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Molecular dynamics (MD) simulations can produce nowadays huge amount of data using high-throughput CPU/GPU clusters. However, the systematic and routine use of MD simulations for a study of the large molecules of real biological systems is still considerably impeded by a lack of adequate modelling. This leads to a limited understanding of the produced highly complex signals that emerge at the level of the relevant subsystems for various time scales. We will present here an ongoing work towards the dynamics modelling and detection of local equilibrium for relevant subsystems compatible with the usual practice of MD and aiming at avoiding the detection of spurious artefactual local equilibrated states. Such well characterized local equilibrium would be basic descriptive atoms extracted from various MD trajectories.

Introduction

Due to scientific and technological advancement of the past decades, the bioinformatics community is now able to generate a huge amount of data encoding molecular dynamics (MD), i.e. MD trajectories of large molecular systems on a long time scale (∼ µs level). However, if we often analyse the generated conformational space in terms of meta-stable states, or at least, as conformational wells that correspond to local minima of the energy of a biomolecule, the existing methods and tools employed by researchers remain deficient [START_REF] Peng | Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems[END_REF]. Indeed, classical clustering approaches ignore the dynamics of the problem, and do not allow to quantify, and thusly to compare the depth of the identified wells and their content. On the other hand, the widely used RMSD and RMSF methods are likely enable to consider the stable or equilibrated states, which are in reality transient segments of MD trajectory. Finally, as we do not have access to the energy of the biological macromolecule itself, but only of the global system including its environment, any method requiring a minimization of the energy of the system is not appropriate.

Here we present a new method, the κ-segmentation, conceived for clustering of MD-trajectory on the segments to fill the drawbacks of the previously quoted approaches. The algorithm of the κ-segmentation method is based on the original criteria (metrics) providing a quantification of wells depth, allowing the user to compare a well content and sort them, but also to reject any false artefacts.

The lap number κ: a new tool to investigate well depth

To start with, we consider the projected trajectory on the d first PCA coordinates so that we get a trajectory (X(t)) t∈[0,T ] in R d . Our core idea is to derive a kinetically based segmentation algorithm through the detection and analysis of regions of the configuration space into which the process spend an unexpected large time before exit.

We first the assume that trajectory as a continuous stochastic process solution of Stochastic Differential Equation (SDE) dX t = b(X i ) + σ(X i )dB t driven by a d-dimensional brownian motion. A natural idea is to compute for any time segment [s, T ] ⊂ [0, T ] the radius of the smallest ball centered at X s containing the path u → X u pour s ≤ u ≤ t:

R max (s, t) . = sup{ X u -X s : s ≤ u ≤ t }
The rational is that, in the case of a pure diffusion process, i.e b ≡ 0 and σ is constant) R 2 max (s, t) is expected to be of the order D(t -s) (where D is the D = dσ 2 is the diffusion factor. It is natural to introduce the dimensionless quantity κ, called hereafter the lap number:

κ(s, t) . = D(t -s) R 2 max (s, t) . (1) 
We can expect that under the null hypothesis H 0 (b ≡ 0, pure diffusion), t → κ(s, t) stay of the order 1 (in fact, this quantity may converge to zero very slowly as 1/ log(log(t)) for large t due to the law of iterated logarithm). On the opposite, a large lap number may lead to the rejection of H 0 and trigger the detection of potential local equilibrium for the dynamic.

We illustrate this phenomenon in Fig. 2, comparing the evolution of R max computed for two trajectories: the first one corresponding to the solution of a Langevin SDE where the drift term is the gradient of a three wells energy landscape (see [START_REF] Nadler | Diffusion maps, spectral clustering and reaction coordinates of dynamical systems[END_REF]). Both trajectories are calibrated to have a diffusion coefficient compatible with observed ones on real MD trajectories (see the VKOR case below) and sample every 4 ps on a T = 100 ns simulation time. Despite having the same diffusion coefficient, the radius R max (0, t) is increasing faster in the brownian case. However the differences As predicted the t → κ(0, t) value stays small (below 2) along the full trajectory in the brownian case whereas it displays clear sharp drops from after reaching linearly local extremum well above 10 in the three well case.

κ-segmentation algorithm

Following upon this, we built an algorithm providing an automatic segmentation of any MD trajectory, based on the lap number. First, we sum up every possible lap number in a matrix κ(s, t) s≤t , within which the algorithm will travel by vertical stripes (see Fig. 3). For a given vertical strip, the width corresponds to a subset of possible candidate conformations at the center of a cluster. Inside a given strip, the analysis is done in a window W traveling along the vertical strip with a fixed stride. Within a given window, the maximum value κ * = κ(s * , t * ), where [s * , t * ] defined a possible segment corresponding to a portion of the trajectory starting near the center of a cluster at time s * called hereafter acces time to the center -indeed centering that point induces a lower R max and a greater κ value -and exiting the cluster at time t * (exit time). Then a decision is taken to accept or reject the segment [s * t * ] as a real cluster according the several acceptance test. Briefly we consider two main tests. The first one is to check for κ * ≥ κ 0 where the threshold κ 0 is chosen to prevent against false alarm and spurious detections. The second one is to test if inf t∈[t * ,t * +∆ 0 ] R max (s * , t)/R max (s * , t * ) ≥ ρ 0 (ρ 0 = 3/4 in our experiments), to check that the trajectory is not returning too close to the center after exit. The main hyperparameters on the algorithm are then the sliding window size (w 0 , h 0 ), the threshold κ 0 and the test time after exit ∆ 0 that have to be chosen of the order of R 2 0 /D 0 where R 0 is the expected size of the clusters and D 0 the measured or expected diffusion constant.

Applications

Brownian motion

Here we present the results obtained for the Brownian motion. The lap number matrix shows that κ cannot increase because of a constantly growing R max . As a result, and thanks to the incorporation of wells rejection criteria, the algorithm only detects transient segments, and do not pronounce any decision concerning the last segment, as it considers its investigation as ongoing. 

Three wells trajectory

Here we present the results obtained for the three-wells case. The lap number matrix clearly reveals local maximas of κ. The algorithm performed on this trajectory recognize the relevant wells centered in (-1,0) and (1,0), but also points out the third one centered in (0,5/3) as irrelevant, identifying it as a transient segment. 

VKORC1

This algorithm has been successfully applied to real MD simulation data generated with GRO-MACS (AMBER force-field). These MD trajectories were generated for VKORC1 [START_REF] Chatron | Identification of the functional states of human vitamin k epoxide reductase from molecular dynamics simulations[END_REF], the membrane protein involved in vitamin K recycling that is mandatory for essential physiological processes, such as coagulation, calcium homeostasis, energy metabolism, signal transduction and cell development. Two 5 ps-sampled of 1 µs MD trajectories were produced starting from a structural model of VKORC1 in which all cysteine residues were assigned to be protonated (Fig. 5.). We suggested that MD simulation of such highly flexible model will generate a large conformational space that can be used to predict different enzymatic states of VKORC1 observing upon its enzymatic cycle. In the following, we demonstrate the κ-segmentation of the one of these 5 ps-sampled 1 µs VKORC1 trajectories. The segmentation was performed after a 2D-projection of the trajectory with a PCA, and after the removal of both lower extremities of the protein located outside the membrane and inducing noise. According to this plot, we can already assume a final well being far deeper than the previous ones, which present cold exit times in terms of lap number, due to the normalization of the plot.

The κ-segmentation of this trajectory is presented in Fig. 7. First we observe the very high value of the lap number for the last well (∼ 17000), meaning that the well is very deep. Furthermore, the comparison of wells no. 2 and no. 5 is a good example of a well being deeper than another one, while presenting a lower exit time. In order to obtain reasonably good center points, we had to fix a very large strip width to explore the lap number matrix, ∼ 200 × δt, where δt represents the time needed by the process to travel a radius distance by diffusion only. If we look closely to the identified wells, we note that the process seems to be trapped in a subset of the well for a short time corresponding to the strip width (∼ 10 ns) before visiting the entire well. This symptom reveals that each well potentially presents several sub-wells, meaning that the algorithm could perform a multi-scale analysis. In the case where wells are overlapping each other, one may use a 3D-PCA of the trajectory, and visualize these wells based on the relevant frames identified with the 2D κ-segmentation. For VKORC1, the comparison of wells no. 2 and no. 3 shows an absence of intersection in 3D (Fig. 8). This is remarkable as the algorithm demonstrates the ability to highlight, from 2D dynamics information only, a disjoint phenomenon in higher dimension. Comparing VKORC1 conformations localized within the same well, one -in the center of each well and the other at exit time from the well, we observed that the flexible region demonstrates a notable difference in the well no. 2 while in the well no. 6 this difference is significantly reduced (Fig. 9). The conformations localized in the center of two different wells (e.g., no. 1 and no. 6) display the most significant divergence appears not only in flexible region, but also across the helices and C-terminal coil. 

Conclusion and perspectives

The algorithm described here allows the user to perform a dynamic based segmentation of MDtrajectories driven by the analysis of the lap number κ to quantify the depth of a well (metastable state). The method is robust to false alarm and produces a sequence of wells coming with descriptive metrics (entrance and exit time, center of the well, lap number) allowing comparison between wells. Using the metrics, we can for instance characterize the metastable states, decide if the simulation is long enough to reach a relevant equilibrated state of protein or is worth being extended. Moreover, the κsegmentation could provide a hierarchical cluster representation containing information on metastables states at different levels, which can further help the user to characterize the architecture of the free energy landscapes. However, we note that the κ-segmentation method needs additional development such as graphic interface that can help identify a structural content of the wells. Also, consideration of multi-component systems, such as the protein complexes is required.
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 12 Fig. 1. Left: Three wells trajectory and standard Brownian motion (starting points in red). Right: Evolution od of R max for both three wells and Brownian case.

Fig. 3 .

 3 Fig. 3. κ-segmentation analysis of the κ matrix. The horizontal axis corresponds to arbitrary starting time s and the vertical axis to arbitrary exit time t with increasing values from top to bottom ((0, 0) is at the top left corner)
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 4 Fig. 4. (Left) lap number matrix. This matrix is read from left to right (shifting the starting point), and from top to bottom (reading the whole trajectory from the starting point). The lap number level is described by the heat intensity. (Right) κ-segmentation with transient segments shown in magenta.
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 5 Fig. 5. (Left) lap number matrix. (Right) κ-segmentation with transient segments shown in magenta, segments in well are shown in red, sets of initial conformations before and after center are in magenta and in yellow respectively, segment before and after exit are in green and black respectively.
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 6 Fig. 6. (Left) VKORC1 protein inserted into membrane (grey, rose) and surrounded by water molecules (blue light). (Right) Viewing of the highly flexible region (contoured) of VKORC1. Protein is shown as cartoon with cysteine residues as balls or as sticks.
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 7 Fig. 7. (Left) 2D-PCA of VKORC1 trajectory. (Right) Lap number matrix.
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 8 Fig.8. κ-segmentation of the 1 µs MD trajectories of VKORC1 with κ-segmentation. Segments in well are shown in red, sets of initial conformations before and after center are in magenta and in yellow respectively, segment before and after exit are in green and black respectively. Each well is associated with its lap number κ, maximum radius r (nm) and exit time T i (ns).
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 9 Fig. 9. 3D representation of wells no. 2 and 3 identified with the 2D-κ-segmentation of VKORC1 trajectory. Each well is associated with its lap number κ, maximum radius r (nm) and exit time T i (ns)
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 10 Fig. 10. Left and Middle: Superimposition of VKORC1 conformations corresponding to the well's center (blue light) and at exit time (red) illustrated for the wells no. 2 and no. 6. Right: Superimposition of VKORC1 conformations observed in the center of two wells -no. 1 (blue dark) and no. 6 (blue light) . Protein is represented by C α atoms showed as spheres.