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Abstract

We discuss the application of random projections to conic programming: no-
tably linear, second-order and semidefinite programs. We prove general approxi-
mation results on feasibility and optimality using the framework of formally real
Jordan algebras. We then discuss some computational experiments on randomly
generated semidefinite programs in order to illustrate the practical applicability
of our ideas.

Keywords: Mathematical Programming, Approximation,
Johnson-Lindenstrauss Lemma, Jordan algebra.
2000 MSC: 90C22, 90C06

1. Introduction

In this paper we study Random Projection (RP) techniques for Symmetric
Conic Programming (SCP): the class of optimization problems over symmetric
cones. This class includes several convex optimization classes, such as Linear
Programming (LP), Second-Order Cone Programming (SOCP), and Semidefi-
nite Programming (SDP). It turns out that a symmetric cone can be represented
as the cone of squares of a formally real Jordan algebra (FRJA) [2]. Using this
framework it is possible to obtain theoretical results that apply to LP, SOCP
and SDP alike [16]. We employ this framework in order to derive approximate
feasibility and optimality results related to the application of RPs to SCPs. We
then exhibit some computational experiments to show that our techniques can
be used to approximately solve large scale SDPs in acceptable amounts of time.

RPs are random matrices that reduce the dimensions of the vectors in a
given set while approximately preserving all pairwise Euclidean distances with
high probability (whp), which means that the probability of failure decreases
exponentially fast with increasing size of the reduced dimension. The normal
application setting of RPs is to numerical data. This can speed up algorithms
(at some cost in terms of the solution quality) which are essentially based on
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1 INTRODUCTION 2

Euclidean distances, such as, e.g., k-means or k-nearest neighbours [5, 11, 14].
The success of the application of RP to these algorithms is not surprising inso-
far as RPs give approximation guarantees for Euclidean distances by definition.
This work continues the sequence of works [7, 20–22], which support the much
more counter-intuitive statement that a Mathematical Programming (MP) for-
mulation might be approximately invariant (as regards feasibiliy and optimality)
w.r.t. randomly projecting the input parameters. In particular, in this work we
generalize the results of [21] from the LP setting to all SCPs. Similarly to [21],
our results assume that: (a) feasible instances are explicitly bounded; (b) strong
SCP duality holds.

This work is motivated by the need to solve ever larger conic optimization
problems. Its impact extends to LP, SOCP, SDP. Its importance is magnified
by the fact that current SDP solution technology scales quite poorly in practice.

As far as we know, this work provides the first theoretical analysis of the
application of RPs to the general class of SCPs. Notwithstanding, there exist
previous works about the application of RPs to specific types of symmetric
cones. The paper [21], for example, is about LPs. In [4], the authors reduce
the dimension of SDPs using the RP matrix mapping M 7→ TMT>, where
T is an RP matrix. This approach is dual to ours, as we reduce the number
of constraints rather than the dimension of the problem. We also note some
literature results about fast low-rank approximations of PSD matrices using
RPs [6, 17]. Based on these works, [8] exploits RPs to propose a bundle method
for approximately solving SDPs without ever storing the whole constraint matrix
and right hand side vector. While a small fraction of the theoretical results we
present here bear some similarity to those in [6, 8, 17], the context and proofs
are different. The main difference is that the results in [6, 8, 17] refer to the
error yielded by some given algorithms deployed on randomly projected input.
The results in this paper are about the formulation itself: we provide error
guarantees on the optimality and feasibility of projected formulations w.r.t. the
original ones independently of the solution method.

We note that even though this work generalizes the results of [21], the proof
techniques are completely different, and justifiably so. A cornerstone of the re-
sults in [21] is that T>Tx is approximately like x for a random projection matrix
T (see below for a definition), whereas in the general conic case addressed in
this paper, where x is a PSD matrix, the corresponding entity would not even
be symmetric: we sidestep this difficulty by using a completely different frame-
work, i.e. that of FRJA. Moreover, in [21] we extensively use the usual partial
order on Rn, which FRJA abstracts from by generalization to symmetric cones.
Lastly, FRJA is essential in Section 4.2, where we estimate the infeasibility of
the retrieved solution.

An RP is a random matrix sampled from a sub-Gaussian distribution [9].
Among other properties, applying an RP to a vector in a given set yields a vector
with approximately the same norm. One famous example of the application of
RPs is the Johnson-Lindenstrauss lemma (JLL) [12], which shows that a set of
points can be embedded into a much lower dimension while keeping all pairwise
distances approximately the same.
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Definition 1.1 A random matrix T ∈ Rd×m is called a random projection if
there are universal constants c and C such that, for any x ∈ Rm and 0 < ε < 1
we have:

Prob
[
(1− ε)‖x‖22 ≤ ‖Tx‖22 ≤ (1 + ε)‖x‖22

]
≥ 1− ce−Cε

2d.

An easy corollary of the JLL is the preservation of scalar products.

Proposition 1.2 For T ∈ Rd×m an RP with ε ∈ (0, 1) and x, y ∈ Rm, we have:

Prob
[
〈x, y〉 − ε‖x‖2‖y‖2 ≤ 〈Tx, Ty〉 ≤ 〈x, y〉+ ε‖x‖2‖y‖2

]
≥ 1− 2ce−Cε

2d.

See [21, Proposition 1] for a proof. We also derive a variant of this result for
later use.

Corollary 1.3 For T ∈ Rd×m an RP with ε ∈ (0, 1) and any x ∈ Rm, we have:

Prob
[
‖(T>Tx)i − xi‖∞ ≤ ε‖x‖2

]
≥ 1− 2mce−Cε

2d.

Proof. For every i ≤ m, let ei = (0, . . . , 0, 1i, 0, . . . , 0) ∈ Rm. From Proposition
1.2 applied to ei and x, we have

e>i x− ε‖x‖2 ≤ 〈Tei, Tx〉 = 〈ei, T>Tx〉 ≤ e>i x+ ε‖x‖2

for all i ≤ m whp, whence −ε‖x‖2 ≤ 〈ei, T>Tx〉 − e>i x ≤ ε‖x‖2 and −ε‖x‖2 ≤
(T>Tx− x)i ≤ ε‖x‖2. Thus, we have |(T>Tx− x)i| ≤ ε‖x‖2 for any i ≤ m. A
union bound argument over all i ≤ m yields ‖T>Tx − x‖∞ ≤ ε‖x‖2 with the
stated probability. 2

In this paper, we shall prove that it is possible to find an approximately
feasible solution of a given SCP (referred to as the original SCP), having an
approximately optimal objective function value, by formulating another SCP
(referred to as the projected SCP) subject to a random aggregation, obtained
by means of an RP, of the original SCP constraints.

The rest of this paper is organized as follows. In Section 2 we introduce
FRJAs, the corresponding spectral theorem, and an abstract version of primal
and dual SCP pairs. In Section 3 we derive projected reformulations of primal
and dual SCP using RPs, and prove approximation results for feasibility and
optimality. In Section 4 we discuss how to retrieve a solution of the original SCP
from the projected SCP. In Section 5 we present a computational validation of
the foregoing theory.

2. SCPs and Jordan Algebras

We consider the following SCP formulation in standard form:

min c>x
Ax = b
x �K 0,

 (SCP) (1)
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where c, x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and x �K y means x− y ∈ K, where K is
a closed convex pointed cone with non-empty interior [3]. In general, K might
be a cartesian product of linear, second-order, positive semidefinite (psd), and
possibly other self-dual cones [18].

We are going to consider a generalization of (SCP) in the context of FRJAs
[2, 10]. Using this approach, for example, complementarity results and interior
point algorithms can be described in terms of algebraic statements, including
proofs of polynomial time convergence of interior point methods [16].

The formalization of conic programming in FRJA calls for an algebraic in-
terpretation of symbols standing for vectors and matrices (as abstract elements
and operators of an algebra). On the other hand, since an algebra is a vector
space, the abstract elements can always be realized as vectors. Accordingly,
we shall define a formal abstract inner product 〈a, b〉 over a FRJA, which may
be realized as a quadratic form a>Qb for some square matrix Q if we see a, b
as elements of the underlying vector space. Similarly, we shall denote Ax by
A � x (after formally defining � by means of the inner product), but then we
shall argue that the A� operation can be represented by a linear operator A
on vectors, which can be realized by a matrix.

2.1. Formally real Jordan algebras

We recall some basic facts about FRJAs [2, 10]. An algebra over R is a pair
(E, ◦) where E is a vector space over R and ◦ : E × E → E is distributive in
both arguments, i.e., for all a, b, c ∈ E and λ, γ ∈ R, we have (i) a ◦ (λb+ γc) =
λ(a ◦ b) + γ(a ◦ c) and (ii) (λb+ γc) ◦ a = λ(b ◦ a) + γ(c ◦ a). For each x ∈ E, we
let L(x) be the left multiplication operator: L(x)(y) = x ◦ y for all y ∈ E.

An algebra (E, ◦) is called a Jordan algebra if it satisfies:

(a) ∀a, b ∈ E a ◦ b = b ◦ a (commutativity);

(b) ∀a, b ∈ E a2 ◦ (a ◦ b) = a ◦ (a2 ◦ b) (Jordan identity).

The Jordan identity implies that a Jordan algebra is power-associative, i.e. for
all p, q ∈ N the matrices L(xp) and L(xq) commute. A Jordan algebra (E, ◦) is
called formally real if for any integer m ≥ 1 and any finite set {x1, . . . , xm} ⊂ E
we have: ∑

i≤m

x2i = 0 ⇒ x1 = . . . = xm = 0. (2)

Informally speaking, (2) states that square terms in FRJAs must be non-
negative. This is a nontrivial statement insofar as elements of E are not totally
ordered in general (so one cannot write x2 ≥ 0).

2.2. The spectral decomposition theorem

For each element x ∈ E the degree deg(x) of x is the largest integer d such
that e = x0, x, . . . , xd−1 (where e is the multiplicative unit of E) are linearly
independent. The degree of E, denoted by deg(E), is the maximum degree of
all elements over E. This allows us to state the spectral decomposition theorem
for FRJAs [10, Theorem III.1.1].
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Theorem 2.1 ([10], Theorem III.1.1) Let E be a FRJA of degree r. For
every x ∈ E there are sets

Λ(x) = {λi | i ≤ r} ⊂ R and C(x) = {ci | 1 ≤ i ≤ r} ⊂ E,

with Λ(x) ordered so that λi ≤ λi+1 for each i < r, and C(x) satisfying the
following properties:

(i) ∀i ≤ r (c2i = ci)

(ii) c1 + . . .+ cr = e

(iii) ∀i 6= j (ci ◦ cj = 0)

such that x = λ1c1 + . . .+ λrcr.

The elements of Λ(x) are the eigenvalues of x. Theorem 2.1 is a generalization
of the spectral decomposition theorem for real symmetric matrices.

Let E be a FRJA of degree r, and x ∈ E. We define tr(L(x)) as the trace
of the matrix representation of the left multiplication operator L(x). We then
define the associative bilinear form

T (x, y) = tr(L(x ◦ y))

(for y ∈ E). Since (E, ◦) is formally real, T (x, y) defines a positive definite inner
product denoted by 〈x, y〉. The element x of the algebra is positive semidefinite
(psd) if there is y ∈ E s.t. x = y2. The set KE of all psd elements of E is called
the cone of squares of E. We denote by x � 0 the fact that x is psd in E. By
Theorem 2.1, x � 0 is psd iff all of its eigenvalues are nonnegative; its smallest
eigenvalue is

λmin(x) = min
u6=0

〈u, x ◦ u〉
‖u‖2E

,

where ‖ · ‖E is the norm induced by 〈·, ·〉.

2.3. Primal and dual SCPs in FRJA notation

According to assumption (a) in Section 1, we introduce an explicit bound
constraint 〈e, x〉 ≤ θ in the primal SCP of the following primal/dual pair.

min
x∈X

〈c, x〉
A� x = b
〈e, x〉 ≤ θ

x � 0

 (P )

max
y∈Rm
ν≥0

b>y − θν∑
i≤m

yiAi − νe � c,

 (D)

where A� x = (〈Ai, x〉 | i ≤ m), b ∈ Rm.
In the rest of the paper we assume that either (P ) is infeasible, or both (P )

and (D) have optimal solutions x∗ and y∗ respectively. According to assumption
(b) in Section 1, we also assume that strong duality holds.
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3. Random projection of SCP constraints

Let T = (Tkj) ∈ Rd×m be an RP. We consider the projected primal/dual
pair:

min
x∈X

〈c, x〉
∀k ≤ d 〈Āk, x〉 = (Tb)k

〈e, x〉 ≤ θ
x � 0

 (PT )

max
z∈Rd
ν≥0

(Tb)
>
z − θν∑

k≤d
zkĀk − νe � c,

 (DT )

where Āk =
∑
i≤m TkiAi for every k ≤ d. Note that (PT ) is a relaxation

of (P ), since its constraints are obtained by aggregating the constraints of (P ).
Hence v(PT ) ≤ v(P ). Moreover, for any feasible solution (z′, ν′) of (DT ), we
have:∑

k≤d

z′kĀk − ν′e =
∑
k≤d

z′k
∑
i≤m

TkiAi − ν′e =
∑
i≤m

(T>z′)iAi − ν′e � c,

whence (T>z′, ν′) is a feasible solution of the dual (D) of the original problem.

3.1. Approximate feasibility

Since T acts linearly on left and right hand sides of the equality constraints
of (P ), if (P ) is feasible then so is (PT ). The issue is that (PT ) may be feasible
even if (P ) is not. We therefore assume that (P ) is infeasible, and prove that
(PT ) is infeasible whp.

We first claim that (D) has non-empty interior: we can choose yi small
enough and ν large enough so that

∑
i yiAi − vν � c holds strictly. Since (P )

is infeasible and (D) has non empty interior, we deduce by duality that (D) is
unbounded. Hence there exists a dual feasible solution (ŷ, ν̂) such that

b>ŷ − θν̂ = 1
∑
i≤m

ŷiAi − eν̂ � 0. (3)

We shall prove that (DT ) is also unbounded, by constructing (z′, ν′) such that

(Tb)
>
z′− θν′ > 0 and

∑
i≤m(T>z′)iAi− eν′ � 0. Let z′ = T ŷ. By Proposition

1.2, whp we have that

(Tb)
>
z′ = (Tb)

>
T ŷ ≥ b>ŷ − ε‖b‖2‖ŷ‖2. (4)

Let N =
∑
i≤m ŷiAi − eν̂ and N ′ =

∑
i≤m(T>z′)iAi − eν̂. While N � 0 by

feasibility of (D), we derive an upper bound to λmax(N ′) in terms of

‖A>‖ E∞ = sup
‖y‖∞=1

‖A>y‖E.

Lemma 3.1 Let T ∈ Rd×m be an RP with ε ∈ (0, 1). For (ŷ, ν̂) feasible (D)
and z′ = T ŷ, we have:

Prob

[
λmax(N ′) ≤ ε‖ŷ‖2‖A>‖ E∞

]
≥ 1− 2mce−Cε

2d.
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Proof. Let f , f ′ be the quadratic forms associated to N , N ′, namely f(u) =
〈u,N◦u〉
‖u‖2E

and f ′(u) = 〈u,N ′◦u〉
‖u‖2E

. In particular, replacing z′ with T ŷ, we have:

‖u‖2Ef ′(u) =
〈
u,
(∑
i≤m

(T>z′)iAi − eν̂
)
◦ u
〉

=
∑
i≤m

(T>T ŷ)i〈u,Ai ◦ u〉 − ‖u‖2Eν̂.

Since f(u) =
∑
i ŷi〈u,Ai◦u〉
‖u‖2E

− ν̂, we can write f ′(u) = f(u) +
∑
i ẑi〈u,Ai◦u〉
‖u‖2E

, where

ẑ = T>T ŷ − ŷ ∈ Rm. This yields

f ′(u) = f(u) +
〈u,
∑
i ẑiAi ◦ u〉
‖u‖2E

= f(u) +
〈u, (A>ẑ) ◦ u〉
‖u‖2E

≤ f(u) + ‖A>‖ E∞‖ẑ‖∞,

where the inequality on the right holds by definition of ‖A>‖ E∞. Note that
λmax(N ′) = maxu 6=0 f

′(u) and λmax(N) = maxu6=0 f(u) ≤ 0 as N � 0. Because
Corollary 1.3 implies ‖ẑ‖∞ ≤ ε‖ŷ‖2 whp, we deduce that

λmax(N ′) ≤ λmax(N) + ‖A>‖ E∞‖ẑ‖∞ ≤ ε‖ŷ‖2‖A
>‖ E∞

with probability at least 1− 2mce−Cε
2d, as claimed. 2

Theorem 3.2 Suppose (P ) infeasible and ε‖ŷ‖2(‖b‖2 + ‖A>‖ E∞) < 1. With the

same notation as above, we have Prob[(PT ) is infeasible] ≥ 1−2(m+1)ce−Cε
2d.

Proof. By Lemma 3.1, with probability at least 1− 2mce−Cε
2d, we have N ′ −

ε‖ŷ‖2‖A>‖ E∞e � 0, whence
∑
i≤m(T>z′)iAi−e(ν̂+ε‖ŷ‖2‖A>‖ E∞) � 0. Moreover,

by (3) and (4), we obtain

Prob
[
(Tb)

>
z′ − θν̂ ≥ 1− ε‖b‖2‖ŷ‖2

]
≥ 2ce−Cε

2d.

Let ν′ = ν̂ + ε‖ŷ‖2‖A>‖ E∞. Then
∑
i≤m(T>z′)iAi − eν′ � 0. Furthermore,

(Tb)
>
z′ − θν′ = (Tb)

>
z′ − θ(ν̂ + ε‖ŷ‖2‖A>‖ E∞) ≥ 1− ε‖ŷ‖2(‖b‖2 + ‖A>‖ E∞).

Hence, if ε‖ŷ‖2(‖b‖2 + ‖A>‖ E∞) < 1, (4) is satisfied, so (DT ) is unbounded,
implying by duality that (PT ) is infeasible with probability given by union
bound arguments. 2

3.2. Approximate optimality

We show that any feasible solution (ŷ, ν̂) of (D) is close to a point of the
form (T>ẑ, ν̂) whp, where (ẑ, ν̂) is a feasible solution of the following family of
relaxations of (DT ) parametrized over a real number µ > 0:

max
z∈Rd
ν≥0

(Tb)
>
z − θν∑

i≤m
(T>z)iAi − νe � c+ µe.

 (D̃µ
T )
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We use (Dµ
T ) to show that the optimal objective function value of the original

problem is approximately invariant w.r.t. RPs.
Let z′ = T ŷ ∈ Rd. We claim that there exists µ > 0 s.t. (z′, ν̂) is a feasible

solution of (D̃µ
T ) whp. This will follow from c+ µe−

∑
i≤m(T>z′)iAi + eν̂ � 0

whp; or, equivalently, from λmin(M ′) ≥ −µ for some suitable µ > 0 whp, where
M ′ = c −

∑
i≤m(T>z′)iAi + eν̂. Let M = c −

∑
i≤m ŷiAi + eν̂. Since (ŷ, ν̂) is

a feasible dual solution of (D) we have M � 0 and hence λmin(M) ≥ 0. On
the other hand M ′ might fail to be psd, as λmin(M ′) might be negative. The
following result provides a lower bound to λmin(M ′) in terms of ‖A>‖ E∞.

Lemma 3.3 Let T ∈ Rd×m be an RP with ε ∈ (0, 1). For (ŷ, ν̂) feasible in (D)
and z′ = T ŷ, we have

Prob
[
λmin(M ′) ≥ −ε‖ŷ‖2‖A>‖ E∞

]
≥ 1− 2mce−Cε

2d.

Proof. Let f , f ′ be the quadratic forms associated to M , M ′, namely f(u) =
〈u,M◦u〉
‖u‖2E

and f ′(u) = 〈u,M ′◦u〉
‖u‖2E

. By bilinearity, we have

‖u‖2Ef ′(u) =

〈
u,
(
c−

∑
i≤m

(T>z′)iAi + eν̂
)
◦ u
〉

=

〈
u,
(
c−

∑
i≤m

(T>T ŷ)iAi + eν̂
)
◦ u
〉

= 〈u, (c+ eν̂) ◦ u〉 −
∑
i≤m

(T>T ŷ)i〈u,Ai ◦ u〉.

Since f(u) = 〈u,(c+eν̂)◦u〉
‖u‖2E

−
∑
i≤m

ŷi
〈u,Ai◦u〉
‖u‖2E

, we have

f ′(u) = f(u)−
∑
i≤m

(
(T>T ŷ)i − ŷi

) 〈u,Ai ◦ u〉
‖u‖2E

= f(u)−
∑
i≤m

ẑi
〈u,Ai ◦ u〉
‖u‖2E

,

where ẑ = T>T ŷ − ŷ ∈ Rm. This yields

f ′(u) = f(u)−
〈u,
∑
i≤m ẑiAi ◦ u〉
‖u‖2E

= f(u)− 〈u, (A
>ẑ) ◦ u〉
‖u‖2E

≥ f(u)− ‖A>‖ E∞‖ẑ‖∞

where the inequality on the right holds by definition of ‖A>‖ E∞ (note also that the
probability does not depend on u). Now we have: (i) λmin(M ′) = min

u6=0
f ′(u); (ii)

λmin(M) = min
u 6=0

f(u) ≥ 0 since M � 0; (iii) Corollary 1.3 implies ‖ẑ‖∞ ≤ ε‖ŷ‖2
whp. From (i)-(iii) we deduce that

λmin(M ′) ≥ λmin(M)− ‖A>‖ E∞‖ẑ‖∞ ≥ −ε‖ŷ‖2‖A
>‖ E∞.
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with probability at least 1− 2mce−Cε
2d, as claimed. 2

We remark in passing that we have a trivial upper bound ‖A>‖ E∞ ≤
∑
i≤m ρ(Ai),

where, for all i ≤ m, ρ(Ai) = maxu 6=0 |〈u,Ai ◦ u〉|/‖u‖2E is the eigenvalue of Ai
having the largest absolute value. We also note that this bound is not going to
be used in the rest of the paper.

By Lemma 3.3, we can let µ = ε‖ŷ‖2 ‖A>‖ E∞ in (Dµ
T ), and obtain the relax-

ation:

max
z∈Rd
ν≥0

(Tb)
>
z − θν∑

k≤d
zk
( ∑
i≤m

TkiAi
)
− νe � c+ ε‖ŷ‖2‖A>‖ E∞e

 (D̃T )

of (DT ). By construction, (z′, ν̂) is a feasible solution of (D̃T ) whp, as claimed.

Lemma 3.4 Let (y∗, ν∗) be an optimum of (D). With the same notation as
above, we have

Prob
[
v(D̃T ) ≥ (Tb)

>
Ty∗ − θν∗ ≥ v(D)− ε‖b‖2‖y∗‖2

]
≥ 1− 2(m+ 1)ce−Cε

2d.

Proof. By Proposition 1.2, we have (Tb)
>
Ty∗ ≥ b>y∗ − ε‖b‖2‖y∗‖2 whp; since

v(D) = b>y∗ − θν∗, we obtain (Tb)
>
Ty∗ − θν∗ ≥ v(D) − ε‖b‖2‖y∗‖2. On the

other hand, (y∗, ν∗) is optimal in (D) so it is also feasible in (D), hence by

Lemma 3.3 (Ty∗, ν∗) is feasible in (D̃T ) whp. Thus v(D̃T ) ≥ (Tb)
>
Ty∗ − θν∗,

as (D̃T ) is a maximization problem; the stated probability is given by union
bound arguments. 2

We now consider the dual of (D̃T ):

min
x

〈
c+ ε‖ŷ‖2‖A>‖ E∞e , x

〉
∀k ≤ d 〈Āk, x〉 = (Tb)k

〈e, x〉 ≤ θ
x � 0.

 (P̃T )

Let x′ be an optimal solution of (PT ). By the weak duality theorem of conic

programming, with probability at least 1− 2mce−Cε
2d we have:

v(D̃T ) ≤ v(P̃T ) ≤ v(PT ) + ε‖y∗‖2‖A>‖ E∞〈e, xT 〉 ≤ v(PT ) + ε‖y∗‖2‖A>‖ E∞θ, (5)

where (y∗, ν∗) is an optimal solution of (D). Hence, by combining Eq. (5) with
Lemma 3.4 and the fact that the strong duality theorem holds for the original
problem (P ), we have proved the following result.

Theorem 3.5 Assume strong duality between (P ) and (D) holds. With the
same notation as above, Prob

[
v(PT ) ≥ v(P ) − ε‖y∗‖2(‖A>‖ E∞θ + ‖b‖2)

]
≥ 1 −

(2m+ 1)ce−Cε
2d.

In the rest of the paper, d can be considered fixed to C0 log(m)/ε2, where C0
is chosen so that the probability in Theorem 3.5 is as high as desired.
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4. Solution retrieval

Solution retrieval, i.e. obtaining a good solution x̃ for (P ) from a solution xT
of (PT ), is an important part of most RP-based techniques. The error analysis
of x̃ w.r.t. (P ) turns out to depend on the feasibility error of xT in (P ).

4.1. Feasibility error of the projected solution

The Gaussian width of a bounded set S ⊂ Rn is w(S) = Eg(supx∈S g · x),
where g is a standard normal vector in Rn and · is the usual scalar product on
Rn. Here are some of its basic properties [19]:

• for any y ∈ Rn, w(S + y) = w(S);

• w(conv(S)) = w(S)

• for any m × n matrix A, w(AS) ≤ ‖A‖2w(S), where ‖A‖2 is the matrix
norm induced by the Euclidean norm;

• if S is finite, w(S) ≤ C̃
√

log(|S|)diam(S) for some universal constant C̃.

Next, we recall the M∗ bound theorem, which bounds the diameter of the
intersection of a subset S ⊂ Rn with ker(T ), where T is an RP [19]. We let
rad(S) = maxx∈S ‖x‖2 and diam(S) = maxx,y∈S ‖x− y‖2.

Theorem 4.1 (M∗ bound theorem, [19]) For S ⊂ Rn and u ≥ 0,

Prob
[
diam(S ∩ ker(T )) ≤ C2w(S) + u rad(S)√

d

]
≥ 1− 2e−u

2

,

where C2 is a universal constant.

Let A be the matrix representation of the linear mapping x 7→ A � x from
Rn to Rm, i.e. the m × n matrix such that for all x ∈ Rn, A � x = Ax. Let
B = {x ∈ KE | 〈e, x〉 ≤ 1}. Since KE is a pointed cone [10, Chapter I], B is a
bounded region of Rn of given diameter ∆ (as 〈e, x〉 > 0 over KE r {0}), hence
its Gaussian width w(B) is finite.

Proposition 4.2 Let xT be an optimal solution of (PT ) and let u > 0. Then
we have:

Prob
[
‖AxT − b‖2 ≤ εθ‖A‖2(C2w(B) + u∆)/

√
log(n)

]
≥ 1− 2e−u

2

.

Proof. Consider S = {Ax − b | x ∈ θB} ⊂ Rm. By definition, AxT − b ∈ S;
moreover, AxT − b ∈ ker(T ) since xT is a solution of (PT ), hence

AxT − b ∈ S ∩ ker(T ).

Moreover,
w(S) = w(θAB− b) ≤ θ‖A‖2w(B).
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Furthermore, using the fact that there exists x ∈ Rn such that Ax = b, we have

rad(S) ≤ ‖A‖2diam(θB) ≤ θ‖A‖2∆.

The result follows by Theorem 4.1. 2

4.2. Error analysis of the retrieved solution

We define the retrieved solution x̃ of (P ) as the orthogonal projection of xT
on the feasible set of (P ), i.e. x̃ ∈ arg minx{‖x− xT ‖22 | Ax = b}. By the KKT
conditions, x̃ can be computed using the pseudoinverse of A:

x̃ = xT + A>(AA>)−1(b−AxT ). (6)

Since x̃ satisfies Ax = b by construction, we only bound the error of x̃ w.r.t. mem-
bership in the cone KE in terms of the negativity of λmin(x̃).

Lemma 4.3 For x, a, b ∈ E such that x = a+ b, λmin(x) ≥ λmin(a) + λmin(b).

Proof. For each y ∈ E we have λmin(y) = min
u6=0

〈u,y◦u〉
‖u‖2E

, so

λmin(x) = min
u6=0

〈u, (a+ b) ◦ u〉
‖u‖2E

= min
u 6=0

(
〈u, a ◦ u〉
‖u‖2E

+
〈u, b ◦ u〉
‖u‖2E

)
≥ min

u6=0

〈u, a ◦ u〉
‖u‖2E

+ min
u 6=0

+
〈u, b ◦ u〉
‖u‖2E

= λmin(a) + λmin(b).

2

Theorem 4.4 Suppose the inner product in E is realized by a bilinear form
based on the symmetric matrix Q. With the notation above, we have:

Prob

[
λmin(x̃) ≥ λ1 − εθκ(A)‖Q 1

2 ‖2
C2w(B) + u∆√

log(n)

]
≥ 1− 2e−u

2

, (7)

where κ(A) is the condition number of A.

Proof. Let
∑
j≤r

λjcj be the spectral decomposition of xT . Since xT solves (PT ),

xT ∈ KE. So its eigenvalues are 0 ≤ λ1 ≤ . . . ≤ λr, where r is the degree of E.
Suppose that the spectral decomposition of

x̃− xT = A>(AA>)−1(b−AxT )

is
∑
j≤r

µjc
′
j , with µ1 ≤ . . . ≤ µr. Then

λmin(x̃) ≥ λ1 + µ1 (8)
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by Lemma 4.3. We have ‖x̃− xT ‖E =
√∑

j≤r µ
2
j by definition. Therefore

|µ1| =
√
µ2
1 ≤

√∑
j

µ2
j = ‖x̃− xT ‖E.

We are going to reason about ‖x̃ − xT ‖2 instead, and then use the fact that
〈a, b〉 = a>Qy, which will allow us to derive a bound on ‖x̃ − xT ‖E from a
bound on ‖x̃− xT ‖2. By (6), we have

‖x̃− xT ‖2 ≤ ‖A>(AA>)−1‖2‖AxT − b‖2.

If UΣV > is the Singular Value Decomposition (SVD) of A, a straightforward
computation yields V Σ>(ΣΣ>)−1U> as the SVD of A>(AA>)−1, which implies
that ‖A>(AA>)−1‖2 = 1

σmin
where σmin is the smallest singular value of A.

Moreover, by Proposition 4.2, we have

‖AxT − b‖2 ≤ εθ‖A‖2(C2w(B) + u∆)/
√

log(n)

whp. Hence we obtain

‖x̃− xT ‖2 ≤ εθκ(A)(C2w(B) + u∆)/
√

log(n), (9)

where κ(A) = ‖A‖2
σmin

, the condition number of A. Furthermore,

‖z‖E = 〈z, z〉 = z>Qz = (zQ
1
2 )
>
Q

1
2 z = ‖Q 1

2 z‖2

(since the inner product in E is positive definite), whence ‖z‖E ≤ ‖Q
1
2 ‖2 ‖z‖2.

Finally, by (8) and (9), we get (7) as claimed. 2

As regards optimality, 〈c, x̃〉 = 〈c, xT 〉 + 〈c,A>(AA>)−1(b −AxT )〉, so by
Cauchy-Schwartz we get

|〈c, x̃〉 − 〈c, xT 〉| ≤ ‖c‖2 ‖A>(AA>)−1‖2 ‖b−AxT ‖2.

By the proof of Theorem 4.4 ‖A>(AA>)−1‖2 = 1
σmin

, and we can bound ‖b −
AxT ‖2 by Proposition 4.2, yielding (with the above notation):

Prob

[
|〈c, x̃〉 − 〈c, xT 〉| ≤ εθκ(A)‖c‖2

C2w(B) + u∆√
log(n)

]
≥ 1− 2e−u

2

.

5. Computational validation

All our tests were carried out on a core of a quad-core Intel Xeon 2.1GHz
CPU of a 8-CPU system with 64GB RAM running CentOS Linux, using Ju-
lia 0.6.1 and the Mosek 9.1.5 [15] SDP solver. The general structure of our
algorithm is very simple:
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1. solve the original SCP and reduce it to standard form;

2. sample an RP and project the equality constraints of the SCP

3. solve the projected SCP and retrieve its approximate solution

4. compare the original and retrieved solutions on errors and CPU time.

We employed Achlioptas’ RP matrices [1] in the “sparser” variant of [13] with
density 0.1.

In order to validate our approach, we need to establish that: (a) projected
versions of infeasible instances do not turn out to be feasible excessively often;
and (b) the optimality and feasibility errors of retrieved solutions are not too
large. We consider a set of randomly generated SDP instances. The ε parameter
in Definition 1.1 was set to 0.2 for the feasible set, and to 0.13 for the infeasible
set. All random coefficients in the instance data were sampled from a uniform
distribution on [0, 1].

5.1. Infeasible instances

We generated two groups of 5 infeasible instances. The details of the gener-
ation process (number m of equality constraints, number n of variables, number
d of equality constraints in the projected problem, density dens of generated
matrices) are reported in the first five columns of Table 1. The results for are

m n d dens P PT cpu cpuT

1000 820 716 0.5 Infeas 100% 5.44 2.92
1000 1275 763 0.5 Infeas 100% 6.19 4.73

Table 1: Infeasible instances. See Table 3 for detailed results.

presented in Table 1. We report the solution status obtained by the solver on
P (always infeasible over all instances in all groups), the percentage of success
in detecting infeasibility when solving PT , and the CPU time taken to solve P
and PT . We remark that, by “solving PT ”, we mean: (i) sample the RP, (ii)
project the problem, and (iii) actually solve it. The success score was perfect.
Results worsened when increasing ε: with ε = 0.14 the success rate was 80%;
with ε = 0.2 the success rate was 0%.

5.2. Feasible instances

We generated three groups of 10 feasible instances. As above, m,n, d, dens
are reported in Table 2. The first and second groups both have identity cost
matrices, but different generation densities; the third group has a random cost
matrix. The results for the feasible set are presented in Table 2 (each line
reports averages over the corresponding group). We report the optimal objective
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m n d dens v(P ) v(PT ) err 〈c, x̃〉 err cpu cpuT
2000 1540 332 0.2 1540.630 461.289 0.7 1540.630 0.0 8.55 6.76
2000 1540 332 0.5 1540.557 468.083 0.7 1540.557 0.0 17.28 8.31
4000 1830 340 0.1 87.133 -3126.177 1.0 87.133 0.0 23.68 11.11

Table 2: Feasible instances. See Table 4 for detailed results.

function value v(P ) of the original problem, the optimal objective function value
v(PT ) of the projected problem and the relative error

v(P )− v(PT )

max(|v(P )|, |v(PT )|)
,

the objective function value 〈c, x̃〉 of the retrieved solution x̃ and the relative
error

v(P )− 〈c, x̃〉
max(|v(P )|, |〈c, x̃〉|)

,

the CPU time taken to solve P and the CPU time taken to solve PT . By “solving
PT ” we mean: (i) sample the RP, (ii) project the problem, (iii) actually solve
it, and (iv) retrieve the solution for P . Standard deviations on CPU time are
between 1% and 5% of the averages.

In each case, our methodology was able to find the optimal solution of the
original problem exactly, namely x̃ = x∗, in roughly half the time. Accordingly,
v(P ) = 〈c, x̃〉 for all instances; moreover, infeasibility and negative definiteness
errors were always zero.

As is typical for RP-based methods, the ratio between projected and original
CPU time decreases for increasing problem size: this is due to the fact that the
number of constraints increases only logarithmically in the number of variables.
Moreover, denser instances also gain a CPU advantage, due to the fact that
denser problem take more time to solve, whereas projected problems are already
typically denser than their original counterparts. The perfect score in solution
quality is much less typical [20, 21]. While it certainly validates the approach,
this type of success rate may well fail to hold for SDPs and other conic programs
from real applications.
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