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The Integrated Side Lobe Ratio (ISLR) problem we consider here consists in finding optimal sequences of phase shifts in order to minimize the mean squared cross-correlation sidelobes of a transmitted radar signal and a mismatched replica. Given a finite set of quantized phase shifts, the exponentially increasing number of possible sequences leads to long-time processing and approximated results. Currently, ISLR does not seem to be easier than the general polynomial unconstrained binary problem, which is NP-hard. Our contribution is to implement this problem on a Quantum Annealer, a kind of Quantum Computer designed to solve quadratic optimization problems with binary variables. We cast the problem in a suitable formulation to be run on the available DWave quantum device and discuss the performances. Our work shows two limiting factors for scalability: A hardware related one and constraint implementation in the QUBO formulation. More broadly, this study enlightens the limits and the potential of Adiabatic Quantum Computation in terms of speedup and high-scaled resolution of a class of combinatory optimization problems.

Introduction

Among the various applications of quantum processing units, solving problems of NP-Hard complexity fits well with the exponential scalability of quantum devices [START_REF] Lucas | Ising Formulation of many NP problems[END_REF]. In this paper we will more specifically discuss the performances of a particular kind of Quantum Device: The Adiabatic Quantum Computer (AQC), which is designed to solve optimization problems in the form of QUBO [START_REF] Foster | Applications of Quantum Annealing in Statistics[END_REF] (Quadratic Unconstrained Binary Optimization).

Although this paper focuses on Adiabatic Quantum Computing, it is worth noting that other technics exist. Another promising yet entirely different approach is the Quantum Alternating Operators Ansatz (QAOA) [START_REF] Farhi | A Quantum Approximate Optimization Algorithm[END_REF][START_REF] Hadfield | From the quantum approximate optimization algorithm to a quantum alternating operator ansatz[END_REF]. QAOA algorithms are designed to find good solutions (optimal or nearly-optimal solutions) for optimization problems, which matches exactly our goal for the ISLR problem. QAOA and AQC are two opposite approaches, and they require completely different kind of processors. Each one comes with its own set of advantages and drawbacks. The major advantage of using a QAOA algorithm instead of an annealing approach is that it does not require recasting the problem as a QUBO, and therefore spare a huge cost factor. In the other hand, it requires much more flexibility on the qubits: while AQC only uses coupling interactions, QAOA algorithms need a universal set of 1-qubit and 2-qubits gates. Because of this constraint, we could not run a QAOA algorithm on a real quantum processor, and we had to use a simulator instead. By simulating the behavior of a QAOA algorithm, we checked that it finds the optimal sequences for signal length up to 15. Unfortunately, simulating a quantum processor is extremely heavy, and we could not go much further yet. For now on, we will only focus on the AQC approach, for which we preformed experimentations on a quantum processor, instead of a simulator.

We show the range of possibilities provided by quantum computation applied to the well-known ISLR (Integrated Side-Lobe Ratio) minimization problem encountered in the design of phase-coded radar waveforms [START_REF] Davis | Phase-Coded Waveforms for Radar[END_REF][START_REF] Chatzitheodoridi | A Mismatched Filter for Integrated Sidelobe Level Minimization over a Continuous Doppler Shift Interval[END_REF]. In this problem, one is given a set of feasible phase shifts , … , . The transmitted radar pulses are sub-divided into chips of equal durations, where the signal is phase-shifted by one of the possible values. The radar pulse can then be represented by the sequence = , … , where = and ∈ 1, … , is such that the mean squared value of the autocorrelation side lobes of is minimum. This problem is of particular interest in air-toground radar applications, and notably in the waveform design for high resolution radar imagery [START_REF] Garren | Use of P3-Coded Transmission Waveforms to Generate Synthetic Aperture Radar Images[END_REF] where chip sequences can be very long ( ranging from say some 10s to some 1000s). Often, is limited to = 2 with , = 0, , resulting in binary phase code design ( = ±1 ∀ ). Application to AQC is however not straightforward as the ISLR criterion is a polynomial of degree 4. Searching for phase-codes with > 2 raises the additional issue of treating variables taking on more than two values with AQC.

In the sequel we first present how to cast the problem into an Ising model, then we report simulations and real quantum computing results, and finally we analyze them and discuss the limits of the model.

Quantum Annealing

Theorized for the first time at the beginning of the 1980's [START_REF] Benioff | The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[END_REF], quantum computing aims at taking advantage of quantum physics properties in order to perform calculations. Instead of "bits" for classical computing, quantum computers operate on "qubits" which have the particularity of states superposition until a measure is performed on them. Thus, quantum calculations are made in "black boxes", as a single measure during the process would make all the system collapse. In other words, the challenge behind quantum programming is to make the system only return viable solutions among the "two power number of qubits" possible states once measures are performed. First proposed in 1988, Quantum Annealing is a more specific computing approach. It is based on the principle of Adiabatic Quantum Computation. It consists in defining a Hamiltonian in a way that its ground states (i.e. its minimum energy configurations) correspond to the solutions of the problem of interest [START_REF] Kadowaki | Quantum annealing in the transverse Ising model[END_REF]. A uniform and equiprobable field of qubits is first initialized, corresponding to some initial Hamiltonian $ % . In order to obtain the solution states, energy is induced into the system in order to make it adiabatically converges from the "initial" Hamiltonian ground state to the "solution" Hamiltonian $ * ground state according to the adiabatic evolution with time:

$ ' = a ' × $ % + + ' × $ * , ' ∈ ,0, -. , (1) 
with $ ' the Hamiltonian at time t, / . and + . some increasing and decreasing function resp. such that / 0 ≫ + 0 , / -≪ + -, and T the annealing time large enough to ensure that $ is maintained at a ground state during all the process [START_REF] Kadowaki | Quantum annealing in the transverse Ising model[END_REF]. In the available DWave Advantage system [START_REF]DWave System Documentation[END_REF], this duration is fixed at 2034 by default and limited to 200 34. The reason is that if the anneal time is too large, interferences may occur during the process, leading to non-optimal solutions.

ISLR problem and Ising Model

Ising Model

In §1, we mentioned that Quantum Annealers were designed for optimization problems, more precisely posed as an energy function to be minimized. This function is called a Hamiltonian that can be defined with the Ising Model [START_REF] Lucas | Ising Formulation of many NP problems[END_REF] as follows:

$ 5 = ∑ ℎ 4 + ∑ 8 , 9 4 ,9 4 9 (2) 
where ℎ stands for the linear parameter and 8 ,9 for the quadratic parameter, 4 ∈ -1,1 and ;, < = 1 … . Many NP-Hard problems can be formulated with the Ising Model (graph coloring, satisfaction, scheduling…) [START_REF] Lucas | Ising Formulation of many NP problems[END_REF] provided they are quadratic, which is not the case of the ISLR. We will later on discuss a way to reformulate this problem as in [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-Completeness[END_REF]. It is also important to mention that (2) is unconstrained. However, constraint Hamiltonians can be enforced to favor some solutions via a sufficiently large factor. In this way, the solutions that do not respect the constraints cannot be optimal in term of energy [START_REF] Hen | Quantum Annealing for Constrained Optimization[END_REF].

3.2

The ISLR as a QUBO in the mismatched binary case

In the binary case we are looking for a combination of vectors ∈ -1,1 and = ∈ -1,1 > , respectively the transmitted sequence and the mismatched filter on receive.

The vector = can be subdivided as ,? @ , A @ , B @ . @ where the prefix p has length C D , the code c has length and suffix s length C E . The ISLR to minimize is:

ISLR = ∑ J K L = LMN O , (3) 
with K P the delay matrix for a delay k, such that L ,;, <. = 1 if < = ; + Q and 0 else,

; = 1 … , < = 1 … R, Q = -+ 1, … , R -1 and Q ≠ C D .
In order to make it fit the Ising Model, a way to transform (3) into a QUBO is to define:

T = = J U and X = ∑ K L U LMN O K L U @ . (4) 
Here, the Y notation represents the reshaping of a × R matrix into an R × 1 vector, such that L U , < -1 + ;. = L ,;, <.. Straightforward calculations show that ISLR = T @ XT , which is a quadratic form on variables in -1,1 in compliance with [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-Completeness[END_REF]. Unfortunately, this transformation enlarges the number of qubits from + R to R , resulting in T solutions that may not correspond to actual , = solutions. A solution vector T of length R minimizing (4) can be reshaped back in a , R matrix Z such that Z,;, <. = T, < -1 + ;., ; = 1 … and < = 1 … R. If and only if this matrix has rank one, we can write it as Z = = @ and then get and = resp. from the first column and first line of Z. In the next section, we introduce penalty Hamiltonians to reduce the number of irrelevant solutions, since a significant number of solution matrices Z do not have rank one which dramatically increases the computation time to get actual solutions.

3.3

Constraints to reduce the number of solutions in the matched binary case.

From now on we consider the matched case (i.e. = =, C D = 0 in ( 4)) for the sake of simplicity. A first constraint Hamiltonian addresses the symmetry of the solution matrices:

$ = -[ ∑ T, ; -1 + <. T, < -1 + ;. \ ,9] , (5) 
with [ a positive constant to be set sufficiently high to enforce the constraint. The product inside the sum equals 1 if and only if the matrix Z corresponding to vector T satisfies ,;, <. = ^,<, ;. , ;, < ∈ 1, … , . This Hamiltonian is a quadratic form -[ T @ _ T with _ = ∑ ` 9a b , a b9

\ ,9]
, where `c,d is the , matrix having components e c,d ,;, <. = 1 if ; = f and < = g, else 0.

The second constraint Hamiltonian concerns the diagonal of the solution matrices whose elements must be 1:

$ = -[ ∑ T, ; -1 + ;. \ ] , (6) 
with [ another large positive factor. $ is minimized if and only if every value (spins) in the sum equals 1. This Hamiltonian is a linear form

-[ A @ T with A = ∑ h a b \ ]
,

where h c is the length vector having components h c ,;. = 1 if ; = f, else 0. Finally, the constrained Ising model is as a linear-quadratic form compliant with (2):

ISLR = T @ X -[ _ i T -[ A @ T , (7) 
to be minimized w.r.t. the vector T ∈ -1,1 j . Note that there is another constraint that should be imposed to ensure rank 1 solutions, stating ∀;, <, Q ∈ 1, … , k , ; < < < Q, Z,;, <.Z,<, Q. = Z,;, Q.. This latter constraint is not quadratic, and we have not found any way in the literature to enforce it. Nevertheless, the first two constraints ( 6) and ( 7) allow to greatly reduce the computing time.

3.4

The matched case with Q>2 phase states

In this section we show how the Ising model ( 2) can be extended to the case of phase codes with Q>2 values, still in the matched case ( = =) (4). Since we can no longer encode the variables on a single spin, we make use of the one-hot encoding method [START_REF] Okada | Efficient partition of integer optimization problems with one-hot encoding[END_REF]. Its principle is to associate to each variable , . a binary vector m ∈ 0,1 having one nonzero component. For example, consider the common case where , . takes on values in the set of the no roots of unity p q = rjs t , = 0 … -1. Then the vector m is such that + , . = 1 if , . = p q and 0 else. The quantities , m , … , m are related via the following blockdiagonal matrix u of size , :

u = v wp % … p a x ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ wp % … p a x | , (8) 
which satisfies } = u~, with m @ = ,m @ , … , m @ . . Following a similar development as in §3.2 one obtains a QUBO model for non-binary phase codes:

ISLR • = T • @ X • T • , (9) 
where

T • = mm @ U , X • = ∑ € L U € L U @

LM%

, € L = u * K L u , the star . * standing for transposition and complex conjugation. To ensure that one and only one qubit is in state 1 for each vector m , the following constraint is necessary:

•' ⊗ i j @ "T • = i , ( 10 
)
A i being the length vector of ones and ⊗ the Kronecker product. This constraint is derived by noticing successively that ∑ + , . q] = 1 for any = 1 … , which in turn implies that •' ⊗ i @ "m = i , then •' ⊗ i @ "T′ = m, and finally •' ⊗ i @ "•' ⊗ i @ "T′ = i , that simplifies into [START_REF] Benioff | The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[END_REF]. The corresponding Hamiltonian $ k has a linear-quadratic form that writes after simplification:

$ k = [ k •T • @ •' ⊗ † j "T • -2 i j j @ T • " , (11) 
with [ k a large factor and † j the ( , ) matrix full of ones. Taking also into account the symmetry constraint as in [START_REF] Hadfield | From the quantum approximate optimization algorithm to a quantum alternating operator ansatz[END_REF], one finally has a linear-quadratic form to minimize w.r.t. T • ∈ 0,1 j j as required. Note that unlike the Q=2 case ( §3.3) where T ∈ -1,1 j (so that ‡,f. = 1 , f = 1 … ), the diagonal of solution matrices is not constrained to 1 since ‡ • ,f. = ‡ • ,f. ∈ 0,1 , f = 1 … .

Results

Computation setup

In this section, we present and discuss the performances of our model. We ran all our test on the DWave Advantage quantum machine through the DWave Leap Service [START_REF]DWave System Documentation[END_REF]. Designed to solve QUBO, Leap enables problem submission in the form of an Ising model and embeds the problem on the quantum hardware. It also offers the possibility to run an annealing simulator. As stated in §2, a solution is obtained from an initial field of qubits that must be re-initialized several times, because many solutions have the same minimal energy. Leap limits the number of such trials at 10.000 and one minute per month of access which are our hard limitations. After computation, the service returns a number of spins values. We then verify that the corresponding solution matrix has rank 1 with a simple check on its columns. We ran the model defined in §3.3 both on the annealing simulator and the quantum hardware. Concerning the §3.4 model, we did not obtain any actual solution, due to the consequent size of the search space (e.g. for = 4 and = 3, ² ² = 144 variables are needed), which requires too much time to process -see Fig. 1.

Performances and analysis

Due to limitation in hardware and search space sizes, we can only report results for small sequence lengths. Still, DWave Leap service allows to get the calculation time for larger sequences. Computation is repeated multiple times and returned sequences are indexed by their order of obtaining. Hence, we estimated the required time to obtain a solution on a quantum annealer by multiplying the first actual solution index with the time required to obtain one sequence. Respectively, for = 4,5,6,7 and 8, the required time to get a first solution is 303s, 0.01s, 0.24s, 6.16s and 154s for the 2-constraints model [START_REF] Davis | Phase-Coded Waveforms for Radar[END_REF]. The required time to obtain a solution is composed of anneal time, readout time and delay time for a single sequence. Among these three durations, only the reading time scales with the length of the sequence. The anneal time is fixed by DWave at 2034 as the delay time at 2134 [START_REF]DWave System Documentation[END_REF], while the reading time was always under 15034. Fig. 1 represents an estimation of the computing time required to obtain an actual solution on a logarithmic scale. For the 3-constraints model, we consider the implementation of the 3 •• constraint presented in §3.3, ensuring that p/ Q Z = 1 for all sequences obtained. Hence, only a single computation would be required to obtain a solution, and the required time would match the sampling time. For = 4,5,7, the actual solutions are the Barker Codes [START_REF] Barker | [END_REF], known as the best possible sequences with maximum sidelobe size of 1.

4.3

Comparison with non-quantum approach and limits of the model After estimating computation duration for larger sequences, we compared them with ISLR results obtained with unconstrained binary polynomial programs in [START_REF] Elloumi | Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation[END_REF]. For N = 20, partial and suboptimal solutions have been found for a duration limited to 3 hours. Results obtained with approximation algorithm require additional computation time to ensure their quality, instead of ones obtained with annealers. Moreover, DWave Advantage hardware currently presents a limit in the number of connections (couplings) between qubits. Previously capped to 6 (DWave 2000Q Chimera topology [START_REF]DWave System Documentation[END_REF]), Advantage can couple up to 15 qubits (Pegasus topology). In order to push over this limitation, the sampler can use multiple physical qubits to encode one single logical qubit. Nevertheless, in our case, the embedding limit above which it is necessary to use the simulator is N = 41. However, one can be optimistic about future quantum computer exceeding this limit in a close future.

Conclusion and outlook

In conclusion, we have introduced a new method to find phase coded sequences with virtually any set of phase states, and mismatched filtering capability. In some cases, it might be also interesting to minimize over only a subset of the correlation lobes, which is possible with a straightforward modification of the criterion (3). In the particular case of matched filtering, exhaustive search has been made for N > 100 [START_REF] Nunn | Best Known Autocorrelation Peak Sidelobe Levels for Binary Codes of Length 71 to 105[END_REF], but far less results are available in the mismatched case. The same applies for sequences with more than 2 possible phase shifts, even more increasing the size of the search space. More generally, an increased number of qubits or a higher connectivity between them are key points in order to make them competitive against classical computers in a large and diverse number of problems. As DWave regularly improves the performances of its quantum computers, other firms like Pasqal are building alternative quantum processing units with already promising results. For Pasqal, the human-built supraconducting qubits are replaced by atoms trapped with lasers, which allows to build highly flexible circuit architectures while avoiding defective machining [START_REF] Silvério | Pulser: An open-source package for the design of pulse sequences in programmable neutral-atom arrays[END_REF].

Future work will consist in improving the reformulation in order to fully enforce the rank 1 constraint, which is one limiting factor for scalability, along with the available
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 1 Fig. 1. Graphical representation of computing time to obtain a solution.

number of qubits. Also, other problems related to radar can be addressed by quantum computing like SAR image segmentation with Markov random fields, or association issues for tracking and sensor management, among others.