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Concomitant of Hall viscosity on the surface wave and thermocapillary instabilities in a viscous flowing film
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We studied a classical problem of thermocapillary instabilities in thin-film flow by including an interesting characteristic fluid property, called odd-viscosity. Odd-viscosity can arise in classical fluids due to broken time-reversal symmetry. Mathematically, this phenomenon gives rise to a non-vanishing odd part of Cauchy stress tensor accounted by oddviscosity coefficient µ o . We performed a detail analysis considering a generalised scaling for velocity field to understand the effect of odd viscosity in the hydrodynamic and thermocapillary instabilities in thin-film flow and later presented the results for a specific velocity scale. We started with Orr Somerfield (OS) linear analysis for all range of wavenumber and then constructed two low-dimensional models, namely, the Long wave expansion model (LWE) and the Weighted residual integral boundary layer model (WRIBL) under the assumption of small wave number to analyse linear and nonlinear behaviour of the instabilities analytically and numerically. We focused on two energy transferring mechanisms reinforcing each other to the disturbance: hydrodynamic H-mode and thermocapillary S-mode, and found that the odd viscosity plays a stabilising role for both the modes of instabilities. We established that for small values of Reynolds number (Re), both LWE and WRIBL models give the same results as that of OS. However, for a large value of Re, WRIBL gives a way better match with OS than LWE. Considering the streamlines and isotherms in the moving frame, we found that increasing odd viscosity flattens the streamlines, confirming the odd viscosity's stabilising effect. However, being non-dissipative in nature it has no significant influence on the temperature field (cannot impact on temperature raise or decay). We conclude that changing free surface temperature with odd viscosity comes as a combined effect of odd viscosity in the velocity field. In a static frame, the intensity of capillary separation and flow reversal phenomena decreases with the increase of odd viscosity, proving its stabilising effect on the flow.

Introduction

The flow of thin film over a flat incline heated surface is a fundamental problem in fluid mechanics encountered in numerous industrial and environmental issues. When a fluid layer is allowed to flow over a heated surface, the dynamics are regulated by several competing mechanisms. The first one is the classical long-wave instability developed from the isothermal flows, which was first studied experimentally by Kapitza & Kapitza [START_REF] Kapitza | Wave flow of thin layers of a viscous fluid: III. Experimental study of undulatory flow conditions[END_REF] where a wide variety of wavy regimes, like a rolling wave with a capillary hill, a series of nearly solitary waves or almost harmonic waves of falling liquid films had been observed. This mode of instability is known as the hydrodynamic mode or H-mode in the literature. This instability mode was analysed theoretically in more detail by Benjamin [6] and Yih [START_REF] Yih | Stability of Liquid Flow down an Inclined Plane[END_REF]. The key findings of these analyses are that the instability of the film manifested as a gravity-driven surface wave of long-wavelength disturbances and for a critical value of the Reynolds number, given by Re c = 5 cot β /6, (β being the inclination angle), beyond which flow become unstable. Benney [START_REF] Benney | Long Waves on Liquid Films[END_REF] exploited the relative thinness of the liquid layer and carried out an asymptotic analysis which yielded a single evolution equation for the thickness of the layer. Gjevik [START_REF] Gjevik | Occurrence of Finite-Amplitude Surface Waves on Falling Liquid Films[END_REF] improved the accuracy of the asymptotic expansions and obtained an equation for the evolution of the thickness, referred to as the Benney equation (BE). Unfortunately, this equation suffers from an artificial singularity for sufficiently large Reynolds numbers. However, it is much simpler than the full dynamic equations. The BE model is proved to be consistent and frequently used to study the weakly non-linear behaviour of film flows for example, film evaporation (Joo et al. [START_REF] Joo | Long-wave instabilities of heated falling films: Two-dimensional theory of uniform layers[END_REF]), non-uniform heating ( [START_REF] Miladinova | Long-wave instabilities of non-uniformly heated falling films[END_REF]), topographical effects (Kalliadasis et al. [START_REF] Kalliadasis | Steady freesurface thin film flows over topography[END_REF]), Van der Waals force (Tan et al. [START_REF] Tan | Steady thermocapillary flows of thin liquid layers[END_REF]), a chemical reaction (Trevelyan et al. [START_REF] Trevelyan | Dynamics of a vertically falling film in the presence of a first-order chemical reaction[END_REF]), etc. SCHEID et al. [START_REF] Scheid | Validity domain of the Benney equation including the Marangoni effect for closed and open flows[END_REF] have studied the validation domain of Benny equation deeply with the Marangoni effect. They ultimately concluded that BE would remain useful as a consistent falling film modelling technique, especially in identifying a new set of problems. To overcome the limitations of BE, weighted residual integral boundary layer model was proposed by Ruyer-Quil and Manneveille Ruyer-Quil & Manneville [START_REF] Ruyer-Quil | Modeling film flows down inclined planes[END_REF][START_REF] Ruyer-Quil | Improved modeling of flows down inclined planes[END_REF]. They introduced a systematic gradient expansion with a weighted residual technique using polynomial test functions as weights. Convective instabilities driven by buoyancy (Rayleigh-Bénard) and/or thermocapillary (Marangoni) effects are also salient and attractive problems in fluid mechanics. In the thin liquid film, buoyancy stabilizing mechanisms are negligible while thermocapillary instabilities become dominant. Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF] first investigated surface wave and thermocapillary instabilities in a liquid film falling down an inclined uniformly heated plane. They performed linear stability analysis based on Orr-Sommerfeld and linearised energy equations. They examined the occurrence of thermocapillary and surface wave instabilities and classified three different mechanisms by which energy is transferred to the disturbance. The first one is H-mode, which is associated with the isothermal falling film. In this mode, the shear stress exerted by the basic flow produces vorticity that originates perturbations at the free surface. Due to the effect of inertia, the perturbation vorticity tends to advect downstream relative to the free surface's deflection causes instability. Hydrodynamic and surface tension forces oppose this shift between the vorticity field and the free surface deflection (Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF]). The key fea-ture of the H-mode of instability leading to long-wavelength perturbations on the free surface of the film is that waves generated at the free surface travel much faster than any fluid particles inside the film (Kalliadasis et al. [START_REF] Kalliadasis | Falling Liquid Films[END_REF]). The other two mechanisms are related to thermal effects that can lead to a destabilizing thermocapillary force. The second one is the P-mode associated with the interaction of the basic temperature with the perturbation velocity field. This mode was initially detected by Pearson [45]. This mode capitulates steady convection rolls or hexagonal or squire cells whose size is the same order of magnitude as the depth of the layer. These instability modes are associated with short-wavelength type and are stabilized by viscous dissipation (Goussis & Kelly [19]). The last one is the S-mode associated with the modification of the basic temperature at the free surface by the surface deformation (Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF]). This mode of instability takes the form of large-wavelength disturbances for which the hydrodynamic pressure is the only stabilizing force. An extensive review of literature on isothermal film flow, in various context, can be found in Fulford [START_REF] Fulford | The Flow of Liquids in Thin Films[END_REF], Lin, S.P & Wang, C.Y [START_REF] Lin | Modelling wavy film flow[END_REF], Chang [START_REF] Chang | Wave Evolution on a Falling Film[END_REF], Hanratty [START_REF] Hanratty | INTERFACIAL INSTABILITIES CAUSED BY AIR FLOW OVER A THIN LIQUID LAYER[END_REF], Oron et al. [START_REF] Oron | Long-scale evolution of thin liquid films[END_REF], Alekseenko et al. [START_REF] Alekseenko | Wave Flow of Liquid Films[END_REF], Hsieh & Ho [START_REF] Hsieh | Wave and Stability in Fluids[END_REF], Chang & Demekhin [START_REF] Chang | Complex Wave Dynamics on Thin Films[END_REF], and for non-isothermal free surface flows can be found in Oron [START_REF] Oron | Nonlinear dynamics of thin evaporating liquid films subject to internal heat generation[END_REF], Nepomnyashchy et al. [START_REF] Nepomnyashchy | PIERRE 2001 Interfacial Phenomena and Convection, 1st edn[END_REF], Colinet et al. [START_REF] Colinet | Nonlinear Dynamics of Surface-Tension-Driven Instabilities: With a Foreword by I. Prigogine[END_REF], Velarde & Zeytounian [START_REF] Velarde | Interfacial Phenomena and the Marangoni Effect[END_REF], and Kalliadasis et al. [START_REF] Kalliadasis | Falling Liquid Films[END_REF]. All the studies we talked above considered that viscosity is physically dissipative and mathematically a symmetric tensor (even part). Avron [START_REF] Avron | Odd Viscosity[END_REF] was first to demonstrate that there could arise a non-vanishing non-dissipative anti-symmetric part of the viscous stress tensor in classical fluid if the time-reversal symmetry is broken. That odd part of the viscosity is termed as odd-viscosity. In everyday life there are many systems, for example, granular (Tsai et al. [START_REF] Tsai | A Chiral Granular Gas[END_REF]) biological (Sumino et al. [START_REF] Sumino | Large-scale vortex lattice emerging from collectively moving microtubules[END_REF]), colloidal ( [START_REF] Maggi | Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects[END_REF]) etc., where time-reversal symmetry is broken and hence odd-viscosity arises. Apart from that in last decade many researches carried out researches on odd-viscosity in various different physical systems (Banerjee et al. [START_REF] Banerjee | VINCENZO 2017 Odd viscosity in chiral active fluids[END_REF], Ganeshan & Abanov [START_REF] Ganeshan | Odd viscosity in twodimensional incompressible fluids[END_REF], Lapa & Hughes [START_REF] Lapa | Swimming at low Reynolds number in fluids with odd, or Hall, viscosity[END_REF]). The dynamics of free-surface for a two-dimensional incompressible fluid with odd-viscosity effect was investigated by Abanov et al. [START_REF] Abanov | Odd surface waves in two-dimensional incompressible fluids[END_REF]. They confirm that the surface waves are chiral. That is, the waves cannot be superposed on their mirror image by any combination of translations, rotations or macromolecular shape change. Later in 2019, Kirkinis & Andreev [START_REF] Kirkinis | Odd-viscosity-induced stabilization of viscous thin liquid films[END_REF] studied the effect of odd-viscosity effect on thermocapillary instabilities for a static film on a uniformly heated solid substrate. They concluded that odd viscosity gives stabilizing effect. Recently in 2021, a series of studies have been performed to analyse the effect of odd viscosity in stability and in formation of waves by Mukhopadhyay & Mukhopadhyay [38,[START_REF] Mukhopadhyay | Interfacial phase change effect on a viscous falling film having odd viscosity down an inclined plane[END_REF][START_REF] Mukhopadhyay | Thermocapillary instability and wave formation on a viscous film flowing down an inclined plane with linear temperature variation: Effect of odd viscosity[END_REF] on falling film flow over a non-uniformly heated plate, over a slippery inclined plate and in phase change effect respectively. They carried out various analytic and numerical investigations like Orr-Sommerfeld analysis, construction of low-dimensional falling film models, spatial and temporal stability analysis of the model, weakly nonlinear analysis, travelling wave solutions, and nonlinear spatio-temporal numerical solutions of the models etc. They established that (a) the Marangoni number gives destabilising effect for flow over a non-uniformly heated inclined plane, and (b) the slip on the substrate also destabilises the system. In all these two physical systems, odd viscosity is found to work as a hydrodynamic stabilising agent. Interestingly, for the interfacial phase change, being a stabilising agent, odd viscosity slows down both the film thinning process for evaporation and the film thickening process for condensation but cannot prevent the film rupture due to evaporation. Apart from that, Bao & Jian [START_REF] Bao | Odd-viscosity-induced instability of a falling thin film with an external electric field[END_REF] investigated the effect of odd viscosity in the linear and weakly non-linear stability of falling film in the presence of an external electric field. Zhao & Jian [START_REF] Zhao | Effect of odd viscosity on the stability of a falling thin film in presence of electromagnetic field[END_REF][START_REF] Zhao | Effect of odd viscosity on the stability of thin viscoelastic liquid film flowing along an inclined plate[END_REF] studied linear and weakly non-linear stability analysis of (a) flow of viscous fluid film under electromagnetic force, and (b) flow of viscoelastic Walter B fluid, respectively. In all these systems, researchers established the same fact that odd viscosity gives stabilizing effect. Considering all the previous works, the main objective of our present study is to investigate the influence of odd-viscosity on the surface waves, thermocapillary instabilities and waves formation on the film flow over a uniformly heated inclined plane. Therefore, we revisit the relevant parts, as we think appropriate to our study, of the problems as investigated by Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF], Kalliadasis et al. [START_REF] Kalliadasis | Thermocapillary instability and wave formation on a film falling down a uniformly heated plane[END_REF], Ruyer-Quil et al. [START_REF] Ruyer-Quil | Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation[END_REF] and Scheid et al. [START_REF] Scheid | Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves[END_REF] etc. for film flow over a heated inclined plate without odd-viscosity. These works are cited in appropriate places.

Formulation of the problem

We consider the flow of a thin viscous fluid film (see FIG. 1) with broken time-reversalsymmetry down an inclined plane, so the Cauchy stress tensor τ contains two parts

τ = τ e + τ o .
In two dimension τ e i j = µ e (∂ i v j + ∂ j v i ) is the even (standard) Cauchy stress tensor with even (standard) viscosity coefficient µ e whereas τ o i j = µ o (∂ i v * j +∂ * i v j ) is odd part of the Cauchy stress tensor with odd viscosity coefficient µ o , which arises due to time-reversal-symmetry breaking. Explicit expressions for the component of the odd part of the stress tensor are appended in Appendix §A (Mukhopadhyay & Mukhopadhyay [39]). Here we used the notation a * i = ε ji a j , where ε i j is the Levi-Civita antisymmetric tensor in two dimensions. The fluid is assumed to be incompressible, and the fluid properties such as density ρ, thermal conductivity k T , thermal diffusivity κ are constant. The angle of inclination of the plane is β , and the acceleration due to gravity is g. The dynamic influence of the airflow above the film is ignored. The coordinate system is chosen where the x-axis is along with the flow, and the z-axis is normal to the inclined plane. The governing equations consist of conserving mass and momentum equations for the fluid flow and the energy equation for the temperature field. In two-dimension they can be written as:

v i,i = 0, (1) 
ρD t v i = -p ,i + ρg i + τ i j, j , (2) 
D t T = κT ,ii , (3) 
where v i (i = 1, 2) are components of fluid velocity, T is the temperature and D t = ∂ t + v j ∂ j denotes the convective derivative. The boundary conditions are usual no-slip condition and linear temperature distribution as the thermal boundary condition on the inclined plane (z = 0)

v i = 0, T = T w , (4) 
where T w denotes the temperature of the wall/plate. At the interface (z = h(x,t)), the dynamic and kinematic conditions, along with Newton's law of cooling as the thermal boundary conditions are,

τ i j n j t i = σ ,i t i , (5) 
p a + τ i j n j n i = -σ (T )n i,i , (6) 
D t (z -h) = 0, (7) 
k T T ,i n i + k g (T -T ∞ ) = 0, (8) 
where T ∞ is the temperature of the surrounding air, which acts as a reservoir of infinite heat capacity and is constant, and p a is the pressure of the ambient gas phase, and k g is the heat transfer coefficient between the fluid and the air. n = (-h x , 1)/ 1 + h 2 x , and t = (1, h x )/ 1 + h 2 x are unit vectors, normal (outward-pointing) and tangential to the interface respectively. σ is the surface tension of the fluid and is assumed to vary linearly, within the range of small temperature difference as σ (T ) = σ 0γ(T -T ∞ ), where σ 0 is the surface tension at the reference temperature T ∞ and γ = -∂ σ /∂ T | T =T ∞ , the thermal surface tension coefficient is a positive constant for most of the common fluids. It is to be noted here that the temperature difference between the plate and the surrounding air induces a thermocapillary Marangoni effect that affects the free surface and fluid flow. We assumed λ as the characteristic longitudinal length scale, whereas the mean film thickness ĥ as the length scale in the transverse direction. Defining the film aspect ratio as ε = 2π ĥ/ λ 1 and introducing following non-dimensional variables by the upper-scripts star

x * = (2π/ λ )x, z * = (1/ ĥ)z, h * = (1/ ĥ)h, u * = (1/ V )u, w * = ( λ /2π ĥ V )w, t * = (2π V / λ )t, p * = (1/ρ V 2 )p, T * = (T -T ∞ )/∆T, (9) 
where, ∆T = T w -T ∞ , V is the velocity scale. We will discuss more about the choice of the velocity scale, later, in appropriate place.

Using the dimensionless quantities [START_REF] Chang | Wave Evolution on a Falling Film[END_REF] in the governing equations and boundary conditions ( 1)-( 8) after dropping the asterisk we arrive as:

u x + w z = 0, (10) εRe 
(u t + uu x + wu z ) = -εRep x + Re Fr 2 + (ε 2 u xx + u zz ) -µ(ε 3 w xx + εw zz ), (11) 
ε 2 Re(w t + uw x + ww z ) = -Rep z - Re Fr 2 cot β + (ε 3 w xx + εw zz ) + µ(ε 2 u xx + u zz ), (12) 
εRePr(T t + uT x + wT z ) = ε 2 T xx + T zz , (13) 
u = w = 0, T = 1 at z = 0, (14) 
h t + uh x = w, at z = h, (15) 
p a -p + Re -1 [2ε{ε 2 u x h 2 x -(u z + ε 2 w x )h x + w z } + µ{(u z + ε 2 w x )(1 -ε 2 h 2 x ) -2ε 2 (u x -w z )}](1 + ε 2 h 2 x ) -1 = ε 2 We(1 -CaT )h xx (1 + ε 2 h 2 x ) -3/2 , at z = h, (16) 
[(u z + ε 2 w x )(1 -ε 2 h 2 x ) -2ε 2 (u x -w z )h x + ε µ{(u x -w z )(1 -ε 2 h 2 x ) +2(u z + ε 2 w x )h x }](1 + ε 2 h 2 x ) -1/2 = -Mn(T x + h x T z ), at z = h, (17) 
(T z -ε 2 T x h x )(1 + ε 2 h 2 x ) -1/2 + BiT = 0, at z = h, (18) 
where, µ(≡ µ o /µ e , taken as O(1)) is the odd viscosity coefficient, Re(≡ V ĥ/ν, taken as O(1))

is the Reynolds number, Fr ≡ V / g sin θ ĥN , taken as O(1) is the Froude number,

We(≡ σ 0 /ρ V 2 ĥ, taken as O(1/ε 2 )) is the Weber number, Mn(≡ εγ∆T /µ V , taken as O(1)) is the Marangoni number, Ca(≡ γ∆T /σ 0 , taken as O(ε)) is the capillary number, Bi(≡ k g ĥ/k T , taken as O(ε)) is the Biot number. For detail derivation of the above equations we refer Kirkinis & Andreev [START_REF] Kirkinis | Odd-viscosity-induced stabilization of viscous thin liquid films[END_REF] and Mukhopadhyay & Mukhopadhyay [START_REF] Mukhopadhyay | Nonlinear stability of viscous film flowing down an inclined plane with linear temperature variation[END_REF].

Base profiles

When the flow is stationary, of constant film thickness, and the inclined plane over which fluid is flowing is uniformly heated, the solution of equations governing the fluid flow problem corresponds to a parallel flow with viscosity (even-part) precisely balancing the gravity and the heat is propagated by pure conduction is called a base state of the flow. The base state of the flow is given by:

U B (z) = 1 2 Re Fr 2 z (2 -z), (19a) 
W B (z) = 0, (19b) 
P B (z) = p a + 1 Fr 2 (cot β + µ)(1 -z), (19c) 
Θ B (z) = 1 - Bi 1 + Bi z. (19d) 
3 Orr Sommerefeld (OS) analysis

We introduce the following perturbations on the base state [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF] in order to linearise the system (10)- [START_REF] Gjevik | Occurrence of Finite-Amplitude Surface Waves on Falling Liquid Films[END_REF] governing the flow

u(x, z,t) = U B (z) + ũ(x, z,t), v(x, z,t) = ṽ(x, z,t), p(x, z,t) = P B (z) + p(x, z,t), T (x, z,t) = Θ B (z) + T (x, z,t), (20) 
where U B , P B , and Θ B are the base states. Let the 2-D stream function, the pressure, temperature and surface elevation for the perturbation quantities be denoted by

ψ(x, z,t) = φ (z) exp[i k( x -c t)] , p(x, z,t) = ρ(z) exp[i k( x -c t)] , T (x, y, z) = τ(z) exp[i k( x -c t)] , η(x, z,t) = Γ exp[i k( x -c t)] , (21) 
where, x = x/ε, t = t/ε. We shall investigate the temporal linear stability analysis i.e. in the above expression k is chosen to be real and c is complex.

Then the velocity perturbations from [START_REF] Hanratty | INTERFACIAL INSTABILITIES CAUSED BY AIR FLOW OVER A THIN LIQUID LAYER[END_REF] are related to ψ as follows

ũ(x, z,t) = ∂ ψ ∂ z = φ (z) exp[i k( x -c t)], (22a) ṽ(x, z,t) = - ∂ ψ ∂ x = -i kφ (z) exp[i k( x -c t)]. (22b) 
Note that the velocity perturbations automatically satisfy continuity equation for the perturbed flow:

∂ ũ ∂ x + ∂ ṽ ∂ z = 0. ( 23 
)
Finally, the Orr-Sommerfeld (OS) boundary value problem is given by:

(D 2 -k 2 ) 2 φ = i kRe (U B -c) (D 2 -k 2 )φ -U B φ , (24a) 
(D 2 -k 2 )τ = i k Re Pr (U B -c)τ -Θ B φ , (24b) 
where Dφ = φ , D 2 φ = φ and so on.

The boundary conditions are:

φ (0) = 0, (25a) 
φ (0) = 0, (25b) 
τ(0) = 0, (25c) 
(D 2 + k 2 )φ (1) + 2i kµDφ (1) + i k Mn τ(1) + Θ B (1)δ B +U B (1)δ B = 0, (25d) 
φ (1) -3k 2 φ (1) -Rei k[φ (1)(U B (1) -c)] -2i k 3 µφ (1) = i kδ B Re Fr 2 cot β + (ReWe -Mn Θ B (1))k 2 , (25e) 
Dτ(1) + Bi(τ(1) + Θ B (1) δ B ), (25f) 
where,

δ B = φ (1) c -U B (1)
. The system of equations (24a)-(25f) is posed as an eigenvalue problem with c denoting the eigenvalue. The main purpose of this section is to seek a non-trivial solution of the complex (in general) eigenvalue c of the above the system (24a)-(25f), called Orr-Sommerfeld (OS) Eigenvalue problem, of the form c = c(k, Re) = c r (k, Re) + ic i (k, Re) for given values of the other parameters Ma, Bi, We and µ, so that this non-trivial solution provides the relationship between the conditions of the primary flow and the evolution of various disturbance modes. We will solve the system numerically (in next section).

Next, we will take advantage of the fact that small wave number perturbations are expected to be most unstable, and consequently, an asymptotic analysis as k → 0 predicts the onset of instability. Thus, in terms of long-wavelength asymptotic analysis, solution of the eigenvalue problem is obtained by considering an expansion of the eigenfunctions φ , τ and the eigenvalue c in powers of k (Yih [START_REF] Yih | Stability of Liquid Flow down an Inclined Plane[END_REF]).

c = c 0 + ikc 1 -k 2 c 2 -ik 3 c 3 + O(k 4 ), φ = φ 0 + ikφ 1 -k 2 φ 2 -ik 3 φ 3 + O(k 4 ), τ = τ 0 + ikτ 1 -k 2 τ 2 -ik 3 τ 3 + O(k 4 ).
The complex phase speed c is then obtained as:

c 0 = Re Fr 2 , ( 26a 
)
c 1 = 2 5 Re Re Fr 2 -cot β + 3 2 Fr 2 Re MaBi (1 + Bi) 2 -3µ. (26b)
Since, the growth rate given by the imaginary part of the complex frequency ω is

ω i = kc i ∼ k 2 c 1 -k 4 c 3 + ..
., the onset of instability occurs at c 1 = 0. If c 1 < 0, the system is stable and if c 1 > 0, the system is unstable and c 1 = 0 will give the condition for neutral stability which is:

Re c = 5 2 Fr 2 Re cot β - 15 4 
Fr 2 Re 2 MaBi (1 + Bi) 2 + µ 15 2 Fr 2 Re . ( 27 
)
If we consider the Nusselt velocity u = g ĥ2 sin β /3ν with ν = µ e /ρ, as a characteristic velocity scale then Re/Fr 2 = 3, which gives

6 5 Re c + MaBi 2(1 + Bi) 2 = cot β + 3µ, (28) 
is exactly same with the finding of Sadiq et al. [START_REF] Sadiq | Instabilities in a liquid film flow over an inclined heated porous substrate[END_REF] for the limiting case µ → 0 (equation ( 26) of their paper).

Redefined parameters

To decipher the coupling between hydrodynamic H-mode and thermocapillary S-mode, we now introduce the parameters χ, M, B and Ka as defined by Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF] by considering the Nusselt velocity u , as a characteristic velocity scale and define Ma = γ∆T /µ u so that Mn = εMa. Here

Re = 2 3 χ sin β , Ma = 3M 2χ 2/3 sin β , Bi = Bχ 1/3 , We = 9Ka 2χ 5/3 sin 2 β , (29) 
where,

χ = g ĥ3 2ν 2 , M = γ∆T ρ 2 ν 4 g 1/3 , B = k g k T 2ν 2 g 1/3 , Ka = σ 0 ρ (4ν 4 g) 1/3 . ( 30 
)
Ultimately it is worth defining a new parameter as where, ∆T s = T w -T s , The proof for the above relation is given in Appendix §B.

M * = γ∆T s ρν 2 νg 1/3 = MBχ 1/3 1 + Bχ 1/3 , (31) 
It is worth mentioning here that, the relation [START_REF] Keller | Constructive methods for bifurcation and nonlinear eigenvalue problems[END_REF], can be expressed in terms of these newly defined parameters as

(χ sin β ) 2 + 15 16 
M * χ 1/3 1 + Bχ 1/3 = 5 4 χ cos β + 15 4 µ χ sin β , (32) 
where, M * is given in [START_REF] Lin | Modelling wavy film flow[END_REF]. Equation ( 32) exactly matches with Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF] and Sadiq et al. [START_REF] Sadiq | Instabilities in a liquid film flow over an inclined heated porous substrate[END_REF].

The Orr-Sommerfeld system (24a)-(25f) consists of 4 th order complex ODE for the amplitude of the perturbed cross-stream velocity and 2 nd order complex ODE for the perturbed temperature distribution subject to six boundary conditions are solved numerically using the numerical continuation method in software Auto-07p (Doedel et al. [START_REF] Doedel | XIANJUN[END_REF]) to analyse the behaviour of marginal stability curves in the Re vs k plane. As the differential equation is linear, an integral constraint namely, 1 0 φ (y)dy = 1 is also considered. The system is solved by recasting it into a dynamical system of dimension six subject to the above integral constraint. The solution branches are constructed by continuation, starting from the trivial zero-wave-number solution with Keller [START_REF] Keller | Constructive methods for bifurcation and nonlinear eigenvalue problems[END_REF]'s pseudo-arclength continuation method. corresponds to the S-mode of instability as modified by the shear flow. For both cases, the flow becomes unstable first with respect to transverse waves at k c = 0. Therefore, the critical values χ c = χ H and χ S are given by the relation [START_REF] Maggi | Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects[END_REF]. As M increases, χ H and χ S approach each other and ultimately, two marginal stability curves marge for a certain critical value M c (say) of M (depending on other parameters), and consequently two unstable regions unite, forming a single unstable domain, showing that the S-mode and H-modes reinforce each other. Beyond this value of M = M c , the flow is unstable for all values of χ, at least for large-wavelength disturbances. These results were first obtained by Goussis & Kelly [START_REF] Goussis | Surface wave and thermocapillary instabilities in a liquid film flow[END_REF]. The effect of oddviscosity parameter µ is showing, as we move pictures from Figures 2a to 2d. This reveals that the stable region increases with the increasing values of µ. Therefore odd-viscosity suppress the instability mechanism. Figure 3 shows the variation of growth rate as a function of χ for Mn * = 55, and it reviles that for a fixed χ, growth rate decreases, with the increase in µ showing the stabilizing effect of odd-viscosity of the fluid. Further, for each fixed χ, the variation in growth rate decreases up to a certain value of χ, and beyond that, it increases, showing the destabilizing effects of inertia (Sadiq et al. [START_REF] Sadiq | Instabilities in a liquid film flow over an inclined heated porous substrate[END_REF]). It is worth mentioning that, for large χ inertia forces dominate Marangoni forces, while for small χ Marangoni forces dominate inertia (Kalliadasis et al. [START_REF] Kalliadasis | Thermocapillary instability and wave formation on a film falling down a uniformly heated plane[END_REF]).

As we investigated in this section, the Orr-Sommerfeld analysis is concerned only with the linear theory of hydrodynamic instabilities where the growth/decay of disturbances with infinitesimal amplitude are studied reliably. However, to study the larger but finite, amplitude disturbances these linearized equations are rendered invalid due to the absence of nonlinear terms in linear stability theory. For example, any results are independent of the amplitude of the disturbance. Hence no evolution equation for the amplitude can be derived from the linear stability theory. Further, nonlinear effects become important and have to be taken into consideration. Therefore, one requires a nonlinear initial value problem that describes the temporal evolution of finite-amplitude disturbances in the liquid film flowing over a heated inclined substrate. In the following sections, such a problem is formulated by deriving nonlinear evolution equation/s for the film thickness (local flow rate, free surface temperature) by applying a long-wave approximation and weighted residual techniques to study nonlinear interactions between modes of different wavenumbers under the assumption that the amplitude is weakly time-dependent.

Long Wave Expansion (LWE) Model

We construct a model using a long-wave expansion method in terms of non-dimensional film thickness h(x,t) which depends on the dimensionless spatial and temporal variables x and t.

For the falling film, the long wave-length modes are the most unstable mode. We expand the physical quantities u, v, p and T as power series of ε,

u = u 0 + εu 1 + ..., v = v 0 + εv 1 + ..., p = p 0 + ε p 1 + ..., T = T 0 + εT 1 + .... (33) 
Then we substitute (33) into the governing equations and boundary conditions ( 10)-( 18) and collect the coefficients of like power of ε. Solving up to O(ε) (for details see Mukhopadhyay & Mukhopadhyay [START_REF] Mukhopadhyay | Hydrodynamics and instabilities of falling liquid film over a non-uniformly heated inclined wavy bottom[END_REF][START_REF] Mukhopadhyay | Waves and instabilities of viscoelastic fluid film flowing down an inclined wavy bottom[END_REF]) the model ultimately reads as:

h t + A(h)h x + ε(B(h)h x +C(h)h xxx ) x + O(ε 2 ) = 0, (34) 
where,

A(h) = Re Fr 2 h 2 , (35a) 
B(h) = Re Re Fr 2 2 2 15 h 6 - Re Fr 2 1 3 cot β + µ h 3 + MaBi 2(1 + Bih) 2 h 2 , (35b) 
C(h) = ε 2 1 3 ReWeh 3 . (35c) 
Equations ( 34) -( 35) called Benny equation (BE) with Merangoni effect.

Temporal stability analysis from LWE Model

To study the linear instability of the base flow, we disturb the flat film with an infinitesimal perturbation. The film thickness h can be written as

h(x, z,t) = 1 + η(x, z,t), (36) 
where, η 1 is non-dimensional perturbation or surface elevation to the film. For convenience, we also set the transformation x = x/ε, and t = t/ε. Using [START_REF] Mukhopadhyay | Hydrodynamics and instabilities of falling liquid film over a non-uniformly heated inclined wavy bottom[END_REF] and ( 37) in [START_REF] Miladinova | Long-wave instabilities of non-uniformly heated falling films[END_REF], retaining the terms up to the second order fluctuations after dropping the cap sign can be written as

η t + A 1 η x + B 1 η xx +C 1 η xxxx + A 1 ηη x + B 1 ηη xx + η 2 x +C 1 (ηη xxxx + η x η xxx ) + 1 2 A 1 η 2 η x + B 1 1 2 η 2 η xx + ηη 2 x +C 1 1 2 η 2 η xxxx + ηη x η xxx + O(η 4 ) = 0, (38) 
Where A 1 , B 1 , C 1 and their corresponding derivatives denoted by primes, with respect to h are evaluated at h = 1 from [START_REF] Mukhopadhyay | Nonlinear stability of viscous film flowing down an inclined plane with linear temperature variation[END_REF].

In this case, temporally advancing instability is investigated keeping the spatial flow periodicity is fixed (Gelfgat & Kit [START_REF] Gelfgat | Spatial versus temporal instabilities in a parametrically forced stratified mixing layer[END_REF], Náraigh & Spelt [START_REF] Náraigh | An analytical connection between temporal and spatio-temporal growth rates in linear stability analysis[END_REF]). The temporal stability analysis has been done using the technique described in Mukhopadhyay & Mukhopadhyay [START_REF] Mukhopadhyay | Hydrodynamics and instabilities of falling liquid film over a non-uniformly heated inclined wavy bottom[END_REF]. We excited the film with a sinusoidal perturbation of the form η(x,t) = Γ exp[i k( xc t)] + cc , where, Γ ∈ C is the amplitude of the disturbance and cc represents complex conjugate. In this case, k ∈ R, c ∈ C and frequency ω = kc ∈ C. We get the linear dispersion relation from our model [START_REF] Miladinova | Long-wave instabilities of non-uniformly heated falling films[END_REF] as

Disp(ω, k) ≡ -i ω + i A 1 k -B 1 k 2 +C 1 k 4 = 0, ( 39 
)
where A 1 , B 1 , and C 1 are evaluated at h = 1 from [START_REF] Mukhopadhyay | Nonlinear stability of viscous film flowing down an inclined plane with linear temperature variation[END_REF].

Equating the real and imaginary part of (39) to get

ω r = A 1 k, and 
ω i = B 1 k 2 -C 1 k 4 , (40) 
which gives the linear phase velocity as

c r = ω r /k = A 1 = Re Fr 2 . ( 41 
)
Thus if we choose velocity scale V as Nusselt velocity u = g ĥ2 sin β /3ν or free surface velocity U N = g ĥ2 sin β /2ν we found Re/Fr 2 = 3 or 2, respectively. Therefore, we conclude that the linear waves propagate with three times the averaged velocity or twice the interfacial velocity of the flat film. As the linear phase velocity is independent of wavenumber k, the wave is non-dispersive in nature in this case. Now, the effect of perturbation in the stability of flow can be investigated with the sign of the imaginary part of ω i given in equation [START_REF] Mukhopadhyay | Thermocapillary instability and wave formation on a viscous film flowing down an inclined plane with linear temperature variation: Effect of odd viscosity[END_REF]. ω i > 0 makes the system unstable whereas ω i < 0 makes the system stable, while ω i = 0 gives neutral state. Therefore, the condition of neutral stability gives

k = 1 WeRe Re Re Fr 2 2 2 5 - Re Fr 2 (cot β + 3µ) + 3MaBi 2(1 + Bih) 2 , ( 42 
)
which shows that increasing Reynolds number Re or Marangoni number Ma widen the range of unstable wavenumber while decreasing β or increasing the odd-viscosity parameter µ or Weber number We has a stabilizing effect. These results are just identical with the results mentioned by [START_REF] Scheid | Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves[END_REF] who performed the analysis by weighted residual approach for the film flow without odd-viscosity. The onset of instability is obtained by considering the zero critical wave number as given by [START_REF] Nepomnyashchy | PIERRE 2001 Interfacial Phenomena and Convection, 1st edn[END_REF], which yields the same critical Reynolds number described by equation [START_REF] Keller | Constructive methods for bifurcation and nonlinear eigenvalue problems[END_REF]. It is not surprising as the LWE model being a regular perturbation expansion of the full Navier-Stokes equations, should be exact close to the criticality. It is clear that increasing µ, the number of negative valued contour lines increased, i.e., unstable mode decreases. Also, critical χ (Reynolds number) increases with increasing µ. Our claim of odd-viscosity giving stabilizing effect is satisfied here.

Traveling wave solution from LWE Model

This small part is dedicated to discussing the travelling wave solution of the nonlinear LWE model [START_REF] Miladinova | Long-wave instabilities of non-uniformly heated falling films[END_REF]. Travelling waves are the stationary solution of (34) in a moving reference frame x → xct with c is the speed of the moving frame. This transformation leads the evolution equation [START_REF] Miladinova | Long-wave instabilities of non-uniformly heated falling films[END_REF] and its coefficients [START_REF] Mukhopadhyay | Nonlinear stability of viscous film flowing down an inclined plane with linear temperature variation[END_REF] to a fourth-order ordinary differential equation which can be written as a third-order ODE after a single integration as

-ch + K (h) + B(h)h +C(h)h -q 0 = 0, (43) 
where, K (h) = A(h)h dx. Primes denote the derivatives with respect to x and q 0 is an integration constant which represents the flow rate in the moving frame of reference. Equation ( 43) is solved and solitary waves are computed using he continuation software Auto07p (Doedel et al. [START_REF] Doedel | XIANJUN[END_REF]) by recasting it into a three-dimensional dynamical system. Detail discussion about the computation method can be found in Mukhopadhyay & Mukhopadhyay [START_REF] Mukhopadhyay | Hydrodynamic instability and wave formation of a viscous film flowing down a slippery inclined substrate: Effect of odd-viscosity[END_REF][START_REF] Mukhopadhyay | Thermocapillary instability and wave formation on a viscous film flowing down an inclined plane with linear temperature variation: Effect of odd viscosity[END_REF]. Initially a sinusoidal perturbation is given in the form of 1 -à mp sin(2 f πx/l) with à mp as the amplitude of the linear perturbation, f being the harmonic parameter, and l = 2π/k is the period of the wave. We have chosen the starting point as the Hopf bifurcation point. The solitary waves (precisely γ 2 family of waves) are plotted in figure 8(a) for different values of odd viscosity parameter µ. It is clear that the amplitude of the permanent waves decreases with the increase of µ.

Spatio-temporal analysis from LWE Model

In this section, we shall investigate the evolution of finite-amplitude perturbation to the wave over time for the long wave expansion model ( 34) by posing an initial-value problem on a periodic domain and solve numerically. The spatial derivatives are approximated via the finite differences method using a method of line (Schiesser [START_REF] Schiesser | The Numerical Method of Lines: Integration of Partial Differential Equations[END_REF]). This turns the system into a system of ordinary differential equations for the discrete h values on an even-spaced 1D grid. The local time evolution for film thickness h at the node k reads now

∂ h k (t) ∂t = F (h k-2 (t), h k-1 (t), h k (t), h k+1 , h k+2 (t)) . (44) 
We solve this dynamical system using state-of-the-art ODE solvers. Specifically, we opted for a high-order Rosenbrock Wanner (ROW) scheme, which is an optimized implicit Runge-Kutta ODE solver (Rang [START_REF] Rang | Improved traditional Rosenbrock-Wanner methods for stiff ODEs and DAEs[END_REF]). These methods only need the solution of linear systems that gives a good balance to overcome the hurdles of using either explicit method, where to get a stable numerical result, very small time step have to be used or implicit methods where a solution of non-linear systems are needed. We have performed the simulation using a python library (Cellier & Ruyer-Quil [START_REF] Cellier | CHRISTIAN 2019 Scikit-finite-diff, a new tool for PDE solving[END_REF]). We have used this technique in our earlier works and got reliable results, and the accuracy has been established in Mukhopadhyay & Mukhopadhyay [START_REF] Mukhopadhyay | Hydrodynamics and instabilities of falling liquid film over a non-uniformly heated inclined wavy bottom[END_REF][START_REF] Mukhopadhyay | Waves and instabilities of viscoelastic fluid film flowing down an inclined wavy bottom[END_REF][START_REF] Mukhopadhyay | Hydrodynamic instability and wave formation of a viscous film flowing down a slippery inclined substrate: Effect of odd-viscosity[END_REF][START_REF] Mukhopadhyay | Thermocapillary instability and wave formation on a viscous film flowing down an inclined plane with linear temperature variation: Effect of odd viscosity[END_REF]. Initially, the disturbance is given as

h(x, 0) = 1 + 0.1 cos(2πx/L), ( 45 
)
Where k is the wave number and L = 2π/k is the length of the periodic domain. The computation is performed on a uniform grid with the number of spatial grid points N = 600 -800 (∆x = 1/N ∼ 1.6 × 10 -3 -1.8 × 10 -3 ) and ∆ t = 0.5 (unless mentioned specifically). We stopped the simulation after retrieving permanent stationary waves. 

Weighted Residual Integral Boundary Layer (WRIBL) model

We are now interested in constructing a three equation model in the framework of weighted residual technique to see how odd viscosity plays a role in heated falling films to compare the results from different models. We follow the footsteps as suggested by the previous researchers (Ruyer-Quil et al. [START_REF] Ruyer-Quil | Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation[END_REF]) and consider the terms up to O(ε 2 ). The system (10)-( 18) are truncated at O(ε 3 ) and becomes

u x + w z = 0 (46a) εRe(u t + uu x + wu z ) = -εRep x + Re Fr 2 + (ε 2 u xx + u zz ) -ε µw zz + O(ε 3 ), (46b) 
ε 2 Re(w t + uw x + ww z ) = -Rep z - Re Fr 2 cot β + εw zz + µ(ε 2 u xx + u zz ) + O(ε 3 ), (46c) 
εRePr(T t + uT x + wT z ) = ε 2 T xx + T zz + O(ε 3 ), (46d) 
u = w = 0, T = 1, at z = 0, (47a) w = h t + uh x , at z = h, (47b) 
Rep = 2ε [w z -u z h x ] + µ u z + ε 2 w x -2 (u x -w z ) + u z h 2 x -ε 2 h xx (ReWe -MaT ) , at z = h, (47c) 
u z = ε 2 [4u x h x -w x ] -2ε µ [u x + u z h x ] -εMa∂ x (T | h ), at z = h, (47d) 
T z = -BiT -ε 2 Bi 2 T h 2 x -h x T x , at z = h. (47e) 
Following the boundary layer theory and neglecting the inertia terms of the momentum equation in the cross-stream direction, a single integration along z will lead us to the interfacial normal stress condition. Performing some simple algebra, we can get the stream-wise pressure gradient approximated at O(ε 2 ). This will ultimately lead us to the system of 2D second-order boundary layer equation as:

u x + w z = 0 (48a) εRe(u t + uu x + wu z ) -u zz -2ε 2 u xx = Re Fr 2 -ε Re Fr 2 cot β h x + ε 3 h xxx ReWe + ε 2 (u x | h ) x (48b) εRePr(T t + uT x + wT z ) = ε 2 T xx + T zz ε 2 Bi 2 T | h h 2 x -h x T x | h ( 48c 
)
u| 0 = w| 0 = 0, T | 0 = 1, (48d) u z | h = -εMa(T | h ) x + ε 2 [4u x | h h x -w x | h ] -2ε µ [u x | h + u z | h h x ] (48e) T z | h = -BiT | h -ε 2 Bi 2 T | h h 2 x -h x T x | h . (48f)
We are not elaborating the process because the weighted residual modelling method has been extensively studied over the decade, and our main intention to see where and how odd viscosity comes into play.

Let us now decompose the stream-wise velocity field u and temperature field T as:

u = u 0 + u 1 , and 
T = T 0 + T 1 ,
where, u 0 and T 0 are given by

u 0 (x, yz,t) = 3q(x,t) h(x,t) f (z), (49a) 
T 0 (x, z,t) = 1 + (θ (x,t) -1) g(z), (49b) 
where, f (z) = z -z2 /2 and g(z) = z with z = z/h and the surface temperature θ = T | h is introduced using the relation θ x = (∂ x + ∂ x h∂ z )T . q = h 0 u dz is the local flow rate. Next work is to find suitable weight functions in order to average the momentum and thermal boundary layer equations (48b)-(48c). Based on some algebraic steps we found the weight function for equation (48b) should be w f (z) = Re/Fr 2 (z -z2 /2) and for equation (48c) is w T (z) = z. Now first integrating the mass balance equation (48a) across the liqud layer to get an evolution equation of h and then integrating momentum and thermal boundary layer equations ( 48b)-(48c) with the weights w f and w T respectively yields the evolution equations for local flow rate q and interface temperature θ . Ultimately the approximated 2nd order weighted residual model reads as:

h t + q x = 0 (50a) εRe 2 5 q t + q h 34 35 q x - q 2 h 2 18 35 h x + - h 3 F -εF cot β h x + ε 3 ReWeh xxx + q h 2 + 3ε 2 µ - q h 2 h x + 1 h q x + ε Ma 2 θ x + ε 2 - q h 2 8 5 h 2 x + 1 h 9 5 q x h x + q h 12 5 h xx - 9 5 q xx = 0 (50b) εRePr h 3 θ t + - 7 120 + 7θ 120 q x + 9 20 qθ x + Biθ + 1 h (-1 + θ ) +ε 2 - 1 3h + θ 3h + Biθ 2 h 2 x - 1 3 θ x h x + 1 3 (-1 + θ ) h xx - h 3 θ xx = 0 (50c)
Where, F = Re/Fr 2 . For F = 1 and µ → 0 and for isothermal case equation ( 50) reduces to second order simplified Galerkin model found by Ruyer-Quil & Manneville [START_REF] Ruyer-Quil | Improved modeling of flows down inclined planes[END_REF](equation (11 & 41) of their paper). Now, if we consider the model up to O(ε), then the first-order model reads like (we drop ε for convenience):

h t + q x = 0 (51a) Re 2 5 q t + q h 34 35 q x - q 2 h 2 18 35 h x + - h 3 (F -F cot β h x + ReWeh xxx ) + q h 2 + 3 2 µ - q h 2 h x + 1 h q x + Ma 2 θ x = 0 (51b) RePr h 3 θ t + - 7 120 + 7θ 120 q x + 9 20 qθ x + Biθ + 1 h (-1 + θ ) = 0 (51c)
For F = 1 and µ → 0 equation 51 exactly matches with the first order model by Ruyer-Quil et al. [START_REF] Ruyer-Quil | Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation[END_REF] (equation 4.18 of their paper).

Linear stability analysis from WRIBL model

The system (50a)-(50c) admits the trivial solution (the flat-film solution), h = 1, q = F/3 and θ = 1/(1 + Bi). We consider the stability of these solutions with respect to infinitesimal perturbations in the form of normal modes

∼ exp[ik(x -ct)],
where k and c are the wavenumber and complex phase velocity of the perturbations, respectively. Substituting these modes into the model (50a)-( 50c) and linearised about the flat-film solutions yields a system of linear algebraic equation (disturbance equations) with constant coefficients of the form det |A -iωI| = 0 (given in Appendix §C) for the eigenvalue ω, where A is a 3 × 3 matrix and I is the unitary matrix. This gives the dispersion relation D(k, c, Re, cot β , We, Pr, Ma, Bi) for ω as a function of k.

Performing a small-wave number expansion of the dispersion relation D(k, c, Re, cot β , We, Pr, Ma, Bi), we found the expression for complex phase velocity:

c = c r + ic i = Re Fr 2 + ik Re Re Fr 2 2 2 15 - Re Fr 2 1 3 cot β + µ + MaBi 2(1 + Bih) 2 -ik 1 3
WeRe.( 52)

Figures 6 and7 presents the comparison of linear stability results (growth rate and marginal stability curves respectively) obtained from two models, namely, the LWE (which is valid for low Reynolds numbers) model and WRIBL (which is valid for small to moderately-high/ high Reynolds numbers) with the OS (which is valid for all Reynolds numbers) analysis. It is revealed from the figures that for small Reynolds number both the models agree well with OS model but for moderately large/large WRIBL model is much better than LWE model. Figure 

Spatio-temporal simulation from WRIBL model

We solve the system (50a)-(50c) numerically using the same numerical technique as indicated in section §4.3. In this case the initial disturbance is given as:

h 0 ≡ h(x, 0) = 1 + 0.1 cos(2πx/L), (53a) 
q 0 ≡ q(x, 0) = (F/3)h 3 0 , (53b) 
θ 0 ≡ θ (x, 0) = 1/(1 + Bih 0 ), (53c) 
where k is the wave number and L = 2π/k is the length of the periodic domain. The information about the grid is given in section §4.3. Figure 8(a) presents a comparison of final permanent waves for small values of χ from LWE and WRIBL models. Results show that both the models agree well. Thus, we found that for small χ values, both LWE and WRIBL models give the same results in the neighbourhood of the criticality. Figure 8(b) depicts the variation of film thickness with time, for both crests and throughs, with small values χ, (that is in the neighbourhood of the criticality), which shows both LWE and WRIBL models give the same results, which is that, film height grows (decay) to a maximum (minimum) at the crest (trough) from its initial value and then starts to decay (grow) to approach a fully developed state. Again as µ increases, the height of the crest increases, and that of trough decreases due to the stabilising effect of odd-viscosity. For large values of χ (that is far from criticality), we discuss this phenomenon with the help of the WRIBL model as it deemed fit for that region and found some interesting results.

In figure 9 the streamlines and isotherms are plotted for different values of the odd-viscosity parameter µ, for the fixed values of the other parameters. Comparison of the streamlines indicates that the amplitude of the waves dummies and streamlines are flattened with the increasing values of the parameter µ, confirming stabilising influence of this parameter. It is worth mentioning here that the effect of odd viscosity comes into play through the correction of the pressure gradient of the flow, thus modifying evolution equation/s accordingly. On the other hand, the isotherms are nearly aligned with the wall and almost unchanged with the variation of µ. One possible argument is due to the non-dissipative nature, odd-viscosity does not have any impact in alteration of temperature (Kirkinis & Andreev [28], Landau & Lifshitz [START_REF] Landau | Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics[END_REF]), so no significant modification in the temperature field can be expected to be noticed with the variation of µ.

We also like to mention here that the WRIBL model is appropriate in agreement with experiments for waves of smaller amplitude for which no circulation zones are observed (Scheid et al. [START_REF] Scheid | Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves[END_REF]) since the appearance of interfacial stagnation points depends mainly on the amplitude of the wave. As the wave amplitude increases the peak velocity exceeds the wave velocity, and a circulating region appears (in moving coordinate system) associated with stagnation points (Maron et al. [START_REF] Maron | Flow patterns in wavy thin films: Numerical simulation[END_REF]). big hump with a gentle sloping back edge and a steep front edge preceded by a series of small, decaying bow waves (capillary ripples), just similar to that obtained by Kalliadasis et al. [START_REF] Kalliadasis | Thermocapillary instability and wave formation on a film falling down a uniformly heated plane[END_REF] for Shakadov's integral-boundary-approximation (IBL) model (Shkadov [54,[START_REF] Shkadov | Wave modes in the flow of thin layer of a viscous liquid under the action of gravity[END_REF]). It is to be noted here that the height of the solitary humps decays with the increasing values of the parameter µ due to the stabilizing influence of odd-viscosity. Figure 10 shows the temperature distribution of the free surface for the same parameter values of figure 9, which are also a solitary pulse with a shape similar to the respective interface configuration as in 9. Notice that though equation (50c) involves no term with µ but we observed same stabilizing influence of µ due to the fact that free surface height h is dependent on µ (as system (50) is a system of simultaneous pde) (Ruyer-Quil et al. [START_REF] Ruyer-Quil | Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation[END_REF]). Some important observations to be mentioned here that (i) IBL model suffers an error of 20% in the critical conditions compare to OS stability analysis of the full Navier-Stokes equation and LWE model, due to the velocity profile assumed in the Galerkin expansion, and (ii) for large values of χ influence of Marangoni effects are not significant. These two are out of the area of our study. For more details, we refer Kalliadasis et al. [START_REF] Kalliadasis | Thermocapillary instability and wave formation on a film falling down a uniformly heated plane[END_REF]. Figure (11a -11d) presents the instantaneous flow pattern around the first depression that precedes the main hump for different values of µ in static frame. The streamline form eddy-like structures and these patterns show that back-flow is the effect of an eddy developing at the wall in the capillary wave region. This phenomenon is referred as a capillary separation eddy (Dietze et al. [START_REF] Dietze | Experimental study of flow separation in laminar falling liquid films[END_REF][START_REF] Dietze | Investigation of the backflow phenomenon in falling liquid films[END_REF]). The flow reversal extends from the wall up to the free surface, and the streamlines remain opened in the liquid phase in agreement with Dietze's observations for a vertical wall. Interestingly, the intensity of the capillary separation and flow reversal phenomenon is decreased by the increase of odd-viscosity parameter µ as the streamlines are similar to parallel flow due to the stabilising role of odd-viscosity parameter µ. Contrast to the figure 8(b), the evolution of crest (trough) for large values of χ, corresponding to the permanent waves (as shown in figure 9)from WRIBL model, are presented in figure 12 for model [START_REF] Sadiq | Instabilities in a liquid film flow over an inclined heated porous substrate[END_REF]. It is clear that before reaching to steady-state, it does not increase (decreases) continuously. It possesses a wavy/fluctuating pattern. Note that each peak corresponds to a specific wave, which modulates in height as it moves through the view field. The abrupt changes occur when the larger wave leaves the view field, and the next larger one provides the maximum thickness. This type of phenomenon was experimentally observed by Vlachogiannis & Bontozoglou [START_REF] Vlachogiannis | Experiments on laminar film flow along a periodic wall[END_REF]. Figures 13 and14 are the heat map and surface plot for µ = 0.5 and µ = 1.5 respectively. Considering the fact that the nature of the simulation is similar for different values of µ (in terms of how the wave grows and ultimately form a solitary wave over time), we chose to illustrate the two graphs for particular values of µ. Now, the heat map (panel (a) for amplitude h and panel (b) for free interfacial temperature θ ) gives us an overall knowledge of how the wave (amplitude and interface temperature) evolves in the periodic box (or domain) as if we are observing the box from the top throughout the simulation over the time. It is observed that a fluctuation in amplitude (as well as in θ ) of the wave is visible initially (t ∼ 100 -300). During this time, the capillary waves adjust themselves to prevent the wavefront from breaking. After that, the crest increases and reaches a constant value. We see that around t ∼ 600 nice solitary wave develops, which is also supported by the previous figure 12 where we saw after t ∼ 600 maximum and a minimum height of the wave becomes constant.

The surface plot provides a three-dimensional view of the interface (panel (a) amplitude and panel (b) temperature) after the solitary wave is developed. These different presentations to see the evolution of the wave are beneficial to understand the mechanism and the physics in an easy and layman way.

Conclusion

We considered a thin film with a non-zero odd part of the viscous stress tensor falling over a uniformly heated plane. Our primary motivation for this study is precisely to see how the oddviscosity influences the hydrodynamics and thermocapillary instabilities of the flow. We found two modes of instabilities that reinforce each other: (i) H-mode (hydrodynamic mode ) arises at the deformed free surface due to the motion of the fluid, and (ii) S-mode (thermocapillary mode) originated by the gradient of temperature at the interface. When the Marangoni number (M) is zero, there exists only H-mode. In the low inertia regime, the Marangoni effect is predominant (because the free surface is almost undeformed H-mode is weak here), hence the S-mode. After that increase in Reynolds number (χ) starts deforming the free surface more and more and, the distance between the troughs to the crests of the wave becomes significant, the gradient of temperature (S-mode) gets weakened due to heat transport from the troughs to the crest. There exists a critical Marangoni number (M c ) for which two modes of instabilities are merged, and for any M > M c , there exists a single amalgamated unstable mode. We have seen here that with the increase in odd-viscosity, the range of unstable wavenumber decreases for both H and S-mode. This effect is prominent for H-mode. Also, with the increase in odd-viscosity parameter µ, M c increases, clearly stating the fact that odd viscosity gives stabilizing effect. Firstly we have investigated the mechanism of instability (temporal instability) with Orr Sommerfeld (OS) analysis, which is valid for all wavenumbers. Then, we constructed two models under the basic assumption of the wave is long: (a) Long wave expansion model (LWE), where a single non-linear evolution equation of the film thickness h is constructed accounting the thermocapillary effect, (b) Weighted residual integral boundary layer model (WRIBL), where three evolution equations of film thickness h, local flow rate q and free surface temperature θ are construed. We also performed the temporal linear stability analysis using these two models in the small wave number regime and get a satisfactory match in the results with OS results for small Reynolds number and high µ value. However, for the large Reynolds number and small µ value, we saw that the WRIBL model better matches OS results than the LWE model. That is the reason why we preferred the WRIBL model for high Re computations. We performed the travelling wave solution and numerical solution of the LWE model in a periodic domain. Long time numerical solutions ultimately reproduce the stationary wave and the results are expected and similar to the travelling wave solution. With the increase in µ, the amplitude of the waves decreases when other parameters are kept as fixed. We found that for a very small Reynolds number and relatively long wave (i.e. wavenumber k is small) for a fixed µ value, increasing Marangoni number increases the amplitude of the wave, i.e. giving a destabilizing effect. This is a contrast with high Reynolds number flow (discussed in the next para). Another important observation is that for the small Re and small k regime, the stationary waves found from travelling wave solution and numerical analysis of LWE model and WRIBL model give the same results. We performed a spatio-temporal numerical analysis of the three equation WRIBL model in a periodic domain for a relatively large Reynolds value. The initial disturbance ultimately leads to growing into stationary waves over a long time. Initially, we experienced fluctuations in the local layer thickness. During this time, the capillary ripples arise and adjust themselves to prevent the main wave hum from breaking. The wave amplitude and free surface temperature decrease with the increase in µ, confirming that odd viscosity stabilizes the flow. Comparing the streamlines in moving frame of constant speed for different values of µ, we found that with an increase in µ, the streamlines flatten. On the other hand, no significant variation is noticed for isotherms while changing µ. Therefore, we conclude that odd viscosity being non-dissipative does not influence the temperature field. The changing of free surface temperature due to odd viscosity may come as a combined influence of velocity field in the evolution of θ . Other interesting results are noticeable while analyzing the streamlines in the laboratory or static frame. The flow pattern under the first depression zone that precedes the main wave hump suggests that an increase in µ decreases the intensity of capillary separation and flow reversal phenomena. The streamlines become parallel with the increase in µ due to its stabilizing role. An important observation is that the Marangoni effects does not play a significant role in modifying wave amplitude in a high inertia regime like it destabilises the low inertia regime. The effect of uniform heating over a falling film is extensively studied over decades, but how odd viscosity plays an essential role in the mechanism has not been studied yet to the best of our knowledge. We expect our study will encourage future research and development.

A Derivation of stress tensor B Proof of relation [START_REF] Lin | Modelling wavy film flow[END_REF] Basic temperature field is given by T zz = 0, (55) T = T w , at z = 0, (56)

τ o i j = µ o ∂ i v * j + ∂ * i v j = µ o    ∂ ∂ x ∂ ∂ z 0 -1 1 0 u w +      0 -1 1 0    ∂ ∂ x ∂ ∂ z         (u w)    = µ o    - ∂ w ∂ x - ∂ u ∂ z ∂ u ∂ x - ∂ w ∂ z ∂ u ∂ x - ∂ w ∂ z ∂ w ∂ x + ∂ u ∂ z    (54) 
k T T z + k g (T -T ∞ ) = 0, at z = h N , (57) 
which implies T = C 1 z +C 2 . From (56) C 2 = T w and K T C 1 + k g (C 1 h N + T w -T ∞ ) = 0 implies C 1 = -k g (T w -T ∞ )/(k T + k g h N ). Therefore 

T = T w - k g ∆T z k T + k g h N , where ∆T = T w -T ∞ =⇒ T s = T w - k g ∆T h N k T + k g h N =⇒ ∆T s = T w -T s = k g ∆T h N k T + k g h N =⇒ ∆T s ∆T = k g ∆T h N k T + k g h N = Bi 1 + Bi , where Bi = k g h N k T (58 
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 1 Figure 1: Diagrammatic representation of the problem of falling film over uniformly heated plane with odd-viscosity effect.
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 52 Figure 2: Marginal stability curve different µ and M values, Ka = 0.2 × 10 4 , Pr = 7, B = 10 and β = 15 • .
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 253 Figure 3: Variation of the growth rate with χ for different values of µ Pr = 7, B = 10, β = 15 • , M * = 55, k = 0.01 and F = 3.
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 54 Figure 4: Contours of the maximum growth rate in the Rek plane from LWE model, for different µ values, Ka = 0.2 × 10 4 , Pr = 7, B = 10, β = 15 • and F = 3. The red line indicates M = 45. Dashed lines indicate the negative values of the growth rate (i.e. stable zone) and solid lines indicate the positive values of growth rate (i.e. unstable zone).

Figure 4

 4 represents the isocontours of ω i for different values of µ from the LWE model in kχ plane. The transverse axis (χ axis) is shown here in the log scale. Red lines in the graph (level = 0) represents the marginal stability curve for M = 45. Solid lines indicate the values of ω i > 0 and dashed lines for ω i < 0. We have plotted 30 contours in each figure.

Figure 5

 5 represents the final form of solitary waves for different values of odd viscosity parameter µ. While keeping M as fixed, increasing µ suppresses the amplitude of the wave showing the stabilising effect of odd-viscosity. On the other hand keeping µ fixed, increasing M increases the amplitude significantly, ensuring the destabilising effect of the Marangoni number.
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 5 Figure 5: Final permanent waves for different values of parameters from LWE model for small value of χ = 1.5, Ka = 0.2 × 10 4 , Pr = 7, B = 10, β = 15 • , F = 3 and for k = 0.0157. (a) µ = 0, M = 45, (b) µ = 0, M = 55, (c) µ = 0.5, M = 45, (d) µ = 1, M = 45, (e) µ = 1.5, M = 45, (f) µ = 1.5, M = 55.
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 6578 Figure 6: Comparison of growth rate curve different µ Ka = 0.2 × 10 4 , Pr = 7, B = 10, β = 15 • , M = 45 and F = 3. Solid lines indicate the Orr-Sommerfeld result, dotted lines indicate Weighted Residual Integral Boundary Layer (WRIBL) and dashed line is for Long Wave Expansion model (LWE) and same colors are for same µ value.

5 Figure 9 :

 59 Figure 9: Streamlines field (left panel) and isotherm (right panel) in moving frame from WRIBL model, for different µ values, Ka = 0.2 × 10 4 , Pr = 7, B = 10 β = 15 • , χ = 70, M = 45, k = 0.0314, and F = 3. We have plotted 12 iso-lines for each graph.
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 510 Figure 10: Interface temperature from WRIBL model, for different µ values, Ka = 0.2 × 10 4 , Pr = 7, B = 10, β = 15 • , χ = 70, M = 45, k = 0.0314, and F = 3.
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 911 Figure 11: Streamlines distribution in the first depression zone under liquid layer from WRIBL model, for different µ values, Ka = 0.2 × 10 4 , Pr = 7, B = 10, β = 15 • , χ = 70, M = 45, k = 0.0314, and F = 3.

Figure 12 :

 12 Figure 12: Evolution of crests and troughs for different values of µ over long time simulation corresponds to figure 9 and 10 (solid line for trough and dashed for crest with same color indicates the same value of µ).(a) amplitude h, (b) interface temperature distribution θ , from WRIBL model for moderately high value of χ = 70, Ka = 0.2 × 10 4 , Pr = 7, M = 45 B = 10, β = 15 • , F = 3 and for k = 0.0314.

Figure 13 :

 13 Figure 13: Heat map of the wave evolution over time for (a) amplitude h, (b) interface temperature distribution θ , from WRIBL model for moderately high value of χ = 70, Ka = 0.2 × 10 4 , Pr = 7, M = 45 B = 10, β = 15 • , F = 3, k = 0.0314 and for µ = 0.5.

Figure 14 :

 14 Figure 14: Surface plot (a) amplitude h for an elevation of 29 • (i.e. 29 degrees above the xt plane) and azimuth of -97 • (i.e. rotated 97 degrees counter-clockwise about the h axis) , (b) interface temperature distribution θ for an elevation of 33 • (i.e. 33 degrees above the xt plane) and azimuth of -102 • (i.e. rotated 102 degrees counter-clockwise about the h axis), from WRIBL model for moderately high value of χ = 70, Ka = 0.2 × 10 4 , Pr = 7, M = 45 B = 10, β = 15 • , F = 3, k = 0.0314 and for µ = 1.5.

∴ τ o 12 = τ o 21 =

 21 µ o (∂ x u -∂ z w) and τ o 22 = -τ o 11 = µ o (∂ x w + ∂ z u)

1 +

 1 Bχ 1/3

depicts the variation of the growth rate as a function of wavenumber for various values of odd-viscosity parameter µ. A cut-off wavenumber exists below which the growth rate of the disturbance amplitude increases and above which it decreases. It is noticed that these phenomena suppress further with the increase of odd-viscosity parameter µ, confirming the stabilising effect of odd-viscosity again.

Figure 7 represents marginal stability curves, which we already discussed in figure2and here we present it for comparison purposes, which shows WRIBL model is much better than the LWE model for large values of χ confirming our previous claim.