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Abstract

In this paper, we present Galerkin least squares (GLS) methods allowing the use
of equal order approximation for both the velocity and pressure modeling the Stokes
equations under Tresca’s boundary condition.We propose and analyse two finite ele-
ment discretizations.Firstly, we construct the unique weak solution for each problem
by using the method of regularization combined with monotone theory operators and
compactness properties.Secondly, we study the convergence of the finite element ap-
proximation by estimating the a priori error.Thirdly, for the computation of the finite
element solution, we formulate three algorithms namely; projection like algorithm
couple with Uzawa iteration, the alternative direction method of multiplier and a ac-
tive set strategy. Finally some numerical experiments are performed to confirm the
theoretical findings and the efficiency of the schemes formulated.
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1 Introduction

The objective in this work is to design finite element procedures that permit the use
equal polynomial approximations for calculating the velocity and pressure for Stokes
equations under nonlinear slip boundary condition of friction type. It is well docu-
mented (see [1, 2]) that the couple velocity-pressure for such problem comes with the
so-called “inf-sup” condition which restricts the choice of finite elements spaces that
one may used. The numerical analysis of flow with non-classical boundary conditions
has been the subject of intensive scrutiny these last years. One of the main reasons
for this surge interest in our view is the fact that for applied mathematicians and nu-
merical analysts, flows with such boundary conditions have always been a permanent
source of challenging theoretical and computational questions. Given the boundary
condition (2.5), it is well documented that the weak formulation associated to the
problem is a variational inequality for which one of the early reference in the mathe-
matical analysis is the book due to Duvaut-Lions ([3]). The two pillars of the solution
methodology that we are going to describe are;
(i) Galerkin least squares (GLS) formulation in an appropriate Hilbert space
(ii) mixed method approximation with equal approximation order for both the veloc-
ity and pressure reminiscent of the one used in [4, 5].
In [6, 7, 8, 9], just to cite a few, error estimates of Stokes under Tresca’s boundary
condition are studied with the velocity and pressure being inf-sup stable. In this work,
because we want to use equal order approximations for the velocity and pressure, a
sort of compensation is needed to bypass the inf-sup condition. For that purpose, we
select the GLS approach, but we observe that many others techniques are possible and
the readers interested in stabilization techniques can consult the excellent research due
by Brezzi-Fortin [10] where many stabilisations schemes are formulated and analysed.
The GLS method has been introduced in the early 80’s when T. J. R. Hughes and
co-workers realized the lack of stability and formulated new methods for advection-
dominated diffusion problems and for incompressible flows in [11, 12, 13, 14, 15, 16, 17],
and later extended to compressible flows, [18, 19]. Stokes or Navier Stokes equations
with Tresca’s boundary condition has been considered with pressure stabilization in
[20, 21, 22, 23, 24], but in our knowledge similar study with GLS stabilization has not
yet been considered and it is the object of this work. Thus our challenge is to analyse
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how the added terms will affect the stability, convergence, and the actual computation.
The GLS formulation correspond to this modified formulation in which the solution
of the continuous problem is unchanged under some regularity assumptions, but the
approximate solution is very different. The thinking behind the use of a “perturbed”
formulation is that the discrete approximation has a better behavior with respect to
stability issues and sometimes convergence. It should be made clear that the GLS
method is an over-stabilization strategy following the terminology in [10], but it has
the advantage that it does not change the symmetry/unsymmetry structure of the sys-
tem.Two GLS methods are formulated in this work.The first one corresponds to the
situation where all possible stabilization terms are added in a least squares manner,
following the presentation in [4], while the second GLS approach is “reduced method”
because only selected terms are added to the original variational formulation. This
method has been introduced and analysed in [17]. It is clear that from the point of
view of computation, the second strategy is better because its has less terms, but the
new formulation obtained has changed the structure symmetry/unsymmetry nature of
the original system. In this work, the GLS are introduced within the context of finite
element discretizations in a polygonal domain. We formulate two stabilize methods
and show existence and uniqueness of finite element approximation without restric-
tion on the data by putting together; regularization-monotone-compactness method.
Also, on the theoretical front, we study convergence of the finite element solution
by deriving a priori error estimates. It is then clear (see Theorem 5.1) that the er-
ror is dominated by the interpolation error on the friction zone. This is a classical
result for variational inequalities of second kind (see [6, 7, 8, 9, 23, 25]). Thus one
can say that the added terms do not increase the convergence rate, but instead we
have bypass the inf-sup condition usually observed in the Stokes problem. At this
juncture it is worth noting that even though the analyses are carried out for 2d, the
extension to 3d should not be a problem. Having in mind theorem 5.1, it appears in
particular that if piecewise linear approximations are used for both the velocity and
pressure then optimal (sub-optimal) a priori error estimates for both GLS schemes
are obtained depending on the regularity of the solution of the continuous problem on
the friction zone. Next since we have a nonlinear system of equations, one can solve
it with iterative/incremental methods. We formulate three iterative schemes namely;
the projection like algorithm, the alternating direction method of multiplier, and the
primal dual active set algorithm. It is worth mentioning that the formulation of both
the projection like algorithm and the alternating direction method of multiplier bor-
row a lot from the presentation in [25, 26], while the active set strategy emanate
from [27]. The projection like method is based on the introduction of a new variable
which permit to eliminate the inequality at the expense of adding a new equation.The
alternative direction method of multiplier and active set strategy are based on the
introduction of functional for which the characterization of the saddle point is crucial.
The iterative schemes discussed in this work make use of Lagrange multipliers with
the common goal of “softening” the difficulties by introducing new unknowns. The
convergence analysis of the projection like algorithm and the alternating direction of
multipliers formulated can be done following the techniques presented in [25, 26], while
the convergence analysis of the active set strategy can be done by following [28, 29].
The rest of the paper is organized as follows:

• Section 2 is concerned with the governing equations and the continuous weak
formulation.

• Section 3 is devoted to the formulation of GLS methods.
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• Section 4 is devoted to the existence theory of the GLS methods formulated
within the context of element approximations.

• Section 5 is about the error analysis together with convergence of GLS methods
when the discretization parameter h tends to zero.

• Section 6 and Section 7 are devoted to the formulation of iterative schemes.

• Section 8 is concerned with the validation via numerical simulations of the the-
oretical findings and some conclusions are drawn in the last paragraph.

2 Governing equations and variational formulation

Let Ω ⊂ R2 be an open bounded set with boundary ∂Ω assume to be regular enough.
We consider the steady incompressible Stokes equations modeled by the equations

−2µdiv ε(u) +∇p = f in Ω, (2.1)

divu = 0 in Ω , (2.2)

where u = (u1, u2) is the velocity, pressure p(x) and f(x) is the external body force

applied to the fluid, while µ is the kinematic viscosity and 2ε(u) = ∇u+(∇u)T is the
symmetric of the velocity gradient. These equations are complemented by boundary
conditions. For that purpose, we assume that ∂Ω is made of two components S and
Γ, such that ∂Ω = S ∪ Γ, with S ∩ Γ = ∅. We assume the homogeneous Dirichlet
condition on Γ, that is

u = 0 on Γ . (2.3)

On the other part of the boundary S, the velocity is decomposed following its normal
and tangential part; that is

u = un + uτ = (u · n)n+ (u · τ )τ ,

where n is the normal outward unit vector to S and τ is the tangent vector orthogonal
to n. We assume the impermeability condition

u · n = 0 on S . (2.4)

The force within the fluid is the Cauchy stress tensor T given by the relation

T = 2µε(u)− pI on Ω ,

I being the identity tensor. Just like the velocity, the traction Tn on S is decomposed
following its normal and tangential part; that is

Tn = (Tn · n)n+ (Tn · τ )τ

= (−p+ 2µn ·D(u)n)n+ 2µ(τ ·D(u)n)τ

= (Tn)n + (Tn)τ .

Let g : S −→ [0,∞) be a non-negative function called threshold slip or barrier function.
The nonlinear slip boundary condition we consider in this work was presented in C.
Leroux [30] and reads as follows:

|(Tn)τ | ≤ g ⇒ uτ = 0,

|(Tn)τ | > g ⇒ uτ 6= 0 , − (Tn)τ = g
uτ
|uτ |

 on S , (2.5)
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where |v|2 = v ·v is the Euclidean norm. At this point it is important to note that the
motion of a fluid under nonlinear slip boundary condition had been formulated first
by H. Fujita [31, 32], in which slip occurs if |(Tn)τ | = g and no slip if |(Tn)τ | < g.
For the mathematical setting of the problem, some notations need to be introduced
and we refer to [33, 34]. We use standard notation on Lebesgue and Sobolev spaces,
(·, ·) denotes the L2 scalar product, and ‖ · ‖ the L2 − norm. Having in mind the
definition of the sub-differential, (2.5) reduces to

for all vector v , g|vτ | − g|uτ | ≥ −(Tn)τ · (vτ − uτ ) on S . (2.6)

In order to introduce the functions spaces for the analysis of the boundary value
(2.1)...(2.5), we assume once and for all that g ∈ L∞(S) and f ∈ L2(Ω)2. Next, we
take in a naive way the dot product between the equation (2.1) and u and integrate
the resulting equation over Ω. After utilization of the Green’s formula and boundary
conditions we arrived at

2µ

∫
Ω

|ε(u)|2dx+

∫
S

g|uτ |dσ −
∫

Ω

p divudx =

∫
Ω

f · udx , (2.7)

with dσ being the surface measure associated to S. From (2.7), we introduce the
following functions spaces

V = {u ∈ H1(Ω)2, u|Γ = 0 , u · n|S = 0},

M = L2
0(Ω) =

{
q ∈ L2(Ω) with

∫
Ω

q dx = 0

}
.

With the spaces V and M , one can introduce the weak formulation of the boundary
value (2.1),...,(2.5) . We thus multiply (2.2) by q ∈ L2(Ω) and integrate over Ω. Next,
we take the dot product between (2.1) and v − u with v ∈ V, integrate the resulting
equation over Ω, apply Green’s formula and the boundary conditions (2.3), (2.4) and
(2.5). We obtain the following variational problem:

Find (u, p) ∈ V×M such that for all (v, q) ∈ V×M ,

a(u,v − u)− b(v − u, p) + j(v)− j(u) ≥ `(v − u) ,

b(u, q) = 0

(2.8)

with

a(u,v) = 2µ

∫
Ω

ε(u) : ε(v)dx , b(v, q) =

∫
Ω

q div vdx, (2.9)

j(v) =

∫
S

g|vτ | dσ , `(v) =

∫
Ω

f · vdx ,

with A : B =
∑

1≤i,j≤d
AijBij . It is worth recalling that the existence of solutions

of (2.8) is well established in the literature (see [35]). One needs in particular the
following inf-sup condition to hold: there exists c such that

c‖q‖ ≤ sup
06=v∈V

b(v, q)

‖v‖1
for all q ∈M . (2.10)
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In fact (2.10) is obtained by observing that H1
0 (Ω)2 ⊂ V and the pair (H1

0 (Ω)2,M) is
inf-sup stable (see [1, 2]), hence there exists γ such that

for all q ∈M , sup
06=v∈V

b(v, q)

‖v‖1
≥ sup

06=v∈H1
0 (Ω)2

b(v, q)

‖v‖1
≥ γ‖q‖ .

From the numerical point of view, (2.10) should also be satisfied in the finite element
subspaces and choosing equal order approximations for u and p, does not lead to a
stable scheme. The GLS is exactly designed to avoid the condition (2.10) by adding
extra terms to the variational formulation. We discuss next the stabilization proce-
dures for the utilization of equal order approximations for the velocity and pressure
within the finite element context.

3 Galerkin Least squares methods

3.1 First stabilized approach

From now on, we assume that Ω is a polygon so that it can be triangulated by triangles.
Let Th be a family of conforming triangulations of Ω,

Ω =
⋃

1≤i≤M

Ki .

We assume that the family Th is regular (also called non-degenerated) in the sense of
Ciarlet; there exists a constant σ, independent of h and K, such that

for all K ∈ Th,
hK
ρK

= σK ≤ σ,

where hK is the diameter of K and ρK is the diameter of the circle inscribed in K.
As standard, h stands for the maximum of the diameters of the elements of Th. The
mesh Th is said to be uniformly regular or quasi-uniform in the sense of Ciarlet[36], if
in there exists a constant τ > 0, independent of h and K, such that

for all K ∈ Th, τh ≤ hK ≤ σρK .

For each non-negative integer n and any K in Th, Pl(K) is the space of restrictions
to K of polynomials with two variables and total degree less than or equal to l. The
velocity and pressure are approximated with continuous polynomials of order l ≥ 1,
that is

Vlh = {vh ∈ C(Ω)2 ∩ V : for all K ∈ Th, vh|K ∈ Pl(K)2} ,
M l
h = {qh ∈M ∩ C(Ω), for all K ∈ Th, qh|K ∈ Pl(K)} .

(3.1)

We recall that for the choice given in (3.1), the discrete version of (2.10) does not hold
as pointed out in [1, 2]. Following [11], we introduce the augmented functional

Jα(v, q) =
1

2
a(v,v) + j(v)− b(v, q)− `(v)

− α
∑
K∈Th

h2
K

2

∫
K

|2µdiv ε(v)−∇q + f |2 dx .
(3.2)
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The saddle point problem associated with Jα(·, ·) reads:

Find u, p ∈ V×M such that

Jα(u, q) ≤ Jα(u, p) ≤ Jα(v, q) for all v, q ∈ V×M .
(3.3)

With the problem (3.3) in mind, the corresponding finite element problem reads as
follows: Find (uh, ph) ∈ Vlh ×M l

h such that for all (v, q) ∈ Vlh ×M l
h,

A(uh,v − uh) +B(v − uh, ph) + j(v)− j(uh) ≥ `1(v − uh) ,

B(uh, q)− C(q, ph) = `2(q) ,
(3.4)

with

A(u,v) = a(u,v)− α
∑
K

h2
K

∫
K

2µdiv ε(u) · 2µdiv ε(v)dx,

B(v, q) = −b(v, q) + α
∑
K

h2
K

∫
K

2µdiv ε(v) · ∇qdx

C(p, q) = α
∑
K

h2
K

∫
K

∇p · ∇qdx ,

`1(v) = `(v) + α
∑
K

h2
K

∫
K

f · 2µdiv ε(v)dx ,

`2(q) = −α
∑
K

h2
K

∫
K

f · ∇qdx .

(3.5)

Remark 3.1 One notes that if (u, p) is the solution of (2.8) with u ∈ H2(Ω) and
p ∈ H1(Ω) then (3.4) becomes

a(u,v)− b(v, p) + j(v)− j(u) ≥ `(v − u) ,

b(u, q) = 0 .

3.2 Second stabilized approach

One notes from (3.4) that the crucial term added that permits to avoid the compati-
bility condition between the velocity and the pressure is the expression C(p, q). The
following formulation can be regarded as a reduced GLS (see [17] ) because it has less
stabilizing expressions. It reads as follows: find (uh, ph) ∈ Vlh ×M l

h such that for all

(v, q) ∈ Vlh ×M l
h

a(uh,v − uh)− b(v − uh, ph) + j(v)− j(uh) ≥ `(v − uh) ,

B(uh, q)− C(q, ph) = `2(q) .
(3.6)

Remark 3.2 The second equation in fact is

−b(uh, q) + α
∑
K∈Th

∫
K

h2
K (2µdiv ε(uh)−∇ph + f) · ∇qdx = 0 .

Thus if the solution (u, p) of (2.8) belong to H2(Ω)×H1(Ω), then (u, p) solves (3.6)
regardless of q ∈M l

h.
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Remark 3.3 (3.6) has less terms than (3.4), hence computationally, it is more at-
tractive. (3.4) has the symmetry structure of the original system for any degree of
approximation and can be re-written as optimization of a lower semi-continuous, and
non-differentiable convex functional. Thus its belong to “convex analysis” for which
one has a lot algorithms for its resolution. In conclusion, these two choices present
some interesting aspects.

We study next the existence theory of problems (3.6) and (3.4).

4 Existence of solutions

In this section, we will address the solvability of both (3.4) and (3.6). In what follows,
c is a positive constant that may vary from one line to the next but always independent
of h. The following inverse inequality will be used throughout∑

K∈Th

h2
K‖ div ε(v)‖2K ≤ c2I‖ε(v)‖2 for all v ∈ Vlh . (4.1)

We introduce the discrete-norm

||q||2h =
∑
K∈Th

h2
K‖∇q‖2K , for q ∈M l

h . (4.2)

The continuity requirement in M l
h, together with the zero mean-value condition easily

imply that this is a norm on M l
h for which the following inverse inequality is valid:

there exists c independent of h such that

||q||h ≤ c‖q‖ for all q ∈M l
h . (4.3)

We claim that

Proposition 4.1 There are positive constant c1, c2, c3 independent of h such that for
all (v,u, q, p) ∈ Vlh × Vlh ×M l

h ×M l
h

A(u,v) ≤ c1‖u‖1‖v‖1 ,
B(v, q) ≤ c2‖v‖1‖q‖ ,
C(p, q) ≤ α‖p‖h‖q‖h ≤ c3‖p‖‖q‖ ,

Let the stabilization parameter α such that α < (2µc2I)
−1 with cI given by (4.1). Then

one can find a positive constant c4 independent of h such that for all v ∈ Vlh

A(v,v) ≥ c4‖v‖21 .

Proof. Using Cauchy-Shwarz’s inequality, Holder’s inequality together with (4.1),
we obtain

A(u,v) ≤ 2µ‖ε(u)‖‖ε(v)‖+ 4µ2α

(∑
K

h2
K‖ div ε(v)‖2K

)1/2(∑
K

h2
K‖div ε(u)‖2K

)1/2

≤ 2µ‖ε(u)‖‖ε(v)‖+ 4µ2αc‖ε(v)‖‖ε(u)‖
≤ (2µ+ 4µ2αc)‖v‖1‖u‖1 .
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Next from Cauchy-Shwarz’s inequality, Holder’s inequality together with (4.3), we
obtain

B(v, q) ≤ ‖v‖1‖q‖+ 2µα

(∑
K

h2
K‖ div ε(v)‖2

)1/2(∑
K

h2
K‖∇q‖2K

)1/2

≤ (1 + 2cµα)‖v‖1‖q‖ .

Thirdly Cauchy-Shwarz’s inequality, Holder’s inequality together with (4.3), gives

C(p, q) ≤ α‖p‖h‖q‖h ≤ c3‖p‖‖q‖ .

Finally

A(u,u) ≥ 2µ‖ε(u)‖2 − 4c2Iµ
2α‖ε(u)‖2

≥ 2µ(1− 2c2Iµα)‖ε(u)‖2 .

So, it suffice to take α such that α < (2µc2I)
−1 with cI given by (4.1) and apply Korn’s

inequality. �

Remark 4.1 It is manifest that for piecewise linear approximation, we have coercivity
of A(·, ·) without restriction on the stability parameter α because div ε(uh) = 0.

The next result is the a priori bounds of the solutions of (3.4). In fact we claim that

Proposition 4.2 Let the stabilization parameter α such that α < (2µc2I)
−1 with cI

given by (4.1). Let (uh, ph) be the solution of (3.4). Assume that the mesh Th is
quasi-uniform. Then, there is c independent of h such that

‖uh‖21 + ‖ph‖2h + ‖ph‖2 + j(uh) ≤ c‖f‖2 .

Proof. recall that (uh, ph) is solution of{
for all (vh, qh) ∈ Vlh ×M l

h ,

K(uh, ph;vh − uh, qh) + j(vh)− j(uh) ≥ `1(vh − uh)− `2(qh) .
(4.4)

with K(u, p;v, q) = A(u,v) + B(v, p) − B(u, q) + C(p, q). Let H1
0h(Ω)2 be the con-

forming finite element space approximating H1
0 (Ω)2. We take vh in (4.4) such that

vh − uh = ±wh ∈ H1
0h(Ω)2, combining the resulting equations, one obtains{

for all (wh, qh) ∈ H1
0h(Ω)2 ×M l

h ,

K(uh, ph;wh, qh) = `1(wh)− `2(qh) .

Next, from [4] (see Lemma 3.2), there exists c independent of h such that

c
(
‖uh‖21 + ‖ph‖2

)1/2 ≤ sup
0 6=(wh,qh)∈Hl

0h(Ω)2×M l
h

K(uh, ph;wh, qh)

(‖wh‖21 + ‖qh‖2)
1/2

≤ sup
0 6=(wh,qh)∈Hl

0h(Ω)2×M l
h

`1(wh)− `2(qh)

(‖wh‖21 + ‖qh‖2)
1/2

.
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Using Cauchy-Schwarz’s inequality,(4.1), (4.3) and the fact that Th is quasi-uniform,
one gets

`1(wh)− `2(qh) ≤‖f‖‖wh‖1 + 2µαcI

(∑
K

h2
K‖f‖2K

)1/2

‖wh‖1 + αc

(∑
K

h2
K‖f‖2K

)1/2

‖qh‖

≤c‖f‖
(
‖wh‖21 + ‖qh‖2

)1/2
.

Hence
‖uh‖21 + ‖ph‖2 ≤ c‖f‖2 . (4.5)

Next, we take qh = ph, vh = 0 and vh = 2uh in (4.4) which yields

A(uh,uh) + C(ph, ph) + j(uh) = `1(uh)− `2(ph) .

Now applying proposition 4.1, Cauchy-Schwarz’s inequality,(4.1), (4.3), Young’s in-
equality and the fact that Th is quasi-uniform, one gets

‖uh‖21 + ‖ph‖2h + j(uh) ≤ c‖f‖2 , (4.6)

which together with (4.5) leads to the asserted result. �

The variational problem (3.4) is a mixed variational inequality of second kind. Its exis-
tence theory will be analysed by making use of; regularization, properties of monotone
operator, a priori estimates and passage to the limit. We claim that

Proposition 4.3 Assume that the mesh Th is quasi-uniform. The variational problem
(3.4) admits only one solution (uh, ph) in Vlh ×M l

h.

Proof. It is done in three steps.
Step 1: Regularization. Note that the functional j is non differentiable at zero.
Hence we introduce the parameter ε > 0, approaching zero and define the functional
jε : Vlh −→ R as follows

jε(v) =

∫
S

g
√
|vτ |2 + ε2 dσ.

One observes that

lim
ε→0

(jε(v)− j(v)) = lim
ε→0

ε2

∫
S

g√
|vτ |2 + ε2 + |vτ |

dσ = 0 .

The functional jε is lower semi-continuous and twice Gateaux-differentiable with

Djε(u) · v =

∫
S

g
uτ · vτ√
|uτ |2 + ε2

dσ ,

D2jε(u)(v,w) =

∫
S

g
(vτ ·wτ )(|uτ |2 + ε2)− (uτ ·wτ )(uτ · vτ )

(|uτ |2 + ε2)3/2
dσ .

(4.7)

Note that D2jε(u) is symmetric that is

D2jε(u)(v,w) = D2jε(u)(w,v) for all v,w ,

and positive definite that is

D2jε(u)(v,v) ≥ 0 for all v .
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Also because jε is convex and differentiable, then Djε is monotone that is

〈Djε(u)−Djε(v),u− v〉 ≥ 0 for all v,u ∈ V . (4.8)

The regularized problem reads (with obvious notation)

Find (uε, pε) ∈ Vlh ×M l
h such that for all (v, q) ∈ Vlh ×M l

h,

A(uε,v − uε) +B(v − uε, pε) + jε(v)− jε(uε) ≥ `1(v − uε) ,

B(uε, q)− C(q, pε) = `2(q) .

(4.9)

Since jε is differentiable, then (4.9) is equivalent to the variational problem (see [3]
where similar examples are treated)

Find (uε, pε) ∈ Vlh ×M l
h such that for all (v, q) ∈ Vlh ×M l

h,

A(uε,v) +B(v, pε) +Djε(u
ε) · v = `1(v) ,

B(uε, q)− C(q, pε) = `2(q) ,

(4.10)

which is re-written as follows:

Find (uε, pε) ∈ Vlh ×M l
h such that for all (v, q) ∈ Vlh ×M l

h

A(uε,v) +B(v, pε) + 〈Djε(uε),v〉 −B(uε, q) + C(q, pε) = `1(v)− `2(q) .
(4.11)

(4.11) is a nonlinear monotone problem and to study it, it is convenient to introduce
the mapping (u, p) −→ H(u, p) such that

〈H(u, p); (v, q)〉 = A(u,v) +B(v, p) + 〈Djε(u),v〉 −B(u, q) + C(q, p) .

Hence for the existence of solutions of (4.11) we need to show the following conditions
(see [37], Chap 2)

(a) H is monotone, i.e for all u,v ∈ Vlh × Vlh, and p, q ∈M l
h ×M l

h

〈H(u, p)−H(v, q); (u− v, p− q)〉 ≥ 0 .

Indeed one has

〈H(u, p)−H(v, q); (u− v, p− q)〉 =A(u− v,u− v) + 〈Djε(u)−Djε(v),u− v〉
+ C(p− q, p− q)

which is non negative because of proposition 4.1, (4.8) and C(p, p) is non-negative.

(b) H is coercive meaning that for all (v, q) ∈ Vlh ×M l
h(

1

(‖v‖21 + ‖q‖2h)1/2
〈H(v, q); (v, q)〉

)
→∞ if (‖v‖21 + ‖q‖2h)1/2 →∞ .

Indeed from (4.8), α < (2µc2I)
−1 and using Korn’s inequality

〈H(v, q); (v, q)〉 = A(v,v) + C(q, q) + 〈Djε(v),v〉
≥ 2µ(1− 2µαc2I)‖ε(v)‖2 + α‖q‖2h
≥ min

(
2µ(1− 2µαc2I), α

) (
‖v‖21 + ‖q‖2h

)
from which we deduce the coercivity of H.
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(c) H is hemi-continuous in Vlh×M l
h, i.e for u,v ∈ Vlh×Vlh, and p, q ∈M l

h×M l
h

the mapping

t −→ 〈H(u+ tv, p+ tq); (v, q)〉 is continuous from R into R .

Indeed

〈H(u+ t1v, p+ t1q)−H(u+ t2v, p+ t2q); (v, q)〉
=(t1 − t2) [A(v,v) +B(v, p)−B(v, q) + C(q, q)] + (Djε(u+ t1v)−Djε(u+ t2v))v

=(t1 − t2)

[
A(v,v) + C(q, q) +B(v, p)−B(v, q) +

∫ 1

0

D2jε(u+ t2v − θ(t2 − t1)v)(v,v)dθ

]
,

which tends to zero with t1 − t2 because u,v, p, q are fixed.

We then conclude partially that (4.11) has a solution (uεh, p
ε
h) ∈ Vlh×M l

h. But because
H is strictly monotone,then the solution (uεh, p

ε
h) is unique.

In the next lines, we study the limit when ε approaches zero of (uεh, p
ε
h) solution of

(4.11).
Step 2: a priori estimate and passage to the limit. The a priori estimate
obtained in proposition 4.2 is valid due to the equivalence between (4.10) and (4.9).
Hence

‖uεh‖21 + ‖pεh‖2 +
∑
K∈Th

h2
K

∫
K

|∇pεh|2dx+ j(uεh) ≤ c‖f‖2 .

We deduce that the sequences (uεh)ε and (pεh)ε are respectively H1 and L2 bounded.
Moreover one has

h2
K‖∇pεh‖2K <

∑
K∈Th

h2
K

∫
K

|∇pεh|2dx ≤ c‖f‖2 .

Since pεh is continuous on the domain Ω one obtains

‖∇pεh‖2 =
∑
K∈Th

‖∇pεh‖2K ≤
∑
K∈Th

c

h2
K

‖f‖2 <∞ .

Hence we can find a subsequence, denoted also (uεh, p
ε
h) ∈ Vlh ×M l

h, such that

uεh → uh weakly in H1(Ω)

pεh → ph weakly in H1(Ω) .
(4.12)

One notes that the regularized problem (4.9) is re-written as follows

for all (v, q) ∈ Vlh ×M l
h ,

A(uεh,u
ε
h) +B(uεh, p

ε
h) + jε(u

ε
h)

≤ A(uεh,v) +B(v, pεh) + jε(v)− `1(v − uεh) (4.13)

B(uεh, q)− C(q, pεh) = `2(q) . (4.14)

The weak convergence properties in (4.12) allows one to pass to the limit in (4.14)
and one obtains

for all q ∈M l
h, B(uh, q)− C(q, ph) = `2(q) . (4.15)
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Owing to the compactness of the imbedding of H1(Ω) into L4(Ω), there exits a sub-
sequence, still denoted by (uεh), such that

uεh → uh weakly in H1(Ω) and uεh → uh strongly in L4(Ω) . (4.16)

For the right hand side of (4.13), one notes that jε → j when ε → 0 together with
(4.12) leads to

lim
ε

inf [A(uεh,v) +B(v, pεh) + jε(v)− `1(v − uεh)]

≤A(uh,v) +B(v, ph) + j(v)− `1(v − uh) .
(4.17)

For the left hand side of (4.13), the convergence properties (4.16), (4.12) and the fact
that jε → j when ε→ 0 yield

A(uh,uh) +B(uh, ph) + j(uh) ≤ lim
ε

inf [A(uεh,u
ε
h) +B(uεh, p

ε
h) + jε(u

ε
h)] . (4.18)

Putting together (4.17) and (4.18) implies that

for all v ∈ Vlh
A(uh,uh − v) +B(uh − v, ph) + j(uh)− j(v) ≤ `1(uh − v) .

(4.19)

Whence the existence of solutions of (3.4) which is (4.15) and (4.19).

Having constructed the weak solution (uh, ph) of (3.4), we now address its unique
solvability.
Step 3: uniqueness. Let (u1, p1) and (u2, p2) be the solutions of (3.4). A classical
algebraic manipulation reveal that

A(u1 − u2,u1 − u2)−B(u2 − u1, p1 − p2) ≤ 0

C(p1 − p2, p1 − p2) +B(u2 − u1, p1 − p2) = 0 .

We then deduce that

A(u1 − u2,u1 − u2) + C(p1 − p2, p1 − p2) ≤ 0 .

So by coercivity of A(·, ·) one obtains

c3‖u1 − u2‖21 + ‖p1 − p2‖2h ≤ 0

which implies that u1 = u2 and p1 − p2 = cK in each element K of Th. Having in
mind that p1 − p2 is an element of M l

h, hence continuous, it appears that cK = c, the

same constant throughout. Next, knowing that

∫
Ω

(p1−p2) = 0, we deduce that c = 0

and p1 = p2. Hence the solution is unique. �

We now turn to the existence theory of (3.6) and claim that

Proposition 4.4 Assume that the mesh Th is quasi-uniform. The variational problem
(3.6) admits only one solution (uh, ph) ∈ Vlh ×M l

h and there is a positive constant c
independent of h such that for α < (2µc2I)

−1

‖uh‖21 + ‖ph‖2h + ‖ph‖2 + j(uh) ≤ c‖f‖2 .
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Proof. We start with the a priori estimate.
We take vh = 0 and 2uh in (3.6), we compare the two inequalities and deduce that
(with q = ph)

a(uh,uh)− b(uh, ph) + j(uh) = `(uh) ,

− b(uh, ph) + α
∑
K

h2
K

∫
K

2µdiv ε(uh) · ∇phdx− α‖ph‖2h = −α
∑
K

h2
K

∫
K

f · ∇phdx .

Subtracting these equations one gets

2µ‖ε(uh)‖2 + α‖ph‖2h + j(uh)

=α
∑
K

h2
K

∫
K

2µdiv ε(uh) · ∇phdx+ `(uh) + α
∑
K

h2
K

∫
K

f · ∇phdx

≤2µα

(∑
K

h2
K

∫
K

|div ε(uh)|2dx

)1/2(∑
K

h2
K

∫
K

|∇ph|2dx

)1/2

+ ‖f‖‖uh‖

+α

(∑
K

h2
K

∫
K

|f |2dx

)1/2(∑
K

h2
K

∫
K

|∇ph|2dx

)1/2

≤2µαcI‖ε(uh)‖‖ph‖h + c‖f‖‖ε(uh)‖+ αc‖f‖‖ph‖h .

We apply Young’s inequality with α < (2µc2I)
−1 and αcI < γ1 < (2µcI)

−1 and obtain

µ

(
1− αcI

γ1

)
‖ε(uh)‖2 + α

(
1

2
− µcIγ1

)
‖ph‖2h + j(uh) ≤ c

µ
‖f‖2 + αc‖f‖2 .

The L2 estimate on the pressure is obtained as in Proposition 4.2 and will be repeated
here.

To proof the existence of solutions of (3.6), we follow the lines of the proof of proposi-
tion 4.3. The regularize problem associated with (3.6) reads: Find (uε, pε) ∈ Vlh×M l

h

such that for all (v, q) ∈ Vlh ×M l
h

a(uε,v − uε) + b(v − uε, pε) + jε(v)− jε(uε) = `(v − uε) ,

B(uε, q)− C(q, pε) = `2(q) ,
(4.20)

from which we introduce the mapping (u, p) −→ K(u, p) such that

〈K(u, p); (v, q)〉 = a(u,v) + b(v, p) + 〈Djε(u),v〉 −B(u, q) + C(q, p) .

We show that; K is monotone, coercive, and hemi-continuous. With the help of the a
priori estimate obtained, we pass to the limit and one gets the existence of solutions.
The unique solvability is obtained as in Step 3. �

Remark 4.2 For l ≥ 2, (3.4) and (3.6) are stable only for some values of α (see
proposition 4.1 and proposition 4.4). But if l = 1, then these schemes are the same
and stable for all values of α.
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5 A priori error estimates

The goal of the section is to establish the convergence by estimating the difference
between the continuous solution (u, p) and the finite element solution (uh, ph).
We first claim that

Theorem 5.1 Assume that the mesh Th is quasi-uniform. Let (u, p) ∈ V×M be the
solution of (2.8). Let (uh, ph) ∈ Vlh ×M l

h the solution of (3.4). Let α be given such
that α < (2µc2I)

−1. Then there is a positive constant c independent of h such that for

all (vh, qh) ∈ Vlh ×M l
h

‖uh − u‖1 + ‖ph − p‖h ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L2(S)

+ c (‖vh − u‖1 + h‖vh − u‖2 + ‖qh − p‖+ h‖∇(qh − p)‖) .

Proof. Let (vh, qh) in Vlh ×M l
h, having in mind K(· , ·) defined in (4.4), then from

proposition 4.1 there exists c independent of h such that

c
(
‖uh − vh‖21 + ‖ph − qh‖2h

)
≤K(uh − vh, ph − qh;uh − vh, ph − qh)

=K(uh − u, ph − q;uh − vh, ph − qh) +K(u− vh, p− qh;uh − vh, ph − qh)

(5.1)

We now estimate the first term on the right hand side of (5.1). We recall that (u, p)
satisfies {

for all (v, q) ∈ V×M ,

K(u, p;v − u, q) + j(v)− j(u) ≥ `1(v − u)− `2(q) .

We take successively (v, q) =

(
uh,

1

2
ph −

1

2
qh

)
, and (v, q) =

(
2u− vh,

1

2
ph −

1

2
qh

)
,

add the resulting equations and obtain

K(u, p;uh−vh, ph−qh)+j(uh)−2j(u)+j(2u−vh) ≥ `1(uh−vh)−`2(ph−qh) . (5.2)

We consider (4.4) with qh replaced by −ph + qh, we add the resulting equation with
(5.2) and obtain

K(uh−u, ph− p;uh−vh, ph− qh) ≤ j(vh)− j(u) + j(2u−vh)− j(u) ≤ 2j(vh−u) .
(5.3)

Returning to (5.1) with (5.3), one obtains

c
(
‖uh − vh‖21 + ‖ph − qh‖2h

)
≤ 2j(vh − u) +K(u− vh, p− qh;uh − vh, ph − qh)

≤c‖g‖L∞(S)‖vh,τ − uτ ‖L2(S)

+ c
(
‖vh − u‖21 + h2‖vh − u‖22 + ‖qh − p‖2 + h2‖∇(qh − p)‖2

)1/2 (‖vh − uh‖21 + ‖qh − ph‖2h
)1/2

,

which by Young’s inequality gives

‖uh − vh‖21 + ‖ph − qh‖2h ≤ c‖g‖L∞(S)‖vh,τ − uτ ‖L2(S) + c‖vh − u‖21 + ch2‖vh − u‖22
+ c‖qh − p‖2 + ch2‖∇(qh − p)‖2 .

(5.4)
The asserted result follows after application of the triangle’s inequality. �

15



Remark 5.1 It should be noted that the consistency argument has not been used in
the proof of Theorem 5.1. For Stokes equations under Dirichlet boundary condition,
GLS methods were formulated and analysed in [4, 5], and convergence is obtained if
consistency is required.

Remark 5.2 If (uh, ph) are approximated by piecewise linear functions, then for all
values of α, the error estimate becomes

‖uh − u‖1 + ‖ph − p‖h ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L2(S) + ch‖u‖2

+ c (‖vh − u‖1 + ‖qh − p‖+ h‖∇(qh − p)‖) .

Using the classical interpolation results (see [39] ), we have:
• If the solution is such that u|S ∈ H2(S) then

‖u− uh‖1 + ‖p− ph‖h ≤ c h .

• If the solution (u, p) ∈H2(Ω)×H1(Ω), then from [39, p.39] and 1 ≤ p ≤ ∞, there
exists c such that

‖v‖Lp(∂Ω) ≤ c‖v‖
1−1/p
Lp(Ω)‖v‖

1/p
W 1,p(Ω) , for all v ∈W 1,p(Ω) .

Hence
‖u− uh‖1 + ‖p− ph‖h ≤ ch3/4 .

Remark 5.3 Following to the line the proof of theorem 5.1, one can derive the error
estimate for the reduced GLS approach (3.6).

Theorem 5.1 is concerned with the mesh dependent norm on the pressure and the
question we answer next is to known whether it is possible to have a control on the
pressure with the L2 norm. For that purpose, we claim that

Theorem 5.2 Assume that the mesh Th is quasi-uniform. Let (u, p) ∈ V×M be the
solution of (2.8). Let (uh, ph) ∈ Vlh ×M l

h the solution of (3.4). Let α be given such
that α < (2µc2I)

−1. Then there is a positive constant c independent of h such that for

all (vh, qh) ∈ Vlh ×M l
h

‖ph − p‖ ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L2(S) + c‖vh − u‖1 + ch‖vh − u‖2 + c‖qh − p‖

+ch‖∇(qh − p)‖+ ch‖qh − p‖ .

Proof.
We recall that (u, p) and (uh, ph) satisfy for all (v,vh) ∈ V× Vlh

A(u,v − u) +B(v − u, p) + j(v)− j(u) ≥ `1(v − u)

A(uh,vh − uh) +B(vh − uh, ph) + j(vh)− j(uh) ≥ `1(vh − uh) .

Let w ∈ H1
0 (Ω)2, and H1

0h(Ω)2 the conforming finite element space approximating
H1

0 (Ω)2. We take v − u = ±w and vh − uh = ±wh. Thus one obtains

A(u,w) +B(w, p) = `1(w)

A(uh,wh) +B(wh, ph) = `1(wh) ,
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which implies that (wh ∈ H1
0h(Ω)2 ⊂ H1

0 (Ω)2)

A(uh − u,wh) = B(wh, p− ph)

which by linearity gives

B(wh, qh − ph) = B(wh, qh − p) +A(uh − u,wh) . (5.5)

From [4] (see Lemma 3.2), there exists c1, c1 independent of h such that

c1‖ph − qh‖ ≤c2‖ph − qh‖h + sup
06=wh∈H1

0h(Ω)2

(divwh, ph − qh)

‖wh‖1

which together with (5.5), the definition of B(·, ·), standard inequalities and (5.4)
yields

‖ph − qh‖ ≤c‖ph − qh‖h + c‖qh − p‖+ ch‖qh − p‖+ c‖uh − vh‖1 + c‖vh − u‖1 + ch‖vh − u‖2
≤c‖g‖1/2L∞(S)‖vh,τ − uτ ‖

1/2
L2(S) + c‖vh − u‖1 + ch‖vh − u‖2 + c‖qh − p‖+ ch‖∇(qh − p)‖

+ ch‖qh − p‖ .

The asserted result is obtained after application of the inequality of the triangle. �

The next sections are concerned with the solution strategy for (3.4) and (3.6), and
their numerical simulations. We assume that both the velocity and pressure are ap-
proximated by linear piece wise functions. Hence problem (3.4) and (3.6) coincide.
The problem (3.4) is a mixed elliptic variational inequalities of second kind for which
several approaches are available in the literature (see [25, 26], or more recently [28, 40])
for its resolution. But in this work we propose to solve it with the following strategies

(i) Projection like method based on the introduction of a “kind ” of multiplier
Lagrange field.

(ii) Alternative direction method of multiplier associated with the augmented La-
grangian method based on the introduction of a new variable aiming to decouple
the velocity u from its tangential part uτ , and a Lagrange multiplier field aiming
to enforce the relation uτ − φ = 0.

(iii) Active set approach associated with the augmented Lagrangian method based
on the introduction of Lagrange multipliers link to the constraints u ·n = 0 and
divu = 0.

6 Dual approximation methods

6.1 Projection-like algorithm

This approach relies on the equivalence between (3.4) and the following one: there
exists a vector value λ ∈ Λ such that

for all (v, q) ∈ V1
h ×M1

h ,

a(uh,v) + b(v, ph) +

∫
S

gλh · vτ = `(v),

b(uh, q)− C(q, ph) = `2(q) ,

uτ ,h · λh = |uτ ,h| a.e. in S,

(6.1)

17



with
Λ = {α|α ∈ L∞(S) , |α| ≤ 1 a.e. in S} .

At this step, it is worth noting that one of the difficulties in implementing (6.1) is
to enforce the relation λh · uτ ,h = |uτ ,h| a.e. in S. We provide next an equivalent
characterization of that relation for a better derivation of iterative schemes. We claim
that

Lemma 6.1 [25] Given that g is non-negative, the following problems are equivalent

(a) Find λ ∈ Λ such that λ · uτ = |uτ | a.e. in S,

(b) Find λ ∈ Λ such that

∫
S

guτ · (µ− λ)dσ ≤ 0 for all µ ∈ Λ .

(c) λ = PΛ(λ+ γguτ ) for all γ > 0 ,

with

PΛ : L2(S) −→ Λ , PΛ(α)(x) =
α(x)

max (1, |α(x)|)
.

Using Lemma 6.1, we formulate the following equivalent problem more suitable for
the derivation of iterative methods

Find (uh, ph, λh) ∈ V1
h ×M1

h × Λ such that ,

for all (v, q, ρ) ∈ V1
h ×M1

h and all γ > 0

a(uh,v) + b(v, ph) +

∫
S

gλ · vτ = `(v),

b(uh, q)− C(q, ph) = `2(q) ,

λh = PΛ(λh + γguτ ,h) a.e. in S .

(6.2)

From (6.2), we consider the Algorithm 1 based on Uzawa iteration

Remark 6.1 Proving the convergence of Algorithm 1 (for γ > 0 and sufficiently
small) is a classical exercise and we refer the interested reader to [25, 26]. Notes that
the equations for GLS 2 and GLS 1 are identical when using piecewise linear elements
since div ε(v) = 0.

6.2 Alternating Direction Method of Multiplier (ADMM)

With piece-wise linear polynomial approximation, i.e. with the finite element pair
P1/P1, Lagrangian functional (3.2) can be simplified. Indeed, with P1 finite element,
the additional stabilization terms involving derivatives of order greater than one vanish
and we obtain

Jα(v, q) =
1

2
a(v,v)− `(v) + j(v)− b(v, q)− C(q, q)− `2(q) . (6.6)

To derive ADMM algorithm for the numerical approximation of (6.6), we introduce
an auxiliary variable φ on S and we replace Jα by the following augmented Lagrangian
functional

Lrα(v, q,φ,µ) =
1

2
a(v,v)− `(v) + j(φ)− b(v, q)− C(q, q)− `2(q)

+ (µ,vτ )S +
r

2
‖ φ− vτ ‖2S .

(6.7)
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Algorithm 1 : Uzawa iterative algorithm

Initialization: Given λ0
h = (0, 1) ∈ Λ, we compute (u0

h, p
0
h) such that

for all (v, q) ∈ Vh ×Mh,

a(u0
h,v) + b(v, p0

h) = `(v)−
∫
S
gλ0

h · vτ ,

b(u0
h, q)− C(q, p0

h) = `2(q) .

(6.3)

Iteration k ≥ 0 By induction, knowing {uk
h, p

k
h,λ

k
h} , we compute {uk+1

h , pk+1
h ,λk+1

h }
iteratively as follows.

Step 1: For all (v, q) ∈ V1
h ×M1

h , solve

a(uk+1
h ,v) + b(v, pk+1

h ) = `(v)−
∫
S
gλk

h · vτ dσ ,

b(uk+1
h , q)− C(q, pk+1

h ) = `2(q) .

(6.4)

Step 2: For γ > 0, compute the Lagrange multiplier

λk+1
h = PΛ(λk

h + γguk+1
τ ,h ) . (6.5)

The idea is to separate the non-differentiable part of the problem (i.e. j) from the
differentiable part and to use block relaxation scheme as follows

(uk+1, pp+1) = arg min
v

max
q
Lrα(v, q,φk,λk) , (6.8)

φk+1 = arg min
ψ
Lrα(uk+1, pk+1, ψ, λk) , (6.9)

λk+1 = λk + r(φk+1 − uk+1
τ ) . (6.10)

Subproblem (6.8) is equivalent to the Stokes problem with tangential traction on S,
i.e.

ar(u
k+1,v)− b(v, pk+1) = `(v) + (rφk − λk,vτ )S , ∀v (6.11)

−b(uk+1, q)− C(pk+1, q) = `2(q), ∀q (6.12)

where
ar(u

k+1,v) = a(uk+1,v) + r(uk+1
τ ,vτ )S .

Subproblem (6.9) can be solved analytically using Fenchel duality theory, and we
get (see, e.g., [40])

φk+1 =
1

r
max(0, ‖ λk − rφk ‖ −g)

λk − rφk

‖ λk − rφk ‖
.

Gathering the results above, we obtain Algorithm 2. We iterate until the relative
error in (uk, pk,φk,λk) becomes sufficiently small.
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Algorithm 2 : Alternating Direction Method of Multiplier

Initialization k = 0 (φ0, λ0) and r > 0 are given.

k ≥ 0 Compute successively (uk+1, pk+1), φk+1 and λk+1 as follows.

Step 1. Find (un+1, pn+1) ∈ V × L2
0(Ω) such that for all (v, q) ∈ V × L2(Ω)

a(un+1,v) + r(un+1
τ ,vτ )S − b(v, pn+1) = `1(v) + (rφk − λk,vτ )S ,

−b(un+1, q)− C(pk+1, q) = `2(q).

Step 2. Compute the auxiliary unknown

φk+1 =
1

r
max(0, ‖ λk − rφk ‖ −g)

λk − rφk

‖ λk − rφk ‖
.

Step 3. Multiplier update λk+1 = λk + r(φk+1 − uk+1
τ )

7 A Primal-Dual approximation method

As in the previous section, we consider only piecewise linear elements. The primal
dual method we formulate in this section derives from the one proposed by [27]. Just
like the ADMM method, this strategy is based on the introduction of a functional for
which the saddle point plays a crucial role. We recall the basic steps, proceed to the
algebraic formalism which leads to the formulation of the algorithm.

7.1 Active set strategy

We first regularize the non-differentiable term j(v) by using the equality (obtained
using Fenchel duality)

inf
v
j(v) = inf

v
sup
|λ|≤g

(λ,vτ )S .

Let us introduce the set of admissible Lagrange multiplier

Λg =
{
λ ∈ L2(S) | |λ| ≤ g

}
and the new Lagrangian functional

Lα(v, q,µ) = J(v)− b(v, q) + (vτ ,µ)S −
∑
K∈Th

α
h2
K

2

∫
K

|2µdiv ε(v)−∇q − f |2dx.

The saddle-point problem becomes

Find (u, p,λ) ∈ V1
h ×M1

h × Λg such that

Lα(u, q,µ) ≤ Lα(u, p,λ) ≤ Lα(v, q,µ), ∀(v, q,µ) ∈ V1
h ×M1

h × Λg (7.1)

Our aim is to design a primal-dual active set strategy for the numerical approximation
of (7.1). Our primal-dual active set strategy derives from [27] and based on the
following facts:
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• If |λ| < g then uτ = 0. We can therefore eliminate the corresponding nodal
values of uτ (and λ) from the global system.

• If |λ| = g, then the multiplier is known and acts as a tangential traction.

7.2 Algebraic formulation

We need the algebraic formulation for the active set strategy. We use the same discrete
formulation as in [29]. Assuming that u ∈ Rdn is the unknown vector of nodal values
of the velocity fields on Ωh, p ∈ Rn the unknown vector of nodal values of the pressure
and λ ∈ Rm the multiplier vector, we introduce the following matrices and vectors:

• A the stiffness matrix (dn × dn symmetric positive definite), C the pressure
stiffness matrix (n× n symmetric positive semi-definite);

• B the divergence matrix, n× dn.

• f , the volume forces (vector of Rdn),

• T, the tangential matrix on S, i.e. Tu = uτ ,

• M, the mass matrix on S,

• g , the vector of slip threshold.

The discrete formulation of the Lagrangian functional (6.6) is therefore

Lα(v, q,µ) =
1

2
v>Av − f> + µ>Mv − q>Bv − αq>Cq− q>Bf . (7.2)

The (tangential) Lagrange multiplier is such that µ = (µ1, . . . ,µm)> in two-dimensional
problems, and µ = ((µ1,1,µ1,2), . . . , (µm,1,µm,2))> for three-dimensional problems.
Then

|µ| = (|µ1|, . . . , |µm|)> for 2D problems

|µ| = ((µ2
1,1 + µ2

1,2)1/2, . . . , (µ2
m,1 + µ2

m,2)1/2)> for 3D problems

Then writing |µ ≤ g means |µi| ≤ gi in 2D, or (µ2
i,1 + µ2

i,2)1/2 ≤ g in 3D.
Gathering the notations above, our primal dual active set method is described in

Algorithm 3.

8 Numerical experiments

We now study the numerical behavior of the algorithms described in the previous
sections. We have implemented Algorithms 1,2 and 3 in MATLAB (R2018a), using
vectorized assembling functions and the mesh generator provided in [41, 42], on a
computer running Linux (Ubuntu 16.04) with 3.00GHz clock frequency and 32GB
RAM. The test problem used is designed in order to illustrate the numerical behavior
of the algorithms more than to model actual Stokes flow problems.

8.1 Driven cavity problem

We consider a classical driven cavity example with stick/slip boundary conditions (see
e.g. [28, 43]). We set Ω = (0, 1)2 and we assume that its boundary consists of two
portions ΓD and S defined as follows

ΓD = {0} × (0, 1) ∪ (0, 1)× {0}
S = S1 ∪ S2, S1 = (0, 1)× {1}, S2 = {1} × (0, 1).
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Algorithm 3 : First primal dual active set method

Initialization (u0, p0,λ0) given, set k = 0.

Step 1. Set Ik = {i; |λk
i | < gi}, Ak = {i; |λk

i | ≥ gi}
Step 2. Set λk+1

i = giλ
k
i /|λk

i | for i ∈ Ak

Step 3. Compute (uk+1,pk+1) with uk+1
τ = 0 on Ik such that

Auk+1 −B>pk+1 = f −T>Mλk+1, (7.3)

Buk+1 − αCpk+1 = Bf (7.4)

Step 4. Compute λk+1 on Ik as a reaction of uk+1
τ = 0, i.e.

λk+1 = M−1(f −Auk+1 + B>pk+1)

Step 5. Stop if the relative error on (uk+1, pk+1,λk+1) becomes sufficiently small and
Ak+1 = Ak, else set k = k + 1 and got to Step 1.

The right-hand side
f = −2µdiv ε(u) +∇p

where µ = 0.1 and (u, p) is

u1(x, y) = −x2y(x− 1)(3y − 2), (8.1)

u2(x, y) = xy2(y − 1)(3x− 2), (8.2)

p(x, y) = (2x− 1)(2y − 1). (8.3)

Note that (8.1)-(8.3) do not solve (2.1). In [28], it is shown that

(Tn)τ = −4µx2(x− 1)

[
1
0

]
, on S1

(Tn)τ = −4µy2(y − 1)

[
0
−1

]
on S2

For µ = 0.1, a direct calculation reveal that

max
S
|(Tn)τ | = 4µmax

x∈S1

x2(x− 1) = 4µmax
x∈S2

y2(y − 1) = 0.059 .

Then it follows that if max
S
|(Tn)τ | < g, no slip occurs on S and uτ |S = 0. If

max
S
|(Tn)τ | > g a non-trivial slip occurs (see [30]).

At this stage it should be made clear that the friction law we consider differ from the
classical one where by slip occurs if max

S
|(Tn)τ | = g and no slip if max

S
|(Tn)τ | < g (see

[6, 7, 8] just to cite a few). Figure 1 shows the streamlines obtained, using Algorithm
3, with two values of the slip bound g. We can notice that for g = 0.025 < max

S
|(Tn)τ |

a non-trivial slip occurs, while for g = 0.75 > max
S
|(Tn)τ | the solution is such that

uτ = 0. Figure 2 shows the tangential component of the velocity on S.
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(a) (b)

Figure 1: Streamlines for the driven cavity; (a): g = 0.025, (b): g = 0.075

Figure 2: Tangential component of the velocity on S for g = 0.025
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8.2 Convergence

We evaluate the convergence rate of the GLS FEM by calculating the error between
approximate solution and the exact solution. Since we do not know the exact solution
explicitly, we use an approximate solution on a finer mesh as the reference solution.
The convergence errors are computed as follows

eh(u) = ‖ uh − u∗ ‖L2

eh(u, p) = ‖ uh − u∗ ‖H1 + ‖ ph − p∗ ‖L2

where (u∗, p∗) is the reference solution obtained on a mesh with h = 1/1024.
The convergence rates of the GLS finite element plotted in Figure 3. For the stick

case (g = 0.075) the convergence rates are better than expected and correspond to
convergence rate of the GLS stabilization for the standard Stokes equation. For the
slip case (g = 0.025) the convergence rate is in line with the expected value (Remark
5.2 ) since , from (8.1)-(8.2), u|S ∈ H2(S).

Figure 3: Convergence errors eh(u) and eh(u, p) and estimation of the convergence rates;
left: g = 0.025, right: g = 0.075

8.3 Algorithms comparison

We report in Tables 1-2 the performances of Algorithms 1-3 on the driven cavity
problem. We first notice the poor convergence properties of the Uzawa iteration
Algorithm 1, especially for the slip case. For the largest problem, Uzawa iteration
requires almost 10 times more CPU times than Algorithm 2, and 50 times more
iterations than Algorithm 3. In terms of number of iterations required for convergence,
the primal dual Algorithm 3 has the best property. Because for the solely sticking
case, the convergence is reached after only two iterations. In this case, the problem is
equivalent to the standard Stokes problem with Dirichlet boundary conditions. The
algorithm proposed needs only two iterations to confirm that the active set is empty.
For the slip case (g = 0.025) the number of iterations required for convergence is
asymptotically bounded. In terms of CPU time, Algorithm 2 outperforms the primal
dual active set strategy, even with a higher number of iterations. This is due to
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the fact that in Algorithm 2, the matrix is constant during the iterative process. A
factorization can be performed once and for all in the initialization step. The solution
of the linear systems during the iterative process is then reduced to backward-forward
substitutions.

Uzawa ADMM PDAS 1
h Iter. CPU Iter. CPU Iter. CPU

1/16 595 0.583 59 0.056 5 0.042
1/32 513 2.341 58 0.236 7 0.185
1/64 512 12.843 58 1.379 8 0.992
1/128 513 83.106 58 5.379 10 7.963
1/256 515 465.077 58 50.050 13 67.176

Table 1: Performances of Algorithms 2 and 3 on the driven cavity for g = 0.025

Uzawa ADMM PDAS 1
h Iter. CPU Iter. CPU Iter. CPU

1/16 418 0.089 27 0.026 2 0.069
1/32 369 0.365 16 0.065 2 0.052
1/64 361 1.592 9 0.213 2 0.235
1/128 360 9.096 9 1.139 2 1.434
1/256 359 58.542 9 7.760 2 13.088

Table 2: Performances of Algorithms 2 and 3 on the driven cavity for g = 0.075

8.4 Conclusion

We studied theoretically and numerically the GLS methods for the numerical ap-
proximation of the Stokes equations under Tresca’s boundary condition allowing the
use of equal order approximation for both the velocity and pressure. The GLS for
Stokes flows with Tresca’s boundary condition leads to a nonlinear set of partial dif-
ferential equations that are effectively solved by exploiting the rich structure of the
resulting variational formulation. Existence of solutions, a priori error estimates and
convergence of finite element approximations are thoroughly examined. Numerical
experiments exhibited confirms the predictions of the theory. From the simulations, it
appears that the alternating direction method of multiplier (ADMM) and the primal-
dual active set method (PDAS) are the best numerical approximation methods, but
this need to be demonstrated mathematically and it is object of a future research.
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