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Abstract

Simplified chemistry models are commonly used in reactive computational fluid dynamics (CFD) simulations to alleviate
the computational cost. Uncertainties associated with the calibration of such simplified models have been characterized in
some works, but to our knowledge, there is a lack of studies analyzing the subsequent propagation through CFD simulation
of combustion processes.

This work propagates the uncertainties - arising in the calibration of a global chemistry model - through direct numerical
simulations (DNS) of flame-vortex interactions. Calibration uncertainties are derived by inferring the parameters of
a two-step reaction mechanism for methane, using synthetic observations of one-dimensional laminar premixed flames
based on a detailed mechanism. To assist the inference, independent surrogate models for estimating flame speed and
thermal thickness are built taking advantage of the Principal Component Analysis (PCA) and the Polynomial Chaos (PC)
expansion. Using the Markov Chain Monte Carlo (MCMC) sampling method, a discussion on how push-forward posterior
densities behave with respect to the detailed mechanism is provided based on three different calibrations relying (i) only
on flame speed, (ii) only on thermal thickness, and (iii) on both quantities simultaneously.

The model parameter uncertainties characterized in the latter calibration are propagated to two-dimensional flame-
vortex interactions using 60 independent samples. Posterior predictive densities for the time evolution of the heat release
and flame surface are consistent, being that the confidence intervals contain the reference simulation. However, the two-
step mechanism fails to reproduce the flame response to stretch as it was not considered in the calibration. This study
highlights the capabilities and limitations of propagating chemistry-models uncertainties to CFD applications to fully
quantify posterior uncertainties on target quantities.

Keywords: Uncertainty Propagation, Uncertainty Quantification, Bayesian Inference, Methane-air
Global Scheme, Laminar Premixed Flame, Flame-vortex Interactions

1. Introduction

Simulation of combustion processes is a complicated and computationally expensive task due to the phenomenon’s high
dimensionality. A primary concern is to model the chemical kinetics involved in these processes accurately. The accuracy
is crucial to predict pollutant formation, flame stabilization, and ignition processes correctly. The most accurate approach
to describe chemical kinetics consists of so-called detailed mechanisms involving many species and elementary reactions.
However, numerical simulations of realistic configurations using such mechanisms are, in general, out of reach because of
the associated prohibitive CPU costs. The large number of intermediate species and reactions, and the small time-steps
required to compute intermediate fast reactions accurately, are the principal limitations of detailed mechanisms. Hence,
the use of these mechanisms is often limited to 2D simulations of laminar flames [I].

Many efforts are dealing with extending the chemical complexity in 3D computations of turbulent flames by considering
either reduced and yet still large mechanisms [2], 3] or recently analytically reduced chemistry [4]. Most flame computations,
however, retain simpler approaches to include chemical information at a lower computational cost. Two main strategies
are the tabulated chemistry from flamelet archetypes [5] and the global chemistry models [6H9]. The present work focuses
on the latter type of models.

Global chemistry models use simplified mechanisms with only a few notable species that interact through a reduced
number of global reactions. The global chemistry models are calibrated to match the flame’s main physical features
(adiabatic temperature, laminar premixed flame speed, or auto-ignition delay time) in canonical configurations. The
early work of Westbrook and Dryer [10] describes a global two-step mechanism for hydrocarbon, reproducing the basic
chemical structure, i.e., fast oxidation of the fuel followed by a gradual consumption of the intermediate species. Several
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works have proposed to improve global mechanisms by adjusting the model parameters of the Arrhenius equations to
match laminar burning velocities [ITHI3]. The adjustment with the equivalence ratio of the pre-exponential constants
has been considered more recently [I4HI6] to improve predictions of the laminar flame speed in the lean and rich regimes
simultaneously. Instead of heuristic methods, genetic optimization has been used in several works [I7, [I8] to systematically
set the chemical rate parameters. However, the optimization problem’s dimensionality yields a significant amount of
uncertainty in the calibration process. Acknowledging such uncertainty, a 2-step global model for n-dodecane [19] and a
1-step model for methane [20] have been derived using Bayesian inference, allowing a quantification of the accuracy of
predicted quantities. Likewise, the study of Tavarone et al. [21] derives a reduced char combustion model using the Bound-
to-Bound (B2B) framework, in which uncertainty bounds for predicted features are adjusted based on the experimental
uncertainty [22]. A comparison between the Bayesian inference approach and the deterministic B2B framework to deal
with model uncertainty in combustion applications has been discussed in the work of Frenklach et al. [23].

Several works have considered uncertainty quantification (UQ) in reactive flows, a wide effort focuses on characterizing
and reducing kinetic models while accounting for uncertainty [24H30]. Once the probability distributions of chemistry
model parameters are characterized, forward propagation through complex flame simulations can be performed to assess
uncertainty effects on target quantities. In this sense, uncertainty on chemical rate constants has been propagated in the
Cabra Hy /N3 jet flame [31], a 2D premixed flame kernel [32], and the Sandia D Flame partially premixed [33]. Aside
from chemical uncertainties, some works have propagated uncertainties related to the flow characteristics, as in the work
of Khalil et al. [34] which analyzes the impact of uncertain Smagorinsky coefficient and turbulent Prandtl and Schmidt
numbers on the combustion of a methane and hydrogen mixture using tabulated chemistry. Or the work of Zhang et
al. [35] who studied uncertain species concentration effects on the pollutant formation of syngas combustion. Recently,
Enderle et al. [30] investigated the uncertainties arising from spray boundary conditions specifications in an ethanol flame
using detailed chemistry. Despite uncertainties from the calibration of global chemistry models have been characterized
in some studies ([I9H21 [37]), their forward propagation through computational fluid dynamics (CFD) of combustion
applications remains to be investigated.

The present study thus focuses on the forward propagation of the global chemistry calibration uncertainties through
two-dimensional direct numerical simulations (DNS) of flame-vortex interaction in premixed flames. To keep the problem
tractable, we restrict ourselves to a simple two-step combustion mechanism for methane with constant model parameters.
Since these models are only suitable for lean mixtures [16, [38], the present study is limited to the mechanism of lean
premixed combustion, i.e., comprising equivalence ratios between 0.6 and 1. With this restriction, the global model has
ten uncertain parameters calibrated by a Bayesian inference procedure to match the speed and the thickness of 1D premixed
flames. The derivation of the probabilistic global chemistry mechanism and the joint probability density functions of its
parameters involve Principal Component Analysis (PCA), Polynomial Chaos (PC) expansion, and the Markov Chain
Monte Carlo (MCMC) methods. The uncertain global model is subsequently used to simulate a flame-vortex interaction
to assess, in a practical application, the prediction variability and compare it with a detailed mechanism simulation.

The organization of the paper is as follows. §[2] presents the uncertain prior global model and the one-dimensional
laminar premixed flames simulations used for the inference of its parameters. We discuss the construction of the global
feature surrogates in §[2.2] and proceed with a brief global sensitivity analysis of the a priori model in § [2:3] The Bayesian
inference and the MCMC sampling of the global model posterior are introduced in § 3]and applied on three different cases:
(i) calibration based on the flame speed, (ii) calibration based on the flame thermal thickness, (iii) and calibration based
on these two global flame quantities simultaneously. Then, §[4] presents the propagation in the flame-vortex simulation of
the uncertain global models and, in the light of the results, discusses the adequate methodology to derive global chemistry
models. Finally, § [f] summarizes the main results of the work and draws several recommendations for future researches.

2. A priori global model and surrogate

As discussed in the introduction, the Bayesian construction of a probabilistic global model consists of the inference
of its parameters to match some characteristic quantities obtained in a reference simulation. The reference considered
here consists of laminar flame speed computations using the chemical mechanism GRI 3.0 [39]. The calibration procedure
described in § [3|involves the Bayesian update of the prior model parameters distribution, followed by the sampling to the
resulting posterior distribution (remaining uncertainty after calibration). In this section, we derive the prior global model,
which we subsequently approximate using a Polynomial Chaos (PC) surrogate to alleviate most of the computational
burden during the calibration phase. We also use the prior model to perform a global sensitivity analysis of the global
model parameters.

2.1. Global model

The global model considers premixed flames as sketched in Fig. [Il The flame front separates the fresh gases, at a low
temperature of 77, from the burnt ones, at a high temperature of T5. The front flame, characterized by a high heat release
rate, freely propagates towards the fresh gases at a constant speed S; (laminar flame speed) with respect to the fresh
gases velocity. Throughout the paper, we set the fresh gases’ temperature and pressure to 300 K and 1 atm.
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Figure 1: One-dimensional premixed flame scheme. The abscissa corresponds to the propagation axis of the flame. The blue vertical axis (left)
corresponds to the heat release rate, while the red vertical axis (right) corresponds to the temperature.

The calibration will concern two types of physical features. The first one is the mentioned flame speed Sp; the second
one is the flame thickness, which can have different definitions. The first retained definition uses the reaction zone thickness
(6 r) defined as the distance between the two points in which the heat release equals one half of the maximum heat release
value [40], see Fig. [I} Alternatively, the thermal flame thickness dp definition combines the temperature difference and

maximum gradient through the flame [41]
T, -1

op = —=———.
max(|g—£ )

(1)
The global physical quantities have a large dependency on the equivalence ratio ¢ of the mixture, ¢ = (%) / (%) ,
st
where Yr and Yy are the fuel and oxidizer mass fraction, respectively, and (%) is the stoichiometric proportion between
S

fuel and oxidizer. In this work, we restrict ourselves to the range of equivalenée ratios ¢ € [0.6,1). As further discussed
in § [3] the inference of the global model parameters will consider the reference features simulated by the detailed kinetic
mechanism GRI 3.0 [39].

The two-step global chemistry model considered for calibration consists of six different species (CHy4, Oz, CO, H50,
CO2 and N») and two reactions. The first is an irreversible reaction,

CHy + gOz — CO +2H,0, (2)
and the second is a reversible reaction that leads to an equilibrium between C'O and C'O; in the burnt gases:
CO + %02 & CO,. (3)
The reaction rates of the two reactions are modelled by a modified Arrhenius law as

ki = A TP [CHy |01 [Oy]" 021 e~ ot/ BT (4)

and

kz = A T®[CO] 00 [Oy]" 022 Fu2/ HT, (5)
with [X] the molar concentration corresponding to the species X. Other physical coefficients of the flame problem include
the heat diffusion coefficient, which is set assuming a constant Prandtl number Pr = 0.7, and a power-law model for the

n

molecular viscosity following the expression pu = pg (Tl) where p19 = 1.807 x 107° Pa-s, T, = 300 K and n = 0.682. The
mixture viscosity also determines the species diffusion coefficient through the Schmidt number of each species reported in
Table [

Table 1: Schmidt numbers of the considered species.

CHy COq co Os H>0 No
0.677  0.945 0.750 0.739 0.544 0.726

The uncertain parameters of the global model are then the 10 coefficients A1, A2, 81, B2, NcH,, N0s.15; NCOs NO,,2;
E,1 and E, 2 of the reaction rates in Eqgs. |4/ and |5| Regarding the prior distributions of these parameters, we assume that



they are independent, a priori, and follow log-normal distributions, except for 51 and 85, which are equipped with uniform
distributions. For a generic random rate parameter §; with log-normal distribution, we denote 6; its nominal value and
UF; > 1 its uncertainty factor. The log-normal distribution of #; is imposed by introducing a canonical random variable
&; with standard Gaussian distribution, & ~ A(0,1), and setting

0; = 0 exp (é ln(UFZ-)> . (6)

As a result of the canonical representation in Eq. @ 6; has a median value 6; and ~ 99.9% probability to be in the interval
[0;/UF;,0; UF;]. In the case of ¢; having a uniform distribution (8; and B3) with range [a,b], we consider a uniform
canonical random variable & ~ (0, 1) and set

0; = a+ (b—a)s;. (7)

The nominal values of the log-normal parameters are taken from the 2-step scheme 2sCM2 [I3], but slightly modifying
the activation energies to account for non-zero §; parameters (particularly, E, 1 = 3.45 X 10% cal /mol and E, 2 = 1.2 x 10%
cal/mol in [I3]). We select the uncertainty factors to ensure a wide range of flame speeds and thicknesses while remaining
within the convergence (stability) domain of the one-dimensional premixed flame simulations. Table [2| summarizes the
prior distributions of the global model parameter. The resulting variability of flame speed and thicknesses in the global
2-step mechanisms can be appreciated from Fig. [2] The curves correspond to a sample set of Ny = 10,000 realizations of
the global model generated by a Quasi-Monte Carlo (QMC) method based on a low-discrepancy Sobol sequence [42]. For
each realization, the one-dimensional laminar premixed flames are computed for several equivalence ratios in the range
[0.6,1) with mesh adaptation using an in-house solver. The figure also reports the laminar flame speeds and thicknesses
predicted with the detailed chemistry model, which are within the a priori uncertainty range.

Table 2: Prior distributions of the global model parameters. Parameters in the first row are in SI except for the activation energies (Eq ;) in
cal/mol. Pre-exponential factors (A;) are in cgs units in the second row.

Ay B1 ncH, N0,1 E, 1 A B no,2 MNco E,2
0; 2 x 109 ~U(0,1/2) 0.9 1.1 41727 x 10% 2 x 108 ~U0,1) 05 1.0 1.2916 x 10%
2 x 10" in cgs 2 x 10 in cgs
UF, 1.5 - 1.5 1.5 1.5 1.5 - 1.5 1.5 1.5

Figure 2: A priori QMC samples of the a priori global model as functions of the equivalence ratio ¢: (a) laminar flame speed, (b) laminar flame
thermal thickness, and (c) laminar flame thickness based on heat release rate. The thick solid black line corresponds to the laminar flame speed
and thicknesses for the detailed chemistry model discussed in §

2.2. Surrogate model

As in the work of Marzouk et al. [43], a surrogate model for the global model is constructed to accelerate the Bayesian
inference. To this end, Ny samples of the a priori model are generated by randomly varying the model parameters.
Denoting by v any of the global features (Sy,, dr, and 0y ), we construct a surrogate model for v(¢, &) where £ is the set
of canonical random variables previously introduced.

We start by introducing a grid of Ny = 51 equivalence ratio values to discretize the dependence of the feature v(¢, &)
on equivalence ratio ¢, and we denote v(£) the random feature vector at the discrete ¢ values:

v(€) = (v(¢1,8) - v(on,,8)) - 8)



Further, let us denote v’ = v(£') the vector of feature associated with the i-th realization of the canonical random
variables.

In the first stage, a Principal Component Analysis (PCA), also called Proper Orthogonal Decomposition (POD), is
applied independently on the global features Sy, dr, and dgr. The objective is to reduce Ny to a lower value, N,.q, by
exploiting the smoothness of each realization. It is worth mentioning that the PCA is applied to preconditioned data,
using a logarithmic transformation designed to enforce almost sure positivity for the reduced model. The number of
reduced modes needed to represent the dependencies on ¢ depends on the desired accuracy and the behaviour of the
global physical feature on which the dimensionality reduction is applied. In the present case, N,.q = 4 for the flame speed
and N,eq = 3 for flame thickness based on both temperature and heat release were enough to achieve a relative error of
less than 0.1%. With this reduction, the random feature vector is approximated by

T=Nred
’U(ﬁ) ~ exp [ Z lrar(g)] ) (9)

where N,.q < Ny and the exponential applies component-wise to vectors. The vectors 1,.eR"¢ are the modes of the PCA,
and a, (&) corresponds to the reduced coordinates, functions of the £ parameters. The reader is referred to § Appendix A
for the details of the preconditioned PCA method.

In the second stage, the dependences on the canonical random variables £ of the vector of reduced coordinates a(§) =
(a1(€)---an..,(€))" is sought as a PC expansion [44] 45|,

a=Nypo1
a@)~ Y aala(e), (10)

where the vectors a, are the PC coefficients of the reduced coordinates, and the ¥, form an orthonormal family of
multi-variate polynomials in the random canonical variables. The PC expansion is truncated at a prescribed polynomial
degree selected to control the truncation error. For the practical determination of the PC coefficients, we proceed with an
ordinary least squares method using the N samples available; see § Appendix B for more details.

Inserting the PC expansion of the reduced coordinates, we obtain the final form of the surrogate of the random feature

vector:
05=Npol

’U(f) ~ exp Z [L]aa\l’a(s) = UPC(S), (11)

a=1

where [L] = [I;---ly,.,] is the matrix of PCA modes. Recalling Eq. |8 the vector v(£)eR™¢ gathers the values of the
flame feature v at each equivalence ratio ¢ for a given set of parameters £.

The accuracy of the surrogate models of the features has been carefully assessed by relying on an auxiliary validation
set of 2 x 103 realizations. The details of the validation are not shown here and we simply report the estimated normalized
mean squared error,

2 = E[|lv(€) —vrc(§)|] . (12)
E[[lv(&)]]
We retain a fourth-order PC expansion, for which low values of the normalized mean squared error are obtained. Particu-
larly, €,.; = 1.44% for the thermal flame thickness, 1.94% for the reaction zone thickness, and 1.97% for the flame speed.
The accuracy of the approximation is easier to appreciate in Fig. [3] which compares some global model features with their
surrogate approximations for several parameter values not included in the training set. We observe a generally excellent
agreement, which tends to degrade for the most extreme realizations of &.

Given the PC total degree truncation of order 4 and the fact that the global model employs a total of Ny, = 10
canonical random variable §, the PC basis has N,, = 1001 polynomials ¥,. We rely on the sample set of N, = 104
realizations v® for the construction. Therefore, we have roughly ten times more realizations than PC coefficients to
compute. Due to the ratio of the number of samples to the number of PC coefficients, the present approach is suitable
and we found it unnecessary to use an adaptive PC expansion strategy.

2.3. A priori sensitivity analysis

The surrogate models provide a fast, accurate, and inexpensive way to predict the flame velocity and thicknesses for
any value of the canonical random variables in their a priori range and any equivalence ratio value ¢ € [0.6,1) (through
interpolation over the components of vpc(€)). The surrogates are exploited in the calibration stage to sample the posterior
distribution during the Bayesian inference process.

Before engaging in the calibration, we propose to complete this section on the prior model by performing a brief
global sensitivity analysis to assess the relative influence of each model parameter on the flame features (Sy, 7, and
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Figure 3: Comparison of the model features (dashes line) and their surrogate approximation (continuous line): Flame velocity (a), thermal
flame thickness (b), and reaction zone thickness (c).

dmr). Similar sensitivity analyses [46] [47] have been performed to determine which parameter contributes the most to the
uncertainty in model predictions. To this end, we take advantage of the PC surrogate to compute the Sobol indexes [4§]
corresponding to the decomposition of the variance of vpc(€). Precisely, for each discretized value ¢; of the equivalence
ratio, we compute the first and total order sensitivity indices of v;(£). The first-order indices correspond to the fraction
of variance induced by the considered parameter and this parameter only, while the total order indices account for the
fraction of variance attributed to the parameter and its interactions with others. We only report below the case of the
flame speed Sy, the other global features (thicknesses) presenting similar sensitivities. Figures @ and show the first-
order indexes for the parameters of the first and second reactions, respectively. The dominant individual effects on the
flame speed are due to parameters E, 1 and (; of the first reaction, whose cumulated single effects explain close to 80% of
the variance, while the single effects of the second reaction sum-up to less than 2% of the variance. The total sensitivity
indices, shown in Figs. and @, confirm the dominance of E,; and f; on the flame speed variability, although J; is
seen to play a significant role through its interactions. The effects of the second reaction parameters appear to be limited
to interactions with the first reaction parameters. Also, the sum of the total indices significantly exceeds 1, underlying
high interactions between parameters and non-additive effects. This analysis is instructive because we can anticipate that
parameters having low to negligible effects on the global features will be harder to calibrate from these quantities. In
contrast, parameters strongly affecting the features should be well-informed by the calibration data.
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Figure 4: Sobol indices of first (a,b) and total (c,d) orders for the laminar flame speed, associated to the first (a,c) and second (b,d) chemical
reaction parameters.

3. Global scheme calibration results using Bayesian inference

This section discusses three different calibration exercises of the model parameters: (i) only using the flame speed
observations, (ii) only using thermal thickness observations, and (iii) relying on both observation datasets. For the latter
calibrated model, the sensitivity to the artificial noise variance is also discussed.

The parameters’ posterior is not obtained as a closed-form expression, and its sampling requires appropriate methods.
We rely on a Markov Chain Monte Carlo (MCMC) method to generate samples from the posterior probability distribution
function in this work. The MCMC algorithm randomly generates a sequence of samples (states), where the next state of
the chain is conditioned on the current state, creating a so-called Markov chain. With a suitable probabilistic transition
rule from one state to the next one, the random chain converges to the target distribution as the number of steps increases.
Different MCMC algorithms are available. In this study, we use the Metropolis-Hasting algorithm [49] to draw samples
from the posterior.



For convenience, the posterior is expressed in terms of the random vector of canonical variables &, as p(&€ |v°bs) with
v°% the vector of observations used for the calibration. Using the Bayes Theorem, the posterior is proportional to the
product of the prior distributions 7 (&) with the likelihood of the observations,

p(€[v™) o £ (v7[€) e (£). (13)

The vector of observations is derived from simulations based on the detailed kinetic mechanisms GRI 3.0 [39], which
involves 53 species and 325 reactions. Figureshows the flame speed (S1) and the thermal flame thickness (d7) simulated
with the detailed kinetic mechanisms, together with experimental values of Akram et al. [50], Liu and Kim [51] and Lafay
et al. [52], and numerical results of Mazas et al. [53]. Measurements from the works of Lafay et al. [52], and Liu and
Kim [51] also report the error-bars corresponding to one standard deviation of the experimental error.
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Figure 5: One-dimensional premixed flame results using GRI 3.0 [39] detailed chemistry. (a) Comparison of the computed flame speed with
experimental results (Akram et al. [50], Liu and Kim [5I]) and numerical (Mazas et al. [53]) studies. (b) Computed thermal flame thickness
compared with experimental data of Lafay et al. [52].

3.1. Calibration based on flame speed observations

We first perform the Bayesian inference of the model parameters using flame speed observations only. To this end, we
need to define the likelihood function that prescribes the discrepancy between the observations and the reduced model
predictions. In our situation, the discrepancy results primarily from the reduction error, which is dependent on ¢, and,
possibly, some numerical error in the model’s evaluation. The latter error is negligible. To avoid proposing and identifying
a perhaps complex statistical model for the reduction error, we instead corrupt the detailed model predictions with a
centered Gaussian noise. We are aware that this approach does not include an explicit treatment for model error. The
noise variance o7 g, > 0 is selected to dominate the reduction error. In these conditions, a classical independent Gaussian
discrepancy model is suitable, leading to the following likelihood

2
£ 2 1 HYSL (5) - SLObS (14)
»0¢,8 ) = F/———=6¢Xp | — )
" (2102 5 )Mo 2085,

Ls, (SLobs

where Yg, (£) is the PC expansion approximation of the vector of predicted flame speeds, function of &; and S1.°% is the
vector of observed flame speeds whose components are independently corrupted by adding a random perturbation drawn
from the normal distribution N (0, O’?ySL). A value of 0. s, equal to 10 % of Sy, at ¢ = 0.8 is selected, a discussion about
this choice is provided at the end of this section.

To characterize the posterior distribution of the model parameters, defined by Egs. and , we run a MCMC
chain with 107 steps thanks to the low evaluation cost achieved by the PC approximation. A burn-in period of 10° steps
is first performed to converge to the stationary distribution before recording the samples. The resulting sample set is
eventually post-treated to estimate the posterior statistics, such as the parameters’ marginal distribution.

Figure [6] compares the prior and posterior marginal distributions of the reduced model parameters. The plots show
that the posterior marginals of A;, As, no, 2, nco and E, 2 remain close to their respective priors, implying that the
flame speed observations do not inform these parameters. These low progress were anticipated in § 2.3 in which we have
shown that these parameters have not a significant impact on the flame speed. Consistently, we observe more significant
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Figure 6: Prior and posterior marginals of the model parameters for the thermal flame speed calibration.

differences between the prior and marginal of the two most sensitive parameters, namely F,; and f;, indicating an
information gain after inference and a better knowledge a posteriori of these parameters.

Table 3| reports the maximum a posteriori (MAP) values of the parameters, maximizing the posterior distribution.
Besides this ”best-fit” value, it is important to stress that the calibration not only identifies the MAP values but also
provides a complete probabilistic description of the parameters’ joint-posterior. Among other statistics, this detailed
information enables the estimation of the posterior parameters variance, correlations or credibility intervals.

Table 3: MAP values of the model parameters for the flame speed calibration. The values in the second row are in SI units, except for the
activation energies (Eq ;) in cal/mol. Pre-exponential factors (A;) in the third row are in cgs units.

Ay B noH, MOl E, 1 Ay Bo N0,,2 nco Eq.2
2.0822 x 10° 0.2068 0.8858 1.1492 3.9934 x 107 1.8928 x 10° 0.0694 0.4977 1.0157 1.3329 x 107
3.3769 x 10" in cgs 2.2777 x 10% in cgs

An interesting exercise is to assess the predictive capabilities of the model based on the posterior. As an illustration,
we report in Fig. 7| the posterior predictions of the reduced model for the laminar flame speed (Fig. , flame thermal
thickness (Fig. [7b)), and reaction zone thickness (Fig. . Specifically, we report the posterior means with +3 standard
deviation range (shaded areas) to assess the posterior uncertainty level, and the reference solution based on the detailed
mechanism. The flame speed plot also shows the observations used in the inference. The mean and standard deviation
estimates use a large sample set of parameters drawn from the posterior distribution with the Markov Chain and the
PC approximation constructed in § [2.2] of the flame’s speed and thicknesses. For verification, we also provide the Best
Model Check (black lines) which corresponds to the results of Sy, d7 and 0y g of the MAP computed using the global
model rather than the surrogate. Focusing first on the flame speed in Fig. we observe a dramatic reduction of the
spread of the predicted flame speed compared to the a priori situation shown in Fig. The posterior mean and MAP
predictions of the flame speed are also in excellent agreement with the reference solution, which falls well within the
uncertainty range. A critical reduction of the prediction variance for the flame thickness is also visible in Fig. with
limited £30 areas. However, the reference solution is not within the posterior uncertainty range. Analysis of the reaction
zone thickness results, in Fig. yields similar conclusions. However, the reaction zone thickness predictions agree better
with the reference than the thermal flame thickness predictions, mainly because of the generally more extensive posterior
uncertainty range associated with the reaction zone thickness. From this inference experiment, one can conclude that the
model’s calibration on flame speed observations provides a reduced model somewhat effective at predicting this quantity
(and with low posterior uncertainty), but having the limited capability for the other features.
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Figure 7: A posteriori predictions of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared with the detailed
kinetic mechanism (Reference). Case of the flame speed calibration.



3.2. Calibration based on the thermal flame thickness

We now consider the calibration using the flame thickness noisy observations. The noise level o s,. used to corrupt the
detailed model computations is set to 10% of d7 at ¢ = 0.8, a discussion of the implication of corrupting the observations
is provided at the end of this section. For this case, the likelihood function becomes

2
e , 1 HY(;T (&) — 61°%

Ls, <6T |£706’5T) = exp | — 552 . (15)
(2mo2 5, )Ne Te.or

Following the same MCMC sampling procedure used for the flame thickness calibration, Fig. |8| compares the prior
and posterior marginals of the model parameters. Again, the parameters $; and E, ; are the most informed ones by the
observations. Overall, the posterior marginals look very close to their counterparts in Fig. [6]
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Figure 8: Prior and posterior marginals of the model parameters for the thermal flame thickness calibration.

Table 4] list the MAP parameters for the flame thickness calibration. Comparing these values with the MAP of the
flame speed calibration in Table [3|large differences emerge for the coefficients 81 and 2, and smaller ones for the ngop,,
no, 1 and nco, while differences in the remaining MAP parameters are less than 1%.

Table 4: MAP values of the model parameters for the flame thickness calibration. The values in the second row are in SI units, except for the
activation energies (FEq,;) in cal/mol. Pre-exponential factors (A;) in the third row are in cgs units.

Ay B NCH, MO, Ean Az B2 no,2  Nco Eqp
2.0104 x 107 0.0896 0.7761 1.2112 3.9193 x 10% 2.0230 x 10° 0.1735 0.5059 0.9341 1.3022 x 10*
1.6869 x 10'° in cgs 8.8307 x 108 in cgs

To appreciate the effect of calibrating the model on flame thickness observations, Fig.[9 presents the posterior prediction
of the flame global features Sy, ér and dgr. The generation of the plots follows the same methodology as previously.
As for the calibration on flame speed observations, the predictions’ uncertainty reduces a lot from the a priori. However,
in contrast with the results shown in Fig. [7] the prediction of the flame thickness is now in excellent agreement with
the reference, while the flame speed prediction significantly deteriorates, systematically underestimating S;, by a margin
large compared to the +3 standard deviation range. Finally, the prediction of the reaction zone thickness is further off
compared to the prediction based on the flame speed calibration. To summarize these calibration results, using flame
thickness observations provides a reduced model that can efficiently predict this flame’s feature at the expanse of other
features non considered in the procedure.
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Figure 9: A posteriori predictions of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared with the detailed
kinetic mechanism (Reference). Case of the flame thickness calibration.



3.8. Calibration based on both flame speed and thermal flame thickness

The third calibration intends to predict correctly S;, and dp simultaneously. To this end, the likelihood function is the
product of Egs. [[4 and [IF as follows

L (SLObsv 6% ¢, UE,SL»US,JT) =CLs, (SLObS |57062,SL) Ls, (5T0bs |, U?,aT) : (16)

Figure [10| depicts the posteriors marginals of the global model parameters estimated by MCMC sampling. From the
plots in the diagonal part of the figure, one can appreciate significant changes between the prior and the posterior marginal
distributions of the parameters compared to the previous experiments. This evolution reflects the impact of incorporating
more information (observations) in the calibration, which results in better definitions of the plausible parameter’s value and
tighter posterior. However, while some parameters’ posterior variability reduces drastically, other parameters remain quite
uncertain after calibration. As expected, all the essential parameters identified in the a priori sensitivity analysis undergo
a noticeable variance reduction through the calibration. More surprisingly, other parameters with a priori unimportant
effects on the flame speed and thickness, such as ncp,, experience a considerable change, being that the marginal posterior
is concentrated in the tail of the prior distribution. This behavior illustrates that parameters with relatively weak influence
on individual flame features can still be learned when the calibration combines various features.

The plots below the diagonal of Fig. [L0] show the joint posterior marginals of all pairs of model parameters. A strong
positive correlation between F,; and ; stands out among all other correlations. However, other more subtle positively
correlated parameters such as no,1 — 51, n0,,1 — NcHys Fa,1 — 10,1, and the negatively correlated E, 1 — ncm, pair
are also identified. Such detailed information on the joint-PDF of parameters is essential to hereinafter propagate the
posterior uncertainties of the global chemical mechanism.

Table [5 reports the MAP value of the parameters estimated from the Markov Chain. These values differ significantly
from the nominal values presented in Table [2] and are also different from the MAP values obtained when calibrating the
model using either flame thickness or flame speed.

Table 5: MAP values of the model parameters calibrated using both Sy, and d7 observations. Parameters in the first row are in SI units except
for the activation energies (FEq ;) in cal/mol. Pre-exponential factors (A;) are reported in cgs units in the second row.

Ay B1 NcH,  NO0,1 Ea 1 A B2 N0,.2 nco Eq»
1.9730 x 10° 0.1085 1.4892 1.1849 3.4357 x 10% 1.9809 x 108 0.0090 0.5427 0.9198 1.1406 x 10*
2.1864 x 10'% in cgs 1.1799 x 10° in cgs

As for the previous calibration experiment, we present in Fig. [11] the mean values and +30 confidence intervals of the
flame speed, thermal flame thickness, and reaction zone thickness. We recall that these quantities are based on MCMC
samples of the model parameters posterior and the surrogate models constructed in § The plots also show the flame
characteristics computed with the reference model (detailed chemistry) and the noisy observations used for the calibration.
We chose to keep the same noise level o as in the two previous calibration experiments, i.e., 10% of the reference flame
feature value at ¢ = 0.8.

We see that using flame’s speed and thickness observations results in predictions of Sy and d7 with low posterior
variance and a satisfactory agreement with their reference counterparts. However, a closer comparison reveals that
the 430 confidence intervals of the predictions do not consistently contain the reference values of all ¢. Instead, the
calibration produces a trade-off between the two types of predictions. This behavior underlines the limitation of using
constant parameters in the two-step global model, even for one-dimensional premixed flames in lean conditions. We also
remark that the surrogates are not responsible for the absence of a complete agreement with the references since the
surrogates’ means of S;, and dp agree well with the evaluations of the global model using the inferred MAP values (Best
Model Check). In contrast with the predictions of the flame’s speed and thickness, the model vastly overestimates the
reaction zone thickness dyr with higher discrepancies than the previous calibrations experiments. We again explain the
deterioration of these predictions by the global model’s limitation, which is not rich enough to predict all the laminar
flame dynamics’ complexity. Similar results were found in the study of Slavinskaya et al. [54], who developed predictive
kinetic models showing that the consideration of more information in the calibration may improve the predictions of
the observed quantities; however, it can be detrimental to the robustness of the model and, in particular, its ability to
adequately predict other features of interest. Yet, this limitation of the global model is not necessarily critical unless one is
specifically interested in predicting quantities not involved in the calibration. On the contrary, for aerothermal simulations,
the flame’s dynamics are mainly governed by the flame speed and thickness. A limited global model, predicting these
features correctly, can produce meaningful predictions at a low computational cost.

To complete the discussion on the calibration, we repeat the previous exercise but for observations of the flame’s S
and 47 corrupted with a lower noise level o.. We choose to corrupt observations with a normal noise to prevent the
introduction of an explicit model error. Several studies have adopted this approach (e.g. [55H57]), but one should proceed
carefully when avoiding explicit treatment of the model error [58461] in the parameter inference problem. Specifically,
the noise level o, must be large enough to dominate the model error. However, as discussed in the work of Sargsyan

10



0 0375 1 175 0.6 135 3 375 1.2 255 0 0.75 0.3 0.6 0.6 1.2
At a0® B neH, no,,1 Eoi st A2 xaef 32 n0,.2 noo

Figure 10: One-dimensional and two-dimensional posterior marginals of the model parameters for the calibration based on both the flame speed
and the thermal flame thickness. In the 1-D marginal distributions reported in the diagonal, the gray lines correspond to parameters’ prior.

et al. [20], the noise level must increase with the number of observations to prevent the concentration of the posterior
distribution without model error. In our calibration, the magnitude of the artificial noise is adjusted to the fixed number
of observations (N, = 51). The value of o, was then adjusted so that confidence intervals of the posterior flame features
tightly encompass the reference solution while keeping a plausible magnitude when compared with measured experimental
noise. In the following exercise, we set a o, corresponding to 5% of the respective flame’s features at ¢ = 0.8, instead of
the 10% used previously. Because the reduced model is not able to produce predictions with arbitrary low discrepancy
level, consistent with the observation noise, the posterior of the parameters concentrates around the maximum of the
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Figure 11: A posteriori results of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared with the detailed
kinetic mechanism (Reference) when calibration is based on both the flame speed and the thermal flame thickness.

likelihood as o. decreases. This concentration has two unfortunate consequences that we want to illustrate here. First,
the tight posterior can lead to false certainty regarding the parameters’ value and over confidence in the subsequent model
predictions, especially for quantities not involved in the calibration procedure. Second, it is frequent that the ”best”
agreement between the reduced model and the observations corresponds to extreme parameter values, because lower
values of o, entails less importance of the a priori to the posterior. In our method, which relies on a surrogate model to
predict the features, this effect is extremely detrimental.

Figure to be compared with Fig. illustrates the concentration of the posterior for the surrogate’s flame speed
and thickness: the two features present a lower variability with a better agreement between the mean predictions and
the reference solution (detailed model). Yet, the prediction of dgy g is degrading for all the considered ¢ range. Further,
figure [12 reports the evaluations using the reduced model (rather than the surrogate model) at the MAP of the posterior
(Best Model Check). In contrast to the previous examples (with a o¢ of 10%), the Best Model Check is found far off the
surrogate posterior mean and even not inside the posterior uncertainty range. This illustrates that the calibration yields
extreme parameters values for which the feature surrogates are not accurate enough. The analysis of the normal canonical
variables of the MAP reveals that 3 out of 8 are found outside their initial 99.97% individual confidence interval, and 6
outside their prior 99.5% confidence interval. The most extreme canonical variable is found at 3.9 standard deviations
from its nominal value. For comparison, in the case of the MAP with 10% o, only 1 canonical variable is outside its 3
standard deviation prior confidence interval; the second largest is at 1.43 standard deviation from its nominal value and
all the others in less than 1 standard deviation. In terms of densities, the ratio of the prior for the two MAP points is
~ exp(51) (about 1022). Concretely, building accurate surrogates over such low probability region of the prior would be
too demanding without relying on an adaptive method (see for instance [62]). Trying to improve the surrogates accuracy
is not pursued here because, fundamentally, the calibration with low observation noise would demand an appropriate
treatment of the model error. Instead, we proceed with the exploitation of the reduced model calibrated with the 10%
observation noise, for which the model error does not compromise the inference.
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Figure 12: A posteriori results of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared with the detailed
kinetic mechanism (Reference) when the calibration is based on both the speed and the thickness of the flame, but considering a low value of
Oec.
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4. Application to flame-vortex simulation

We now assess the predictive capabilities of the inferred reduced model when applied on a situation differing significantly
from the conditions considered for its calibration. Specifically, we consider a two-dimensional flame-vortex interaction in
unsteady laminar regime, corresponding to a configuration widely studied numerically [63H65] and experimentally [66HGS].
Because this configuration includes the phenomenology of stretched flames, it has been used to validate numerical methods
and models in reactive flows [69, [70]. A detailed review on flame-vortex interactions can be found in [71].

4.1. Numerical test case description

The problem, sketched in Fig. [I3] consists of an initially planar flame front interacting with a convected pair of
counter-rotating vortices.
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Figure 13: Schematic of the initial configuration for the two-dimensional flame-vortex interaction. The vortices are colored by velocity magnitude.

The initial condition is a stationary one-dimensional flame profile superposed with a pair of counter-rotating vortices;
the velocity field is given by

U1($7y) = (y_yO) (/@T(m,y)—i-m(x,y)), (17)

() — @~ w0+ Srley), (18)

where u; and up are the horizontal and vertical velocity components; ug o is the velocity of the stationary one-dimensional
flame; (x0,y0) is the center of the vortex pair (see Fig. ; d is the distance between the vortex centers; ;(z,y) and

kr(x,y) are the vortex intensity fields associated to the left and right vortices, respectively. In the following, we consider
a symmetric configuration with d = 6.25 x 1072 m and

uz(z,y) = ug,0 — (T — 0 —

x —1x0— 4)2 —yo)?

o) = T exp (—( 1ol o ) (19
— dy2 _ 2

) = oo (-2 A, ()

where the vortices core size is set to » = 1073 m and the vortex intensity to 7 = 6.5 x 1073m?s~!. These values, similar
to the case in [65], lead to a combustion regime with thickened wrinkled flames and formation of gas pockets [63].

As indicated in Fig. [[3] the top boundary of the domain is an outlet, while the bottom is the inlet where we apply
the solution of the one-dimensional flame with a constant speed (ug = S = 0.2877 m/s), equivalence ratio ¢ = 0.83,
temperature (300 K) and pressure (1 atm). Finally, the periodic conditions apply to the left and right boundaries. The
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domain size is set to L, = 2x 1072 m and L,=3x 1072 m in order to minimize the impact of computational boundaries
on the interaction. The low Mach-number Navier-Stokes equations and the species transport equations are solved using the
YALES2 solver [72] on a uniform Cartesian mesh of 600 x 900 nodes and a constant grid spacing Az = Ay = 3.33x 1075 m.
The YALES2 solver is an optimized parallel finite volume method code. We used the low-storage Runge-Kutta scheme
with four steps to integrate the governing equations in time and a central 4th-order scheme for spatial discretization.
For stability, we set the maximal Courant-Friedrichs-Lewy (CFL) number to CFL=0.3, and the Fourier number (Fo) to
Fo=0.1.

4.2. Reference solution of flame-vortex interactions

A reference simulation of the flame-vortex computation is first computed using the detailed mechanism GRI 3.0 [39].
Figure 14| shows the time evolution of the integrated heat release rate (Igg) over the computational domain,

IHR(t):/QHR(t)dQ, (21)

scaled by its initial value Iy r(0). Here, we normalize the time using the reference flame speed Sy, = 0.2877 m/s and
thickness 67 = 5.1046 x 10™* m. The evolution presents different periods characteristic of the flame-vortex interaction
dynamics. After an initial phase where Iggr remains nearly constant (t* < 4.5), the flame gradually stretches as the
vortex pair approaches and distort the flame front, creating wrinkles. The elongation of the flame front improves the mass
burning rate inducing a continuous increase of Iyg. The first row of Fig. [I5] depicts the flow structure at ¢} = 6.54 when
Iyr is increasing; in this phase, the flame is attached to the vortex and rolls up. Eventually, Iyg peaks at t* ~ 7.6 before
initiating a fast decaying phase. The peak of Iyr coincides with the closing of a neck of fresh gases connecting the vortex
region with the primary flame front; see the second row of Fig. corresponding to t5 = 7.67. The closing of the neck
forms pockets of fresh gases that burn rapidly, causing a sharp decrease of Iyg, as illustrated in the third row of Fig.
for t§ = 8.45. These different stages of the vortex-flame interaction are consistent with previous studies [63], [65] [69].

0 2 4 6 8 10 12
time xS /dr

Figure 14: Time evolutions of Iygr normalized by its initial value for the reference solution using the detailed chemical scheme GRI 3.0 [39].

4.8. Flame-vortex prediction for the calibrated two-step global model

Samples of the reduced two-step mechanism, drawn from the posterior distribution corresponding to the calibration
on Sy, and 7 data, are used to simulate the flame-vortex problem. A total of 60 independent samples are drawn from
the model’s posterior distribution using the Markov chain. These model samples are exploited to assess the effects of
calibration uncertainty in a much more complex configuration than the calibration experiment (one-dimensional laminar
flame).

The reaction progress in premixed combustion is usually quantified based on a progress variable c¢. In this work, we
compute c as a function of temperature, following the expression:

T-T

S

(22)

where T7 and T3 stand for the temperature of the fresh and burnt gases, respectively. Therefore, ¢ = 0 in the fresh gases
and ¢ = 1 in the burnt gases. Figure [I6] shows the spread of the predictions for the 60 sampled models reporting the
isoline ¢ = 0.5.
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Figure 15: Reference temperature, heat release rate (HR), and velocity magnitude fields of the 2D flame-vortex DNS using GRI 3.0 [39] detailed
chemistry. The fields are shown at normalized times t* corresponding to the different phases of the flame-vortex interaction and indicated in

Fig. E

The isolines are shown at the three times t7, t5 and t3, previously discussed. Note that in all cases, the normalization
of the times uses the reference flame speed and thickness (S = 0.2877 m/s and 67 = 5.1046 x 10~* m). The figure
also reports the isolines ¢ = 0.5 of the best candidate model (MAP) and the reference solution (detailed chemistry). It is
observed that the spread of the isolines ¢ = 0.5 is increasing between ¢] and ¢5. The posterior uncertainty is particularly
large in intense roll-up areas during the first phase (see ) and at the boundary of the entrapped fresh-gases pockets at
peak time (see t5). The highest variability in these areas is not surprising as rolling-up and entrapment processes involve
curvature effects that were not present in the one-dimensional flame experiment considered for the calibration. However,
the prediction uncertainty reduces as the decaying phase advances (see t3). In particular, the location of the isolines of
¢ = 0.5 from the inlet’s fresh gases is not much uncertain. Finally, the differences between the reference (black) and MAP
(red) model predictions are reasonably small at all the times shown, while the reference isoline is always within the sample
set’s isolines.

We now focus on global flame behavior to better assess the calibrated model’s predictive capabilities in the flame-vortex
interaction. Figure [I7]shows the time-evolutions of the normalized Iugr, and flame surface Sy define by

S (t) = /Q IVe(t)|d9. (23)

The plots report Iyr and Sy for the 60 samples of the model calibrated based on Sy, and ér, together with the posterior
mean (blue lines) and +3 standard deviation confidence interval (shaded areas), MAP model prediction (red lines), and
the reference solution (black lines) computed using the GRI 3.0 detailed mechanism. As for the isolines of ¢ = 0.5
presented above, the reference solutions fall within the confidence intervals, and the agreement between the posterior
mean predictions, MAP model predictions, and reference solutions are reasonably good. The samples indicate that the
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Figure 16: Progress variable isolines ¢ = 0.5 at (a) t}, (b) t5 and (c) t5. Thin gray lines correspond to the samples of the reduced models, the
black line refers to the detailed chemistry model, while the red line corresponds to MAP model.

calibrated two-step model tends to overestimate Igr and flame surface’s peak values. The posterior uncertainty in the
two-step model parameters mostly translates into uncertainty in the presented quantities’ growth and decay rates. The
uncertainty impact explains that the posterior mean predictions are in better agreement with the reference than the MAP
prediction.

The samples’ spread in Fig. is mostly explained by the uncertainty on the laminar flame speed predictions (reported
in Fig. . Such flame speed variability among samples induces time-shifts in the Iy r and flame surface evolutions. In
fact, the inlet velocity is set to the reference laminar flame velocity Sy, for all samples, leading to differences in the relative
convective velocity between the vortex pair and the flame front, depending on the particular flame speed of the sample. We
further illustrate the fundamental role of the flame thickness and the laminar flame speed in the dynamics of the vortex-
flame interactions in Fig. [I8] The figure shows the evolutions of the normalized flame surface for the different samples
as functions of the time normalized by the respective values of speed S} and thickness 6} associated with each sample
of the model. With this sample-dependent time-scaling, the spread of the curves dramatically reduces, demonstrating
that, for this global quantity, the impact of the calibrated two-step model uncertainty mostly translates into a time-scale
uncertainty.
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Figure 17: Time evolutions of the (a) normalized Iggr and (b) flame surface, for the calibrated two-step model. The time is normalized using
the reference flame speed and thickness. The MAP and reference (using GRI 3.0 [39]) predictions are also reported.
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Figure 18: Time evolutions of the normalized flame surface versus dimensionless time for the calibrated two-step model. Contrary to the plot in
Fig. the normalization of time uses the flame speed and thickness of each sample. The MAP and reference (using GRI 3.0 [39]) predictions
are also reported.

To complete the analysis of the predictive capability of the calibrated two-step model, we consider a more challenging
integral quantity which is much sensitive to flow stretching. Specifically, we focus on the dependence of Iyr on the flame
surface Sy and report in Fig. [19|the evolution of their normalized ratio v, defined as

(24)

o(6) = J, HR(t)dQ2 ( oy HRod$2 ) -

T [ IVe@)|dQ \ [, [VeoldQ

This choice is motivated by the tangential velocity gradients’ critical role in the reaction zone (the ”flame surface”).
The tangential gradient modifies the local burning rate, affecting the chemical composition and the whole dynamics of
the premixed flame, in particular for mixtures with non-unit Lewis numbers. The prediction of these highly non-linear
processes, summarized here in the time evolution of ¥ (t), is challenging for models that have not been calibrated on flames
presenting such complicated features. This difficulty is illustrated in Fig. Although the reference and reduced model
predictions present somehow similar evolution in time, a significant increase in the samples variability of ¢(t) is reported
after the peak time of Iyg and Sy (¢t* > 7), that is when stretching is maximum with the formation of fresh gas pockets.
Again, the spread could be reduced, to some extent, by relying on a time-scaling of the individual samples. However,
contrary to the previous quantities Iyg and S, the reference solution is not contained in the 3 standard deviations bounds
of the reduced model prediction. This mismatch denotes the inadequacy of the model and the predictive limitations of
the two-step model calibrated on un-stretched laminar flames.
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Figure 19: Time evolutions of ¢ (t) (see Eq. for the calibrated two-step model. The MAP and reference (using GRI 3.0 [39]) predictions are
also reported.

5. Conclusions

This work discusses the forward propagation of uncertainties from global chemistry model calibration through the
simulation of flame-vortex interactions. To characterize the calibration uncertainties, the Bayesian inference of the ten
model parameters of a reduced two-step reaction mechanism for CHy has been carried out. The calibration employs
synthetic observations of the laminar flame speed or/and thickness, generated from simulations using the GRI 3.0 methane
detailed chemical mechanism.

To alleviate most of the Bayesian inference’s computational burden, we first construct surrogate models of the reduced
model flames’ characteristics. These surrogates combine a PCA to account for the dependence on the equivalence ratio
and PC expansions for the dependencies in the model parameters. The normalized mean squared error of the surrogates,
estimated on additional validation sets, are 1.44% for the thermal flame thickness, 1.94% for the reaction zone thickness,
and 1.97% for the laminar flame speed.

We conduct three different inference exercises using: (i) flame speed observations, (ii) thermal thickness observations,
and (iii) both flame speed and thermal thickness observations. The surrogate models of the flame’s characteristics allow
running the Metropolis-Hasting algorithm to draw 107 samples from the parameters’ approximated joint posterior. In all
three calibration exercises, the differences between the prior and posterior marginals are significant for only a subset of
parameters, while the information gain on other parameters is negligible. An a priori sensitivity analysis can anticipate the
set of parameters informed by the observations. The posteriors’ marginals of the informed parameters are also sensitive
to the observations used for the calibration. While these marginals are similar when using laminar flame speed or thermal
thickness observations, they can differ significantly when the two types of observations are combined. We show that these
differences translate in improved predictions of the flame’s speed and thickness, with lower a posteriori spreads. However,
these improvements come with the degradation of other flame characteristics not involved in the calibration, such as the
reaction zone thickness. This behavior reflects the global model’s insufficiency, which is not complex enough to predict all
the laminar flames’ features.

To further appreciate the calibrated model’s predictive capability and its posterior uncertainty, we finally consider its
application to the simulation of a two-dimensional DNS flame-vortex configuration. We assess the quality of the posterior
predictions using a detailed chemistry model simulation. The comparison shows consistent predictions of the total heat
release and flame surface time-evolutions, with the calibrated model’s confidence intervals containing the detailed model
evolutions. Additionally, the posterior predictions’ variability is mostly explained by a phase variability in the flame
surface evolution caused by the uncertainty in the ratio Sy, /07 for the calibrated model.

This challenging example highlights another limitation of the 2-step model concerning the heat release rate per flame
surface area. The calibrated model fails to reproduce the flame response to stretch correctly. This limitation is not
surprising since the observations used to calibrate the model did not encompass stretched flame phenomenon.

As a first approach, the present work adopted constant model parameters for the 2-step global chemistry mechanisms.
This approach restricts the range of fuel-air ratio to lean mixtures. We plan to extend the Bayesian inference to model
parameters functions of the equivalence ratio in the future. Future calibration should also incorporate other flame phe-
nomena to provide models capable of handling more complex situations. The growing need for accurate and error-bounded
results in modern combustion simulations turns this well-grounded methodology into a promising approach to derive the
new generation of stochastic global chemical schemes accounting for posterior uncertainty.
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