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In this paper, we present Galerkin least squares (GLS) methods allowing the use of equal order approximation for both the velocity and pressure modeling the Stokes equations under Tresca's boundary condition.We propose and analyse two finite element discretizations.Firstly, we construct the unique weak solution for each problem by using the method of regularization combined with monotone theory operators and compactness properties.Secondly, we study the convergence of the finite element approximation by estimating the a priori error.Thirdly, for the computation of the finite element solution, we formulate three algorithms namely; projection like algorithm couple with Uzawa iteration, the alternative direction method of multiplier and a active set strategy. Finally some numerical experiments are performed to confirm the theoretical findings and the efficiency of the schemes formulated.

Introduction

The objective in this work is to design finite element procedures that permit the use equal polynomial approximations for calculating the velocity and pressure for Stokes equations under nonlinear slip boundary condition of friction type. It is well documented (see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF][START_REF] Boffi | Mixed Finite Element Methods and Applications[END_REF]) that the couple velocity-pressure for such problem comes with the so-called "inf-sup" condition which restricts the choice of finite elements spaces that one may used. The numerical analysis of flow with non-classical boundary conditions has been the subject of intensive scrutiny these last years. One of the main reasons for this surge interest in our view is the fact that for applied mathematicians and numerical analysts, flows with such boundary conditions have always been a permanent source of challenging theoretical and computational questions. Given the boundary condition (2.5), it is well documented that the weak formulation associated to the problem is a variational inequality for which one of the early reference in the mathematical analysis is the book due to ). The two pillars of the solution methodology that we are going to describe are; (i) Galerkin least squares (GLS) formulation in an appropriate Hilbert space (ii) mixed method approximation with equal approximation order for both the velocity and pressure reminiscent of the one used in [START_REF] Franca | Error analysis of some galerkin least squares methods for the elasticity equations[END_REF][START_REF] Bonvin | GLS and EVSS methods for a three field stokes problem arising from viscoelastic flows[END_REF]. In [START_REF] Ayadi | Error estimates for Stokes problem with tresca friction conditions[END_REF][START_REF] Kashiwabara | On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type[END_REF][START_REF] Li | Penalty finite element method for Navier-Stokes equations with nonlinear slip boundary conditions[END_REF][START_REF] Li | Penalty finite element method for Stokes problem with nonlinear slip boundary conditions[END_REF], just to cite a few, error estimates of Stokes under Tresca's boundary condition are studied with the velocity and pressure being inf-sup stable. In this work, because we want to use equal order approximations for the velocity and pressure, a sort of compensation is needed to bypass the inf-sup condition. For that purpose, we select the GLS approach, but we observe that many others techniques are possible and the readers interested in stabilization techniques can consult the excellent research due by Brezzi-Fortin [START_REF] Brezzi | A minimal stabilisation procedure for mixed finite element methods[END_REF] where many stabilisations schemes are formulated and analysed. The GLS method has been introduced in the early 80's when T. J. R. Hughes and co-workers realized the lack of stability and formulated new methods for advectiondominated diffusion problems and for incompressible flows in [START_REF] Franca | Convergence analyses of Galerkin least squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier Stokes equations[END_REF][START_REF] Douglas | An absolutely stabilized finite element method for the Stokes problem[END_REF][START_REF] Brooks | Streamline upwind/Petrov-Galerkin methods for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Franca | Stabilized finite element methods: II. The incompressible Navier-Stokes equations[END_REF][START_REF] Franca | Stabilized finte element methods: I. application to the advective-diffusive model[END_REF][START_REF] Hughes | A new finite element formulation for computational uid dynamics: V. Circumventing the Babǔska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equalorder interpolations[END_REF][START_REF] Hughes | A new nite element formulation for computational uid dynamics: VII. The Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces[END_REF], and later extended to compressible flows, [START_REF] Hughes | A new finite element formulation for computational uid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics[END_REF][START_REF] Hughes | A new finite element formulation for computational uid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations[END_REF]. Stokes or Navier Stokes equations with Tresca's boundary condition has been considered with pressure stabilization in [START_REF] Qiu | Low-order stabilized finite element methods for the unsteady Stokes/Navier-Stokes equations with friction boundary conditions[END_REF][START_REF] Li | Semi-discrete stabilized finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure[END_REF][START_REF] Li | A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis[END_REF][START_REF] Li | Pressure projection stabilized finite element method for NavierStokes equations with nonlinear slip boundary conditions[END_REF][START_REF] Jing | Analysis of an aposteriori error estimator for a variational inequality governed by Stokes equations[END_REF], but in our knowledge similar study with GLS stabilization has not yet been considered and it is the object of this work. Thus our challenge is to analyse how the added terms will affect the stability, convergence, and the actual computation. The GLS formulation correspond to this modified formulation in which the solution of the continuous problem is unchanged under some regularity assumptions, but the approximate solution is very different. The thinking behind the use of a "perturbed" formulation is that the discrete approximation has a better behavior with respect to stability issues and sometimes convergence. It should be made clear that the GLS method is an over-stabilization strategy following the terminology in [START_REF] Brezzi | A minimal stabilisation procedure for mixed finite element methods[END_REF], but it has the advantage that it does not change the symmetry/unsymmetry structure of the system.Two GLS methods are formulated in this work.The first one corresponds to the situation where all possible stabilization terms are added in a least squares manner, following the presentation in [START_REF] Franca | Error analysis of some galerkin least squares methods for the elasticity equations[END_REF], while the second GLS approach is "reduced method" because only selected terms are added to the original variational formulation. This method has been introduced and analysed in [START_REF] Hughes | A new nite element formulation for computational uid dynamics: VII. The Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces[END_REF]. It is clear that from the point of view of computation, the second strategy is better because its has less terms, but the new formulation obtained has changed the structure symmetry/unsymmetry nature of the original system. In this work, the GLS are introduced within the context of finite element discretizations in a polygonal domain. We formulate two stabilize methods and show existence and uniqueness of finite element approximation without restriction on the data by putting together; regularization-monotone-compactness method. Also, on the theoretical front, we study convergence of the finite element solution by deriving a priori error estimates. It is then clear (see Theorem 5.1) that the error is dominated by the interpolation error on the friction zone. This is a classical result for variational inequalities of second kind (see [START_REF] Ayadi | Error estimates for Stokes problem with tresca friction conditions[END_REF][START_REF] Kashiwabara | On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type[END_REF][START_REF] Li | Penalty finite element method for Navier-Stokes equations with nonlinear slip boundary conditions[END_REF][START_REF] Li | Penalty finite element method for Stokes problem with nonlinear slip boundary conditions[END_REF][START_REF] Li | Pressure projection stabilized finite element method for NavierStokes equations with nonlinear slip boundary conditions[END_REF][START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF]). Thus one can say that the added terms do not increase the convergence rate, but instead we have bypass the inf-sup condition usually observed in the Stokes problem. At this juncture it is worth noting that even though the analyses are carried out for 2d, the extension to 3d should not be a problem. Having in mind theorem 5.1, it appears in particular that if piecewise linear approximations are used for both the velocity and pressure then optimal (sub-optimal) a priori error estimates for both GLS schemes are obtained depending on the regularity of the solution of the continuous problem on the friction zone. Next since we have a nonlinear system of equations, one can solve it with iterative/incremental methods. We formulate three iterative schemes namely; the projection like algorithm, the alternating direction method of multiplier, and the primal dual active set algorithm. It is worth mentioning that the formulation of both the projection like algorithm and the alternating direction method of multiplier borrow a lot from the presentation in [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF][START_REF] Glowinski | Finite element methods for incompressible viscous flow[END_REF], while the active set strategy emanate from [START_REF] Voglis | BOXCQP: A algorithm for bound constrained convex quadratic problems[END_REF]. The projection like method is based on the introduction of a new variable which permit to eliminate the inequality at the expense of adding a new equation.The alternative direction method of multiplier and active set strategy are based on the introduction of functional for which the characterization of the saddle point is crucial. The iterative schemes discussed in this work make use of Lagrange multipliers with the common goal of "softening" the difficulties by introducing new unknowns. The convergence analysis of the projection like algorithm and the alternating direction of multipliers formulated can be done following the techniques presented in [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF][START_REF] Glowinski | Finite element methods for incompressible viscous flow[END_REF], while the convergence analysis of the active set strategy can be done by following [START_REF] Djoko | Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation[END_REF][START_REF] Haslinger | An algorithm for the numerical realization of 3D contact problems with Coulomb friction[END_REF]. The rest of the paper is organized as follows:

• Section 2 is concerned with the governing equations and the continuous weak formulation.

• Section 3 is devoted to the formulation of GLS methods.

• Section 4 is devoted to the existence theory of the GLS methods formulated within the context of element approximations.

• Section 5 is about the error analysis together with convergence of GLS methods when the discretization parameter h tends to zero.

• Section 6 and Section 7 are devoted to the formulation of iterative schemes.

• Section 8 is concerned with the validation via numerical simulations of the theoretical findings and some conclusions are drawn in the last paragraph.

Governing equations and variational formulation

Let Ω ⊂ R 2 be an open bounded set with boundary ∂Ω assume to be regular enough.

We consider the steady incompressible Stokes equations modeled by the equations

-2µ div ε(u) + ∇p = f in Ω, (2.1 
)

div u = 0 in Ω , (2.2) 
where u = (u 1 , u 2 ) is the velocity, pressure p(x) and f (x) is the external body force applied to the fluid, while µ is the kinematic viscosity and 2ε(u) = ∇u + (∇u) T is the symmetric of the velocity gradient. These equations are complemented by boundary conditions. For that purpose, we assume that ∂Ω is made of two components S and Γ, such that ∂Ω = S ∪ Γ, with S ∩ Γ = ∅. We assume the homogeneous Dirichlet condition on Γ, that is

u = 0 on Γ . (2.3) 
On the other part of the boundary S, the velocity is decomposed following its normal and tangential part; that is

u = u n + u τ = (u • n)n + (u • τ )τ ,
where n is the normal outward unit vector to S and τ is the tangent vector orthogonal to n. We assume the impermeability condition u • n = 0 on S .

(2.4)

The force within the fluid is the Cauchy stress tensor T given by the relation

T = 2µε(u) -pI on Ω ,
I being the identity tensor. Just like the velocity, the traction T n on S is decomposed following its normal and tangential part; that is

T n = (T n • n)n + (T n • τ )τ = (-p + 2µn • D(u)n)n + 2µ(τ • D(u)n)τ = (T n) n + (T n) τ .
Let g : S -→ [0, ∞) be a non-negative function called threshold slip or barrier function.

The nonlinear slip boundary condition we consider in this work was presented in C. Leroux [START_REF] Leroux | Steady Stokes flows with threshold slip boundary conditions[END_REF] and reads as follows:

|(T n) τ | ≤ g ⇒ u τ = 0, |(T n) τ | > g ⇒ u τ = 0 , -(T n) τ = g u τ |u τ |    on S , (2.5) 
where |v| 2 = v • v is the Euclidean norm. At this point it is important to note that the motion of a fluid under nonlinear slip boundary condition had been formulated first by H. Fujita [START_REF] Fujita | A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions[END_REF][START_REF] Fujita | Non-stationary Stokes flows under leak boundary conditions of friction type[END_REF], in which slip occurs if

|(T n) τ | = g and no slip if |(T n) τ | < g.
For the mathematical setting of the problem, some notations need to be introduced and we refer to [START_REF] Temam | Navier-Stokes equations: Theory and Numerical Analysis[END_REF][START_REF] Brezis | Functional Analysis, Sobolev Spaces and partial differential equations[END_REF]. We use standard notation on Lebesgue and Sobolev spaces, (•, •) denotes the L 2 scalar product, and • the L 2 -norm. Having in mind the definition of the sub-differential, (2.5) reduces to for all vector v , g|v τ | -

g|u τ | ≥ -(T n) τ • (v τ -u τ ) on S . (2.6) 
In order to introduce the functions spaces for the analysis of the boundary value (2.1)...(2.5), we assume once and for all that g ∈ L ∞ (S) and f ∈ L 2 (Ω) 2 . Next, we take in a naive way the dot product between the equation (2.1) and u and integrate the resulting equation over Ω. After utilization of the Green's formula and boundary conditions we arrived at 2µ

Ω |ε(u)| 2 dx + S g|u τ |dσ - Ω p div udx = Ω f • udx , (2.7) 
with dσ being the surface measure associated to S. From (2.7), we introduce the following functions spaces

V = {u ∈ H 1 (Ω) 2 , u| Γ = 0 , u • n| S = 0}, M = L 2 0 (Ω) = q ∈ L 2 (Ω) with Ω q dx = 0 .
With the spaces V and M , one can introduce the weak formulation of the boundary value (2.1),..., (2.5) . We thus multiply (2.2) by q ∈ L 2 (Ω) and integrate over Ω. Next, we take the dot product between (2.1) and vu with v ∈ V, integrate the resulting equation over Ω, apply Green's formula and the boundary conditions (2.3), (2.4) and (2.5). We obtain the following variational problem:

Find (u, p) ∈ V × M such that for all (v, q) ∈ V × M , a(u, v -u) -b(v -u, p) + j(v) -j(u) ≥ (v -u) , b(u, q) = 0 (2.8) with a(u, v) = 2µ Ω ε(u) : ε(v)dx , b(v, q) = Ω q div vdx, (2.9) 
j(v) = S g|v τ | dσ , (v) = Ω f • vdx , with A : B = 1≤i,j≤d A ij B ij .
It is worth recalling that the existence of solutions of (2.8) is well established in the literature (see [START_REF] Brezzi | Error estimates for finite element solution of variational inequalities, part II. mixed methods[END_REF]). One needs in particular the following inf-sup condition to hold: there exists c such that

c q ≤ sup 0 =v∈V b(v, q) v 1
for all q ∈ M .

(2.10)

In fact (2.10) is obtained by observing that H 1 0 (Ω) 2 ⊂ V and the pair (H 1 0 (Ω) 2 , M ) is inf-sup stable (see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF][START_REF] Boffi | Mixed Finite Element Methods and Applications[END_REF]), hence there exists γ such that for all q ∈ M , sup

0 =v∈V b(v, q) v 1 ≥ sup 0 =v∈H 1 0 (Ω) 2 b(v, q) v 1 ≥ γ q .
From the numerical point of view, (2.10) should also be satisfied in the finite element subspaces and choosing equal order approximations for u and p, does not lead to a stable scheme. The GLS is exactly designed to avoid the condition (2.10) by adding extra terms to the variational formulation. We discuss next the stabilization procedures for the utilization of equal order approximations for the velocity and pressure within the finite element context.

3 Galerkin Least squares methods

First stabilized approach

From now on, we assume that Ω is a polygon so that it can be triangulated by triangles. Let T h be a family of conforming triangulations of Ω,

Ω = 1≤i≤M K i .
We assume that the family T h is regular (also called non-degenerated) in the sense of Ciarlet; there exists a constant σ, independent of h and K, such that

for all K ∈ T h , h K ρ K = σ K ≤ σ,
where h K is the diameter of K and ρ K is the diameter of the circle inscribed in K.

As standard, h stands for the maximum of the diameters of the elements of T h . The mesh T h is said to be uniformly regular or quasi-uniform in the sense of Ciarlet [START_REF] Ciarlet | Finite Element Method for Elliptic Problems[END_REF], if in there exists a constant τ > 0, independent of h and K, such that

for all K ∈ T h , τ h ≤ h K ≤ σρ K .
For each non-negative integer n and any K in T h , P l (K) is the space of restrictions to K of polynomials with two variables and total degree less than or equal to l. The velocity and pressure are approximated with continuous polynomials of order l ≥ 1, that is

V l h = {v h ∈ C(Ω) 2 ∩ V : for all K ∈ T h , v h | K ∈ P l (K) 2 } , M l h = {q h ∈ M ∩ C(Ω), for all K ∈ T h , q h | K ∈ P l (K)} . (3.1)
We recall that for the choice given in (3.1), the discrete version of (2.10) does not hold as pointed out in [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF][START_REF] Boffi | Mixed Finite Element Methods and Applications[END_REF]. Following [START_REF] Franca | Convergence analyses of Galerkin least squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier Stokes equations[END_REF], we introduce the augmented functional

J α (v, q) = 1 2 a(v, v) + j(v) -b(v, q) -(v) -α K∈T h h 2 K 2 K |2µ div ε(v) -∇q + f | 2 dx . (3.2)
The saddle point problem associated with J α (•, •) reads:

Find u, p ∈ V × M such that J α (u, q) ≤ J α (u, p) ≤ J α (v, q) for all v, q ∈ V × M . (3.3)
With the problem (3.3) in mind, the corresponding finite element problem reads as follows:

Find (u h , p h ) ∈ V l h × M l h such that for all (v, q) ∈ V l h × M l h , A(u h , v -u h ) + B(v -u h , p h ) + j(v) -j(u h ) ≥ 1 (v -u h ) , B(u h , q) -C(q, p h ) = 2 (q) , (3.4) 
with

A(u, v) = a(u, v) -α K h 2 K K 2µ div ε(u) • 2µ div ε(v)dx, B(v, q) = -b(v, q) + α K h 2 K K 2µ div ε(v) • ∇qdx C(p, q) = α K h 2 K K ∇p • ∇qdx , 1 (v) = (v) + α K h 2 K K f • 2µ div ε(v)dx , 2 (q) = -α K h 2 K K f • ∇qdx . (3.5) Remark 3.1 One notes that if (u, p) is the solution of (2.8) with u ∈ H 2 (Ω) and p ∈ H 1 (Ω) then (3.4) becomes a(u, v) -b(v, p) + j(v) -j(u) ≥ (v -u) , b(u, q) = 0 .

Second stabilized approach

One notes from (3.4) that the crucial term added that permits to avoid the compatibility condition between the velocity and the pressure is the expression C(p, q). The following formulation can be regarded as a reduced GLS (see [START_REF] Hughes | A new nite element formulation for computational uid dynamics: VII. The Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces[END_REF] ) because it has less stabilizing expressions. It reads as follows: find

(u h , p h ) ∈ V l h × M l h such that for all (v, q) ∈ V l h × M l h a(u h , v -u h ) -b(v -u h , p h ) + j(v) -j(u h ) ≥ (v -u h ) , B(u h , q) -C(q, p h ) = 2 (q) . (3.6) Remark 3.2 The second equation in fact is -b(u h , q) + α K∈T h K h 2 K (2µ div ε(u h ) -∇p h + f ) • ∇qdx = 0 . Thus if the solution (u, p) of (2.8) belong to H 2 (Ω) × H 1 (Ω), then (u, p) solves (3.6) regardless of q ∈ M l h .
Remark 3.3 (3.6) has less terms than (3.4), hence computationally, it is more attractive. (3.4) has the symmetry structure of the original system for any degree of approximation and can be re-written as optimization of a lower semi-continuous, and non-differentiable convex functional. Thus its belong to "convex analysis" for which one has a lot algorithms for its resolution. In conclusion, these two choices present some interesting aspects.

We study next the existence theory of problems (3.6) and (3.4).

Existence of solutions

In this section, we will address the solvability of both (3.4) and (3.6). In what follows, c is a positive constant that may vary from one line to the next but always independent of h. The following inverse inequality will be used throughout

K∈T h h 2 K div ε(v) 2 K ≤ c 2 I ε(v) 2 for all v ∈ V l h . (4.1)
We introduce the discrete-norm

||q|| 2 h = K∈T h h 2 K ∇q 2 K , for q ∈ M l h . (4.2)
The continuity requirement in M l h , together with the zero mean-value condition easily imply that this is a norm on M l h for which the following inverse inequality is valid: there exists c independent of h such that

||q|| h ≤ c q for all q ∈ M l h . (4.3) 
We claim that Proposition 4.1 There are positive constant c 1 , c 2 , c 3 independent of h such that for all (v, u, q, p)

∈ V l h × V l h × M l h × M l h A(u, v) ≤ c 1 u 1 v 1 , B(v, q) ≤ c 2 v 1 q , C(p, q) ≤ α p h q h ≤ c 3 p q ,
Let the stabilization parameter α such that α < (2µc 2 I ) -1 with c I given by (4.1). Then one can find a positive constant c 4 independent of h such that for all

v ∈ V l h A(v, v) ≥ c 4 v 2 1 .
Proof. Using Cauchy-Shwarz's inequality, Holder's inequality together with (4.1), we obtain

A(u, v) ≤ 2µ ε(u) ε(v) + 4µ 2 α K h 2 K div ε(v) 2 K 1/2 K h 2 K div ε(u) 2 K 1/2 ≤ 2µ ε(u) ε(v) + 4µ 2 αc ε(v) ε(u) ≤ (2µ + 4µ 2 αc) v 1 u 1 .
Next from Cauchy-Shwarz's inequality, Holder's inequality together with (4.3), we obtain

B(v, q) ≤ v 1 q + 2µα K h 2 K div ε(v) 2 1/2 K h 2 K ∇q 2 K 1/2 ≤ (1 + 2cµα) v 1 q .
Thirdly Cauchy-Shwarz's inequality, Holder's inequality together with (4.3), gives

C(p, q) ≤ α p h q h ≤ c 3 p q . Finally A(u, u) ≥ 2µ ε(u) 2 -4c 2 I µ 2 α ε(u) 2 ≥ 2µ(1 -2c 2 I µα) ε(u) 2 .
So, it suffice to take α such that α < (2µc 2 I ) -1 with c I given by (4.1) and apply Korn's inequality.

Remark 4.1 It is manifest that for piecewise linear approximation, we have coercivity of A(•, •) without restriction on the stability parameter α because div ε(u h ) = 0.

The next result is the a priori bounds of the solutions of (3.4). In fact we claim that Proposition 4.2 Let the stabilization parameter α such that α < (2µc 2 I ) -1 with c I given by (4.1). Let (u h , p h ) be the solution of (3.4). Assume that the mesh T h is quasi-uniform. Then, there is c independent of h such that

u h 2 1 + p h 2 h + p h 2 + j(u h ) ≤ c f 2 . Proof. recall that (u h , p h ) is solution of for all (v h , q h ) ∈ V l h × M l h , K(u h , p h ; v h -u h , q h ) + j(v h ) -j(u h ) ≥ 1 (v h -u h ) -2 (q h ) . (4.4) with K(u, p; v, q) = A(u, v) + B(v, p) -B(u, q) + C(p, q). Let H 1 0h
(Ω) 2 be the conforming finite element space approximating H 1 0 (Ω) 2 . We take

v h in (4.4) such that v h -u h = ±w h ∈ H 1 0h (Ω) 2 , combining the resulting equations, one obtains for all (w h , q h ) ∈ H 1 0h (Ω) 2 × M l h , K(u h , p h ; w h , q h ) = 1 (w h ) -2 (q h ) .
Next, from [START_REF] Franca | Error analysis of some galerkin least squares methods for the elasticity equations[END_REF] (see Lemma 3.2), there exists c independent of h such that

c u h 2 1 + p h 2 1/2 ≤ sup 0 =(w h ,q h )∈H l 0h (Ω) 2 ×M l h K(u h , p h ; w h , q h ) ( w h 2 1 + q h 2 ) 1/2 ≤ sup 0 =(w h ,q h )∈H l 0h (Ω) 2 ×M l h 1 (w h ) -2 (q h ) ( w h 2 1 + q h 2 ) 1/2 .
Using Cauchy-Schwarz's inequality,(4.1), (4.3) and the fact that T h is quasi-uniform, one gets

1 (w h ) -2 (q h ) ≤ f w h 1 + 2µαc I K h 2 K f 2 K 1/2 w h 1 + αc K h 2 K f 2 K 1/2 q h ≤c f w h 2 1 + q h 2 1/2 . Hence u h 2 1 + p h 2 ≤ c f 2 . (4.5)
Next, we take q h = p h , v h = 0 and v h = 2u h in (4.4) which yields

A(u h , u h ) + C(p h , p h ) + j(u h ) = 1 (u h ) -2 (p h ) .
Now applying proposition 4.1, Cauchy-Schwarz's inequality,(4.1), (4.3), Young's inequality and the fact that T h is quasi-uniform, one gets

u h 2 1 + p h 2 h + j(u h ) ≤ c f 2 , (4.6) 
which together with (4.5) leads to the asserted result.

The variational problem (3.4) is a mixed variational inequality of second kind. Its existence theory will be analysed by making use of; regularization, properties of monotone operator, a priori estimates and passage to the limit. We claim that Proposition 4.3 Assume that the mesh T h is quasi-uniform. The variational problem (3.4) admits only one solution

(u h , p h ) in V l h × M l h . Proof. It is done in three steps.
Step 1: Regularization. Note that the functional j is non differentiable at zero. Hence we introduce the parameter ε > 0, approaching zero and define the functional

j ε : V l h -→ R as follows j ε (v) = S g |v τ | 2 + ε 2 dσ.
One observes that lim ε→0

(j ε (v) -j(v)) = lim ε→0 ε 2 S g |v τ | 2 + ε 2 + |v τ | dσ = 0 .
The functional j ε is lower semi-continuous and twice Gateaux-differentiable with

Dj ε (u) • v = S g u τ • v τ |u τ | 2 + ε 2 dσ , D 2 j ε (u)(v, w) = S g (v τ • w τ )(|u τ | 2 + ε 2 ) -(u τ • w τ )(u τ • v τ ) (|u τ | 2 + ε 2 ) 3/2 dσ . (4.7) Note that D 2 j ε (u) is symmetric that is D 2 j ε (u)(v, w) = D 2 j ε (u)(w, v) for all v, w ,
and positive definite that is

D 2 j ε (u)(v, v) ≥ 0 for all v .
Also because j ε is convex and differentiable, then Dj ε is monotone that is

Dj ε (u) -Dj ε (v), u -v ≥ 0 for all v, u ∈ V . (4.8)
The regularized problem reads (with obvious notation)

Find (u ε , p ε ) ∈ V l h × M l h such that for all (v, q) ∈ V l h × M l h , A(u ε , v -u ε ) + B(v -u ε , p ε ) + j ε (v) -j ε (u ε ) ≥ 1 (v -u ε ) , B(u ε , q) -C(q, p ε ) = 2 (q) . (4.9)
Since j ε is differentiable, then (4.9) is equivalent to the variational problem (see [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] where similar examples are treated)

Find (u ε , p ε ) ∈ V l h × M l h such that for all (v, q) ∈ V l h × M l h , A(u ε , v) + B(v, p ε ) + Dj ε (u ε ) • v = 1 (v) , B(u ε , q) -C(q, p ε ) = 2 (q) , (4.10)
which is re-written as follows: 

Find (u ε , p ε ) ∈ V l h × M l h such that for all (v, q) ∈ V l h × M l h A(u ε , v) + B(v, p ε ) + Dj ε (u ε ), v -B(u ε , q) + C(q, p ε ) = 1 (v) -2 (q) . ( 4 
H(u, p); (v, q) = A(u, v) + B(v, p) + Dj ε (u), v -B(u, q) + C(q, p) .
Hence for the existence of solutions of (4.11) we need to show the following conditions (see [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF], Chap 2) (a) H is monotone, i.e for all u, v ∈ V l h × V l h , and p, q ∈ M l h × M l h H(u, p) -H(v, q); (u -v, p -q) ≥ 0 .

Indeed one has

H(u, p) -H(v, q); (u -v, p -q) =A(u -v, u -v) + Dj ε (u) -Dj ε (v), u -v + C(p -q, p -q)
which is non negative because of proposition 4.1, (4.8) and C(p, p) is non-negative.

(b)

H is coercive meaning that for all (v, q) ∈ V l h × M l h 1 ( v 2 1 + q 2 h ) 1/2 H(v, q); (v, q) → ∞ if ( v 2 1 + q 2 h ) 1/2 → ∞ .
Indeed from (4.8), α < (2µc 2 I ) -1 and using Korn's inequality

H(v, q); (v, q) = A(v, v) + C(q, q) + Dj ε (v), v ≥ 2µ(1 -2µαc 2 I ) ε(v) 2 + α q 2 h ≥ min 2µ(1 -2µαc 2 I ), α v 2 1 + q 2
h from which we deduce the coercivity of H.

(c)

H is hemi-continuous in V l h × M l h , i.e for u, v ∈ V l h × V l h , and p, q ∈ M l h × M l h the mapping t -→ H(u + tv, p + tq); (v, q) is continuous from R into R . Indeed H(u + t 1 v, p + t 1 q) -H(u + t 2 v, p + t 2 q); (v, q) =(t 1 -t 2 ) [A(v, v) + B(v, p) -B(v, q) + C(q, q)] + (Dj ε (u + t 1 v) -Dj ε (u + t 2 v)) v =(t 1 -t 2 ) A(v, v) + C(q, q) + B(v, p) -B(v, q) + 1 0 D 2 j ε (u + t 2 v -θ(t 2 -t 1 )v)(v, v)dθ ,
which tends to zero with t 1 -t 2 because u, v, p, q are fixed.

We then conclude partially that (4.11) has a solution (

u ε h , p ε h ) ∈ V l h ×M l h .
But because H is strictly monotone,then the solution (u ε h , p ε h ) is unique. In the next lines, we study the limit when ε approaches zero of (u ε h , p ε h ) solution of (4.11).

Step 2: a priori estimate and passage to the limit. The a priori estimate obtained in proposition 4.2 is valid due to the equivalence between (4.10) and (4.9). Hence

u ε h 2 1 + p ε h 2 + K∈T h h 2 K K |∇p ε h | 2 dx + j(u ε h ) ≤ c f 2 .
We deduce that the sequences (u ε h ) ε and (p ε h ) ε are respectively H 1 and L 2 bounded. Moreover one has

h 2 K ∇p ε h 2 K < K∈T h h 2 K K |∇p ε h | 2 dx ≤ c f 2 .
Since p ε h is continuous on the domain Ω one obtains

∇p ε h 2 = K∈T h ∇p ε h 2 K ≤ K∈T h c h 2 K f 2 < ∞ .
Hence we can find a subsequence, denoted also (

u ε h , p ε h ) ∈ V l h × M l h , such that u ε h → u h weakly in H 1 (Ω) p ε h → p h weakly in H 1 (Ω) . (4.12) 
One notes that the regularized problem (4.9) is re-written as follows

for all (v, q) ∈ V l h × M l h , A(u ε h , u ε h ) + B(u ε h , p ε h ) + j ε (u ε h ) ≤ A(u ε h , v) + B(v, p ε h ) + j ε (v) -1 (v -u ε h ) (4.13) B(u ε h , q) -C(q, p ε h ) = 2 (q) . (4.14)
The weak convergence properties in (4.12) allows one to pass to the limit in (4.14) and one obtains for all q ∈ M l h , B(u h , q) -C(q, p h ) = 2 (q) . (4.15)

Owing to the compactness of the imbedding of H 1 (Ω) into L 4 (Ω), there exits a subsequence, still denoted by (u ε h ), such that

u ε h → u h weakly in H 1 (Ω) and u ε h → u h strongly in L 4 (Ω) . (4.16)
For the right hand side of (4.13), one notes that j ε → j when ε → 0 together with (4.12) leads to

lim ε inf [A(u ε h , v) + B(v, p ε h ) + j ε (v) -1 (v -u ε h )] ≤A(u h , v) + B(v, p h ) + j(v) -1 (v -u h ) . (4.17)
For the left hand side of (4.13), the convergence properties (4.16), (4.12) and the fact that j ε → j when ε → 0 yield

A(u h , u h ) + B(u h , p h ) + j(u h ) ≤ lim ε inf [A(u ε h , u ε h ) + B(u ε h , p ε h ) + j ε (u ε h )] . (4.18)
Putting together (4.17) and (4.18) implies that

for all v ∈ V l h A(u h , u h -v) + B(u h -v, p h ) + j(u h ) -j(v) ≤ 1 (u h -v) . (4.19)
Whence the existence of solutions of (3.4) which is (4.15) and (4.19).

Having constructed the weak solution (u h , p h ) of (3.4), we now address its unique solvability.

Step 3: uniqueness. Let (u 1 , p 1 ) and (u 2 , p 2 ) be the solutions of (3.4). A classical algebraic manipulation reveal that

A(u 1 -u 2 , u 1 -u 2 ) -B(u 2 -u 1 , p 1 -p 2 ) ≤ 0 C(p 1 -p 2 , p 1 -p 2 ) + B(u 2 -u 1 , p 1 -p 2 ) = 0 .
We then deduce that

A(u 1 -u 2 , u 1 -u 2 ) + C(p 1 -p 2 , p 1 -p 2 ) ≤ 0 .
So by coercivity of A(•, •) one obtains

c 3 u 1 -u 2 2 1 + p 1 -p 2 2 h ≤ 0 which implies that u 1 = u 2 and p 1 -p 2 = c K in each element K of T h .
Having in mind that p 1 -p 2 is an element of M l h , hence continuous, it appears that c K = c, the same constant throughout. Next, knowing that Ω (p 1 -p 2 ) = 0, we deduce that c = 0 and p 1 = p 2 . Hence the solution is unique.

We now turn to the existence theory of (3.6) and claim that Proposition 4.4 Assume that the mesh T h is quasi-uniform. The variational problem (3.6) admits only one solution (u h , p h ) ∈ V l h × M l h and there is a positive constant c independent of h such that for α < (2µc 2 I ) -1

u h 2 1 + p h 2 h + p h 2 + j(u h ) ≤ c f 2 .
Proof. We start with the a priori estimate. We take v h = 0 and 2u h in (3.6), we compare the two inequalities and deduce that (with q = p h )

a(u h , u h ) -b(u h , p h ) + j(u h ) = (u h ) , -b(u h , p h ) + α K h 2 K K 2µ div ε(u h ) • ∇p h dx -α p h 2 h = -α K h 2 K K f • ∇p h dx .
Subtracting these equations one gets

2µ ε(u h ) 2 + α p h 2 h + j(u h ) =α K h 2 K K 2µ div ε(u h ) • ∇p h dx + (u h ) + α K h 2 K K f • ∇p h dx ≤2µα K h 2 K K | div ε(u h )| 2 dx 1/2 K h 2 K K |∇p h | 2 dx 1/2 + f u h +α K h 2 K K |f | 2 dx 1/2 K h 2 K K |∇p h | 2 dx 1/2 ≤2µαc I ε(u h ) p h h + c f ε(u h ) + αc f p h h .
We apply Young's inequality with α < (2µc 2 I ) -1 and αc I < γ 1 < (2µc I ) -1 and obtain

µ 1 - αc I γ 1 ε(u h ) 2 + α 1 2 -µc I γ 1 p h 2 h + j(u h ) ≤ c µ f 2 + αc f 2 .
The L 2 estimate on the pressure is obtained as in Proposition 4.2 and will be repeated here.

To proof the existence of solutions of (3.6), we follow the lines of the proof of proposition 4.3. The regularize problem associated with (3.6) reads:

Find (u ε , p ε ) ∈ V l h × M l h such that for all (v, q) ∈ V l h × M l h a(u ε , v -u ε ) + b(v -u ε , p ε ) + j ε (v) -j ε (u ε ) = (v -u ε ) , B(u ε , q) -C(q, p ε ) = 2 (q) , (4.20) 
from which we introduce the mapping (u, p) -→ K(u, p) such that

K(u, p); (v, q) = a(u, v) + b(v, p) + Dj ε (u), v -B(u, q) + C(q, p) .
We show that; K is monotone, coercive, and hemi-continuous. With the help of the a priori estimate obtained, we pass to the limit and one gets the existence of solutions. The unique solvability is obtained as in Step 3. 

A priori error estimates

The goal of the section is to establish the convergence by estimating the difference between the continuous solution (u, p) and the finite element solution (u h , p h ). We first claim that Theorem 5.1 Assume that the mesh T h is quasi-uniform. Let (u, p) ∈ V × M be the solution of (2.8). Let (u h , p h ) ∈ V l h × M l h the solution of (3.4). Let α be given such that α < (2µc 2 I ) -1 . Then there is a positive constant c independent of h such that for all

(v h , q h ) ∈ V l h × M l h u h -u 1 + p h -p h ≤ c g 1/2 L ∞ (S) v h,τ -u τ 1/2 L 2 (S) + c ( v h -u 1 + h v h -u 2 + q h -p + h ∇(q h -p) ) . Proof. Let (v h , q h ) in V l h × M l h , having in mind K(• , •) defined in (4.4
), then from proposition 4.1 there exists c independent of h such that

c u h -v h 2 1 + p h -q h 2 h ≤K(u h -v h , p h -q h ; u h -v h , p h -q h ) =K(u h -u, p h -q; u h -v h , p h -q h ) + K(u -v h , p -q h ; u h -v h , p h -q h ) (5.1)
We now estimate the first term on the right hand side of (5.1). We recall that (u, p)

satisfies for all (v, q) ∈ V × M , K(u, p; v -u, q) + j(v) -j(u) ≥ 1 (v -u) -2 (q) .
We take successively (v, q) = u h ,

1 2 p h - 1 2 q h , and (v, q) = 2u -v h , 1 2 p h - 1 2 q h ,
add the resulting equations and obtain

K(u, p; u h -v h , p h -q h )+j(u h )-2j(u)+j(2u-v h ) ≥ 1 (u h -v h )-2 (p h -q h ) . (5.2)
We consider (4.4) with q h replaced by -p h + q h , we add the resulting equation with (5.2) and obtain

K(u h -u, p h -p; u h -v h , p h -q h ) ≤ j(v h ) -j(u) + j(2u -v h ) -j(u) ≤ 2j(v h -u) .
(5.3) Returning to (5.1) with (5.3), one obtains

c u h -v h 2 1 + p h -q h 2 h ≤ 2j(v h -u) + K(u -v h , p -q h ; u h -v h , p h -q h ) ≤c g L ∞ (S) v h,τ -u τ L 2 (S) + c v h -u 2 1 + h 2 v h -u 2 2 + q h -p 2 + h 2 ∇(q h -p) 2 1/2 v h -u h 2 1 + q h -p h 2 h 1/2 ,
which by Young's inequality gives

u h -v h 2 1 + p h -q h 2 h ≤ c g L ∞ (S) v h,τ -u τ L 2 (S) + c v h -u 2 1 + ch 2 v h -u 2 2 + c q h -p 2 + ch 2 ∇(q h -p) 2 .
(5.4) The asserted result follows after application of the triangle's inequality.

Remark 5.1 It should be noted that the consistency argument has not been used in the proof of Theorem 5.1. For Stokes equations under Dirichlet boundary condition, GLS methods were formulated and analysed in [START_REF] Franca | Error analysis of some galerkin least squares methods for the elasticity equations[END_REF][START_REF] Bonvin | GLS and EVSS methods for a three field stokes problem arising from viscoelastic flows[END_REF], and convergence is obtained if consistency is required. Remark 5.2 If (u h , p h ) are approximated by piecewise linear functions, then for all values of α, the error estimate becomes

u h -u 1 + p h -p h ≤ c g 1/2 L ∞ (S) v h,τ -u τ 1/2 L 2 (S) + ch u 2 + c ( v h -u 1 + q h -p + h ∇(q h -p) ) .
Using the classical interpolation results (see [START_REF] Brenner | The Mathematical theory of finite element methods[END_REF] ), we have: [39, p.39] and 1 ≤ p ≤ ∞, there exists c such that

• If the solution is such that u| S ∈ H 2 (S) then u -u h 1 + p -p h h ≤ c h . • If the solution (u, p) ∈ H 2 (Ω) × H 1 (Ω), then from
v L p (∂Ω) ≤ c v 1-1/p L p (Ω) v 1/p W 1,p (Ω) , for all v ∈ W 1,p (Ω) . Hence u -u h 1 + p -p h h ≤ ch 3/4 .
Remark 5.3 Following to the line the proof of theorem 5.1, one can derive the error estimate for the reduced GLS approach (3.6).

Theorem 5.1 is concerned with the mesh dependent norm on the pressure and the question we answer next is to known whether it is possible to have a control on the pressure with the L 2 norm. For that purpose, we claim that Theorem 5.2 Assume that the mesh T h is quasi-uniform. Let (u, p) ∈ V × M be the solution of (2.8). Let (u h , p h ) ∈ V l h × M l h the solution of (3.4). Let α be given such that α < (2µc 2 I ) -1 . Then there is a positive constant c independent of h such that for all

(v h , q h ) ∈ V l h × M l h p h -p ≤ c g 1/2 L ∞ (S) v h,τ -u τ 1/2 L 2 (S) + c v h -u 1 + ch v h -u 2 + c q h -p +ch ∇(q h -p) + ch q h -p .

Proof.

We recall that (u, p) and (u h , p h ) satisfy for all (v,

v h ) ∈ V × V l h A(u, v -u) + B(v -u, p) + j(v) -j(u) ≥ 1 (v -u) A(u h , v h -u h ) + B(v h -u h , p h ) + j(v h ) -j(u h ) ≥ 1 (v h -u h ) . Let w ∈ H 1 0 (Ω) 2
, and H 1 0h (Ω) 2 the conforming finite element space approximating H 1 0 (Ω) 2 . We take vu = ±w and v h -u h = ±w h . Thus one obtains

A(u, w) + B(w, p) = 1 (w) A(u h , w h ) + B(w h , p h ) = 1 (w h ) , which implies that (w h ∈ H 1 0h (Ω) 2 ⊂ H 1 0 (Ω) 2 ) A(u h -u, w h ) = B(w h , p -p h )
which by linearity gives

B(w h , q h -p h ) = B(w h , q h -p) + A(u h -u, w h ) . (5.5) 
From [START_REF] Franca | Error analysis of some galerkin least squares methods for the elasticity equations[END_REF] (see Lemma 3.2), there exists c 1 , c 1 independent of h such that

c 1 p h -q h ≤c 2 p h -q h h + sup 0 =w h ∈H 1 0h (Ω) 2 (div w h , p h -q h ) w h 1
which together with (5.5), the definition of B(•, •), standard inequalities and (5.4) yields

p h -q h ≤c p h -q h h + c q h -p + ch q h -p + c u h -v h 1 + c v h -u 1 + ch v h -u 2 ≤c g 1/2 L ∞ (S) v h,τ -u τ 1/2 L 2 (S) + c v h -u 1 + ch v h -u 2 + c q h -p + ch ∇(q h -p) + ch q h -p .
The asserted result is obtained after application of the inequality of the triangle.

The next sections are concerned with the solution strategy for (3.4) and (3.6), and their numerical simulations. We assume that both the velocity and pressure are approximated by linear piece wise functions. Hence problem (3.4) and (3.6) coincide. The problem (3.4) is a mixed elliptic variational inequalities of second kind for which several approaches are available in the literature (see [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF][START_REF] Glowinski | Finite element methods for incompressible viscous flow[END_REF], or more recently [START_REF] Djoko | Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation[END_REF][START_REF] Djoko | Numerical methods for the Stokes and NavierStokes equations driven by threshold slip boundary conditions[END_REF]) for its resolution. But in this work we propose to solve it with the following strategies (i) Projection like method based on the introduction of a "kind " of multiplier Lagrange field.

(ii) Alternative direction method of multiplier associated with the augmented Lagrangian method based on the introduction of a new variable aiming to decouple the velocity u from its tangential part u τ , and a Lagrange multiplier field aiming to enforce the relation u τ -φ = 0.

(iii) Active set approach associated with the augmented Lagrangian method based on the introduction of Lagrange multipliers link to the constraints u • n = 0 and div u = 0.

6 Dual approximation methods

Projection-like algorithm

This approach relies on the equivalence between (3.4) and the following one: there exists a vector value λ ∈ Λ such that

             for all (v, q) ∈ V 1 h × M 1 h , a(u h , v) + b(v, p h ) + S gλ h • v τ = (v), b(u h , q) -C(q, p h ) = 2 (q) , u τ ,h • λ h = |u τ ,h | a.e. in S, (6.1) with 
Λ = {α|α ∈ L ∞ (S) , |α| ≤ 1 a.e. in S} .
At this step, it is worth noting that one of the difficulties in implementing (6.1) is to enforce the relation λ h • u τ ,h = |u τ ,h | a.e. in S. We provide next an equivalent characterization of that relation for a better derivation of iterative schemes. We claim that Lemma 6.1 [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF] Given that g is non-negative, the following problems are equivalent

(a) Find λ ∈ Λ such that λ • u τ = |u τ | a.e. in S, (b) Find λ ∈ Λ such that S gu τ • (µ -λ)dσ ≤ 0 for all µ ∈ Λ . (c) λ = P Λ (λ + γgu τ ) for all γ > 0 ,
with

P Λ : L 2 (S) -→ Λ , P Λ (α)(x) = α(x) max (1, |α(x)|)
.

Using Lemma 6.1, we formulate the following equivalent problem more suitable for the derivation of iterative methods

                 Find (u h , p h , λ h ) ∈ V 1 h × M 1 h × Λ such that , for all (v, q, ρ) ∈ V 1 h × M 1 h and all γ > 0 a(u h , v) + b(v, p h ) + S gλ • v τ = (v), b(u h , q) -C(q, p h ) = 2 (q) , λ h = P Λ (λ h + γgu τ ,h ) a.e. in S . (6.2) 
From (6.2), we consider the Algorithm 1 based on Uzawa iteration Remark 6.1 Proving the convergence of Algorithm 1 (for γ > 0 and sufficiently small) is a classical exercise and we refer the interested reader to [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF][START_REF] Glowinski | Finite element methods for incompressible viscous flow[END_REF]. Notes that the equations for GLS 2 and GLS 1 are identical when using piecewise linear elements since div ε(v) = 0.

Alternating Direction Method of Multiplier (ADMM)

With piece-wise linear polynomial approximation, i.e. with the finite element pair P 1 /P 1 , Lagrangian functional (3.2) can be simplified. Indeed, with P 1 finite element, the additional stabilization terms involving derivatives of order greater than one vanish and we obtain

J α (v, q) = 1 2 a(v, v) -(v) + j(v) -b(v, q) -C(q, q) -2 (q) . (6.6) 
To derive ADMM algorithm for the numerical approximation of (6.6), we introduce an auxiliary variable φ on S and we replace J α by the following augmented Lagrangian functional

L rα (v, q, φ, µ) = 1 2 a(v, v) -(v) + j(φ) -b(v, q) -C(q, q) -2 (q) + (µ, v τ ) S + r 2 φ -v τ 2 S .
(6.7)

Algorithm 1 : Uzawa iterative algorithm Initialization: Given λ 0 h = (0, 1) ∈ Λ, we compute (u 0 h , p 0 h ) such that

       for all (v, q) ∈ V h × M h , a(u 0 h , v) + b(v, p 0 h ) = (v) - S gλ 0 h • v τ , b(u 0 h , q) -C(q, p 0 h ) = 2 (q) . (6.3) 
Iteration k ≥ 0 By induction, knowing {u k h , p k h , λ k h } , we compute {u k+1 h , p k+1 h , λ k+1 h } iteratively as follows.

Step 1: For all (v, q)

∈ V 1 h × M 1 h , solve a(u k+1 h , v) + b(v, p k+1 h ) = (v) - S gλ k h • v τ dσ , b(u k+1 h , q) -C(q, p k+1 h ) = 2 (q) .
(6.4)

Step 2: For γ > 0, compute the Lagrange multiplier

λ k+1 h = P Λ (λ k h + γgu k+1 τ ,h ) . (6.5)
The idea is to separate the non-differentiable part of the problem (i.e. j) from the differentiable part and to use block relaxation scheme as follows (u k+1 , p p+1 ) = arg min v max q L rα (v, q, φ k , λ k ) , (6.8)

φ k+1 = arg min ψ L rα (u k+1 , p k+1 , ψ, λ k ) , (6.9) 
λ k+1 = λ k + r(φ k+1 -u k+1 τ ) . (6.10) Subproblem (6.8) is equivalent to the Stokes problem with tangential traction on S, i.e.

a r (u k+1 , v) -b(v, p k+1 ) = (v) + (rφ k -λ k , v τ ) S , ∀v (6.11) 
-b(u k+1 , q) -C(p k+1 , q) = 2 (q), ∀q (6.12)

where a r (u k+1 , v) = a(u k+1 , v) + r(u k+1 τ , v τ ) S .
Subproblem (6.9) can be solved analytically using Fenchel duality theory, and we get (see, e.g., [START_REF] Djoko | Numerical methods for the Stokes and NavierStokes equations driven by threshold slip boundary conditions[END_REF])

φ k+1 = 1 r max(0, λ k -rφ k -g) λ k -rφ k λ k -rφ k .
Gathering the results above, we obtain Algorithm 2. We iterate until the relative error in (u k , p k , φ k , λ k ) becomes sufficiently small. Algorithm 2 : Alternating Direction Method of Multiplier Initialization k = 0 (φ 0 , λ 0 ) and r > 0 are given. k ≥ 0 Compute successively (u k+1 , p k+1 ), φ k+1 and λ k+1 as follows.

Step 1. Find (u n+1 , p n+1 ) ∈ V × L 2 0 (Ω) such that for all (v, q) ∈ V × L 2 (Ω)

a(u n+1 , v) + r(u n+1 τ , v τ ) S -b(v, p n+1 ) = 1 (v) + (rφ k -λ k , v τ ) S , -b(u n+1 , q) -C(p k+1 , q) = 2 (q).
Step 2. Compute the auxiliary unknown

φ k+1 = 1 r max(0, λ k -rφ k -g) λ k -rφ k λ k -rφ k .
Step 3. Multiplier update λ k+1 = λ k + r(φ k+1 -u k+1 τ )

A Primal-Dual approximation method

As in the previous section, we consider only piecewise linear elements. The primal dual method we formulate in this section derives from the one proposed by [START_REF] Voglis | BOXCQP: A algorithm for bound constrained convex quadratic problems[END_REF]. Just like the ADMM method, this strategy is based on the introduction of a functional for which the saddle point plays a crucial role. We recall the basic steps, proceed to the algebraic formalism which leads to the formulation of the algorithm.

Active set strategy

We first regularize the non-differentiable term j(v) by using the equality (obtained using Fenchel duality)

inf v j(v) = inf v sup |λ|≤g (λ, v τ ) S .
Let us introduce the set of admissible Lagrange multiplier

Λ g = λ ∈ L 2 (S) | |λ| ≤ g
and the new Lagrangian functional

L α (v, q, µ) = J(v) -b(v, q) + (v τ , µ) S - K∈T h α h 2 K 2 K |2µ div ε(v) -∇q -f | 2 dx.
The saddle-point problem becomes

Find (u, p, λ) ∈ V 1 h × M 1 h × Λ g such that L α (u, q, µ) ≤ L α (u, p, λ) ≤ L α (v, q, µ), ∀(v, q, µ) ∈ V 1 h × M 1 h × Λ g (7.1)
Our aim is to design a primal-dual active set strategy for the numerical approximation of (7.1). Our primal-dual active set strategy derives from [START_REF] Voglis | BOXCQP: A algorithm for bound constrained convex quadratic problems[END_REF] and based on the following facts:

• If |λ| < g then u τ = 0. We can therefore eliminate the corresponding nodal values of u τ (and λ) from the global system. • If |λ| = g, then the multiplier is known and acts as a tangential traction.

Algebraic formulation

We need the algebraic formulation for the active set strategy. We use the same discrete formulation as in [START_REF] Haslinger | An algorithm for the numerical realization of 3D contact problems with Coulomb friction[END_REF]. Assuming that u ∈ R dn is the unknown vector of nodal values of the velocity fields on Ω h , p ∈ R n the unknown vector of nodal values of the pressure and λ ∈ R m the multiplier vector, we introduce the following matrices and vectors:

• A the stiffness matrix (dn × dn symmetric positive definite), C the pressure stiffness matrix (n × n symmetric positive semi-definite); • B the divergence matrix, n × dn.

• f , the volume forces (vector of R dn ),

• T, the tangential matrix on S, i.e. Tu = u τ , • M, the mass matrix on S, • g , the vector of slip threshold.

The discrete formulation of the Lagrangian functional (6.6) is therefore

L α (v, q, µ) = 1 2 v Av -f + µ Mv -q Bv -αq Cq -q Bf . (7.
2)

The (tangential) Lagrange multiplier is such that µ = (µ 1 , . . . , µ m ) in two-dimensional problems, and µ = ((µ 1,1 , µ 1,2 ), . . . , (µ m,1 , µ m,2 )) for three-dimensional problems. Then

|µ| = (|µ 1 |, . . . , |µ m |) for 2D problems |µ| = ((µ 2 1,1 + µ 2 1,2 ) 1/2 , . . . , (µ 2 m,1 + µ 2 m,2 ) 1/2 ) for 3D problems
Then writing |µ ≤ g means |µ i | ≤ g i in 2D, or (µ 2 i,1 + µ 2 i,2 ) 1/2 ≤ g in 3D. Gathering the notations above, our primal dual active set method is described in Algorithm 3.

Numerical experiments

We now study the numerical behavior of the algorithms described in the previous sections. We have implemented Algorithms 1,2 and 3 in MATLAB (R2018a), using vectorized assembling functions and the mesh generator provided in [START_REF] Koko | A MATLAB mesh generator for the two-dimensional finite element method[END_REF][START_REF] Koko | Fast MATLAB assembly of FEM matrices in 2D and 3D using cell array approach[END_REF], on a computer running Linux (Ubuntu 16.04) with 3.00GHz clock frequency and 32GB RAM. The test problem used is designed in order to illustrate the numerical behavior of the algorithms more than to model actual Stokes flow problems.

Driven cavity problem

We consider a classical driven cavity example with stick/slip boundary conditions (see e.g. [START_REF] Djoko | Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation[END_REF][START_REF] Djoko | Finite element analysis of the stationary power law Stokes equations driven by friction boundary conditions[END_REF]). We set Ω = (0, 1) 2 and we assume that its boundary consists of two portions Γ D and S defined as follows

Γ D = {0} × (0, 1) ∪ (0, 1) × {0} S = S 1 ∪ S 2 , S 1 = (0, 1) × {1}, S 2 = {1} × (0, 1).
Algorithm 3 : First primal dual active set method Initialization (u 0 , p 0 , λ 0 ) given, set k = 0.

Step

1. Set I k = {i; |λ k i | < g i }, A k = {i; |λ k i | ≥ g i } Step 2. Set λ k+1 i = g i λ k i /|λ k i | for i ∈ A k Step 3. Compute (u k+1 , p k+1 ) with u k+1 τ = 0 on I k such that Au k+1 -B p k+1 = f -T Mλ k+1 , (7.3) 
Bu k+1 -αCp k+1 = Bf (7.4)

Step 4. Compute λ k+1 on I k as a reaction of u k+1 τ = 0, i.e.

λ k+1 = M -1 (f -Au k+1 + B p k+1 )
Step 5. Stop if the relative error on (u k+1 , p k+1 , λ k+1 ) becomes sufficiently small and A k+1 = A k , else set k = k + 1 and got to Step 1.

The right-hand side f = -2µ div ε(u) + ∇p where µ = 0.1 and (u, p) is

u 1 (x, y) = -x 2 y(x -1)(3y -2), (8.1) 
u 2 (x, y) = xy 2 (y -1)(3x -2), (8.2) 
p(x, y) = (2x -1)(2y -1). (8.3)

Note that (8.1)-(8.3) do not solve (2.1). In [START_REF] Djoko | Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation[END_REF], it is shown that

(T n) τ = -4µx 2 (x -1) 1 0 , on S 1 (T n) τ = -4µy 2 (y -1) 0 -1 on S 2 For µ = 0.1, a direct calculation reveal that max S |(T n) τ | = 4µ max x∈S1 x 2 (x -1) = 4µ max x∈S2 y 2 (y -1) = 0.059 . Then it follows that if max S |(T n) τ | < g, no slip occurs on S and u τ | S = 0. If max S |(T n) τ | > g
a non-trivial slip occurs (see [START_REF] Leroux | Steady Stokes flows with threshold slip boundary conditions[END_REF]).

At this stage it should be made clear that the friction law we consider differ from the classical one where by slip occurs if max [START_REF] Ayadi | Error estimates for Stokes problem with tresca friction conditions[END_REF][START_REF] Kashiwabara | On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type[END_REF][START_REF] Li | Penalty finite element method for Navier-Stokes equations with nonlinear slip boundary conditions[END_REF] just to cite a few). Figure 1 shows the streamlines obtained, using Algorithm 3, with two values of the slip bound g. We can notice that for g = 0.025 < max 

S |(T n) τ | = g and no slip if max S |(T n) τ | < g (see

Convergence

We evaluate the convergence rate of the GLS FEM by calculating the error between approximate solution and the exact solution. Since we do not know the exact solution explicitly, we use an approximate solution on a finer mesh as the reference solution.

The convergence errors are computed as follows 

e h (u) = u h -u * L 2

Algorithms comparison

We report in Tables 1-2 the performances of Algorithms 1-3 on the driven cavity problem. We first notice the poor convergence properties of the Uzawa iteration Algorithm 1, especially for the slip case. For the largest problem, Uzawa iteration requires almost 10 times more CPU times than Algorithm 2, and 50 times more iterations than Algorithm 3. In terms of number of iterations required for convergence, the primal dual Algorithm 3 has the best property. Because for the solely sticking case, the convergence is reached after only two iterations. In this case, the problem is equivalent to the standard Stokes problem with Dirichlet boundary conditions. The algorithm proposed needs only two iterations to confirm that the active set is empty. For the slip case (g = 0.025) the number of iterations required for convergence is asymptotically bounded. In terms of CPU time, Algorithm 2 outperforms the primal dual active set strategy, even with a higher number of iterations. This is due to the fact that in Algorithm 2, the matrix is constant during the iterative process. A factorization can be performed once and for all in the initialization step. The solution of the linear systems during the iterative process is then reduced to backward-forward substitutions. 

Uzawa

Conclusion

We studied theoretically and numerically the GLS methods for the numerical approximation of the Stokes equations under Tresca's boundary condition allowing the use of equal order approximation for both the velocity and pressure. The GLS for Stokes flows with Tresca's boundary condition leads to a nonlinear set of partial differential equations that are effectively solved by exploiting the rich structure of the resulting variational formulation. Existence of solutions, a priori error estimates and convergence of finite element approximations are thoroughly examined. Numerical experiments exhibited confirms the predictions of the theory. From the simulations, it appears that the alternating direction method of multiplier (ADMM) and the primaldual active set method (PDAS) are the best numerical approximation methods, but this need to be demonstrated mathematically and it is object of a future research.

Remark 4 . 2

 42 For l ≥ 2, (3.4) and(3.6) are stable only for some values of α (see proposition 4.1 and proposition 4.4). But if l = 1, then these schemes are the same and stable for all values of α.

S

  |(T n) τ |a non-trivial slip occurs, while for g = 0.75 > max S |(T n) τ | the solution is such that u τ = 0. Figure2shows the tangential component of the velocity on S.

Figure 1 :Figure 2 :

 12 Figure 1: Streamlines for the driven cavity; (a): g = 0.025, (b): g = 0.075

  e h (u, p) = u h -u * H 1 + p h -p * L 2where (u * , p * ) is the reference solution obtained on a mesh with h = 1/1024. The convergence rates of the GLS finite element plotted in Figure3. For the stick case (g = 0.075) the convergence rates are better than expected and correspond to convergence rate of the GLS stabilization for the standard Stokes equation. For the slip case (g = 0.025) the convergence rate is in line with the expected value (Remark 5.2 ) since , from (8.1)-(8.2), u| S ∈ H 2 (S).

Figure 3 :

 3 Figure 3: Convergence errors e h (u) and e h (u, p) and estimation of the convergence rates; left: g = 0.025, right: g = 0.075

Table 1 :

 1 Performances of Algorithms 2 and 3 on the driven cavity for g = 0.025

				ADMM	PDAS 1
	h	Iter.	CPU	Iter. CPU Iter. CPU
	1/16	595	0.583	59	0.056	5	0.042
	1/32	513	2.341	58	0.236	7	0.185
	1/64	512	12.843	58	1.379	8	0.992
	1/128 513	83.106	58	5.379	10	7.963
	1/256 515 465.077	58	50.050	13	67.176
		Uzawa	ADMM	PDAS 1
	h	Iter. CPU Iter. CPU Iter. CPU
	1/16	418	0.089	27	0.026	2	0.069
	1/32	369	0.365	16	0.065	2	0.052
	1/64	361	1.592	9	0.213	2	0.235
	1/128 360	9.096	9	1.139	2	1.434
	1/256 359 58.542	9	7.760	2	13.088

Table 2 :

 2 Performances of Algorithms 2 and 3 on the driven cavity for g = 0.075