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Abstract—The need of predictive maintenance comes with an
increasing number of incidents reported by monitoring systems
and equipment/software users. In the front line, on-call engineers
(OCEs) have to quickly assess the degree of severity of an
incident and decide which service to contact for corrective
actions. To automate these decisions, several predictive models
have been proposed, but the most efficient models are opaque
(say, black box), strongly limiting their adoption. In this paper,
we propose an efficient black box model based on 170K incidents
reported to our company over the last 7 years and emphasize
on the need of automating triage when incidents are massively
reported on thousands of servers running our product, an
ERP. Recent developments in eXplainable Artificial Intelligence
(XAI) help in providing global explanations to the model, but
also, and most importantly, with local explanations for each
model prediction/outcome. Sadly, providing a human with an
explanation for each outcome is not conceivable when dealing
with an important number of daily predictions. To address this
problem, we propose an original data-mining method rooted in
Subgroup Discovery, a pattern mining technique with the natural
ability to group objects that share similar explanations of their
black box predictions and provide a description for each group.
We evaluate this approach and present our preliminary results
which give us good hope towards an effective OCE’s adoption.
We believe that this approach provides a new way to address the
problem of model agnostic outcome explanation.

Index Terms—Maintenance, Incident Triage, Software Engi-
neering, Explainable AI, Subgroup Discovery, Data Mining

I. INTRODUCTION

Many industries are still moving towards digitization: soft-
ware such as Enterprise Resource Planning (ERP) are at
the center of this revolution. ERPs are directly connected
to (distant) factories and their equipments. Software layers
allow the user to interact with equipments and data for
achieving their daily tasks in the most efficient way, where AI
increasingly comes at play. It follows that the maintenance of
an ERP becomes more and more complex as involving always
more interrelated physical, software and business components.
Collecting (big) data with supervision systems, integrated
in the ERP for contextualizing them as much as possible
(sometimes reflected as observability), is key for the early
detection of incidents. Incidents are actually of various natures:
(i) a predicted incident based on models built upon historical
data with a certain probability, (ii) an actual incident not yet

reported by the end-user but by the supervision system with
a certain degree of severity and impact on the production and
end-user, and (iii) of course, an incident directly reported by
the end-user, but generally poorly described and contextual-
ized. Some incidents are insignificant per se but severe when
co-occurring with others.

It follows an increasing number of incidents reported by
monitoring systems and equipment/software users (tickets,
phone calls, etc). In the front line, on-call engineers (OCEs)
have to quickly assess the degree of severity of an incident
and decide which service to contact for a palliative and/or
curative actions. To speed up and improve these decisions,
several predictive models have been proposed for incident
triage in the last few years, aiming at predicting the service to
target. [1] have addressed this problem with a Deep Learning
approach and demonstrated its superiority over existing meth-
ods proposed for the similar problem of bug triage [2]. Few
other techniques have been also designed to automate incident
triage [3]–[5] and are mainly based on DNN and ensemble
models. Unfortunately, such methods build opaque models,
qualified as black box, as they do not convey any explanation
of their output (outcome or prediction) to the end user. An
important challenge to successfully automate incident triage is
to gain practitioners trust, providing them with an explanation
on each model outcome, which can be also part of the incident
resolution, as it helps with root cause analysis.

The popularity of black box prediction models combined
with the crucial need of transparency in many decision
processes has conducted to an unprecedented interest for
eXplainable Artificial Intelligence (XAI). Some methods aim
at globally explaining the internal logic of the black box,
while others provide local explanations for specific outcomes.
Global explanations are generally provided by learning a po-
tentially interpretable model (e.g., decision tree, classification
rules) that mimics the predictions of the original black box
model [6]–[9]. However, it is often not feasible to explain all
the logic as the model can be extremely complex, and global
explanations may easily miss some predictions given to the
end user. Thus, most of recent work focus on local methods
that explain each outcome of a black box model independently.
These methods provide a local explanation for the prediction



Figure 1: Overview of our explainable incident triage framework: (1) Input data are processed to extract relevant features,
(2) a black box model uses these features to provide an accurate incident triage, (3) contextualized groups of black box

predictions are explained using a Subgroup Discovery approach.

of a specific object that can only be interpreted locally. Some
of these approaches are designed for a specific model such
as DNN [10]–[13] and GNN [14]. On the other hand, many
other methods [15]–[17] are able to explain the outcome of
any model (agnostic). They are often based on the generation
of a local neighborhood around the object to explain, and on
the training of an interpretable model that mimic well the
black box on this neighborhood. The drawback of outcome
explanation methods is the large number of provided expla-
nations if applied to a large number of outcomes. Analyzing
individual explanations becomes very time consuming for the
end-user. Few methods have been proposed to address this
issue, by grouping similar explanations into clusters [18] or by
selecting a subset of representative explanations [15]. These
two methods can thus give a picture of the different possible
explanations of a model, but they do not provide to the user
the contexts in which each explanation holds.

In this article, we first present the maintenance platform of
our ERP allowing us to motivate the need of automatically
triaging incidents of different natures. Then, we propose an
efficient black box model based on 170K user reported inci-
dents that we dealt with over the last 7 years. This motivates
our third contribution which consists in an original approach
that summarizes local explanations of black box predictions.
This method is rooted in Subgroup Discovery [19], [20] to
group predicted objects into subgroups that support the same
explanation. Instead of providing a specific explanation for
the prediction of each object, (i) we group objects into a
controlled number of subgroups, and for each subgroup (ii)
we provide an explanation that holds for all of its objects.
Each of these subgroups is also associated with a description
(a restriction on attribute values) that separates it exactly from

the rest of the dataset. This can be very useful, because it
allows the user to not only interpret the black box outcome
for each subgroup, but also to understand the nature of the
objects that a subgroup contains. We believe that this approach
provides a new way to address the problem of model agnostic
outcome explanation, especially when the number of outcomes
to explain is large. It should be noted that although the method
addresses the specific task of Incident Triage, it can be applied
to any case study in the context of XAI. The whole process
of the proposed approach is depicted in Figure 1.
Roadmap. In the next section, we present our supervision
and maintenance system, from rough data to black box model
evaluations. Then, we introduce and formalize the novel prob-
lem of summarizing black box outcome explanations using
Subgroup Discovery (Section III). We define the algorithm
dubbed SplitSD4X to identify subgroups along with their
outcome explanations (Section IV). We report an extensive
empirical study (Section V) that witnesses the effectiveness of
SplitSD4X to identify interpretable subgroups with mean-
ingful explanations in the application of incident triage. Even-
tually, we discuss future avenues and conclude in Section VI.

II. METHODOLOGY

We conduct our analysis on a set R of 170k incident
reports that concern more than 1k servers over the last 7
years. Each server contains at least an instance of the mon-
itored ERP software, but contains other components that are
also supervised, including databases, hardware, network. We
efficiently preprocess incident texts to extract discriminant
features, then we can augment them with various attributes that
allow to contextualize incidents, such as environment features,
performance metrics, standard events, and alerts.



O
rtitle rsummary rtime ENV features Alerts Metrics Service

a1
disk

a2
swap

a3
full

a4
java

a5
http

a6
weekend

a7
Soft. version

a8
Soft. type

a9
Memory usage

a10
% used heap

y
class

o1 0.7 0 0.4 0 0 True 1 Sales - 60 TEC
o2 0 0.8 0.3 0 0 True 3 Sales Blocker 50 TEC
o3 0.5 0 0 0 0.6 True 2 Factory - 60 TEC
o4 0 0.5 0.9 0.6 0 True 3 Factory Critical 97 OT
o5 0 0.7 0.6 0 0 False 1 Sales Critical 96 OT
o6 0.1 0 0 0.6 0.6 False 2 Sales Alarm 85 OT
o7 0.1 0 0 0 0.9 False 1 Sales - 60 OT

Table I: Toy Example of a dataset pO,A, Y q.

A. Raw data

Incident reports. We define the set R “ tr1, ...rnu of
incident reports described by: (1) the title rtitle, (2) the sum-
mary rsummary which contains commands, stack-traces, and
text written in human language (mainly French), (3) the
component rcomponent in which the incidents happen (e.g., the
ERP software, the virtual machine, the storage disk), (4) the
incident creation timestamp rtime, (5) a Boolean rinternal that
indicates whether the incident has been reported internally by
our company or externally by a customer. In the latter case, we
include (6) the customer rcustomer concerned by the incident.

Environment features. These features describe the environ-
ment and the component in which the incident happens. For
instance, an ERP software is characterized by its application
identifier, its version, its type among 6 main families (sales,
factory, finance, etc.). A database can be described by its
version (dbVersion), its maximum usage memory (sgaMax),
the minimum and the maximum size of pool (jdbcMin, jdbc-
Max). A virtual machine can be characterized by the number
of CPUs, the size of the RAM, the size of swap memory, etc.

Performance metrics. We continuously collect time-series
that describe the behavior of several components going from
hardware to business level. The usage of various memory parts
is traced at a high frequency. Examples of these memory types
are the heap and the non-heap for the Java Virtual Machines
that run the ERP, the RAM and the swap usage, etc. Many
other metrics of this kind are collected to have the maximum
observability, such as the storage usage, the number of run
SQL queries and their average execution time, the number
of users connected to each ERP software. These metrics are
of high benefit as they can efficiently indicate the context
in which an incident happens, which would help for a more
effective triage.

Standard events. We collect various types of timestamped
events that occur in supervised components. In the ERP
software, events can result from interactions with users, such
as an opening of a screen, a visualization or a creation of some
data, events can also be related to automatic executions of
scheduled tasks. Other components are described by different
events as well: garbage collections in the Java Virtual Machine,
network latency, etc.

Alerts. Our monitoring system triggers rule-based alerts when
anomalies are observed. They are generally related to a specific
component and they give high indication about the location
of the root cause. For example, an alert is triggered when a
database tablespace is predicted to be full in less than a month.
But also, another alert type identifies database table whose size
increases unexpectedly. In this example, these alerts not only
help to detect the problem of reaching the tablespace limit,
but also locate the possible root cause, i.e., the table whose
evolution leads to the tablespace saturation. Incident reports
are augmented with co-occurring alert. Each alert has four
levels: Info, Alarm, Critical and blocker.

B. Text transformation

Incident titles and summaries are processed using conven-
tional NLP techniques to extract relevant textual features. Most
of these steps are achieved with the spaCy* Python library.
We start by the tokenization to extract bag of words. It is
noteworthy that N-grams representation have not been used
as they did not improve prediction accuracy in our use-case.
We perform stemming and lemmatization. We remove special
characters, stop words and noisy terms, e.g., those containing
less than 3 characters, and words that occur in most of incident
reports as they are not discriminant. Numbers are kept as
they can be useful, such as error and response codes. Finally,
we compute Term Frequency / Inverse Document Frequency
tf-idf of remaining terms in each incident report, and we
keep only the top 10k terms in each of rtitle and rsummary. The
number of considered terms have been chosen empirically as
the one maximizing the prediction performance.

C. A unified data structure

We unify the different data sources into a dataset de-
fined by a tuple pO,A, Y q , where O “ toiu1ďiďn is a
set of objects that refer to the historical incident reports,
A “ pajq1ďjďm is a vector of descriptive attributes, and the
classes Y “ ty1, ..., ynu that represent the services assigned
to each incident. Each attribute a can be seen as a mapping
a : O ÝÑ Ra where Ra is called the domain of the attribute
a. More precisely, Ra is given by R if a is numerical, by a
finite set of categories Ci if a is categorical or by t0, 1u if

*https://spacy.io/

https://spacy.io/


DNN RF XGBoost Naive Bayes Logistic Regression

P R F1 P R F1 P R F1 P R F1 P R F1

TOP1 0.84 0.77 0.82 0.74 0.72 0.73 0.75 0.75 0.74 0.74 0.75 0.74 0.75 0.72 0.73
TOP2 0.92 0.91 0.91 0.89 0.88 0.88 0.89 0.89 0.89 0.89 0.90 0.89 0.89 0.88 0.89
TOP3 0.97 0.96 0.96 0.94 0.94 0.93 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94

Table II: Performance comparison of prediction models in the incident triage task.

a is Boolean. An incident is assigned to a service (a class)
y P tClass1, ..., Classpu where p is the total number of
services. These notations are illustrated in Table I with a
dataset containing 7 objects O “ to1, ..., o7u, referring to 7
incidents, each of them described by 10 attributes and a class
y. The attributes ta1, ..., a5u are numerical and they provide
the tf-idf of terms that characterize rtitle and rsummary. The
attribute “weekend” (a6) indicates whether the incident has
happened during a weekend. Other attributes correspond to
some environment features, alerts, and metrics.

D. Black box model for incident triage

The incident triage task consists in predicting the class y
(the service) of an incident report r based on its attributes
ta1, ..., amu. It is noteworthy that, since our goal is to make
the prediction at the beginning of the incident life-cycle, all
the considered attributes are available from the very first
moment when the incident report is created. We consider
training and validation subsets of objects OT , OV Ď O that
we use to train prediction models denoted by b. The output
bpoq “ tbpoq1, ..., bpoqpu P r0, 1s

p provides a probability dis-
tribution over the p predicted output classes. Inspired by recent
work [1], [3], [4] which show in most cases that best results are
achieved by DNN and ensemble models, we have evaluated the
following methods: Random Forest, XGBoost, and multiple
architectures of DNN. Additionally, we have considered the
logistic regression and multinomial Naive Bayes as white
box models to confirm that the usage of black box models
effectively improve the prediction quality. We have tested
each model in three different scenarios: (1) TOP1: predict
the true service, (2) TOP2: predict the two most probable
services, i.e., if the true service belongs to this TOP2, the
prediction is considered correct, (3) TOP3: predict the three
most probable services. Table II reports the results obtained on
the validation set OV . We use the most common performance
metrics in multi-label classification i.e., Precision, Recall and
F1 score in their weighted average formula. Interestingly, we
observe that in all considered scenarios, the DNN achieves
the best performances compared to other models and improves
the F1 score of Logistic Regression by 9%. In addition, the
DNN is very accurate when it comes to predicting the most
likely services to deal with the incident. Out of 30 different
services, the model manages to reach an F-score of 0.96
when the correct service belongs to the 3 most probable
services predicted by the black box model (the TOP3 setting).
Therefore, we adopt the DNN model as our black box for
incident triage.

E. Explaining Black box outcomes

The single outcome explanation problem. This problem
consists in giving an explanation e for the decision bpoq “
tbpoq1, ..., bpoqpu P r0, 1s

p related to a specific object o P O
where e belongs to a human-interpretable domain E [21].

White box model. In order to extract an explanation e P E
for a decision bpoq, one of the most popular methods is to
train an interpretable model that learns to imitate the decisions
of b specifically in the neighborhood of the object o. This
interpretable model is called a white box model and it is
denoted w. New objects are synthetically generated from the
neighborhood of o, and the model w is trained to mimic
decisions of b on these objects. One may use linear regression
as a white box model. However, since we deal with hundreds
of attributes which are strongly linearly correlated, linear
regression models generally tend to overfit and the model
coefficients will have large variance, thus making the model
unreliable. Therefore, we need to consider regularization tech-
niques that shrink the linear model coefficients, and take into
consideration the case where the number of objects to explain
is less than the number of attributes used in explanation. In
this paper, we use Ridge regression which penalizes the sum
of squared coefficients (L2 penalty). While Lasso regression is
more appropriate to achieve sparsity, it has been observed that
if predictors are highly correlated, the prediction performance
of the lasso is dominated by ridge regression [22]. Moreover,
Lasso solution is not uniquely determined when the number
of attributes is greater than the number of objects.

Synthetic neighborhood. For a given object o P O, we denote
by Npoq the set of syntheticaly generated instances in the
neighborhood of o, plus the object o. To explain o, we train
a model w that imitates b on the set Npoq. The quality of
w to mimic the behavior of b is assessed with some fidelity
measures. The fidelity can be assessed in terms of functions
such as MSE and F1-score, evaluated using the outcome of
the black box model considered as an oracle.

In Table III, we show bpoq1 (resp. bpoq2) the probability of
the class TEC (resp., OT) predicted by the black box model.
The majority class is TEC in to1, o2, o3u, whereas it is OT
in the remaining objects. The table gives the local model w
trained to mimic the prediction of the majority class by the
black box in the neighborhood of each object o P O. For
example, the local model that provides an explanation for the
prediction of TEC for o3 is wpoq “ disk´0.5 ¨http`0.3 ¨ full.
This means that the higher the tf-idf of the words “disk”
and “full” in the incident report, the higher the probability of



O
Pred. bpoq1

of TEC
Pred. bpoq2

of OT
Local model wpoq
of majority class Subgroup model Subgroup description

o1 0.9 0.1 disk` 0.1 ¨ swap` 0.5 ¨ full
0.8 ¨ disk` 0.7 ¨ swap

`0.4 ¨ full weekend “ True^ java “ 0o2 0.8 0.2 0.1 ¨ disk` swap` 0.4 ¨ full
o3 0.6 0.4 disk´ 0.5 ¨ http` 0.3 ¨ full
o4 0.3 0.7 0.9 ¨ java` 0.5 ¨ full´ 0.2 ¨ swap java` 0.6 ¨ full

´0.3 ¨ swap %used heap ě 96
o5 0.2 0.8 java` 0.6 ¨ full´ 0.3 ¨ swap
o6 0.2 0.8 0.8 ¨ http

0.9 ¨ http Soft. type “ Sales ^
weekend “ Falseo7 0.1 0.9 0.9 ¨ http´ 0.1 ¨ disk

Table III: Summarizing explanations of black box predictions of incidents from Fig I with Subgroup Discovery. The number
of explanations is reduced from 7 to 3 by grouping objects in contextualized subgroups supporting the same explanations.

the TEC class, in contrast, the higher the tf-idf of “http”,
the lower the probability of TEC.

In practice, we may have a large set OE Ď O of objects
whose decisions tbpoq | o P OEu need to be explained. Provid-
ing a specific explanation for each prediction is overwhelming
for the user, and it may be even impossible for her to dig
into each explanation separately. In addition, many objects
that share certain properties in common may have similar
explanations. i.e., an explanation can be valid for a group
of objects. We aim to reduce the number of explanations
by partitioning the objects into subgroups s Ď OE that can
support the same explanation. However, we need to be able to
characterize these subgroups by some common interpretable
description or pattern that separates them from the rest of
the dataset. To this aim, we use concepts from Subgroup
Discovery which are described hereafter.

III. SUMMARIZING BLACK BOX EXPLANATIONS WITH
SUBGROUP DISCOVERY

Subgroup Discovery (SD) [19], [20] is a data mining
task that aims at identifying interpretable local subgroups
that foster some properties of interest. This task has proven
its efficiency in different applications and domains such as
physics [23], education [24] and neuro-science [25]. However,
none of existing approaches has exploited this framework for
the problem of explaining black box predictions. To make
such method efficient, we needed to address several complex
challenges related to the mined data structure, the subgroup
interestingness, as well as a scalable mining algorithm which
optimizes an interestingness measure that is new in SD. In
what follows, we start by defining subgroups and their de-
scriptions induced by the pattern language. Then, we formally
introduce our problem of summarizing black box explanations
with Subgroup Discovery.
Pattern language. A pattern d is a constrained selector of a
subset of objects of the dataset using their attribute values.
We refer to the set of all possible patterns by the pattern
language and we denote it D. In our case, D “

Śm
i“1 Di

where Di is given by the set of all possible intervals in R
if ai is numerical, the set tCi,Hu Y ttcu | c P Ciu if ai is
categorical, or tt0, 1u, t0u, t1uu if ai is Boolean. A pattern
d P D is then given by a set of restrictions over each attribute
(i.e. d “ pdiq1ďiďm). These patterns are ordered from the most

general one to the most restrictive one by an order relation Ď.
For two patterns c “ pciq1ďiďm P L and d “ pdiq1ďiďm P L,
we have: c Ď dô @i P J1,mK pci Ě diq [26].

Linking patterns and objects. A pattern d “ pdiq1ďiďm is
said to cover an object o P OE iff @i P J1,mK : aipoq P di.
A pattern d covers a set O1 Ď OE iff it covers each object
o P O1. Using the cover, we define the function δpO1q P L
which gives the most restrictive pattern that covers a set
of objects O1: @d P L, d covers O1 iff d Ď δpO1q. For
a given pattern d, the set of all objects covered by d is
refered by extpdq “ to P OE | d Ď δpoqu [27]. In
Table I, let us simplify by considering only a subset of 4
attributes A1 “ pjava, weekend, Soft. type, %used heapq. An
example of pattern in A1 is d1 “ pR`, T rue, Sales, r0, 100sq,
which corresponds to objects having the tf-idf of “java” in
R`, “weekend = True”, “Soft. version = Sales”, and values
of “%used heap” in r0, 100s. This pattern d1 covers only
O1 “ to1, o2u. The most restrictive pattern for O1 in A1 is
δpO1q “ p0, T rue, Sales, r50, 60sq, and we have d1 Ď δpO1q.

Subgroup. A subgroup is a subset of objects s Ď OE that can
be selected using restrictions d of attributes A, and we note
S “ extpLq “ textpdq | d P Lu. In other terms, a subgroup
is always characterized with some restrictions of attributes, a
pattern, which makes it interpretable to a user.

Instead of providing an explanation for the prediction of
each o P OE , we aim to group these objects into a limited
number of subgroups that cover all the objects of OE to
explain, and for each subgroup, we provide an explanation
that holds for all its objects. In Table III, we give the predicted
probability bpoqi for each class. The prediction of each object
o is then explained by a local model w trained to mimic the
behavior of the black box model in the neighborhood of o. This
model w estimates the outcome of b using a linear equation
between tf-idf of terms appearing in the corresponding
incident reports. We can partition the data into three subgroups
whose objects can support the same explanation. For example,
the first subgroup refers to all incidents that have happened in
the weekend and that do not contain the word java in their
text. Their predicted probability of TEC can be explained by
the same relation: “0.8¨disk`0.7¨swap`0.4¨full”. Doing this,
we summarize 7 different local models in only 3 subgroups
models along with a pattern that uniquely identifies the objects
explained by each model. To ensure that a subgroup model



holds for all the objects of the subgroup, we seek to minimize
the error made by the subgroup model while imitating the
black box model on the neighborhood of each object of the
subgroup. These notions are formalized below.
Subgroup model. A subgroup model ws is a white box
model used to explain the predictions of b on the objects of a
subgroup s. It is trained on the neighborhoods of the objects
of s. The neighborhood generation process is described later
in Section IV-A.
Loss function. We use the Sum of Squared Errors to evaluate
the fidelity of a white box model ws, fitted on a subgroup s
and its objects neighborhood, to imitate a black box model b:

Lps, ws, bq “
ÿ

oPs

ÿ

o1PNpoq

p
ÿ

i“1

`

bpo1qi ´ wspo
1qi
˘2
.

The global loss for a set of subgroups S “ ts1, s2, ...u Ď S
along with their fitted models W “ tws1 , ws2 , ...u is defined
as: LpS, bq “

ř|S|
i“1 Lpsi, wsi , bq.

Controlling the number of subgroups. To control the total
number of collective explanations of the predictions tbpoq |
o P OEu, we propose to upper bound the number of returned
subgroups with a threshold K P N. The goal is thus to find a
subgroup set ts1, s2, ...u of size at most K, whose fitted white
models tws1 , ws2 , ...u minimize the loss function with respect
to the black box model. The problem is formalized as follows:

Problem 1 (Summarizing explanations with SD): Let OE Ď O
be a subset of objects whose predictions need to be explained,
and b the black box model used for prediction. Given a user-
specified threshold K P N representing the maximum number
of explanations, find a subgroup set S “ ts1, s2, ...u with
their fitted white box models W “ tws1 , ws2 , ...u such that
(1) |S| ď K, (2) the subgroup set covers all the objects
to explain:

Ť

sPS s “ OE , and (3) the global loss for the
subgroup set is minimized: S “ argminS1ĎSLpS

1, bq.

IV. SPLITSD4X METHOD

The problem of summarizing explanations with SD is NP-
Hard. This can be proven by reducing the NP-Complete prob-
lem of weighted set cover in a polynomial time to Problem 1:
each set corresponds to a subgroup, and the set weight is rep-
resented by the loss Lps, ws, bq of the corresponding subgroup.
Thus, providing a scalable approach that finds the best solution
to Problem 1 is not possible. We propose to use an efficient
heuristic strategy detailed in Algorithm 1 (SplitSD4X) and
empirically prove its performance. This algorithm starts by
generating the neighborhoods Npoq used to train local models
for each object o P OE , using GenerateNeighbors explained
in Section IV-A. Then, it constructs a non-overlapping set
of subgroups using a split based strategy. It begins with the
subgroup set S “ tOEu that contains a subgroup covering
all the objects of OE . In each iteration, and given the current
set of subgroups S, one of the subgroups of S is split into
two subgroups that minimizes the overall loss. The split is
applied for one of the attributes a P A. This procedure is

done iteratively until the number of subgroups K is reached,
or, until there is no additional possible improvement of the
loss, as detailed in Section IV-B.

Algorithm 1: SplitSD4X
Input: OE a set of objects, b a black box prediction

model, K a threshold on the number of
subgroups.

Output: S Ď S a subgroup set that covers all the
objects OE , W the set of white box models
associated with the found subgroups.

1 for o P OE do
2 Npoq Ð GenerateNeighborspoq

3 S Ð tOEu

4 W Ð dictptuq // W is a dictionary
5 W rOEs Ð wOE

// wOE
is the white box fitted to

the subgroup OE

6 improveÐ True, splitsÐH,
newSubgroupsÐ tOEu

7 while |S| ď K and improve do
8 // Compute the best splits for the new subgroups:
9 for s P newSubgroups do

10 pa, vq Ð argminaPA,vPRaLpsra ď
vs, wsraďvs, bq ` Lpsra ą vs, wsraąvs, bq

11 splitsÐ splitsY tps, a, vqu

12 // Choose the subgroup split that leads to the
minimum loss:

13 ps, a, vq Ð argminps,a,vqPsplitsLpSztsu Y tsra ď
vs, sra ą vsu, bq

14 if Lpsra ď vs, wsraďvs, bq ` Lpsra ą
vs, wsraąvs, bq ă Lps, ws, bq then

15 S Ð Sztsu Y tsra ď vs, sra ą vsu
16 remove W rss
17 W rsra ď vss Ð wsraďvs

18 W rsra ą vss Ð wsraąvs

19 newSubgroupsÐ tsra ď vs, sra ą vsu
20 splitsÐ splitsztps, a, vqu

21 else
22 improveÐ False

23 return pS,W q

A. Neighborhood generation

The goal of this step is to sample a set of neighbors Npoq
for each object o P OE , using a locality-aware sampling
strategy. Many approaches have been proposed to address this
problem [15]–[17]. As this part of the process is not the main
concern of our study, any of these approaches can be directly
used in GenerateNeighbors. However, in order to limit the
bias due to this step, we use a simple yet efficient sampling
approach such that (1) the closer a point o1 is to o, the higher
the chance to sample it in Npoq, (2) the correlation between
the different attributes is taken into account in order to sample
more realistic objects. We first convert categorical features into



numerical values. In ordinal data (e.g., Memory usage alert),
while encoding, we should retain the information regarding
the order in which the category is provided. Nominal features
(e.g., Soft. type) are encoded so that each category is mapped
with a binary variable containing either 0 or 1 using one
hot encoding. In order to generate an object o1 P Npoq, the
attribute values Apoq are drawn from a multivariate normal
distribution N pA, Σ

z q centered in Apoq with a covariance Σ
z ,

where Σ is the covariance matrix of pOE , Aq and z P N
is a parameter that shrinks the original covariance Σ to the
locality of o. Since the multivariate Gaussian distribution
generates values in R for all attributes, these values need to be
discretized when they correspond to non numerical attributes.
Particularly, for nominal attributes, the category having the
closer value to 1 among other categories of the same nominal
attribute is set to 1, otherwise 0.

B. Optimizing L with a split-based strategy

Let us now detail the approach used to identify a subgroup
set S “ ts1, s2, ...u that optimizes the loss, while satisfying
the constraints of coverage (YsPSs “ O) and maximum size
(|S| ď K). In what follows, for a given subgroup s P S,
we use the notation srai ď vs and srai ą vs to split s into
two subgroups with respect to the values of attribute ai. By
considering that Ÿ corresponds either to ď or ą, we define
srai Ÿ vs “ to P s | aipoq Ÿ vu. Notice that if we split
a subgroup s with a Boolean attribute a P A, there is only
one possible split, that is srai ď 0s and srai ą 0s. Nominal
attributes are transformed into a one hot representation, and
are then treated exactly as Boolean attributes.

Algorithm 1 (SplitSD4X) describes the different steps
of this approach. The subgroup set is stored in S, and the
corresponding white box models are kept in a dictionary W .
S is initialized with a subgroup OE that covers all the objects
to explain. The variable splits stores the best split for each
subgroup s P S. This variable is updated in each iteration by
computing the best splits of the newly added subgroups kept
in newSubgroups (Line 9 to Line 11). Then, the subgroup
s whose split reduces the loss the most is selected. It is
removed from S and replaced by the subgroups resulted from
this split, i.e. sra ď vs and sra ą vs. This loop is repeated
until |S| “ K, or until there is no further split that reduces
the loss. Particularly, since the used loss function is the SSE
whose optimization is convex for a linear model, a new split
will either reduce LpSq or let it unchanged, but it will never
increase it. In fact, this is guaranteed for any model whose
optimization is global, such as models with a convex loss
function (linear regression, ridge regression, LASSO, etc.), as
proven by the following property.

Property 1: Let s0, s1, s2 P S s.t. s0 “ s1Ys2 and s1Xs2 “

H, then we have: Lps1, ws1 , bq`Lps2, ws2 , bq ď Lps0, ws0 , bq.
Proof 1: This can be proven by contradiction. Let

us consider that the inequality does not hold. Then,
Lps1, ws1 , bq ` Lps2, ws2 , bq ą Lps0, ws0 , bq. As
Lps0, ws0 , bq “ Lps1, ws0 , bq ` Lps2, ws0 , bq, we have

Lps1, ws1 , bq ` Lps2, ws2 , bq ą Lps1, ws0 , bq ` Lps2, ws0 , bq.
Two cases are then possible:
‚ Lps1, ws1 , bq ą Lps1, ws0 , bq, which means that ws1 is

not the best model that fits s1, which is absurd because
ws1 is a global optimal solution of L on s1.

‚ Lps1, ws1 , bq ď Lps1, ws0 , bq, thus we have necessarily
Lps2, ws2 , bq ą Lps2, ws0 , bq. Following the same logic,
this implies that ws2 is not the best fit for s2, which is
also absurd.

V. EXPERIMENTS

We report our experimental study to evaluate the effective-
ness of SplitSD4X† and its ability to summarize explana-
tions of black box decisions in the context of incident triage.
These experiments aim to answer the following questions:
‚ Q1: Do subgroup models provide good explanations, in

other words, are explanations of subgroup models faithful
to the black box model predictions?

‚ Q2: Are subgroup models human interpretable and do
they help practitioners understand the black box results?

‚ Q3: Are subgroup models different from each other?
Experiment Setup. We have collected 170k incident reports
involving more than 1k servers over the last 7 years. Although
most of data types introduced in Sec. II have been used in
these experiments, metrics and alerts have been omitted as
their collection has been started recently and they cover only
incidents of last few months. Once the data is processed and
encoded, we split it randomly into training (65%), validation
(10%) and test set (25%). The results of the accurate black
box model used for triaging are provided in Fig II. The
distribution of incident reports across different services is
extremely imbalanced with the most popular services having
thousands of incidents while other minority services were
rarely called upon. We randomly select from the test set 2000
incidents to be summarized in no more than 200 subgroups
with their explanations. For that, we apply SplitSD4X with
a neighborhood size of 250 for each object (|Npoq| “ 250).
The complete process requires about 3 hours to execute
when the number of subgroups K “ 200. Throughout these
experiments, we compare SplitSD4X with two baselines:

1) Global white box (global-wb): This method consists
in training a white box model on the set of data that we
need to explain to globally approximate the decisions
of the black box model. The aim of this comparison
is to see if a global white box model can effectively
approximate a black box model and how much we can
improve its performance with SplitSD4X.

2) Local white box (local-wb): In this approach, we
train a local white box model to explain each data object
independently. We follow the same methodology applied
for LIME [15], nevertheless, we opt for our proposed
local neighborhood generation method to fairly compare
between SplitSD4X and the local-wb model. We

†Source code is available on: https://github.com/RemilYoucef/split-sd4x



end up with as many models as there are objects
to explain. This comparison aims to evaluate if it is
possible, with a very small number of explanations to
obtain similar explanatory quality results as with a large
number of explanations.

Experiment Results. In what follows, we present the results
obtained from the evaluation of the scenarios related to the
criteria defined previously.
Q1: We evaluate whether SplitSD4X identifies subgroups
whose associated models imitate well the black box decisions.
In other words, we validate whether the provided subgroup
models explain the behavior of the black box while maintain-
ing its performance. For a first analysis, we use the Mean
Squared Error MSE “ SSE

|OE |
between the predictions made by

SplitSD4X and the black box model b with respect to the
number of computed subgroups K. Results are given in Fig. 2a
where we also report two constant values: the MSE obtained
by global-wb and local-wb methods. We notice that as
the number of subgroups increases, the MSE becomes abruptly
smaller. Interestingly, the largest gain is achieved with only
a small number of subgroups. To find the optimal number
of subgroups K‹, so that the fidelity is very close to that
obtained by the local-wb, and further increasing K does
not significantly improve fidelity, we use the elbow technique
implemented on the available Kneed package‡. We show that
with only 25 subgroup models, we can greatly improve the
fidelity of global-wb and achieve a score quite close to
that of local-wb which uses 2000 models instead.

In a second analysis, we compare SplitSD4X with the
two baselines based on the F1-score. These scores mea-
sure to which extent each approach is able to imitate the
service predictions of the black box model. We evaluate
the F1-score on the most 3 probable services obtained
by each model compared to the results of the black box.
For instance, for Service-2, we take the services having a
second best probability and we compare them with the second
probable services predicted by the black box model. Our
solution is evaluated on only 25 subgroup models. The results
are shown in Fig. 2b. The scores achieved by SplitSD4X
are always significantly better than the ones of global-wb.
Furthermore, with only 25 subgroups, we get almost similar
scores results as local-wb (0.87 for SplitSD4X with 25
models and 0.88 for local-wb for Service-1).

These results demonstrate that SplitSD4X is able to
significantly reduce the number of explanations while keeping
them faithful to the black box decisions.
Q2: The goal of our approach is to group the predicted objects
into subgroups such that (1) each subgroup has an explicit
description that separates it from the rest of the data, (2) the
objects of the same subgroup support the same explanation.
Thus, for each subgroup, we provide its description (pattern)
which characterizes it, as well as its corresponding model.
From this model, we derive human interpretable explanations
that help practitioners to understand the reason behind predict-

‡https://github.com/arvkevi/kneed

(a) MSE of global-wb, local-wb,
and SplitSD4X (with different K)

(b) F1-score of global-wb,
local-wb and SplitSD4X with
K‹ found by elbow technique.

Figure 2: Quality of explanations of black box outcomes.

ing one service over another, by identifying the most important
features of the model based on the ridge model coefficients.
The contribution of each feature in predicting the analyzed
class is calculated as a ratio between the absolute value of the
feature coefficient over the sum of the absolute values of all
model coefficients. Clearly, the relevance of feature importance
depends on the fidelity of subgroup models to the black box.
The better the subgroup model mimics the black box, the
more we trust the coefficient-based explanation. Fig. 3 dis-
plays both the descriptions and explanations of four different
subgroups, each for the prediction the most predicted service
in the subgroup. We choose the most popular and requested
services. For instance, the subgroup (s3 : summary stats “
0 ^ summary stock ą 0) which contains reports that are
characterized by a tf-idf of the term stock greater than 0
and whose descriptions do not include the term stats, is mainly
dominated by the service ST that refers to Stock („ 41% of
the incident reports). In the first subgroup, we are interested
in explaining the predictions on the sales service for incidents
declared between 12 p.m. and 11 p.m but not containing stats
and stock terms in their summary. The feature importance
plot highlights terms that are highly and positively correlated
with the sales context such as creation, update, validation and
packing of orders. While terms like velocity which increase
the probability of the sales service being requested, other
terms such as logistic and connection decrease this probability
in favor of other services. Similarly for s2, we notice that
each time the Technical team (TEC) has been delegated to
resolve an incident, terms such as save, session, and blocking
are discriminating. The subgroup model of s3 includes also
terms that are related to stock (e.g., expenses, cost and menu).
The last example provided is very interesting in terms of
subgroup description and quality of the associated explanation
when predicting the EDI (Electronic data interchange) service.
Specifically for supervision servers, we confirm that many
issues related to the daemon have been reported to this service
since all EDI operations are done by daemons. Lastly, as an
explanation helps us to understand and interpret the results of
the black box model, it can also highlight its problems. In the
second example, we notice that the term functionality has a
positive contribution in the incident title and a negative one in



Sales TEC

s1 description: hr P r12.0, 23.0s ^ summary stats “ 0

^summary stock “ 0

s2 description: hr P r1.0, 12.0s ^ summary stats “ 0

^summary stock “ 0^ app SV “ 0

ST EDI

s3 description: summary stats “ 0^ summary stock ą 0
s4 description: hr P r1.0, 12.0s ^ summary stats “ 0

^summary stock ^ app SV “ 1^ day “ Wednesday

Figure 3: Subgroup examples: Patterns and the most important features of the subgroup models for specific services. Green
color (resp. red) corresponds to features that contribute positively (resp. negatively) to predicting the analyzed service.

the summary. Such explanation helps us to better understand
the behavior of the black box and try to improve it.

Figure 4: Distribution of incidents on the subgroups.

Q3: Another question that comes to mind is whether the
subgroups identified by SplitSD4X have explanations that
are different (diversified). Indeed, if most of subgroups have
similar explanations, it may be still possible to summarize
further these explanations, and SplitSD4X may have failed
to do it efficiently. To answer this question, we study the
similarity between linear models associated to subgroups

identified by SplitSD4X when the number of subgroups
is set to 25. As a similarity metric between explanations of
two subgroups s1 and s2, we use the cosine function defined
between the coefficient vectors of the linear models ws1 and
ws2 . We have found that there is a large number of subgroups
with a significant dissimilarity. Concretely, the percentage of
subgroup pairs with sim ď 0.4 is 93%. We also studied
the distribution of the 2000 incidents on the 25 identified
subgroups. As shown in Fig. 4, our proposed solution does
not suffer from major outliers in the low end, i.e. subgroups of
smallest size. On the other hand, the large number of outliers
in the distribution indicates that there are lots of incidents
which are similar and which must be explained simultaneously
instead of treating them independently as in local-wb.



VI. CONCLUSION

The growing use of complex equipments and softwares in
modern industries conducts to the need of automating their
maintenance. A cumbersome task that can be automated in
maintenance is incident triage, i.e., assigning incidents to a
suitable team. Black box predictive models, such as DNN,
have achieved the best performance on this task. However,
their obscurity strongly limits their adoption by OCEs. This
has motivated our problem of explainable incident triage.
We have analysed more than 170k incidents reported to our
company over the last 7 years. Inspired by recent work, we
have designed a black box model that is able to perform
an accurate incident triage. Then, we have proposed a novel
approach that provides concise explanations of our model
outcomes.

Existing methods of black box outcome explanations lead to
a flood of explanations when thousands objects are predicted.
In such case, analyzing individual explanations becomes very
time consuming for the end-user. To overcome this issue, we
have introduced the novel problem of building explanation
summaries. We have proposed a solution rooted in subgroup
discovery, dubbed SplitSD4X, to group the objects whose
black box prediction is supported by the same explanation.
Our approach is model agnostic. The number of subgroups,
and therefore the number of explanations, is controlled by a
parameter. Some strategies can be defined to automatically find
the relevant number of subgroups, such as the elbow method
that has been explored in our experiments. Each subgroup is
associated to a description that delimits the border of use of
the local interpretable model which explains the black box
decisions that fall into this subgroup. Experiments carried out
on incident reports demonstrate that SplitSD4X is able to
provide a small set of high fidelity explanations of a black
box model. Results with a small number of explanations are
comparable to individual explanations of each object. For
instance, 25 subgroups have been enough to explain 2,000
decisions without a significant fidelity loss.

We believe that this work opens new directions for future
research. The outcome explanation approach can be gener-
alized to more complex configurations such as sequential
models (e.g., LSTM) that progressively improve the triage
when new data are available on an incident report. Another
interesting direction is to extend our approach to compare
model behaviors and uncover what a model captures compared
to others in different situations.
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