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Optimal Revenue Guarantees for Pricing in Large Markets ∗

José Correa † Dana Pizarro ‡ Victor Verdugo §

Abstract

Posted price mechanisms (PPM) constitute one of the predominant practices to price goods
in online marketplaces and their revenue guarantees have been a central object of study in the
last decade. We consider a basic setting where the buyers’ valuations are independent and
identically distributed and there is a single unit on sale. It is well-known that this setting is
equivalent to the so-called i.i.d. prophet inequality, for which optimal guarantees are known
and evaluate to 0.745 in general (equivalent to a PPM with dynamic prices) and 1−1/e ≈ 0.632
in the fixed threshold case (equivalent to a fixed price PPM). In this paper we consider an ad-
ditional assumption, namely, that the underlying market is very large. This is modeled by first
fixing a valuation distribution F and then making the number of buyers grow large, rather
than considering the worst distribution for each possible market size. In this setting Kennedy
and Kertz [Ann. Probab. 1991] breaks the 0.745 fraction achievable in general with a dynamic
threshold policy. We prove that this large market benefit continue to hold when using fixed
price PPMs, and show that the guarantee of 0.632 actually improves to 0.712. We then move to
study the case of selling k identical units and we prove that the revenue gap of the fixed price
PPM approaches 1−1/

√
2kπ. As this bound is achievable without the large market assumption,

we obtain the somewhat surprising result that the large market advantage vanishes as k grows.
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1 Introduction

Understanding the worst case revenue obtained by simple pricing mechanisms is a fundamental
question in Economics and Computation [2, 3, 10, 16, 18]. In this context probably the most basic
setting corresponds to selling a single item to n buyers with valuations given by independent and
identically distributed random variables. Here the simplest possible mechanism is that of setting a
fixed price (a.k.a. anonymous price) for the item and the benchmark, to which we want to compare
to, is the revenue obtained by Myerson’s optimal mechanism [25]. Through the well established
connection between posted pricing mechanisms and prophet inequalities [5, 7, 15], evaluating this
revenue gap is equivalent to determining the best possible single threshold prophet inequality in the
i.i.d. case. Thus, a result of Ehsani et al. [9] establishes that the performance of a fixed threshold
policy when facing i.i.d. samples is at least a fraction 1 − 1/e of that of the optimal mechanism,
and the bound is best possible.1 2 In this paper, we explore this basic question under an additional
large markets assumption that is relevant to most modern online marketplaces.

In our study we take the viewpoint of prophet inequalities rather than that of pricing mech-
anisms, mostly because this has become the standard in the literature. Let us thus briefly recall
some of the basics. For a fixed positive integer n, let X1, . . . , Xn be a non-negative, independent
random variables and Sn their set of stopping rules. A classic result of Krengel and Sucheston, and
Garling [22, 23] asserts that E(max{X1, . . . , Xn}) ≤ 2 sup{E(Xs) : s ∈ Sn} and that two is the best
possible bound. The study of this type of inequalities, known as prophet inequalities, was initiated
by Gilbert and Mosteller [13] and attracted a lot of attention in the eighties [17, 20, 21, 27, 28]. In
particular, Samuel-Cahn [28] noted that rather than looking at the set of all stopping rules one
can obtain the same result by using a single threshold stopping rule in which the decision to stop
depends on whether the value of the currently observed random variable is above a certain thresh-
old. A natural restriction of this setting, which we consider here, is the case in which the random
variables are identically distributed. This problem was studied by Hill and Kertz [17] who pro-
vided the family of worst possible instances from which Kertz [20] proved that no stopping rule
can extract more than a fraction of roughly 0.745 of the expectation of the maximum. Later, Correa
et al. [6] proved that in fact this value is tight. We note, however, that the optimal stopping rule in
this i.i.d. case cannot be achieved by a fixed threshold policy. Indeed, the best such policy has an
approximation guarantee of 1− 1/e ≈ 0.632 [9].

In the last two decades, prophet inequalities gained particular attention due to its close con-
nection with online mechanisms. The connection involves mapping the random variables in the
prophet inequality setting to the virtual valuations in the pricing setting and the expectation of
the maximum value in the prophet inequality setting to revenue of the optimal mechanism in the
pricing setting. This relation was firstly studied by Hajiaghayi et al. [15], who showed that prophet
inequalities can be interpreted as posted price mechanisms for online selection problems. Later,
Chawla et al. [5] proved that any prophet inequality can be turned into a posted price mechanism
with the same approximation guarantee. The reverse direction was proven by Correa et al. [7]
and thus the guarantees for optimal stopping problems are in fact equivalent to the problem of
designing posted price mechanisms. Furthermore, in the i.i.d. setting, fixed threshold stopping
rules become equivalent to fixed price policies.

1Here the mild technical condition that the distribution is continuous is needed. Otherwise the mechanism would
need some randomization.

2Ehsani et al. [9] actually prove a more general prophet inequality, namely, that the bound of 1 − 1/e holds even if
the distributions are nonidentical. However, this more general result does not translate into a fixed price policy (if the
distributions are not identical, neither are the virtual values and then this single threshold will be mapped to different
prices for different distributions).
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In this work we study single threshold prophet inequalities in a large market regime, where
the random variables arriving over time are i.i.d. according to a known and fixed distribution. The
essential difference with the classic setting is that rather than considering the worst distribution for
each possible market size n, we first fix the distribution and then take n grow to infinity. Our main
question is thus to understand to what extent one can obtain improved single threshold prophet in-
equalities (or fixed price policies) when the market is very large. Interestingly, this setting, though
with general stopping rules, was considered three decades ago by Kennedy and Kertz [19]. They
prove that the optimal stopping rule recovers at least a 0.776 fraction of the expectation of the max-
imum, establishing that there is a sensible advantage when compared to the 0.745 bound of classic
i.i.d. setting [17, 20]. Kennedy and Kertz realize that the limit problem may be ill behaved and
thus impose an extreme value condition.3 This condition is, essentially, the equivalent of a central
limit theorem for the maximum of an i.i.d. sample, and it is the cornerstone of the extreme value
theory.

Then, a natural question that arises is whether the result obtained by Kennedy and Kertz [19]
for the optimal stopping rule also holds for the much simpler single threshold policies. We answer
this question on the positive proving that the large market assumption allows to obtain a guarantee
of 0.712 significantly improving the bound of 1−1/e [9]. We further consider the case of selecting k
items (or selling k items) with a fixed threshold policy and prove that this large market advantage
vanishes as k grows.

1.1 Our Results

For every positive integer n, consider an i.i.d. sampleX1, X2, . . . , Xn withXj distributed according
to F for every j ∈ {1, . . . , n}, where F is a distribution over the non-negative reals. Given a value
T , consider the simple algorithm given by stopping the first time that a random variable exceeds
T . Then, for each distribution F , we are interested in understanding the limit ratio between the
reward of this simple stopping rule which is simply given by the probability of having anXi above
T , 1 − Fn(T ) times the expected value of this Xi conditioned on it being larger than T , and the
expectation of the maximum Xi, denoted as Mn. Our quantity of interest is thus:

apx(F ) = lim inf
n→∞

sup
T∈R+

1− Fn(T )

E(Mn)

(
T +

1

1− F (T )

∫ ∞
T

(1− F (s))ds

)
. (1)

Our first main result shows that 0.712 is a tight lower bound for apx(F ) when the distribution
satisfies the extreme value condition. This value is substantially better than the known bound of
1−1/e by Ehsani et al. [9] and thus represents a significant advantage for the large markets setting.
We remark that we are mainly interested in the case of distributions F with unbounded support,
since one can show that apx(F ) = 1 when F is of bounded support.

A natural and practically relevant extension of the single selection prophet inequality is to con-
sider the setting in which we can select up to k different samples (or sell k items). We call this
problem k-selection problem and we study whether the large market advantage continues to be
significant beyond the single selection case. To this end, we provide a lower bound for the ap-
proximation factor achievable by the best single threshold policy, again under the extreme value
condition. More specifically, for each value of k, the approximation factor is bounded by a (compu-
tationally) simple optimization problem. In particular, the bound presented when k = 1 follows
by obtaining the exact solution of the optimization problem. The performance obtained by our

3This is a classic condition in extreme value theory and it is satisfied by essentially any distribution that may have a
practical use. The characterization of this condition is known as the Fisher-Tippett-Gnedenko Theorem.
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Figure 1: Our optimal revenue guarantee over k (continuous line) vs. the bound of 1 − 1/
√

2kπ (dashed
line).

characterization yields prophet inequalities that represent an advantage for the k-selection prob-
lem. However, we also show that this advantage vanishes as k → ∞. Indeed, we prove that for
each integer k, the approximation factor is more than 1− 1/

√
2kπ, but there exists F such that this

lower bound is asymptotically tight in k. This tightness, together with the recent result of Duet-
ting et al. [8] establishing that the approximation ratio of the k-selection problem (without the
large market assumption) is almost exactly 1− 1/

√
2kπ,4 implies that the large market advantage

vanishes as k → ∞. For an illustration, Figure 1 depicts the bound obtained by our optimization
problem and compares it with 1− 1/

√
2kπ. We finally note that as a direct corollary, when F satis-

fies the extreme value condition and for large markets, we can derive the worst case ratio between
the optimal single threshold prophet inequality obtained by our characterization theorem and the
value obtained by the optimal dynamic policy of Kennedy and Kertz, the adaptivity gap. This value
is, roughly, at most 1.105.

As already mentioned, our main result for the multiple selection problem translates into a fixed
price policy when the buyers’ valuations are identically and independently distributed, say ac-
cording to F .5 Of course, this works as long as the distribution of the virtual values of F , call it
G, satisfies the extreme value condition. This motivates the following question: When F satisfies
the extreme value condition, can we guarantee that the distribution of the virtual valuation G also
does? And, if this is the case, doesG and F fall in the same extreme value family? We answer these
questions in the positive under some mild assumptions.

2 Preliminaries

We recall that F is a distribution if it is a right-continuous and non-decreasing function, with limit
equal to zero in−∞ and equal to one in +∞. We consider F to be absolutely continuous in R, and
we denote its density by f or F ′, depending on the context. In general, F is not invertible, but we
work with its generalized inverse, given by F−1(y) = inf{t ∈ R : F (t) ≥ y}. We denote by ω0(F ) =

4Slightly weaker bounds are also known for the case in which the random variables are just independent but not
necessarily identical [4, 1].

5Recall that single threshold policies map to fixed price mechanisms.
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inf{t ∈ R : F (t) > 0} and ω1(F ) = sup{t ∈ R : F (t) < 1}, and we call the interval (ω0(F ), ω1(F ))
the support of F . Given a sequence {Xj}j∈N of i.i.d. random variables with distribution F , we
denote by Mn = maxj∈{1,...,n}Xj .

One of the main goals in the extreme value theory is to understand the limit behavior of the
sequence {Mn}n∈N. As the central limit theorem characterizes the convergence in distribution of
the average of random variables to a normal distribution, a similar result can be obtained for the
sequence of maxima {Mn}n∈N, but this time there are three possible limit situations. One of the
possible limits is the Gumbel distribution Λ(t) = exp(−e−t); we call these distributions the Gumbel
family. Given α > 0, the second possible limit is the Fréchet distribution of parameter α, defined
by Φα(t) = exp(−t−α) if t ≥ 0, and zero otherwise; we call these distributions the Fréchet family.
Finally, given α > 0, the third possibility is the reversed Weibull distribution of parameter α, de-
fined by Ψα(t) = exp(−(−t)α) if t ≤ 0, and one otherwise; we call these distributions the reversed
Weibull family. We now state formally the extreme values theorem, result due independently to
Gnedenko [14] and Fisher & Tippett [11].

Theorem 1 (see [26]). Let F be a distribution for which there exists a positive real sequence {an}n∈N
and other sequence {bn}n∈N such that (Mn − bn)/an converges in distribution to a random variable with
distribution H , namely, P (Mn − bn ≤ ant) = Fn(ant+ bn)→ H(t) for every t ∈ R when n→∞. Then
we have that one of the following possibilities hold: H is the Gumbel, H is in the Fréchet family or H is in
the reversed Weibull family (see Table 1).

In the following, we say that a distribution F satisfies the extreme value condition if there exist
sequences {an}n∈N, that we call the scaling sequence, and {bn}n∈N, that we call the shifting sequence,
satisfying the condition of Theorem 1.6 It can be shown that for every distribution F with extreme
type in the reversed Weibull family we have ω1(F ) < ∞ [26, Proposition 1.13, p. 59]. When F
has extreme type Fréchet, we have ω1(F ) = ∞ [26, Proposition 1.11, p. 54]. For the distributions
with extreme type Gumbel the picture is not so clear since ω1(F ) is neither finite nor unbounded in
general. In our analysis we need a tool from the extreme value theory related to the order statistics
of a sample according to F . We denote the order statistics of a sample of size n by Mn = M1

n ≥
M2
n ≥ · · · ≥Mn

n .

Theorem 2 (see [24]). Let F be a distribution satisfying the extreme value condition with the scaling and
shifting sequences {an}n∈N and {bn}n∈N such that P (Mn − bn ≤ ant) → H(t) for every t ∈ R when
n→∞. Then, for each j ∈ {1, 2, . . . , n} and every t ∈ R we have

lim
n→∞

P
(
M j
n − bn ≤ ant

)
= H(t)

j−1∑
s=0

(− logH(t))s

s!
.

A distribution V is in the Von Mises family if there exist z0 ∈ R, a constant θ > 0 and a function
µ : (ω0(V ),∞)→ R+ absolutely continuous with limu→∞ µ

′(u) = 0, such that for every t ∈ (z0,∞)
we have

1− V (t) = θ exp
(
−

t∫
z0

1

µ(s)
ds
)
. (2)

We call such µ an auxiliary function of V . We summarize next some technical results related to the
Von Mises family of distributions that we use in our analysis.

6Examples of continuous distributions not satisfying this extreme value condition include distributions with odd
behavior such as F (x) = exp(−x− sin(x)).
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Extreme Type Parameter Limit Distribution Example
Gumbel None exp(−e−t) Exponential distribution
Fréchet α ∈ (0,∞) exp(−t−α) · 1[0,∞) Pareto distribution

Reversed Weibull α ∈ (0,∞) exp(−(−t)α) · 1(−∞,0) + 1[0,∞) Uniform distribution

Table 1: Summary of the three possible extreme value distributions. The Fréchet family and the
Reversed Weibull family are associated to a parameter α ∈ (0,∞). Recall that for α > 0, the Pareto
distribution of parameter α is given by 1− t−α for t ≥ 1 and zero otherwise.

Lemma 1 (see [26]). Let V be in the Von Mises family with auxiliary function µ and such that ω1(V ) =
∞. Then, V has extreme type Gumbel, and the shifting and scaling sequences may be chosen respectively
as bn = V −1(1 − 1/n) and an = µ(bn) for every n. Furthermore, we have limt→∞ µ(t)/t = 0 and
limt→∞(t+ xµ(t)) =∞ for every x ∈ R.

For example, the exponential distribution of parameter λ is in the Von Mises family, with aux-
iliary constant function 1/λ, θ = 1 and z0 = 0. Furthermore, for every positive integer n we have
bn = F−1(1−1/n) = (log n)/λ and an = µ(bn) = 1/λ. We need a few results from the extreme value
theory. In particular, a relevant property states that every distribution with extreme type Gumbel
can be represented by a distribution in the Von Mises family in the following precise sense.

Lemma 2 (see [26]). Let F be a distribution satisfying the extreme value condition with ω1(F ) = ∞.
Then, F has extreme type Gumbel if and only if there exists V in the Von Mises family and a positive
function η : (ω0(F ),∞)→ R+ with limt→∞ η(t) = η? > 0 such that 1−F (t) = η(t)(1−V (t)) for every
t ∈ (ω0(F ),∞).

Then, whenever F has extreme Gumbel there exists a pair (V, η) satisfying the condition guar-
anteed in Lemma 2, and in this case we say that (V, η) is a Von Mises representation of the distri-
bution F .

3 Prophet Inequalities in Large Markets Through Extreme Value The-
ory

We say that a stopping rule for the k-selection problem with an i.i.d. sample X1, X2, . . . , Xn is
a single threshold policy if there exists a threshold value T such that we select the first min{k, |Q|}
samples attaining a value larger than T , where Q is the subset of samples attaining a value larger
than T . Consider the random variableRnk,T equal to the summation of the first min{k, |Q|} samples
attaining a value larger than T . In particular, this value is completely determined by the sample
size n, the distribution F and the threshold T . We are interested in understanding the value

apxk(F ) = lim inf
n→∞

sup
T∈R+

E(Rnk,T )∑k
j=1 E(M j

n)
,

where M1
n ≥ M2

n ≥ · · · ≥ Mn
n are the order statistics of a sample of size n according to F . We

observe that when k = 1 the value apxk(F ) corresponds to the value apx(F ) in (1). Now we
present formally our main results for prophet inequalities in the k-selection problem.

Theorem 3. Let F be a distribution over the non-negative reals that satisfies the extreme value condition.
Then, the following holds.
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(a) When F has an extreme type Fréchet of parameter α, we have that apxk(F ) ≥ ϕk(α), where ϕk :
(1,∞)→ R+ is given by

ϕk(α) =
Γ(k)

Γ(k + 1− 1/α)
max

x∈(0,∞)
x exp(−x−α)

k∑
j=1

∞∑
s=j

x−sα

s!
. (3)

In particular, we have apxk(F ) ≥ 1 − 1/
√

2πk for every distribution F with extreme type in the
Fréchet family.

(b) When F has extreme type in the Gumbel or reversed Weibull families, we have that apxk(F ) = 1 for
every positive integer k.

Theorem 4. Let F be the Pareto distribution with parameter α = 2. Then, for every ε > 0 there exists a
positive integer kε such that for every k ≥ kε it holds that apxk(F ) ≤ 1− (1− ε)/

√
2πk.

Observe that by Theorem 3 we have that for each integer k the approximation factor is more than
1−1/

√
2kπ under the large market assumption. Moreover, by Theorem 4 this lower bound is in fact

asymptotically tight in k for the distributions with extreme type Fréchet of parameter α = 2. This
tightness, together with the recent result of Duetting et al. [8] establishing that the approximation
ratio of the k-selection problem without the large market assumption is almost 1− 1/

√
2kπ, allows

us to obtain the surprising result that the large market advantage vanishes as k →∞.
Despite the tightness result established in Theorem 4, for small values of k this bound is in fact

substantially better. Consider a distribution F with extreme type Fréchet of parameter α ∈ (1,∞).
By Theorem 3 (a), when k = 1 it holds that

ϕ1(α) =
1

Γ(2− 1/α)
sup

x∈(0,∞)
x
(

1− exp(−x−α)
)
,

for everyα ∈ (1,∞). The optimum for the above optimization problem as a function ofα is attained
at the smallest real non-negative solution U∗(α) of the first order condition Uα+α = Uα exp(U−α),
which is given by

U∗(α) =

(
− 1

α

(
αW−1

(
− 1

α
e−1/α

)
+ 1

))−1/α

,

where W−1 is the negative branch of the Lambert function. Therefore, we have

ϕ1(α) =
α

Γ(2− 1/α)
· U∗(α)

U∗(α)α + α
.

The minimum value is at least 0.712 and it is attained at α∗ ≈ 1.656. Note that when α approaches
to zero or∞, the function ϕ1 goes to one and thus the unique minimizer is given by α∗ ≈ 1.656.

We highlight here that, even though Theorem 3 implies that apx1(F ) is at least ϕ1(α∗) ≈ 0.712
when F has extreme type Fréchet, this bound is in fact reached by the Pareto distribution with
parameter α∗ and therefore this bound is tight.

Given our closed expression for the function ϕ1, we can compare it with the closed expression
obtained Kennedy and Kertz for the revenue guarantees of the optimal dynamic policy [19]. Given
a distribution F , for every positive integer n let vn = sup{E(Xτ ) : τ ∈ Tn} and consider the
stopping time given by τn = min{k ∈ {1, . . . , n} : Xk > vn−k}. In particular, vn = E(Xτn) for every
positive integer n. The following summarizes the result of Kennedy and Kertz [19] for the optimal
dynamic policy: When F is a distribution in the Fréchet family, there exists ν : (1,∞)→ (0, 1) such
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that limn→∞ vn/E(Mn) = ν(α) when F has an extreme type Fréchet of parameter α. Furthermore,
limα→∞ ν(α) = limα→1 ν(α) = 1 and ν(α) ≥ 0.776 for every α ∈ (1,∞). The function ν is given by

ν(α) =
1

Γ(2− 1/α)

(
1− 1

α

)1− 1
α

,

and we have ϕ1(α) ≤ ν(α) for every α ∈ (1,∞). Kennedy and Kertz show that the asymptotic
approximation obtained by their multi-threshold policy when the distribution has an extreme type
in the Gumbel and reversed Weibull family is equal to one. Our Theorem 3 (b) shows that for both
such families we can attain this value by using just single threshold policies. The adaptivity gap is
equal to the ratio between the optimal prophet inequality obtained by a single threshold policy
and the value obtained by the multi-threshold policy of Kennedy and Kertz. As a corollary of our
result for k = 1, we obtain an upper bound on the adaptivity gap for the case of distributions
with extreme value. For the family of distributions over the non-negative reals and satisfying the
extreme value condition we have that the adaptivity gap is at most maxα∈(1,∞) ν(α)/ϕ1(α) ≈ 1.105
and is attained at α ≈ 1.493.

4 Analysis of the k-Selection Prophet Inequalities

In this section we prove Theorem 3. Throughout the section we introduce some necessary technical
results, whose proof can be found in the full version paper. The following proposition gives an
equivalent expression for the value apxk(F ), which is useful in our analysis.
Proposition 1. LetF be a distribution, let T be a real value and letX1, . . . , Xn be an i.i.d. sample according
to F . Then, for every positive integer k we have E(Rnk,T ) = E (X1|X1 > T )

∑k
j=1 P(M j

n > T ).

Using Proposition 1 we have that apxk(F ) is therefore given by

apxk(F ) = lim inf
n→∞

sup
T∈R+

E (X|X > T )

∑k
j=1 P(M j

n > T )∑k
j=1 E(M j

n)
, (4)

where X is a random variable distributed according to F .

4.1 Proof of Theorem 3 (a): The Fréchet Family

In what follows we restrict to the case in which the distribution F has extreme type in the Fréchet
family. We remark that if α ∈ (0, 1] the expected value of a random variable with distribution
Fréchet Φα is not finite. Therefore, we further restrict to the Fréchet family where α ∈ (1,∞).
To prove Theorem 3 (a) we require a technical lemma, where we exploit the structure given by
the existence of an extreme value and we show how to characterize the approximation factor of a
distribution in the Fréchet family for large values of n. Before stating this lemma, let us introduce
a few results about the Fréchet family that will be required.

We say that a positive measurable function ` : (0,∞) → R is slowly varying if for every u > 0
we have limt→∞ `(ut)/`(t) = 1. For example, the function `(t) = log(t) is slowly varying, since
`(ut)/`(t) = log(u)/ log(t) + 1 → 1 when t → ∞. On the other hand, the function `(t) = tγ is not
slowly varying, since for every u > 0 we have `(ut)/`(t) = uγ . The following lemma shows the
existence of a strong connection between the distributions with extreme type in Fréchet family and
slowly varying functions. Recall that for α > 0, the Pareto distribution of parameter α is given by
Pα(t) = 1− t−α for t ≥ 1 and zero otherwise.
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Lemma 3 ([26]). Let F be a distribution with extreme type in the Fréchet family. Then, for every positive
integer n, we have an = F−1(1− 1/n) and bn = 0 are scaling and shifting sequences for F . Furthermore,
there exists a slowly varying function `F such that 1 − F (t) = t−α`F (t), for every t ∈ R+. In particular,
we have 1− F (t) = (1− Pα(t)) · `F (t) for every t ∈ R+.

Observe that this lemma says that if F has extreme type Fréchet of parameter α, then it es-
sentially corresponds to a perturbation of a Pareto distribution with parameter α by some slowly
varying function. Let {an}n∈N be a scaling sequence for the distribution F in the Fréchet family.
Thanks to Lemma 3, we have the shifting sequence in this case is zero. We are now ready to state
the main technical lemma.
Lemma 4. Let F be a distribution with extreme type Fréchet of parameter α and let {an}n∈N be an appro-
priate scaling sequence. Consider a positive sequence {Tn}n∈N with Tn → ∞ and for which there exists
U ∈ R+ such that Tn/an → U . Then, we have

lim
n→∞

E (X|X > Tn)

∑k
j=1 P(M j

n > Tn)∑k
j=1 E(M j

n)
=

Γ(k)

Γ(k + 1− 1/α)
U exp(−U−α)

k∑
j=1

∞∑
s=j

U−sα

s!
.

We use this lemma to prove Theorem 3 (a).
Proof of Theorem 3 (a). Let F be a distribution with extreme type Fréchet of parameter α. We first
prove that for each positive integer k it holds that apxk(F ) ≥ ϕk(α). To this end, for each positive
integer n and positive real number U , let Tn be the threshold given by Tn = an ·U , where {an}n∈N
is the scaling sequence for the distribution F given by Lemma 3. Then,

apxk(F ) ≥ lim inf
n→∞

E (X|X > Tn)

∑k
j=1 P(M j

n > Tn)∑k
j=1 E(M j

n)
. (5)

Note that lim infn→∞ Tn = ∞ (and thus Tn → ∞), since U ∈ R+ and an → ∞. Furthermore,
limn→∞ Tn/an = U and then applying Lemma 4 together with inequality (5) we obtain that

apxk(F ) ≥ Γ(k)

Γ(k + 1− 1/α)
U exp(−U−α)

k∑
j=1

∞∑
s=j

U−sα

s!
.

Given that the inequality above holds for every positive real number U , we have

apxk(F ) ≥ Γ(k)

Γ(k + 1− 1/α)
max
U∈R+

U exp(−U−α)
k∑
j=1

∞∑
s=j

U−sα

s!
= ϕk(α).

In the rest of the proof we show that, for each positive real number k and each α ∈ (1,∞), ϕk(α)
is lower bounded by 1 − 1/

√
2kπ. To this end, we just need to evaluate the objective function of

our optimization problem in a well chosen value. One of the Gautschi inequalities for the Gamma
function states that for every s ∈ (0, 1) and every x ≥ 1 we have Γ(x + 1) > x1−s · Γ(x + s) [12].
Then, setting x = k and s = 1− 1/α yields Γ(k+ 1) > k1/αΓ(k+ 1− 1/α). Since Γ(k) = Γ(k+ 1)/k,
we therefore obtain k1−1/α > Γ(k+1−1/α)/Γ(k).On the other hand, note that for each U ∈ (0,∞)
we have

U exp(−U−α)
k∑
j=1

∞∑
s=j

U−sα

s!
= U exp(−U−α)

(
k∑
s=1

s · U−sα

s!
+ k

∞∑
s=k+1

U−sα

s!

)

= U exp(−U−α)

(
U−α

k−1∑
s=0

U−sα

s!
+ k

∞∑
s=k+1

U−sα

s!

)
.
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In particular, by taking Uk,α = k−1/α we get that

ϕk(α) · Γ(k + 1− 1/α)

Γ(k)
≥ Uk,α · k exp(−U−αk,α)

(
k−1∑
s=0

U−sαk,α

s!
+

∞∑
s=k+1

U−sαk,α

s!

)

= Uk,α · k exp(−U−αk,α)

(
exp(U−αk,α)−

U−αkk,α

k!

)

= k1−1/α
(

1− e−kkk

k!

)
≥ Γ(k + 1− 1/α)

Γ(k)

(
1− 1√

2πk

)
,

where the first inequality follows since the value of ϕk(α) involves the maximum over (0,∞), the
first equality from the Taylor series for the exponential function and the last inequality is obtained
by applying Stirling’s approximation inequality. This concludes the proof of the theorem.

4.2 Proof of Theorem 3 (b): Gumbel and Reversed Weibull Family

In what follows we consider a distribution F with extreme type Gumbel or in the reversed Weibull
family. We consider both cases separately. Recall that if F has extreme type in the reversed Weibull
family then it holds that ω1(F ) <∞, that is, F has bounded support.

We start by showing that when ω1(F ) < ∞ we have apxk(F ) = 1 for every positive integer
k. In particular, the approximation result follows directly from this in the case of a distribution
F with extreme type in the reversed Weibull family. When the support of F is upper bounded
by ω1(F ) < ∞, we have E(M j

n) ≤ ω1(F ) for every j ∈ {1, . . . , k}. For every ε > 0 consider
Tε = (1 − ε) · ω1(F ). Then, by the expression in (4) we have that apxk(F ) can be lower bounded
as apxk(F ) ≥ (1− ε) · ω1(F ) · lim infn→∞

∑k
j=1 P(M j

n > Tε)/(k · ω1(F )) = 1− ε, and we conclude
that apxk(F ) = 1.

In what follows we restrict attention to the distributions F with extreme type Gumbel where
ω1(F ) = ∞. Key to our analysis are the result presented in the Preliminaries Section 2 about Von
Mises representations for distributions in the Gumbel family. We need some lemmas about the
structure of a distribution in the Gumbel family before proving the theorem.
Lemma 5. Let F be a distribution with extreme type in the Gumbel family such that ω1(F ) = ∞ and let
(V, η) be a Von Mises representation of F such that limt→∞ η(t) = η?. Let {an}n∈N and {bn}n∈N be scaling
and shifting sequences, respectively, for V . For every positive integer n consider bηn = bn + an log η?. Then,
the following holds:

(a) {an}n∈N and {bηn}n∈N are scaling and shifting sequences, respectively, for F .

(b) For every U ∈ R we have limn→∞(anU + bηn) =∞.

(c) For everyU ∈ R and every positive integer k we have that limn→∞(anU+bηn)/
∑k

j=1 E(M j
n) = 1/k,

where M1
n, . . . ,M

n
n are the order statistics for F .

Lemma 6. Let F be a distribution with extreme type in the Gumbel family and let {Θn}n∈N be a sequence
of real values such that Θn → ∞. Then, we have limn→∞

1
Θn

E(X|X > Θn) = 1, where X is distributed
according to F .

We are now ready to prove Theorem 3 (b) for the Gumbel family.

Proof of Theorem 3 (b) for the Gumbel family. Let F be a distribution with extreme type in the Gum-
bel family and such that ω1(F ) =∞. Consider a Von Mises pair (V, η) that represents F and such

9



that limt→∞ η(t) = η? > 0, guaranteed to exist by Lemma 2. Let {an}n∈N and {bn}n∈N be scaling
and shifting sequences, respectively, for V . For every positive integer n consider bηn = bn+an log η?.
We can lower bound the value of apxk(F ) by

sup
U∈R

lim inf
n→∞

E (X|X > anU + bηn)

anU + bηn
· anU + bηn∑k

j=1 E(M j
n)
·
k∑
j=1

P(M j
n > anU + bηn).

By Lemma 5 (b), we have anU + bηn →∞ for every U when n→∞, and therefore from Lemma 6
we obtain

lim
n→∞

E (X|X > anU + bηn)

anU + bηn
= 1,

for every U . Furthermore, Lemma 5 (c) implies that for every U and every positive integer k it
holds (anU + bηn)/

∑k
j=1 E(M j

n)→ 1/k. We conclude that for every U

lim
n→∞

E (X|X > anU + bηn)

anU + bηn
· anU + bηn∑k

j=1 E(M j
n)

=
1

k
.

By Lemma 5 (a), {an}n∈N and {bηn}n∈N are scaling and shifting sequences, respectively, for F .
Therefore, by Theorem 2 we have

lim
n→∞

k∑
j=1

P(M j
n > anU + bηn) = lim

n→∞

k∑
j=1

P

(
M j
n − bηn
an

> U

)

=

k∑
j=1

(
1− exp

(
− e−U

) j−1∑
s=0

e−sU

s!

)

= k − exp
(
− e−U

) k∑
j=1

j−1∑
s=0

e−sU

s!
.

Note that the last term is non-negative for every U . Furthermore, we get that

lim
U→∞

exp
(
− e−U

) k∑
j=1

j−1∑
s=0

e−sU

s!
= inf

U∈R
exp

(
− e−U

) k∑
j=1

j−1∑
s=0

e−sU

s!
= 0

since∑∞s=0 e
−sU/s! = exp(−e−U ). We conclude that

sup
U∈R

lim
n→∞

E (X|X > anU + bηn)

anU + bηn
· anU + bηn∑k

j=1 E(M j
n)
·
k∑
j=1

P(M j
n > anU + bηn) =

1

k
· k = 1,

and therefore apxk(F ) = 1. That concludes the proof for the Gumbel family.

5 Extreme Types and Virtual Valuations

The virtual valuation associated to a distribution G is given by φG(t) = t − (1 − G(t))/g(t), where
g is the density function of G. When v is distributed according to G, we denote by Gφ the distri-
bution of φG(v) and by G+

φ the distribution of φ+
G(v) = max{0, φG(v)}. Using Theorem 3 we can

10



apply the existing reductions in the literature [5, 7, 15] to translate our optimal guarantees for sin-
gle threshold prophet inequalities to optimal fixed price mechanisms as long as G+

φ satisfies the
extreme value condition. If G+

φ has extreme value Fréchet, the revenue gap of the fixed price PPM
for the k-selection problem is bounded by a limit of the maximization problem (3) and, for every
k, this revenue gap is more than 1− 1/

√
2kπ and asymptotically tight in k. When k = 1 we further

have that the revenue gap is roughly 0.712. When G+
φ is in the Gumbel or reversed Weibull fami-

lies, we have that with fixed prices a PPM is able to recover the same revenue of that of the optimal
mechanism for the k-selection problem, for every positive integer k.

In what follows, we say that a pair (V, η) smoothly represents a distribution G if it satisfies the
conditions in (2) where V is in the Von Mises family and limt→ω1(F ) η

′(t) = 0. We say that a
distributionGwith extreme type Fréchet of parameter α satisfies the asymptotic regularity condition
if limt→∞(1 − G(t))/(tg(t)) = 1/α, where g is the density of the distribution G. This holds, for
example, every time that g is non-decreasing [26, Proposition 1.15]. In our next result we show
that if a distributionGwith extreme type satisfies any of these two conditions, the distributionG+

φ

has an extreme type as well, and furthermore, it belongs to the same family.

Theorem 5. Let G be a distribution satisfying the extreme value condition. Then, the following holds:

(a) When G has extreme type in the Fréchet family and if it satisfies the asymptotic regularity condition,
then G+

φ has extreme type in the Fréchet family as well.

(b) When G has extreme type Gumbel and if it can be smoothly represented, then G+
φ has extreme type

Gumbel as well.
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