
HAL Id: hal-03318412
https://hal.science/hal-03318412

Submitted on 9 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipe-lining dynamic programming processes to
synchronize both the production and the consumption of

energy
Fatiha Bendali, Eloise Mole Kamga, Jean Mailfert, Alain Quilliot, Hélène

Toussaint

To cite this version:
Fatiha Bendali, Eloise Mole Kamga, Jean Mailfert, Alain Quilliot, Hélène Toussaint. Pipe-lining
dynamic programming processes to synchronize both the production and the consumption of energy.
RAIRO - Operations Research, 2021, 55 (4), pp.2359-2383. �10.1051/ro/2021094�. �hal-03318412�

https://hal.science/hal-03318412
https://hal.archives-ouvertes.fr


RAIRO-Oper. Res. 55 (2021) 2359–2383 RAIRO Operations Research
https://doi.org/10.1051/ro/2021094 www.rairo-ro.org

PIPE-LINING DYNAMIC PROGRAMMING PROCESSES TO SYNCHRONIZE
BOTH THE PRODUCTION AND THE CONSUMPTION OF ENERGY

Fatiha Bendali, Eloise Mole Kamga, Jean Mailfert, Alain Quilliot∗

and Hélène Toussaint

Abstract. Synchronizing heterogeneous processes remains a difficult issue in Scheduling area. Related
ILP models are in trouble, because of large gaps induced by rational relaxation. We choose here to
deal with it while emulating the interactions which take place between the various players of such
heterogeneous processes, and propose a pipe-line decomposition of a dynamic programming process
designed in order to schedule energy production and energy consumption

Mathematics Subject Classification. 90-08, 90C39.

Received September 30, 2020. Accepted June 17, 2021.

1. Context and state of the art

Efficiently synchronizing heterogeneous processes remains a difficult issue when it comes to scheduling and
routing (see [13,17]). It arises for instance in the management of vehicle sharing systems, of drones and trucks in
the context of urban logistics, and of industrial assembly processes. Integer Linear Programming (ILP) models
are flawed by large gaps induced by the relaxation of the integrality constraint (the Big M problem). By the
same way, designing ad hoc Branch and Bound schemes is difficult because of the lack of efficient bounding
scheme. Besides, synchronization requirements increase the impact of uncertainty and put robustness at stake,
making the efficiency of global heuristics difficult to check. A way to address those issues is to introduce flexibility
and modularity in the design of algorithms and rely on ad hoc decomposition schemes in order to emulate the
interaction mechanisms which allow distinct players to run a complex process in a decentralized way.

This synchronization issue tends to become a crucial one when it comes to energy management: The emergence
of renewable energies (Photovoltaic, Wind, Hydrogen, . . . ) also means the emergence of local in situ producers
which are at the same time consumers: factories, farms and even individual householders. Due to both market
deregulation and emergent technologies, (see [1, 5, 6, 14]) this trend is forecast to have a major impact on
Energy Economics. Key energy players are currently paying attention to it. A good example is provided by the
activities of Labex IMOBS3 program in Clermont-Fd, France, devoted to Innovative Mobility. In the context
of this project, we are currently involved into the control of a micro-plant for hydrogen production, which feeds
autonomous vehicles with hydrogen fuel. But, while most hydrogen production is usually performed through
power costly electrolysis processes, researchers rely here on solar power and photolysis [7,18,25], which make the

Keywords. Scheduling, dynamic programming, energy management.

LIMOS CNRS 6158, Labex IMOBS3, Clermont-Ferrand, France.
∗Corresponding author: alain.quilliot@isima.fr

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021094
https://www.rairo-ro.org
mailto:alain.quilliot@isima.fr
https://creativecommons.org/licenses/by/4.0


2360 F. BENDALI ET AL.

productivity of the process deeply depend on the intensity of solar illumination. According to this paradigm, the
energy production/consumption process becomes endogenous, and performed according to a closed loop which
requires high synchronization.

Few works have been addressing this specific issue of simultaneously managing energy production and con-
sumption (see [1,14,17,29]). Most contributions are one sided and focus on either the consumer or the producer
point of view: many are related to electric or hybrid vehicles required to minimize their energy consumption
(Green VRP, Pollution-Routing Problem and Hybrid Vehicle Problem: see [15, 16, 20–23, 26]), while trying to
optimize recharge transactions submitted to time windows or shared access constraints (see [33–35]). Also, some
authors address the issue of scheduling an industrial process (see [1, 5, 6, 14, 17, 24, 28, 30–32]) while taking into
account temporal variations of the energy costs, access restrictions and environmental concerns. While most
contributions are related to applications, we must mention several theoretical contributions which deal with
complexity and approximation issues, for models which put at stake the cost of idleness and the impact of
time dependencies (see [2–4, 9–12]). On another side, main energy producers are carrying systematic studies
about the way to plan energy production (gas, electricity, dam or nuclear plant management), according to a
big grain point of view, that means with the purpose of meeting large scale uncertain aggregated demands (see
[5, 6, 19,29,36]).

Because of the IMOBS3 project, we deal here with the synchronous management of, on one side, a fleet of
small electric vehicles provided with hydrogen power cells, and, on the other side, a micro-plant in charge of
local hydrogen fuel production. Taken as a whole, the problem involves forecasting, safety management and
scheduling. Still, since our purpose is to focus on algorithmic features of synchronization, we restrict ourselves
to the last issue, and set a simplified EPC: Energy Production and Consumption model restricted to the case
of one vehicle required to perform tasks according to a pre-fixed order while periodically going back to the
micro-plant in order to refuel. The micro-plant has its own production/storage restrictions, and our goal is to
synchronize both the micro-plant and the vehicle. This model is NP-Hard, and its ILP formulation ill-fitted
to numerical processing. We first address it according to a purely centralized paradigm, and propose an exact
integrated Dynamic Programming Scheme (DPS), which implements synchronization while linking together
production and vehicle time spaces. This DPS allows us to state a Polynomial Time Approximation Scheme
(PTAS) result and provides us with optimal solutions in case of not too large EPC instances. Still it remains
computing time costly. Besides, full integration of vehicle and production induces a lack of flexibility which
make difficult dealing the collaborative features of real life contexts. So we adopt a point of view which consists
in addressing EPC while emulating those collaborative features: We split our EPC model into two independent
sub-models, one related to the vehicles and the other related to the micro-plant, which we tie together through
some kind of collaborative Demander/Producer interaction.

The paper is organized as follows: Section 2 describes the EPC: Energy Production/Consumption Problem
model, as well as a Demander/Producer decomposition of EPC into two interacting VD: Vehicle-Driver and
PM: Production-Manager models. Section 3 first proposes an exact dynamic programming DPS-EPC algorithm,
which solves EPC while tying together vehicle and production time spaces and relying on filtering devices,
and provides us with reference optimal values. Then Sections 4 and 5 study respectively VD and PM, from
both theoretical and algorithmic point of view, while Section 6 designs a pipe-line collaborative algorithmic
scheme which implements the Demander/Producer decomposition of Section 2. Section 7 is devoted to numerical
experiments, which aim at evaluating the quality of the tradeoff error versus running time induced by this pipe-
line scheme. Conclusion provides a hint at future work, devoted to the robustness issue and to inclusion of the
vehicle tour as part of the decision.

2. The EPC problem: mathematical formulation and decomposition scheme

We consider here some vehicle which has to perform internal logistic tasks, while following a route Γ which
starts from some Depot node and ends at the same place after going through stations j = 1, . . . ,M , according
to this order. Start-node Depot has label 0 and End-node Depot has label M + 1. The time required by the



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2361

j j + 1

Micro-plant

station j station j + 1

tj, e j

d j, e j d*
j+1, e

*

j+1

tj+1, e j+1tj ˗ 1, e j ˗ 1

Figure 1. Time and energy coefficients for consecutive stations j and j + 1.

1 2 3 4 5
4, 5 4, 4 7, 3 5, 5 2, 2 1, 2

3, 3

2, 1 5, 6

1, 3

Depot = 0 Depot = 6 

= M+1

Micro-plant

Time value Energy value

Figure 2. A vehicle trip, with its refueling transactions.

vehicle in order to go from j to j+1 is equal to tj , taking into account the time spent by the vehicle in servicing
j. The vehicle may leave Depot at time 0 and should be back no later than some time TMax.

Our vehicle is powered by hydrogen fuel. The capacity of its tank is denoted by CVeh and we know, for any
j = 0, . . . ,M , the hydrogen amount ej required in order to move from station j to station j + 1. The initial
hydrogen load of the vehicle is denoted by E0, and the vehicle is required to end its trip with at least the
same hydrogen load. It comes that the vehicle must periodically refuel. Refueling transactions take place at a
micro-plant, close to Depot : The time required by the vehicle in order to move from station j to the micro-plant
(from the micro-plant to j ) is denoted by dj(d∗j ); by the same way, the energy required in order to move from j
to the micro-plant (from the micro-plant to j ) is denoted by εj(ε∗j ). Quantities dj , d∗j , tj , ej , εj , ε∗j are strictly
positive, satisfy the Triangle Inequality (see Fig. 1) and are such that E0 ≥ ε0.

Figure 2 displays an example of a trip performed by the vehicle along station Depot = 0, 1, 2, 3, 4, 5, 6 = Depot,
while refueling between station 1 and station 2, and next between station 3 and station 4.

On another side, the micro-plant produces H2 in situ through photolysis and electrolysis. Resulting hydro-
gen is stored inside the micro-plant’s tank, with capacity equal to CMP. We suppose that the time space
{0, . . . ,TMax} is divided into N periods Pi = [p.i, p.(i + 1)], i = 0, . . . , N − 1, with TMax = N.p. We identify
index i and period Pi. If the micro-plant is active at some time during period i, then it is active during the
whole period i, and produces Ri hydrogen fuel units. For safety concerns, the vehicle cannot refuel while the
micro-plant is producing: this assumption is due to the fact, in case of the experimental platform we are referring
to, making hydrogen simultaneously arrive into the micro-plant’s tank and leave it in order to be loaded into the
vehicle’s tank induces variations of pressure which raise safety issues. Besides any vehicle refueling transaction
requires a whole period i. At time 0, the load of the micro-plant tank is H0 ≤ CMP and the micro-plant is not
active. The same situation should hold at time TMax.

Producing hydrogen fuel has a cost, which may be decomposed into 2 components:

– A constant activation cost CostF , which is charged every time the micro-plant is activated.
– A time-dependent production cost CostVi which is independent on the amount of hydrogen really produced

during period i and reflects the time-indexed prices charged by the electricity provider.



2362 F. BENDALI ET AL.

Figure 3. An example of micro-plant activity, with N = 15.

Figure 4. Production rates and time-dependent production costs for the micro-plant of Figure 3.

Then the Energy Production/Consumption (EPC) Problem consists in scheduling both the vehicle and the
micro-plant in such a way that:

– The vehicle starts from Depot = 0, visits all stations j = 1, . . .,M and comes back to Depot at some time
T ∈ [0,TMax], while moving to the micro-plant in order to refuel every time it is necessary;

– The micro-plant produces and stores in time the hydrogen fuel needed by the vehicle;
– Induced hydrogen production cost Cost and vehicle ending time T are the smallest possible. We merge both

costs into a unique one: Cost + α.T , where α is some scaling coefficient.

Example 2.1. Figure 5 below synchronizes the vehicle and the micro-plant of Figures 2–4 in case p = 2,
E0 = 8, H0 = 4, TMax = 30, CostF = 7, CMP = 15, CVeh = 15, α = 1. In such a case, the vehicle refuels twice:
the first refueling transaction, performed at period 4, involves 13 fuel units, and the second one, performed at
period 12, involves 12 fuel units. Resulting tour ends at time 30 and production cost is 3.7 + 2 + 6 + 1 = 30. It
comes that resulting global cost is 30 + 30 = 60.

The following Table 1 summarizes the input data for the EPC problem:

2.1. An integrated Mathematical Programming (MP) model

MP is not well-fitted to EPC. Still, we may use it in order to formulate our problem in an unambiguous way,
based upon 3 main variables:

– Production variables:
• zi ∈ {0, 1}, with i = −1, . . . , N−1: zi = 1 ∼ the micro-plant is active during period i (i = −1 corresponds

to a fictitious period);
• yi ∈ {0, 1}, with i = 0, . . ., N − 1: yi = 1 ∼ the micro-plant is activated at the beginning of i ;



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2363

Figure 5. An EPC feasible solution related to Figures 2–4.

Table 1. Input data for the EPC problem.

Vehicle related input

M : number of stations (Depot excluded)
Γ = (Depot = 0, 1, . . . , M, Depot = M + 1): vehicle tour (without refueling)
TMax: maximal time for the vehicle to achieve its tour
CVeh: vehicle tank capacity
E0: initial vehicle hydrogen load
tj ≥ 0, with j = 0, . . . , M : required time to go from station j to station j + 1
dj ≥ 0, with j = 0, . . . , M : required time to go from station j to the micro-plant
d∗j ≥ 0, with j = 0, . . . , M : required time to go from the micro-plant to station j
ej ≥ 0, with j = 0, . . . , M : required energy to go from station j to station j + 1
εj ≥ 0, with j = 0, . . . , M : required energy to go from station j to the micro-plant
ε∗j ≥ 0, with j = 0, . . . , M : required energy to go from the micro-plant to station j
Micro-plant production related input

CMP: micro-plant tank capacity
N : number of production periods
p: duration (in time units) of one production period
H0: initial micro-plant hydrogen load
CostF : activation cost
Pi = [p.i, p.(i + 1) [with i = 0, . . . , N − 1: time interval related to production period i
Ri ≥ 0, with i = 0, . . . , N − 1: production rate related to period i
CostV

i ≥ 0, with i = 0, . . . , N − 1: production cost related to period i

• V Tank
i ≥ 0, with i = 0, . . ., N : V Tank

i is the hydrogen load of the micro-plant tank at the beginning of
period i ; We involve here a fictitious period N in order to express the fact that the load of micro-plant
tank at the end of the process should be at least equal to H0;

• δi ∈ {0, 1}, with i = 0, . . ., N − 1: δi = 1 ∼ the vehicle is refueling during period i ;
• L∗i ≥ 0, with i = 0, . . ., N − 1, with non negative integer values: in case δi = 1, L∗i is the quantity of

hydrogen loaded by the vehicle during period i.



2364 F. BENDALI ET AL.

– Vehicle variables:
• xj ∈ {0, 1}, with j = 0, . . .,M : xj = 1 ∼ the vehicle refuels while traveling from station j to station j+1;
• Lj ≥ 0, with j = 0, . . .,M : if xj = 1, Lj = hydrogen quantity loaded by the vehicle while traveling from

j to j + 1;
• Tj ≥ 0, with j = 0, . . .,M + 1: Tj = time when the vehicle arrives at j ;
• T ∗j ≥ 0, with j = 0, . . .,M + 1: if xj = 1, T ∗j = time when the vehicle starts refueling while traveling

from j to j + 1;
• V Veh

j ≥ 0, with j = 0, . . .,M + 1: V Veh
j = hydrogen load of the vehicle tank when the vehicle arrives in j.

– Synchronization variables: Ui,j ∈ {0, 1}, with i = 0, . . ., N − 1, j = 0, . . . ,M : Ui,j = 1 ∼ the vehicle is
going to refuel during period i while traveling from j to j + 1.

Constraints come as follows (for a better understanding, we use here a logical formulation, easy to linearize
through Big M technique):

– Objective function: Minimize
Σi=0,...,N−1

(
CostF .yi + CostVi. · zi

)
+ α.TM+1.

– Production constraints:
• For any i = 0, . . ., N − 1: yi = 1→ (zi = 1 ∧ zi−1 = 0);
• For any i = 0, . . . , N − 1: zi + δi ≤ 1;
• z−1 = 0;
• V Tank

0 = H0; V Tank
N ≥ H0;

• For any i = 0, . . ., N − 1: V Tank
i ≤ CMP;

• For any i = 0, . . ., N − 1: V Tank
i+1 = V Tank

i + zi.Ri − δi.L∗i .
– Vehicle constraints:
• T0 = 0; V Veh

0 = E0; V Veh
M+1 ≥ E0;

• For any j = 1, . . .,M + 1: V Veh
j ≤ CVeh;

• For any j = 0, . . .,M : V Veh
j ≥ εj ; (E1)

((E1) means that at any time, the vehicle must be able to go to the micro-plant and refuel, and relies
on the Triangle Inequality for energy coefficients ej and εj).

• For any j = 0, . . .,M : Tj+1 ≥ (1− xj).(Tj + tj) + xj .
(
T ∗j + p+ d∗j+1

)
;

• For any j = 0, . . .,M : T ∗j ≥ Tj + dj ;
• For any j = 0, . . .,M : xj = 0→ V Veh

j+1 = V Veh
j − ej ;

• For any j = 0, . . .,M : xj = 1→ V Veh
j+1 = V Veh

j − εj − ε∗j+1 + Lj ;
• TM+1 ≤ TMax.

– Synchronization constraints:
• For any j = 0, . . .,M : Σi=0,...,N−1Ui,j = xj ;
• For any i = 0, . . ., N − 1, δi = Σj=0,...,MUi,j ;
• For any j = 0, . . .,M, T ∗j = Σi=0,...,N−1p.i.Ui,j ;
• For any i = 0, . . ., N − 1: L∗i ≤ Inf

(
V Tank

i ,Σj=0,...,MUi,j .
(
CVeh + εj − V Veh

j

))
; (E2)

((E2) expresses that load L∗i cannot exceed neither the current load of the micro-plant tank nor the
difference between CVeh and the current load of the vehicle tank).
• For any j = 0, . . .,M : Lj = Σi=0,...,N−1Ui,j .L

∗
i .

2.2. A demander/producer decomposition scheme

We are now going to explain the collaborative how the above EPC model may be decomposed in such a
manner which emulates the way decisions are going to be taken in (realistic) case decision is collaborative, which
means that production manager and vehicle driver are independent players, which are required to communicate.
Main idea here is that a natural behavior of a decentralized vehicle driver is to move as if it were sure to get
enough fuel every time he goes to the micro-plant, and to adapt itself to real context by waiting and eventually



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2365

delaying some moves. Conversely, a natural, market oriented behavior of the production manager will consist
in adapting itself to demand, and cutting a trade-off between Quality of Service and production cost.

2.2.1. VD: Vehicle Driver model

We forget here the restrictions related to hydrogen production and do as if the micro-plant were able to
provide, at any time, the vehicle with as much as energy it needs. Then our goal is to fix the Refueling Strategy
of the vehicle, that is the 0, 1-valued vector x = (xj , j = 0, . . . ,M) and the load vector L = (Lj , j = 0, . . . ,M) of
above model, which tell us at which stations j vehicle will refuel between j and j + 1, and how much. Variables
T = (Tj , j = 0, . . . ,M + 1), T ∗ = (T ∗j , j = 0, . . . ,M + 1) and V Veh = (V Veh

j , j = 0, . . . ,M + 1) may be
considered as auxiliary variables, whose values derive from x and L in a natural way by noticing that:

– The vehicle never waits: it refuels as he arrives at the micro-plant, and keeps full speed meanwhile;
– At the last time it refuels, it does in such a way he is back at Depot with a load equal to E0. At any other

time, it achieves full tank.

Constraints are the Vehicle Constraints of EPC model of above Section 2.1. What remains to specify is the
performance criterion. Of course, it has to include the α.TM+1 term. But it also has to involve a component
which reflects what the economic cost of the Refueling Strategy (x, L) is likely to be. Since we do not know in
advance what the Production Strategy is going to be, we introduce an auxiliary cost coefficient β, and consider
that the economic cost of the Refueling Strategy (x, L) is the quantity β.(ΣjLj .xj). This coefficient is going to
be a key component of the interaction between the vehicle (demander) and the micro-plant (producer). It comes
that resulting VD: Vehicle Driver model comes as follows:

VD: Vehicle Driver Model: {Compute the Refueling Strategy (x, L), together with auxiliary variables
T = (Tj , j = 0, . . . ,M + 1), T ∗ = (T ∗j , j = 0, . . . ,M + 1) and V Veh = (V Veh

j , j = 0, . . . ,M + 1), in such
a way that:
– Vehicle Constraints of Section 2.1 are satisfied;
– The quantity α.TM+1 + β.(

∑
j Lj .xj) is the smallest possible}.

2.2.2. The PM: Production Manager model

Since the production manager is supposed to adapt itself to demand, we suppose here that he is provided
with an information which reflects the fuel demand by the vehicle driver, such as it derives from an ad hoc
Refueling Strategy. As a matter of fact, a Refueling Strategy (x, L) provides us with a number Q of refueling
transactions performed by the vehicle, with related hydrogen loads µq, q = 1, . . . , Q, and with optimistic dates
when those refueling transactions take place. But one understands that those dates are going to be the issue
for a deal between the vehicle and the micro-plant. In order to bring flexibility to this deal, we shall use vector
x in order to provide us with lower bounds m1, . . . ,mQ and upper bound M1, . . . ,MQ for the periods when
the refueling transactions take place, as well as with minimal delays (time lags) between two such consecutive
periods, due to the trip the vehicle is required to achieve between 2 consecutive refueling transactions. Resulting
information, which we call a Reduced Refueling Strategy, will consist in:

– A number Q of refueling transactions performed by the vehicle; Those transactions are labeled q = 1, . . ., Q,
and supposed to take place according to this order;

– Related loads µq, q = 1, . . ., Q, of hydrogen which are loaded by the vehicle at any refueling transactions
q = 1, . . . , Q;

– Lower bounds m1, . . .,mQ and upper bounds M1, . . .,MQ for the period numbers i1, . . . , iQ ∈ {0, . . . , N −1}
when refueling transactions q = 1, . . . , Q will take place, as well as Time Lag coefficients B1, . . . , BQ which
express constraints: For any q = 1, . . . , Q− 1, iq+1 ≥ iq +Bq.

Then our goal becomes to schedule the Production Strategy of the micro-plant, that means {0, 1}-vectors z
and δ with indexation on i = 0, . . . , N − 1 with the same meaning as in Section 2.1, in such a way that:

– Production Constraints of Section 2.1 are satisfied (vector y comes as an auxiliary vector);



2366 F. BENDALI ET AL.

– The values i when δi = 1 corresponds to Q periods i1, . . . , iQ which agree with lower bounds m1, . . . ,mQ,
upper bounds M1, . . . ,MQ and Time Lag coefficients B1, . . . , BQ;

– Related values L∗i of Section 2.1 EPC model corresponds to values µq, q = 1, . . . , Q.

As for the performance criterion, it clearly must involve the economic cost
∑

i=0,...,N−1 (CostF .yi+CostV i.zi
).

But it also must contain some component which reflects the role of the term α.TM+1 of the objective function
of the global EPC model. It comes that the Production Strategy (z, δ) should aim at minimizing the quantity
α.p.iQ +

∑
i=0,...,N−1(CostF .yi + CostV i.zi

). So resulting PM: Production Manager model comes as follows:

PM: Production Manager Model: {Compute the Production Strategy (z, δ), together with auxiliary
variables y = (yi, i = 0, . . . , N − 1), V Tank = (V Tank

i, i = 0, . . . , N − 1) and L∗ = (L∗i , i = 0, . . . , N − 1),
in such a way that:
– Production Constraints of Section 2.1 are satisfied;
–
∑

i δi = Q: indices i such that δi = 1 may be labeled i1 < . . . < iq < · · · < iQ in such a way that:
• For any q, µq = L∗iq;
• For any q : mq ≤ iq ≤Mq;
• For any q ≤ Q− 1, iq+1 − iq ≤ Bq;

– The quantity α.p.iQ +
∑

i=0,...,N−1(CostF .yi + CostV i.zi) is the smallest possible}.

2.2.3. The VD PM decomposition

Then we see that EPC may be reformulated in a collaborative way as follows:

– VD PM Reformulation of EPC: {Fix parameter β and compute a Refueling Strategy (x, L) in such
a way that Reduced Refueling Strategy (Q,m,M,B, µ) yields a Production Strategy (z, δ) with minimal
α.p.iS +

∑
i=0,...,N−1(CostF .yi + CostV i.zi) cost}.

3. An exact integrated DPS EPC algorithm

MP EPC model of Section 2.1 involves a large number of heterogeneous variables tied together by logical
implications. Not surprisingly ILP libraries fail in computing optimal solutions as soon as N, M stop being
small. It suggests that the EPC model is complex, which is confirmed by the following result:

Theorem 3.1. EPC is NP-Hard.

Proof. It is enough to suppose that CostF is null, and do in such a way that the vehicle cannot start before
production has been achieved. Then EPC happens to contain the Knapsack problem. �

Still, EPC lies at the (hypothetic) boarder between P and NP, and may be handled through a Dynamic
Programming Scheme (DPS) DPS-EPC . Since both VD and PM sub-models underlie two distinct representa-
tions of the time (stations and real time T ∈ [0, TMax] in the case of the vehicle, periods in the case of the
micro-plant), the key point in this scheme lies on the way we link together (synchronization device) related time
spaces. This synchronization device relies on two components:

– Relative positioning relations � and == between a real time value T and a period index i :
for any period i = 0, . . ., N − 1, and any real time value T ∈ {0, . . . , TMax}, we set:
• T � i if T < p.i; T � i if T ≥ p.(i+ 1);
• T == i if p.i ≤ T < p.(i+ 1).

– Time and State Spaces of the DPS scheme: then we define the time space of our DPS as the set ∆ of
time pairs (i, j), i = 0, . . ., N, j = 0, . . .,M + 1, provided with its standard partial ordering. For any such a
time pair (i, j), a related state is a 4-uple s = (Z, T, V Tank, V Veh), with the meaning:
• Z = 1 ∼ the micro-plant is active at the end of period i− 1, that means at time p.i.



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2367

• V Tank and V Veh are respectively the loads of the micro-plant tank at the beginning of period i and the
load of the vehicle tank when it arrives at station j.

• T is a time value in 0, . . .,TMax whose meaning derives from its position with respect to period i
according to relations == and �:
◦ If T � i, then the vehicle is on the road to j, which it shall reach at time T ;
◦ If T � i, then the vehicle is between j and the micro-plant, possibly waiting for being refueled;
◦ If T == i, then the vehicle is at j, and decides between keeping on to j + 1 or moving to the

micro-plant.

We derive from this synchronization device the other components of DPS EPC in a natural way:

– Decisions, Preconditions, Transitions and Costs: a decision D related to a time pair (i, j) and a state
s =

(
Z, T, V Tank, V Veh

)
is a 3-uple D = (z, x, δ) in {0, 1}3, with the meaning:

• z = 1 ∼ the micro-plant decides to produce during period i ;
• x refers to a decision taken only when T == i: in such a case, x = 0 means that the vehicle moves from

station j to station j+ 1 without refueling; x = 1 means that it refuels at the micro-plant while traveling
from j to j + 1.

• δ = 1 ∼ the vehicle is located at the micro-plant and decides to refuel during period i, forbidding the
micro-plant to be active during this period. It requires T � i and p.i− T ≥ dj .
Decision is taken at the end of period i − 1. For any time pair (i, j) and state s =

(
Z, T, V Tank, V Veh

)
,

no more than 4 decisions D are feasible:
• 1st case: T � i. The only choice is about z . Setting z = 1 requires V Tank +Ri ≤ CMP. In any case, we

shift from (i, j) to (i+ 1, j), resulting state is s′ =
(
z, T, V Tank + z.Ri, V

Veh
)

and related transition cost
is z.(CostF .(1− Z) + CostVi. ).

• 2nd case: T � i and p.i− T < dj . Then the vehicle is moving from j to the micro-plant, and it cannot
refuel yet. The only choice is about z, with preconditions and costs as in the first case.

• 3rd case: T � i and p.i− T ≥ dj . Then, we have 3 possibilities:
◦ Producing during period i : z = 1; δ = 0. It requires V Tank +Ri ≤ CMP and p.(i+1)+p+d∗j+1 +

Σk≥j+1tk ≤ TMax. Resulting states and costs are as in the first case.
◦ Refueling during period i : z = 0; δ = 1. It requires εj+1 +ε∗j+1 ≤ Inf

(
CVeh, V Tank + V Veh − εj

)
.

We shift from (i, j) to (i + 1, j + 1) and resulting state is s′ = (0, p.(i + 1) + d∗j+1, V
Tank −

Inf
(
V Tank, CVeh − V Veh + εj

)
, Inf

(
CVeh − ε∗j+1, V

Tank + V Veh − εj − ε∗j+1)
)
. Transition cost is

α.(p.(i+ 1) + d∗j+1 − T ). Notice that if it is possible for the vehicle to come back to Depot without
refueling anymore, above formula must be modified in order to make appear that the vehicle only
refuels what it needs in order to be back to Depot with a load equal to E0.

◦ Doing nothing during period i : z = 0; δ = 0. We shift from (i, j) to (i+ 1, j), resulting state is
s′ =

(
0, T, V Tank, V Veh

)
, and transition cost is null.

• 4th case: T == i. Then we have 4 possibilities:
◦ Producing during period i and keeping the vehicle towards j + 1: z = 1, x = 0. It requires
V Tank +Ri ≤ CMP and V Veh−ej−εj+1 ≥ 0 and T + tj � i. Then we shift from (i, j) to (i+1, j+1),
resulting state is s′ =

(
0, T + tj , V

Tank +Ri, V
Veh − ej

)
and transition cost is (CostF .(1 − Z) +

CostVi. ) + α.tj .
◦ Not producing during period i and keeping the vehicle towards j+1: z = 0, x = 0. It

requires V Veh− ej − εj+1 ≥ 0. Then, if T + tj � i, we shift from (i, j) to (i+ 1, j+ 1), resulting state
is s′ = (0, T + tj , V

Tank, V Veh − ej) and transition cost is α.tj , else we shift from (i, j) to (i, j + 1),
with same resulting state and transition cost.

◦ Not Producing during period i and moving the vehicle to the micro-plant: z = 0, x = 1.
It requires Sup(p.(i+1), T +dj)+d∗j+1 +p+Σk≥j+1tk ≤ TMax. Then we shift from (i, j) to (i+1, j),
resulting state is s′ = (0, T, V Tank, V Veh) and transition cost is null.



2368 F. BENDALI ET AL.

◦ Producing during period i and moving the vehicle to the micro-plant: z = 1, x = 1.
It requires V Tank + Ri ≤ CMP and Sup(p.(i + 1), T + dj) + d∗j+1 + p + Σk≥j+1tk ≤ TMax. We
shift from (i, j) to (i + 1, j) resulting state is s′ = (1, T, V Tank + Ri, V

Veh) and transition cost is(
CostF .(1− Z) + CostVi

)
.

– Initial and final states: initial state corresponds to time pair (0, 0) and 4-uple s0 = (0, 0, H0, E0). Final
state corresponds to any time pair (i ≤ N,M + 1), and any 4-uple (Z, T ≤ TMax, V Tank ≥ H0, V

Veh ≥ E0).
– Bellman equations: with every time pair (i, j ) and any state s = (Z, T, V Tank, V Veh), we associate its

Bellman value W (smallest cost of a sequence of transitions from initial state s0 at time (0, 0) to state s at
time (i, j ). Then we implement our DPS framework according to a forward driven strategy: For any current
time pair (i, j ), S (i, j ) denotes the state subset computed with respect to (i, j ); then we scan related state
subset S (i, j ), and for any such a state s = (Z, T, V Tank, V Veh), we generate related feasible (in the sense
of above requirements) decision set Dec((i, j ), s). For every D = (z, x, δ) in Dec((i, j ), s), we generate
resulting time pair (i′, j′) and state s′ = (Z ′, T ′, V Tank′ , V Veh′), together with the value W + CT, where
CT means the transition cost induced by D :
• If s′ does not appear yet in S(i′, j′) then we insert s′ into S(i′, j′), together with value W + CT;
• If s′ appears in S(i′, j′) with a value W ∗, then if W ∗ > W + CT, then W + CT becomes the value

associated with (i′, j′) and s′ else we discard s′.

We denote by DPS EPC the DPS algorithm designed this way.

3.1. Filtering through rounding: a PTAS result

The number of states that an execution DPS EPC creates significantly increases with M and N. Still, if
we suppose that all EPC parameters are integral and that TMax, CMP and CVeh are bounded by polynomial
functions of N and M, then one may check DPS EPC becomes time-polynomial. It suggests that it should be
possible to state some Polynomial Time Approximation Scheme (PTAS) result. As usual, such a result will rely
on a rounding scheme:
Rounding DPS ECP states: L and n = a0 + a1.2 + . . .+ aq.2q, being 2 integers, ai ∈ {0, 1}, we first set:

– If q ≤ L then Round(n,L) = n else Round(n,L) = aq−K .2q−L + . . .+ aq.2q;
– If q ≤ L then Round∗(n,L) = n else Round∗(n,L) = aq−K .2q−L + · · ·+ aq.2q + 2q−L.

We say that two integers n and m are equivalent modulo the L largest bits if Round(n, L) = Round(m, L).
By extension, 2 states s1 = (Z1, T1, V Tank

1 , V Veh
1 ) and s2 = (Z2, T2, V Tank

2 , V Veh
2 ) are equivalent modulo the L

largest bits if Z1 = Z2, Round(T1, L) = Round(T2, L), Round(V Tank
1 , L) = Round(V Tank

2 , L), Round(V Veh
1 , L)

= Round(V Veh
2 , L). As for the Round* function, it will allow us to ease capacity and initial state constraints.

Turning DPS EPC algorithm into a parametrized polynomial time algorithm DPS EPC (K )

We set L0 = Smallest integer L such that 2L ≥ N +M +1, and, for any integer K ≥ 1, we proceed as follows:

(1) We ease initial values H0 and E0 by replacing them respectively by Round*(H0, K + 1 ) and Round*(E0,
K + 1 ). By the same way, we relax the time capacity constraint by replacing TMax by Round*(TMax,
K ) and capacities CMP and CVeh respectively by Round*(CMP, K ) and Round*(CVeh, K ): this means we
check the feasibility of any decision D = (z, x, δ) with respect to time capacity Round*(TMax, K ) and
hydrogen capacities Round*(CMP, K ) and Round*(CVeh, K ).

(2) We extend the notion of state , by considering that any extended state s is a 5-uple (Z, Ω, T, V Tank,
V Veh) associated with a time pair (i, j ), where Ω is a 3-valued variable which tells us whether T � i(Ω =
0), T == i(Ω = 1), (T � i) ∧ (T + dj > p.i)(Ω = 2), (T � i) ∧ (T + dj ≤ p.i)(Ω = 3); It comes that the
notion of equivalence modulo the L largest bits is extended the same way: s1 = (Z1,Ω1, T1, V

Tank
1 , V Veh

1 ) and
s2 = (Z2,Ω2, T2, V

Tank
2 , V Veh

2 ) requires Ω1 = Ω2. This means that relative positioning of T and i through
relations�,� and == acts as an explicit state variable, in order to compensate the fact that those relations
may be perturbed by rounding effects, and that we perform all tests which involves relations�,� and ==
while referring to Ω.



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2369

(3) We do in such a way that, at any time, S (i, j ) does not contain 2 extended states s1, s2, together with
values W1, W2 such that respectively s1 and s2, as well as W1 and W2, are equivalent modulo the K + 2.L0

largest bits. We give priority to state sq, q = 1, 2, related to the smallest Wq value.
Then we may state:

Theorem 3.2 (Polynomial Time Approximation Scheme). K being fixed, DPS EPC (K) is time-polynomial.
Besides, for any value ε > 0, we may choose K large enough in such a way that in case EPC admits an optimal
solution with value WOpt, then DPS EPC (K) yields a solution which is feasible with regards to initial values
(1 + ε/2) ·H0 and (1 + ε/2) ·E0, capacity values (1 + ε) ·CMP, (1 + ε) ·CVeh and (1 + ε). TMax and whose cost
value is no larger than WOpt.

Proof. It is a mere consequence of the way we have been implementing our rounding strategy: Priority given in
3) to state sq, q = 1, 2, with smallest Wq value, allows us to compute a solution with cost value no larger than
WOpt; Augmenting (in 1) initial values H0 and E0 together with capacities CMP, CVeh and TMax allows us to
keep this solution inside feasibility in the sense of Theorem 3.2. A key point lies in the way we extend in 2) the
state notion through the introduction of component Ω: it allows us to keep well-fitted feasible DPS EPC (K )
decisions while erasing the impact of the rounding devices. �

3.2. Logical filtering devices

In spite of above result, the number of states becomes too large when N and M increase. In order to reduce
it, we may apply the following Strong Dominance Rule:
– For any time pair (i, j ), if states s1 = (Z1, T1, V Tank

1 , V Veh
1 ) and s2 = (Z2, T2, V Tank

2 , V Veh
2 ) given together

with values W1 and W2 are such that: W1 ≤ W2; T1 ≤ T2; Z1 ≥ Z2; V Tank
1 ≥ V Tank

2 ; V Veh
1 ≥ V Veh

2 , then
kill s2.

This rule has little filtering power. But other devices may be implemented. We distinguish:

– Logical filtering rules: at any time pair (i, j ) during the DPS EPC process, we anticipate that it will not
be possible to extend current state s = (Z, T, V Tank, V Veh) into a feasible schedule, either because there is
not enough time left (Makespan Based rules) or because it will not be possible to achieve required energy
production (Energy Based rules), and so we kill s.

– Quality based filtering rules: at time pair (i, j ) we check that the cost of any schedule consistent with
current state s = (Z, T, V Tank, V Veh), will be at least equal to the cost of some current feasible schedule.

3.2.1. Logical filtering rules

For any period i = 0, . . . , N − 1, we denote by Prod Max (i) the maximal quantity Σk≥i Rk that the micro-
plant can produce from time p.i on. Also, for any station j = 0, . . . ,M , we get a rough estimation of both
energy and time required by the vehicle in order to return from j to Depot by applying the following process:

Bound Fuel (j ) Procedure:
Refuel ← Σk≥j ek + E0; Not Stop; Refuel Number ← 0; Label the quantities σk = εk + ε∗k − ek,
k = j, . . . ,M by increasing order σ1 < . . . < σM+1−j ;
While Not Stop do;

Refuel Number Aux ←bRefuel /CVehc;
If Refuel Number Aux = Refuel Number then Stop Else
Refuel←Refuel+ Σq=Refuel Number,...,Refuel Number Auxσq;Refuel Number←Refuel Number Aux;

Let us respectively denote by Refuelj and Refuel Numberj the quantities Refuel and Refuel Number
obtained at the end of Bound Fuel(j ). The vehicle will have to load at least Refuelj − V Veh fuel units through
at least Refuel Numberj refueling transactions in order to achieve its tour from j. By taking into account those
Refuel Numberj transactions, we easily derive, for any j, a lower bound ∆j on the time required from j to
Depot. This allows us to implement the 2 following logical filtering rules, which may be applied to any time pair
(i, j) and any related state s = (Z, T, V Tank, V Veh):



2370 F. BENDALI ET AL.

(1) Makespan Based filtering rule: if (∆j ≥ TMax − T + 1) then kill s, since there is not enough time left for
the vehicle to achieve its trip.

(2) Energy Based filtering rule: if Refuelj > V Veh + Prod-Max(i) + V Tank then kill s, since there won’t be
enough energy for the vehicle to achieve its trip.

3.2.2. Quality based filtering rules

For any period i = 0, . . . , N − 1, any micro-plant state value Z of the micro-plant at the end of period i− 1,
and any energy amount V, we pre-compute (through backward driven DPS), the minimal cost Cost Min(i, V,
Z ) required from the micro-plant to produce V energy units between time p.i and time TMax, while starting
with state Z at the beginning of period i :

– Cost Min(N,V, Z) = 0 if V = 0 and undefined else;
– If i ≤ N − 1 then Cost Min(i, V, Z) = Inf[Cost Min(i+ 1, V, 0), Cost Min(i+ 1, V −Ri, 1) + (CostF .(1−
Z) + CostVi. ].

Let us consider now some time pair (i, j ) and some related state s = (Z, T, V Tank, V Veh) with value W.
We deduce from above pre-computation a lower bound LB for the best EPC value which may be derived from
(i, j) and s by setting: LB = LB((i, j), s) = α.∆j +Cost Min(i, (Refuelj − V Tank)+, Z), with ∆j and Refuelj
computed as in Section 3.2.1. This lower bound procedure LB enables us to get an initial EPC solution by
applying the DPS EPC scheme in a greedy way:

GREEDY EPC Procedure:
Initialization: (i, j) < −(0, 0); s < −(0, 0, H0, E0); Not Fail ;
While s is not a final state and Not Fail do

Select feasible decision D = (z, x, δ) such that Cost Transition((i, j), s,D)+LB((i1, j1), s1) is minimal,
where time pair (i1, j1) and state s1 result from the application of D.

Let us denote by Curr Val the cost value of the EPC solution computed by GREEDY EPC . Then, for any
time pair (i, j ), any state s = (Z, T, V Tank, V Veh) given together with some W cost value, we may apply the
rule:

(3) Quality Based filtering rule: if W + LB((i, j), s) ≥ Current Val, then kill state s.

4. The Vehicle Driver problem

Let us recall that the VD:Vehicle Driver model was stated as follows:

VD: Vehicle Driver Model: {Compute the Refueling Strategy (x, L), together with auxiliary variables
T = (Tj , j = 0, . . .,M + 1), T ∗ = (T ∗j , j = 0, . . .,M + 1) and V Veh = (V Veh

j , j = 0, . . .,M + 1), in such a
way that:
– Vehicle Constraints of Section 2.1 are satisfied;
– The quantity α.TM+1 + β. (ΣjLj .xj) is the smallest possible}.

4.1. Complexity of VD

We are going to prove that VD is polynomial. However, we are still at the boarder between P and NP since:

Theorem 4.1. If we impose any Lj to be either null or equal to some constant H, then VD becomes NP-Hard.

Proof. For any j, let us set: Aj = dj + d∗j+1 − tj and Bj = H − εj − ε∗j+1 + ej . Let also set C = Σjej . Finally,
let us suppose CVeh = +∞, β = 0 and TMax = +∞. Then we see that x should be such that:

– Σjxj .Aj is the smallest possible;
– Σjxj .Bj ≥ C.



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2371

Under those assumptions, VD coincides with Knapsack. Conversely, any Knapsack instance may be turned
this way into a VD instance. �

The VD Graph graph: in order to deal with VD, we are going to make appear that it may be handled as a
simple shortest path problem in the following oriented graph VD Graph:

– Nodes of VD Graph are:
• A source s and a sink p = ((M + 1), E0);
• Pairs (0, V ), 0 ≤ V ≤ E0;
• Pairs (j, V ), j = 1, . . . ,M , where V is a non negative number, no larger than CVeh;

– Arcs of VD Graph are:
• Any arc u = (s, (0, V )), with non positive cost Du = (V − E0);
• Any arc u = ((j, V ), (j + 1, V − ej)), with null cost Du;
• Any arc u = ((j, εj), (j + 1, V )), V ≥ εj+1 with cost Du = α.(dj + d∗j+1 − tj + p) + β.(εj + ε∗j+1 − ej).

The meaning of this construction comes through following Lemma 4.2:

Lemma 4.2. Solving VD means searching for a shortest path from s to p in VD Graph.

Proof. We say that Refueling Strategy (x, L) satisfies the Empty Tank Hypothesis if:

– Every time but the first time the vehicle refuels, it arrives at the micro-plant with an empty tank;
– It comes back to Depot with a hydrogen load exactly equal to E0.

Then we notice that an optimal Refueling Strategy (x, L) may be chosen in such a way it satisfies this Empty
Tank Hypothesis. If (x, L) does not agree with the Empty Tank Hypothesis, and it arrives into the micro-plant
with a non null load δ > 0, then it is possible to make decrease former refueling transaction by δ, and augment
current refueling transaction by δ′ ≤ δ, until cancelling related refueling transaction or making it Empty Tank.
It comes that:

– Nodes of VD Graph corresponds to the possible states of the vehicle when he performs his trip from Depot
= 0 to Depot = M +1, while visiting stations j = 1, . . .,M and periodically refueling. In case the vehicle has
never been refueling before j, V ≤ E0 means the hydrogen amount it is going to consume before refueling;
Else it means the current hydrogen load of the vehicle at j.

– According to this, we understand the meaning of the arcs:
• Arc u = ((j, V ), (j + 1, V − ej)), with null cost Du, means that the vehicle move directly from j to j+ 1;
• Arc u = ((j, εj), (j + 1, V )), V ≥ εj+1 with cost Du = α.(dj + d∗j+1 − tj) + β.(εj + ε∗j+1 − ej), means

that the vehicle move from j to j + 1 while refueling at the micro-plant: the cost of such a move is the
additional cost (energy + time) induced by this detour;

• Arc u = (s, (0, V )), with V ≤ E0, and negative cost Du = (V −E0), means the decision that the vehicle
is going to take at the beginning of the process, when it is going to decide about its first refueling
transaction: related trip from 0 until Depot is then going to require V hydrogen units, and negative cost
Du = (V − E0) corresponds to the fact that the vehicle arrives at the micro-plant with an excess load
(E0 − V ) which will be used later.

We deduce that any Refueling Strategy (x, L) which satisfies the Empty Tank Hypothesis gives rise to a path
in VD-Graph, whose cost is exactly the cost of the Refueling Strategy (x, L), and conversely. �

As a matter of fact, we do not need the whole graph VD Graph in order to handle VD. If we apply a backward
driven Bellman algorithm, then we see that we only deal with the following node collectionX(j), j = 0, . . . ,M+1,
whose recursive definition comes as follows:

– X(M + 1) is reduced to p = ((M + 1), E0); X(M) = {(M, εM ), (M,E0 + eM );
– For j = 0, . . .,M − 1, X(j) = {(j, εj)} ∪ {(j, V + ej), for all (j + 1, V ) ∈ X(j + 1) such that V + ej ≤ CVeh}.



2372 F. BENDALI ET AL.

Figure 6. The Useful VD Graph Subgraph.

If we set X = {s} ∪ (∪j=0,...M+1X(j)), then we call Useful VD-Subgraph the subgraph of VD-Graph induced
by X.

Example 4.3. The Useful VD Subgraph in case M = 4, CVeh = 6, E0 = 3, α = β = 1, and values t, d, e, ε
given by the table below:

j 0 1 2 3 4 5 = 0
ej 3 4 2 2 3 *
εj = ε∗j 2 3 2 1 2 2
tj 4 5 3 2 6 *
dj = d∗j 3 3 4 2 3 4

Thick arrows represent here the moves of the vehicles which involve a refueling detour. For every arc, (a+ b)
means the sum of respectively the energy and the time components of the cost of the arc (Fig. 6).

VD time-polynomiality: VD Graph construction and Lemma 4.2 allow us to state:

Theorem 4.4. VD can be solved in polynomial time.

Proof. Because of Lemma 4.2 and the above construction of the Useful VD Subgraph, we see that solving VD
means searching a shortest path from s to p in the Useful VD Subgraph. But, for any j, the cardinality of X (j )
does not exceed M − j+1, and the number of arcs which connects X(j) to X(j+1) does not exceed Card(X (j )
+ Card(X (j + 1)). We conclude. �

4.2. VD dynamic programming handling

We deal with VD while computing a shortest path in the Useful VD Subgraph according to a Bellman
backward driven process. This leads us to the following DPS VD dynamic programming algorithmic scheme:

The DPS VD algorithm: Time, Space, Decisions and Transitions

– Time Space: in a natural way, related Time Space is the set J = {0, 1, . . .,M,M + 1}. We are going to
scan this time space J backward.

– State Space: a state s associated with j ∈ J is a pair s = (V Veh, T ) which means the current load of
the vehicle at j and a time value T ≤ TMax, given together with a cost value WV eh and a decision x◦: T
is the time (in the sense of real time) the vehicle will spend while moving from state s at station j until



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2373

state E0 at time M + 1;WVeh = α.T + β.U , where U is the energy to be wasted by the vehicle before the
end of its trip; x◦ is the decision related to WVeh through backward driven Bellman equations. Initial state,
related to time value M + 1, is going to be (E0, 0); Final states, related to j = 0, should be any pair
(V Veh ≤ E0, T ≤ TMax). All pairs (j, s) should be nodes of the Useful VD Subgraph.

– Decision Space: a decision at time j is a binary number x ∈ {0, 1}: x = 0 means a direct move from j
to j + 1 without refueling, while x = 1 means that a refueling detour through the micro-plant has to be
performed before reaching j + 1.

– Backward driven strategy, transitions and costs: we follow Theorem 4.4 and the Useful VD Subgraph
construction, and so perform our DPS process according to a backward driven strategy. Notice that running
our algorithm in case α = 0 and β = 1, or α = 1 and β = 0, provides us, for any j and any current load
V Veh, with the minimal time and energy amount required in order to achieve the vehicle tour from station
j with load V Veh. We may store this information in order to use it as a filtering tool for the handling of the
DPS EPC algorithm of Section 3. Backward transition from any state s1 = (V Veh

1 , T1) at time j+1 induced
by a decision x taken at time j ≥ 0 comes as follows:
• If x = 0, then resulting state s = (V Veh, T ) associated with j is equal to (V Veh

1 + ej , T1 + tj). This
transition requires T ≤ TMax and V Veh ≤ CVeh; Its cost is 0.

• If x = 1, then resulting state s = (V Veh, T ) = (εj , dj +p+d∗j+1 +T1). This transition requires T ≤ TMax
and V Veh ≤ CVeh; Its cost is α.(dj + p+ d∗j+1 − tj) + β.(εj + ε∗j+1 − ej).

– Bellman equations: clearly, in case j ≥ 0, and for any related (s,WVeh) we should achieve:
◦ WVeh = Infx∈{0,1},x feasible (WVeh

1 + Cost of the transition induced by x ), where WVeh
1 is the W V eh

value related to resulting state s1; Related Decision v◦ = Arg Inf.
– Optimal Refueling Strategy : it comes by picking up the backward final state (V Veh ≤ E0, T ≤ TMax)

related to j = 0, which provides us with the lowest WV eh − β.E0 value, and by following the stations
j = 0, . . .,M according to decisions x◦.

4.3. Retrieving a (primary) refueling strategy and a reduced refueling strategy

According to Section 4.2, we retrieve full vector x, together with load vector L, by applying the following
process:

Refueling Strategy Retrieval procedure:
j < −0; V < −V Veh ≤ E0, such that related T ≤ TMax and provided with minimal WVeh − β.E0 value;
T0 < − Related T value; Q < −0; x◦ < − Related decision; V Aux < −E0 − V Veh;
TSup0 < −TMax− T0; T Inf0 < −0;
While j ≤M do

Let V1, T1 be time and energy values resulting from x◦;
If x◦ = 0 then
xj < −0; j < −j + 1; V < −V1; x◦ < − Decision related with (j + 1, V Veh);

Else
Q < −Q+ 1; µQ = Lj < −(V1 + ε∗j+1 − V Aux)+; V Aux < −(V Aux− Lj)+; xj < −1;
TSupQ < −TMax− (T1 + d∗j+1 + p); ∆Q−1 < −TSupQ − TSupQ−1; T InfQ < −T InfQ−1 + ∆Q−1;

j < −j + 1;

Above process yields what we call a Primary Refueling Strategy, that means vectors x and L, together with
a number Q and {0, . . . , Q} indexed vectors TInf, TSup and µ, with the following meaning:

– Q is the number of refueling transactions performed by the vehicle;
– For q = 1, . . . , Q:
• µq is the quantity of fuel which is loaded during the refueling transaction q ;
• T Infq (TSupq) is the earliest (latest) time when this refueling transaction may start (we consider q = 0

as referring to a fictitious refueling transaction, with TInf0 = 0 and TSup0 = TMax – T, where T is the
time value associated with an optimal initial state);



2374 F. BENDALI ET AL.

• ∆q is the minimal delay between the date of the qth refueling transaction and the date of the (q + 1)th
refueling transaction (if q = 0 then ∆0 = T Inf1).

Reduced Refueling Strategy : in order to synchronize this Refueling Strategy with the hydrogen production
process, we need to turn (routine process) values TInf, TSup and ∆ in terms of periods i = 0, . . . , N − 1. By
doing this we derive what we call a Reduced Refueling Strategy, that is:

– A number Q of refueling transactions;
– Lower bounds m0, . . .,mQ and upper bounds M0, . . . ,MQ for the period numbers i0, . . . , iQ ∈ {0, . . . , N−1}

when the refueling transactions take place, as well as Time Lag coefficients B0, . . . , BQ which reflects the
following constraints: For any q = 0, . . . , Q − 1, iq+1 ≥ iq + Bq (we consider i0 = 0 as a fictitious refueling
transaction, which require 0 period).

– Loads µq = quantities of H2 which is loaded for every value q = 1, . . . , Q.

5. The Production Manager (PM) problem

We suppose now that we are provided with a Reduced Refueling Strategy Q, m = (m0, . . . ,mQ),M =
(M0, . . .,MQ), B = (B0, . . . , BQ) and µ = (µq, q = 1, . . . , Q) as we just defined above. Then solving PM consists
in scheduling the activity of the micro-plant, that means computing {0, 1} vectors z and δ with indexation on
i = 0, . . . , N − 1 as in such a way that:

– Production Constraints of Section 2.1 are satisfied (vector y comes as an auxiliary vector);
– The values i when δi = 1 corresponds to Q periods i1, . . . , iQ which comply with lower bounds m1, . . .,mQ,

upper bounds M1, . . . ,MQ and Time Lag coefficients B1, . . . , BQ;
– Related values L∗i corresponds to values µq, q = 1, . . . , Q.
– The micro-plant ends with a hydrogen load at least equal to the quantity H0 it started with;
– The quantity α.p.iQ + Σi=0,...,N−1 (CostF .yi + CostVi. .zi) is the smallest possible.

Notice that PM is NP-Hard, since it clearly may be viewed as an extension of the Knapsack problem with
release and due dates for the delivery of the production. As a matter of fact, it is enough to set Q = 1,m1 =
M1 = N − 1 to make PM coincide with Knapsack.

5.1. Dealing with PM through dynamic programming

In order to deal with this Production problem, we apply, as for the general EPC Problem, a forward driven
dynamic programming DPS PM algorithm. But the size of related Time, State, and Decision spaces are signif-
icantly smaller. As a matter of fact those components come as follows:

The DPS PM algorithm: Time, Space, Decisions and Transitions

– Time Space: the Time Space (in the DPS sense) is the set I = {0, . . ., N}, scanned in the forward sense.
– State Space: for any i = 0, . . . , N , a state is a 4-uple E = (Z, V Tank, Rank,Delay), with Rank = 0, . . ., Q:
• Z = 1 means that the micro-plant is active at the end of period i− 1.
• V Tank means the current load of the micro-plant tank at the beginning of period i.
• Rank ∈ 0, . . . , Q means that the Rankth refueling transaction has been performed and that we are

waiting for the (Rank + 1)th refueling transaction.
• Delay means the difference between i and the period when the Rankth refueling transaction was per-

formed.
For every i = 0, . . . ,N, a state E is provided with its current Bellman value WProd.
• Initial state is EStart = (0, H0, 0, 0), with related value WProd = 0, and time value i = 0;
• Final states are states EEnd = (Z, V Tank ≥ H0, Q, 0), associated with a time value i ≤ N : notice that

the process may not be finished when the last refueling transaction takes place.



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2375

Figure 7. Activation and time-dependent production costs for the micro-plant of Figure 3.

– Decision/Transitions: for any i = 0, . . . , N,E = (Z, V Tank, Rank,Delay), a decision is defined as a 2-uple
(z, δ) in {0, 1}2, with the following meaning:
• z = 1 means that the micro-plant will produce during period i ;
• δ = 1 means that the vehicle will perform its (Rank + 1)th refueling transaction during period i.

Since production and refueling transactions cannot be performed simultaneously, there are only 3 possible
decisions.

• z = 1, δ = 0: it requires (V Tank +Ri ≤ CMP); At time (i+1) resulting state E1 will be:
◦ If Rank ≤ Q − 1 then we should also have (i ≤ MRank+1 − 1). We get E1 = (1, V Tank +
Ri, Rank,Delay + 1), and related transition cost is equal to α.p+ (CostF .(1− Z) + CostVi. );

◦ If Rank = Q then E1 = (1, V Tank +Ri, Rank, 0), and related transition cost is equal to (CostF .(1−
Z) + CostVi. );

• z = 0, δ = 0: at time (i+ 1) resulting state E1 will be:
◦ IfRank ≤ Q−1 then we should also have (i ≤MRank+1−1). We get E1 = (0, V Tank, Rank,Delay+1),

and related transition cost is equal to α.p;
◦ If Rank = Q then E1 = (0, V Tank, Rank, 0), and related transition cost is equal to 0;

• z = 0, δ = 1: it requires (Rank ≤ Q− 1) ∧ (V Tank ≥ µRank+1) ∧ (MRank+1 ≥ i ≥ mRank+1) ∧ (Delay ≥
BRank); Then we get E1 = (0, V Tank−µRank+1, Rank+ 1, 1), and related transition cost is equal to α.p.

Example 5.1. Let us consider the micro-plant of Figure 4, together with the input Example 2.1: p = 2, H0 = 4,
TMax = 30, CostF = 7, CMP = 15, α = 1, together with the following Reduced Refueling Strategy (Fig. 7):

– Q = 2;

q µq mq Mq Bq

0 * 0 3 3
1 14 2 5 8
2 11 10 13 *

Let us suppose that i = 11 and that related state is: Z = 0; V Tank = 12, Rank = 1; Gap = 9. Then we see
that the following decisions are possible:

– z = 1, δ = 0: resulting state is Z = 1;V Tank = 13, Rank = 1;Gap = 10, with transition cost 7 + 2 + 2 = 11.
– z = 0, δ = 0: resulting state is Z = 0;V Tank = 12, Rank = 1;Gap = 10, with transition cost = 2.
– z = 0, δ = 1: resulting state is Z = 0;V Tank = 1, Rank = 2;Gap = 1, with transition cost = 2.



2376 F. BENDALI ET AL.

5.2. Filtering devices and greedy Greedy PM algorithm

As in the case of DPS EPC , we may enhance DPS PM through filtering devices:

– Filtering through rounding: as in Section 3.1, we may round values V Tank and WProd and turn DPS MP
into a parametrized algorithm DPS PM (K ) which is time-polynomial for any fixed K, and such that, for
any value ε > 0, K may be chosen in such a way that in case MP admits an optimal solution with value
WProd-Opt, then DPS PM (K ) yields a solution which is feasible with regards to initial value (1 + ε/2). H0

and capacity values (1 + ε). CMP, and whose cost value is no larger than WProd-Opt.
– Dominance based filtering rules: for any i, if states E1 = (Z1, V

Tank
1 , Rank1, Delay1) and E2 =(

Z2, V
Tank
2 , Rank2, Delay2

)
, given together with values WProd

1 and WProd
2 are such that: WProd

1 ≤ WProd
2 ;

Z2 ≤ Z1; (Rank1 ≥ Rank2) ∨ ((Rank1 = Rank2) ∧ (Delay1 ≥ Delay2)) then kill E2.
– Logical filtering rule (check the feasibility of the process with regards to production capacity). For any i,

if state E = (Z, V Tank, Rank, Delay) is such that: (V Tank + ΣMQ>k≥iRk < ΣRank+1≤q≤Qµq) or (V Tank +
Σk≥iRk < (ΣRank+1≤q≤Qµq +H0) then kill E.

– Quality based filtering rule: it involves, as in Section 3.2.2, the pre-computed function Cost Min(i, V, Z ),
which provides us with the minimal cost required from the micro-plant to produce V energy units between
time p.i and time TMax, Z denoting the state of the micro-plant at the end of period i− 1. This function
allows us to turn DPS PM into a greedy algorithm Greedy PM :
• For any i and any related state E = (Z, V Tank, Rank,Delay), hydrogen quantity which remains to be

produced is V = Σq≥Rank+1µq +H0 − V Tank;
• By the same way, the Qth refueling transaction cannot take place before period mQ + i−Delay−mRank;
• So Greedy DPM works by keeping, for any i, only one state E, and choosing related feasible decision (z,
δ) in such a way that resulting state E1 = (Z1, V

Tank
1 , Rank1, Delay1) be consistent with above logical

filtering rule and that: Cost Min(i+ 1,Σq≥Rank1+1µs +H0 − V Tank
1 , Z1) +α.(mQ −Delay1 −mRank1 +

(Cost of the transition(i, E)− > (i+ 1, E1)) be minimal.
This greedy algorithm may be applied in order to provide us (in case of success) with an initial pro-
duction strategy (z, δ) and its value WProd

Init. Then our Quality Based Filtering rule may be formu-
lated as follows: For any i, if state E = (Z, V Tank, Rank,Delay) and related value WProd are such that
WProd + Cost Min

(
i,Σq≥Rank+1µq +H0 − V Tank, Z

)
+ α. (mQ −Delay −mRank) ≥WProd

Init , then kill E.

6. Making VD and PM collaborate: The VD->PM pipe-line

The VD PM Decomposition of Section 2.2.3 suggests that the simple way to implement a collaboration
between the Vehicle Driver and the Production Manager is to make them communicate through a one-way
pipe-line: Once coefficient β, which determines the objective function of VD and which behaves as the main
communication link between VD and PM, has been fixed, we may compute a Refueling Strategy (x, L) for the
vehicle through the DPS VD algorithm, turn it into a Reduced Refueling Strategy (Q, µ, m, M, B) and apply
the DPS PM algorithm of Section V.

6.1. Handling EPC through a VD PM Pipe-Line algorithm

VD PM Pipe-line algorithm:
Input/Output: The same as for the EPC model.
Main Steps:

(1) Choose the scaling coefficient β of the VD model;
(2) Apply DPS VD to resulting VD model: get related Refueling Strategy (x, L) and retrieve

Reduced Refueling Strategy (Q,µ,m,M,B) as in Section 4.3;
(3) Compute WProd

Init through GREEDY PM of Section 5.2;
(4) Apply DPS PM augmented with filtering devices of Section 5.2 to the Reduced Refueling

Strategy (Q,µ,m,M,B): get Production Strategy (z, δ);



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2377

Table 2. Instances.

Num instance N M TMax p CVeh CMP

0 15 4 60 4 24 50
1 78 10 78 1 27 27
2 94 10 94 1 17 34
3 114 10 114 1 23 23
4 99 10 99 1 19 19
5 59 10 118 2 22 22
6 36 10 72 2 19 57
7 78 10 156 2 22 22
8 57 10 114 2 23 23
9 26 8 104 4 12 36
10 26 10 104 4 15 30
11 26 10 96 4 25 25
12 30 10 120 4 17 17
13 33 8 132 4 26 26
14 20 8 80 4 15 30
15 27 8 108 4 26 78
16 50 10 200 4 28 28
17 24 10 96 4 24 72
18 44 10 176 4 20 40
19 32 12 128 4 28 28
20 32 12 128 4 28 28
21 45 14 180 4 24 24
22 30 8 120 4 29 29
23 26 8 104 4 22 66
24 16 10 68 4 14 42
25 19 10 76 4 16 48
26 20 10 80 4 27 27
27 50 12 200 4 18 36
28 50 12 200 4 18 36

(5) Retrieve activation vector y = (yi, i = 0, . . . , N−1), time vector T = (Tj , j = 0, . . . ,M+1), load
vector L∗ = (L∗i , i = 0, . . . , N − 1), and global cost Σi=0,...,N−1(CostF .yi +CostVi. .zi) +α.TM+1.

6.2. Discussion

As we told at the beginning of the paper, our purpose here is to implement synchronization while emulating
natural interaction processes which are likely to take place between decentralized players. The one-way pipe-
line mechanism is clearly one of the simplest ones. Of course, one could think in designing more sophisticated
interaction schemes. In any case, some points may be discussed:

– About the mere structure of the VD PM algorithm: the VD PM link defined by β behaves here
like a mono-directional link: One assigns a value to β, and successively runs DPS VD and DPS PM , while
possibly trying several shots. But one may ask about retrieving information from this DPS VD − > DPS PM
sequence and adapting β accordingly. For instance, one may try to implement a fixed-point loop, and, after
any run of the DPS VD − > DPS PM sequence, assign β a new value β* such that β∗.(ΣjLj .xj) quantity
becomes equal to the energy cost Σi=0,...,N−1(CostF .yi + CostVi. .zi) and start again. We did not try this
option, mainly because it is time-consuming. By the same way, one could make parameter α, which weights
the waiting times that the Vehicle Driver has to accept, be part of the negotiation process.



2378 F. BENDALI ET AL.

Table 3. Values Exact DPS EPC, Pipe Line and Greedy EPC.

Instance Pipe Line Greedy 50 Exact DPS EPC

0 47 46 46
1 97 103 97
2 129 141 129
3 140 144 131
4 157 163 157
5 113 113 109
6 103 97 97
7 140 176 140
8 150 150 141
9 116 116 116
10 133 133 133
11 187 −1 184
12 243 248 232
13 182 201 182
14 83 81 81
15 104 100 100
16 133 139 131
17 102 102 102
18 126 126 126
19 304 305 297
20 304 305 297
21 325 309 305
22 199 199 199
23 141 141 141
24 65 65 65
25 107 107 107
26 124 121 121
27 209 202 202
28 209 202 202

– About the choice of β: β should reflect the production cost of the energy which has to be produced.
But, since we do not a priori know the temporal distribution of the refueling transactions, we split the time
interval into 3 macro-periods and do as if this distribution were to be uniform between those macro-periods.
So we set:
• H = Energy that the vehicle has to load according to the VD taken with β = 1 and α = 0;
• Rough Cost = Cost Min(0, H /3, 0) + Cost Min(bN/3c, H /3, 0) + Cost Min(2bN/3c, H /3, 0);
• β = Rough Cost/H.

– About the specification of the VD model: we may notice that it would be possible to deal with VD the
same way as we did, while replacing the term β.(ΣjLj .xj) of the objective function by a term (Σjβj .Lj .xj),
which would give us more flexibility. Still, anticipating the price of hydrogen amount loaded by the vehicle
at station would remain a difficulty.

7. Numerical experiments

Purpose: What we want here is to evaluate:



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2379

Table 4. Maximal states per time units generated through DPS VD, DPS PM and Greedy EPC.

Instance State VD State PM State DPS EPC

0 1 49 421
1 15 3024 31 810
2 11 4187 22 394
3 19 4760 40 032
4 1 4161 32 765
5 1 2626 53 053
6 1 2900 28 876
7 1 4404 81 790
8 19 1647 16 028
9 1 1730 13 476
10 11 1409 8060
11 1 312 4664
12 1 530 11 368
13 1 770 18 761
14 1 872 8078
15 19 2193 352
16 16 3222 118 795
17 11 2022 31 415
18 11 5320 26 639
19 1 283 11 543
20 1 283 11 543
21 1 1725 28 073
22 1 573 13 544
23 5 1159 10 989
24 5 629 6013
25 1 174 887
26 19 76 1718
27 1 6497 41 858
28 1 6497 41 858

(1) The pipe-line scheme DPS-VD − > DPS-PM : we focus on the tradeoff induced by this scheme between
accuracy (obtained through exact DPS-EPC algorithm) and running cost (summarized by the number of
states visited throughout the process).

(2) The filtering power of the devices for the general exact DPS-EPC algorithm which were described in
Section 3.2. We focus here on the number of states visited during the process, depending on the filtering
devices which are activated.

Instances: we fix N and M, and randomly generate stations j and Depot and the Micro-Plant as point of the
2-dimensionnal Euclidian space. Then dj , d∗j and tj , ej , εj , ε∗j respectively corresponds to Euclidean distance
and Manhattan distance, rounded in such a way they take integral values and remain consistent with triangle
inequlities. Then we fix CMP, CVeh and TMax, in such a way it ensures the existence of a feasible solution.
Finally, we fix the cost coefficients, in such a way that the fixed cost CostF is at least equal to the largest
coefficient CostVi , i = 0, . . ., N − 1. In the present case, we use a set of 29 instances, with characteristics N, M,
TMax, p, CVeh, CMP as follows:
Technical context: algorithms were implemented in C++, on a computer running Windows 10 Operating
system with an IntelCore i5-6500@3.20 GHz CPU, 16 Go RAM and Visual Studio 2017 compiler.
Outputs 1: in order evaluate the pipe-line scheme DPS VD − > DPS PM , we first run, for any instance,
a multi-start version of (randomized) Greedy EPC with 50 replications, and get a value Greedy 50 . Next we



2380 F. BENDALI ET AL.

Table 5. Related CPU times (in seconds).

Instance CPU Pipe-Line (s) CPU Greedy EPC-50 (s) CPU DPS EPC (s)

0 0.0068 0.00035 0.033633333
1 0.6456 0.0027 25.54665
2 1.31 0.00215 11.94846667
3 1.2269 0.001716667 39.99966667
4 1.073583333 0.00045 58.08111667
5 0.43275 0.000266667 39.82303333
6 0.272583333 0.000766667 10.80141667
7 0.956283333 0.0004 104.1274167
8 0.190116667 0.001116667 11.85403333
9 0.1447 0.0014 1.170633333
10 0.079866667 0.0007 1.2939
11 0.01795 6.66667E-05 0.818283333
12 0.042216667 0.0001 1.943283333
13 0.047783333 0.000116667 4.701516667
14 0.039616667 6.66667E-05 0.834816667
15 0.147916667 3.33333E-05 0.283533333
16 0.434816667 0.0008 54.20976667
17 0.097083333 0.001383333 3.127866667
18 0.61875 0.000983333 22.05958333
19 0.0313 0.000116667 1.596916667
20 0.03065 0.00005 1.605516667
21 0.222483333 0.000283333 15.45353333
22 0.0476 8.33333E-05 2.958133333
23 0.080016667 0.000733333 1.029416667
24 0.028266667 0.00005 0.28065
25 0.00805 3.33333E-05 0.027033333
26 0.002816667 3.33333E-05 0.02595
27 0.904333333 0.001033333 31.98286667
28 1.0297 0.001066667 31.89528333

run VD PM Pipe Line and get a value denoted by Pipe Line. Finally we run DPS EPC and get exact optimal
Exact DPS EPC Value. So we provide the following outputs:

– Table 2: values Pipe Line, Greedy 50 and Exact DPS EPC .
– Table 3: maximal number of states State VD , State PM and State-Exact DPS EPC at any time unit, for

the DPS algorithms DPS VD , DPS PM and DPS EPC .
– Table 4: CPU Times CPU Pipe-Line, CPU Greedy EPC 50 and CPU DPS EPC for the DPS algorithms

VD -PM Pipe-Line, Greedy EPC 50 and DPS EPC .

Comments: the pipe-line scheme DPS Vehicle − > DPS Production involves significantly less states and CPU
time, for a gap almost negligible.

Outputs 2: we focus on the filtering power of the various devices introduced in Section 3.2.2. Once again we
run exact DPS EPC , while focusing on the maximal number of states per time units. For any instance, we
provide (Tab. 5):

(1) ST Max = Maximal number of states for a given pair (i, j ) obtained when only considering the strong
dominance rule.

(2) ST LOG = Maximal number of states obtained for a given (i, j ) when only applying the Logical Filtering.



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2381

Table 6. Filtering power of logical and quality based filtering rules.

Instance ST Max ST LOG State DPS EPC

0 576 000 421 421
1 1 137 240 31 810 31 810
2 1 086 640 22 394 22 394
3 1 206 120 40 032 40 032
4 714 780 32 765 32 765
5 1 142 240 53 053 53 053
6 1 559 520 28 876 28 876
7 1 510 080 81 790 81 790
8 1 206 120 16 028 16 028
9 718 848 13 476 13 476
10 936 000 8060 8060
11 300 000 4800 4664
12 173 400 14 929 11 368
13 356 928 18 761 18 761
14 576 000 8078 8078
15 876 096 48 501 352
16 3 136 000 118 795 118 795
17 3 317 760 31 415 31 415
18 2 816 000 26 639 26 639
19 602 112 11 589 11 543
20 602 112 11 589 11 543
21 2 903 040 28 073 28 073
22 1 614 720 13 608 13 544
23 2 416 128 10 989 10 989
24 199 920 6013 6013
25 291 840 887 887
26 291 600 1718 1718
27 3 110 400 41 858 41 858
28 3 110 400 41 858 41 858

(3) State DPS EPC = Maximal number of states obtained for a given (i, j ) when applying all filtering rules.

Comments: one sees that, while the filtering rules based on Strong Dominance have little filtering impact,
those based upon logical anticipation and optimistic estimation are significantly more efficient. Still, we keep
handing a large amount of states as soon as M and N become large. The pipe-line scheme DPS Vehicle − >
DPS Production involves significantly less states and CPU time, for a gap almost negligible (Tab. 6).

8. Conclusion

We have been presenting here a collaborative dynamic programming scheme in order to solve a scheduling
problem which requires synchronizing mechanisms. Many issues remain to be addressed: Extending our approach
to several vehicles; dealing with uncertainties related to hydrogen production; casting the routing issue into the
decision process; adapting the algorithms to one line or dynamic decision making.

Acknowledgements. We are thankful to LABEX IMOBS3 and French ANR, as well as to PGMO: Gaspard Monge
Program for Optimization, for supporting and funding this research.



2382 F. BENDALI ET AL.

References

[1] S. Albers, Energy-efficient algorithms. Commun. ACM 53 (2010) 86–96.

[2] E. Angel, E. Bampis and V. Chau, Low complexity scheduling algorithms minimizing the energy for tasks with agreeable
deadlines. Discrete Appl. Math. 175 (2014) 1–10.

[3] P. Baptiste, Scheduing unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic
power management. In: Proc. 17 th Annual ACM-SIMA Symposium on Discrete Algorithms (2006) 364–367.

[4] P. Baptiste, E. Neron and F. Sourd, Modèles et Algorithmes en Ordonnancement. Ed Ellipses (2004) 198–203.

[5] L. Benini, A. Bogliolo and G. De Micheli, A survey of design techniques for system level dynamic power management. IEEE
Trans. Very Large Scale Integr. Syst. 8 (2000) 299–316.

[6] K. Biel and C.H. Glock, Systematic literature review of decision support models for energy efficient decision planning. Comput.
Ind. Eng. 101 (2016) 243–259.

[7] A. Burke, Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95 (2007) 806–820.

[8] C.C. Chan, The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95 (2007) 704–718.

[9] P. Chretienne and A. Quilliot, Homogeneous non idling schedules of unit-time jobs on identical parallel machines. Discrete
Appl. Math. 161 (2013) 1586–1597.

[10] P. Chretienne and A. Quilliot, A polynomial algorithm for the homogeneous non idling scheduling problem of unit-time
independent jobs on identical parallel machines. Discrete Appl. Math. 243 (2018) 132–139.

[11] P. Chretienne, P. Fouilhoux and A. Quilliot, Anchored reactive and proactive solutions to the CPM-scheduling problem. Eur.
J. Oper. Res. 261 (2017) 67–74.

[12] E. Demaine, M. Ghodsi and M. Taghi Hajiaghayi, Scheduling to minimize gaps and power consumption. SPAA (2007) 46–54.

[13] M. Drexl, Synchronization in vehicle routing: a survey of VRPs with multiple synchronization constraints. Transp. Sci. 46
(2012) 297–316.

[14] J.R. Duflou, J.W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, M. Hauschild and K. Kellens, Toward energy
and resource efficient manufacturing: a process and system approach. CIRP Ann. – Manuf. Technol. 61 (2012) 587–609.

[15] S. Erdogan and E. Miller-Hooks, A green vehicle routing problem. Transp. Res. Part E Logistics Transp. Rev. 109 (2012)
100–114.

[16] A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte and M. Stobbe, A metaheuristic for the time dependent
pollution-routing problem. Eur. J. Oper. Res. 259 (2017) 972–991.

[17] A. Giret, D. Trentesaux and V. Prabhu, Sustainability in manufacturing operations scheduling: a state of art review. J. Manuf.
Syst. 37 (2015) 126–140.

[18] C. Grimes, O. Varghese and S. Ranjan, Light, Water, Hydrogen: The Solargeneration of Hydrogen By Water Photoelectrolysis.
Springer-Verlag US (2008).

[19] S. Irani and K. Pruhs, Algorithmic problems in power management. SIGACT News 36 (2003) 63–76.

[20] I. Kara, B.Y. Kara and M. Kadri Yetis, Energy minimizing vehicle routing problem, edited by A. Dress, Y. Xu and B. Zhu.
In: Combinatorial Optimization and Applications. Berlin, Heidelberg (2007) 62–71.

[21] C. Koç, O. Jabali, J. Mendoza and G. Laporte, The electric vehicle routing problem with shared charging stations. In: Int.
Trans. Oper. Res. 26 (2018) 1211–1243.

[22] Y. Kuo, Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput.
Ind. Eng. 59 (2010) 157–165.

[23] A. Lajunen, Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C: Emerg.
Technol. 38 (2014) 1–15.

[24] D. Lamy, Méthodes et outils pour l’ordonnancement d’ateliers avec prise en compte de contraintes additionnelles : énergétiques
et environnementales. Thèse de Doctorat, Université Clermont-Auvergne. France (2017).

[25] S. Licht, Thermochemical and Thermal/Photo Hybrid Solar Water Splitting. Springer New York, New York, NY (2008).

[26] C. Lin, K.L. Choy, G.T. Ho, S.H. Chung and H. Lam, Survey of green vehicle routing problem: past and future trends. Expert
Syst. App. 41 (2014) 1118–1138.

[27] F.J. Mailfert, E. Mole Kamga, A. Quilliot and H. Toussaint, Simultaneous Management of Energy Production and Consump-
tion. In: Proc. IEEE CODIT 2020 (2020) 8.

[28] G. May, I. Barletta, B. Stahl and M. Taisch, Energy management in production: A novel method to develop key performance
indicators for improving energy efficiency. Appl. Energy 149 (2015) 46–61.

[29] J.-Y. Moon and J.-W. Park, Smart production scheduling with time-dependent and machine-dependent electricity cost by
considering distributed energy resources and energy storage. IJPR 52 (2013) 3922–3939.

[30] J.-Y. Moon, K. Shin and J.W. Park, Optimization of production scheduling with time-dependent and machine-dependent
electricity cost for industrial energy efficiency. Int. J. Adv. Manuf. Technol. 68 (2013) 523–535.

[31] H. Mustapha, C. Desdouits, R. Giroudeau, C. Le Pape, Production scheduling with a piecewise-linear energy cost function.
In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). (2016) 1–8.

[32] A. Pechmann and I. Schöler, Optimizing energy costs by intelligent production scheduling, edited by J. Hesselbach and
C. Herrmann. In: Glocalized Solutions for Sustainability in Manufacturing. Berlin, Heidelberg (2011) 293–298.

[33] M. Raylan, S. Matos, Y. Frota and L. Satoru Ochi, Green vehicle routing and scheduling problem with split delivery. Joint,
EURO/ALIO, International Conference 2018 on Applied Combinatorial Optimization, (EURO/ALIO 2018). Electron. Notes
Discrete Math. 69 (2018) 13–20.



PIPE-LINING DYNAMIC PROGRAMMING PROCESSES 2383

[34] M. Sachenbacher, M. Leucker, A. Artmeier and J. Haselmayr, In: Efficient energy-optimal routing for electric vehicles. AAAI
(2011).

[35] M. Schneider, A. Stenger and D. Goeke, The electric vehicle-routing problem with time windows and recharging stations.
Transp. Sci. 48 (2014) 500–520.

[36] R. Waraich, M. Galus, C. Dobler, M. Balmer, G. Andersson and K. Axhausen, Plug-in hybrid electric vehicles and smart grid:
micro simulation. Transp. Res. C 28 (2014) 74–86.


	Context and state of the art
	The EPC problem: mathematical formulation and decomposition scheme
	An integrated Mathematical Programming (MP) model
	A demander/producer decomposition scheme
	VD: Vehicle_Driver model
	The PM: Production_Manager model
	The VD_PM decomposition


	An exact integrated DPS_EPC algorithm
	Filtering through rounding: a PTAS result
	Turning DPS_EPC algorithm into a parametrized polynomial time algorithm DPS_EPC(K)

	Logical filtering devices
	Logical filtering rules
	Quality based filtering rules


	The Vehicle_Driver problem
	Complexity of VD
	VD dynamic programming handling
	The DPS_VD algorithm: Time, Space, Decisions and Transitions

	Retrieving a (primary) refueling strategy and a reduced refueling strategy

	The Production_Manager (PM) problem
	Dealing with PM through dynamic programming
	The DPS_PM algorithm: Time, Space, Decisions and Transitions

	Filtering devices and greedy Greedy_PM algorithm

	Making VD and PM collaborate: The VD-bold0mu mumu >>>>>>PM pipe-line
	Handling EPC through a VD_PM_Pipe-Line algorithm
	Discussion

	Numerical experiments
	Conclusion
	References

