Chiral emission induced by optical Zeeman effect in polariton micropillars - Archive ouverte HAL
Journal Articles Physical Review Research Year : 2021

Chiral emission induced by optical Zeeman effect in polariton micropillars

Abstract

The low sensitivity of photons to external magnetic fields is one of the major challenges for the engineering of photonic lattices with broken time-reversal symmetry. Here we show that time-reversal symmetry can be broken for microcavity polaritons in the absence of any external magnetic field thanks to polarization dependent polariton interactions. Circularly polarized excitation of carriers in a micropillar induces a Zeeman-like energy splitting between polaritons of opposite polarizations. In combination with optical spin-orbit coupling inherent to semiconductor microstructures, the interaction induced Zeeman splitting results in emission of vortical beams with a well-defined chirality. Our experimental findings can be extended to lattices of coupled micropillars opening the possibility of controling optically the topological properties of polariton Chern insulators.

Dates and versions

hal-03318467 , version 1 (10-08-2021)

Identifiers

Cite

B. Real, N. Carlon Zambon, P. St-Jean, I. Sagnes, A. Lemaître, et al.. Chiral emission induced by optical Zeeman effect in polariton micropillars. Physical Review Research, 2021, 3 (4), pp.043161. ⟨10.1103/PhysRevResearch.3.043161⟩. ⟨hal-03318467⟩
22 View
0 Download

Altmetric

Share

More