShaper 

(WS1) was used to pre-flatten the scallop-shaped comb 

spectrum that is a hallmark of soliton crystal micro-combs. In 

the second part, the flattened comb lines were modulated by the 

RF input signal, effectively multicasting the RF signal  onto all 

of the wavelength channels to yield replicas. The RF replicas 

were then transmitted through a spool of standard SMF (β = 

~17.4 ps/nm/km) to obtain a progressive time delay between 

the adjacent wavelengths. Next, the second WaveShaper (WS2) 

equalized and weighted the power of the comb lines according 

to the designed tap coefficients. To increase the accuracy, we 

adopted a real-time feedback control path to read and shape the 

power of the comb lines accurately. Finally, the weighted and 

delayed taps were combined and converted back into the RF 

domain via a high-speed balanced photodetector (Finisar, 43 

GHz bandwidth). 

Figure 9 shows the experimental results for the Hilbert 

transformer with a 90° phase shift. The shaped optical combs 

are shown in Figs. 9 (a) (e) (i). A good match between the 

measured comb lines’ power (blue lines for positive, black lines 

for negative taps) and the calculated ideal tap weights (red dots) 

was obtained, indicating that the comb lines were successfully 

shaped. Note that we applied a Hamming window [11] for 

single-FSR (49 GHz) and 4-FSR (196 GHz) comb spacings 

when designing the tap coefficients. One can see that with a 

Hamming window applied, the deviation of the amplitude 

response from the theoretical  results can be improved. Figs. 9 

(b) (f) (j) show the measured and simulated amplitude response 

of the Hilbert transformer using single-FSR, 2-FSR, and 4-FSR 

comb spacings, respectively. The corresponding phase 

responses are depicted in Figs. 9 (c) (g) (k). It can be seen that 

all three configurations exhibit the response expected from the 

ideal Hilbert transform. The system demonstration for the 

Hilbert transform with real-time signals consisting of a 

Gaussian input pulse, generated by an arbitrary waveform 

generator (AWG, KEYSIGHT M9505A) was also performed, 

as shown in Figs. 9 (d) (h) (l) (black solid curves). They were 

recorded by means of a high-speed real-time oscilloscope 

(KEYSIGHT DSOZ504A Infinium). For comparison, we also 

depict the ideal Hilbert transform results, as shown in Figs. 9 

(d) (h) (l) (blue dashed curves). For the Hilbert transformer with 

single-FSR, 2-FSR, and 4-FSR comb spacings, the calculated 

RMSEs between the measured and the ideal curves are ~0.133, 

~0.1065, and ~0.0957, respectively. The detailed performance 

parameters are listed in Table 1. 

Figure 10 shows the experimental results for the 

differentiators with increasing integral orders of 1, 2, and 3. The 

shaped optical spectra in Figs. 10 (a) (e) (i) (m) (q) (u) show a 

good match between the measured comb lines’ power and the 

calculated ideal tap weights. Figures. 10 (b) (f) (j) (n) (r) (v) 

show measured and simulated amplitude responses of the 

differentiators. The corresponding phase response is depicted 

in Fig. 10 (c) (g) (k) (o) (s) (w) where it can be seen that all 

integral differentiators agree well with theory. Here, we use the 

WaveShaper to programmably shape the combs to simulate 

MMRs with different FSRs. By essentially artificially adjusting 

the comb spacing, we effectively obtain a variable operation 

 
Fig. 7. Simulated and experimental results of 3-dB bandwidth with 

different taps for a Hilbert transformer with 90° phase shift.  

 
Fig. 8. Experimental set up of RF signal processor based on soliton 

crystal micro-comb source. CW: Continuously wave. EDFA: Erbium-

doped fibre amplifier. PC: Polarization controller. WS: WaveShaper. IM: 

Intensity modulator. SMF: Single mode fibre. BPD: Balanced 

photodetector. WA: wave analyzer. OSA: optical spectral analyzer 



 

 7  
 

bandwidth for the differentiator, which is advantageous for 

diverse  requirements of different applications. Here, we 

normalised the FSR of the RF response to have the unique 

operational bandwidth for comparing the perfoamance of 

different processing functions in the same scales. For the 1st , 

2nd, and 3rd order differentiators with a single-FSR (49 GHz) 

spacing, the calculated RMSEs between the measured and ideal 

curves are ~0.1111, ~0.1139, ~0.1590, respectively. For the 1st 

, 2nd , and 3rd order differentiators with a 4-FSR (196 GHz) 

spacing, the calculated RMSEs between the measured and ideal 

curves are ~0.0838, ~0.0570, ~0.1718, respectively. Note that 

there is some observed imbalance in the time-domain between 

the positive and negative response to the Gaussian input pulse. 

This is due to the imbalance of the two ports of the balanced 

photodetector. 

 In order to reduce the errors mentioned above, for both the 

Hilbert transformer and the differentiator, we developed a more 

accurate comb shaping approach, where the error signal of the 

feedback loop was generated directly by the measured impulse 

response, instead of the optical power of the comb lines. We 

then performed the Hilbert transform and differentiation with 

the same transversal structure as the previous measurements, 

the results of which are shown in Figs. 9 (h) (I) and Fig. 10 (t). 

One can see that the imbalance of the response in time domain 

has been compensated, and the RMSE of time-domain shown 

in Table 1 has significantly improved.  

 
Fig. 9. Simulated and measured 90° Hilbert transformer with varying comb spacing. (a) (e) (i) Shaped optical spectral. (b) (f) (j) Amplitude responses (the 

|S21| responses measured by a Vector Network Analyzer). (c) (g) (k) Phase responses. (d) (h) (l) Temporal responses measured with a Gaussian pulse 

input. 

TABLE I 

PERFORMANCE OF OUR TRANSVERSAL SIGNAL PROCESSORS 

Type 
Number 

of taps 

Wavelength 

spacing 

Frequency 

spacing (GHz) 

Nyquist zone 

(GHz) 
Octave 

Temporal pulse RMSE  

OSA shaping Pulse shaping 

Hilbert transformer 20 4-FSR 196 98 > 4.5 ~0.0957 / 

Hilbert transformer 40 2-FSR 98 49 > 6 ~0.1065 ~0.0845 

Hilbert transformer 80 Single-FSR 49 24.5 / ~0.1330 ~0.0782 

Differentiator – 1st order 21 4-FSR 196 98 / ~0.0838 / 

Differentiator – 2nd order 21 4-FSR 196 98 / ~0.0570 / 

Differentiator – 3rd order 21 4-FSR 196 98 / ~0.1718 / 

Differentiator – 1st order 81 Single-FSR 49 24.5 / ~0.1111 / 

Differentiator – 2nd order 81 Single-FSR 49 24.5 / ~0.1139 ~0.0620 

Differentiator – 3rd order 81 Single-FSR 49 24.5 / ~0.1590 / 
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 Also note that the greater number of lines supplied by the 

soliton crystal micro-comb (81 for the 1-FSR spacing) yielded 

significantly better performance in terms of the spanned 

number of octaves in the RF domain as well as the RMSE, etc. 

On the other hand, the 1-FSR spacing is more limited in 

operational bandwidth, being restricted to roughly the Nyquist 

zone of 25 GHz. The 2-FSR spacing and 4-FSR spacing system 

can reach RF frequencies well beyond what conventional 

electronic microwave technology can achieve. Therefore our 

shaping method gives the flexibility for us to achieve the 

required system.   

 
Fig. 10. Simulated and measured first- to third-order differentiators with different comb spacing (single-FSR and 4-FSR). (a) (e) (i) (m) (q) (u) Shaped 

optical spectral. (b) (f) (j) (n) (r) (v) Amplitude responses. (c) (g) (k) (o) (s) (w) Phase responses. (d) (h) (l) (p) (t) (x) Temporal responses measured with 

a Gaussian pulse input. 
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This platform has been successful at generating microcombs 

for a wide range of applications including microwave 

photonics, quantum optics, high speed processing and is highly 

applicable to the integration of highly nonlinear 2D materials 

[60-174]. 

4. Conclusion  

We demonstrate record performance and versatility for 

soliton crystal micro-comb-based RF signal processing 

functions by varying wavelength spacing and employing 

different tap designs and shaping methods. The experimental 

results agree well with theory, verifying that our soliton crystal 

micro-comb-based signal processor is a competitive approach 

towards achieving RF signal processor with broad operation 

bandwidth, high reconfigurebility, and potentially reduced cost 

and footprint.  

Competing interests: The authors declare no competing 

interests. 
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