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Abstract
The Internet of Things is revolutionizing the established embedded systems market. However,
embedded system designers aren’t traditionnally considering security as a top concern and
consider maintaining their current tools and technologies while opening to connectivity. It is
thus expected the embedded systems sector will suffer massively from cyberattacks with the
risk to break down traditional IT systems with them. This article demonstrates how this situ-
ation is a plausible scenario given the current context and exposes how the existing means to
build and secure constrained devices are not sufficient enough to reduce the risks. As a coun-
termeasure, we propose the creation of isolated hardware-enforced trustworthy environments
targetting constrained devices in need of strong guarantees by adapting the formally proven
Pip protokernel. We explore as well what considerations must be beared in mind to scale up
the adoption of the proposed solution.
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1. Introduction
The Internet of Things (IoT) revolution is happening and, as a consequence, various sectors un-
dergo restructuration among which the embedded systems. IoT devices compete with legacy
systems, shimmer a better connected future and are increasingly popular in the society. This
paper proposes to adapt a proven kernel that would make the embedded systems and the IoT
worlds both benefit of hardware-enforced isolation. Section 2 explores the current embedded
system design situation and how they can benefit from partitioning to establish Trusted Execu-
tion Environments (TEEs). Next, in section 3, we will see how the embedded world is settling
down in the IoT and how the IoT is currently struggling with security. Section 4 demonstrates
how current tools and technologies at disposal for constrained devices on the move for con-
nectivity are not sufficient to face the threats presented in the previous section. Then, section
5 highlights why relevant solutions are not adapted for constrained devices. Lastly, section 6
introduces our proposal to adapt a proven kernel which enables hardware-enforced isolation
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properties. We establish as well the conditions under which it could scale up for an effective,
almost directly applicable and massive injection of the proven isolation capabilities for con-
strained objects. Section 7 wraps up the content of the statements made in this paper.

2. Embedded systems: low-costs but expensive expectations

Marketing and production time are driving many sectors, which also applies to the design of
embedded systems. With a short product lifetime, market penetration drives the schedules,
with early adopters winning the biggest market shares. Time-to-market is thus a critical factor
conducting the development of embedded systems.

2.1. The battle to reduce the costs: grouping and partitioning
Tightly coupled with time-to-market are costs. They need and are expected to be as low as
possible during the complete (potentially long) life cycle of the systems including design, man-
ufacturing, purchase, installation, use and maintenance. Higher costs are to be found in dis-
tributed systems where system functions are spread on several devices, multiplying this way
the space, weight, power, costs (SWaP-C factors) as much as the size of the distributed sys-
tem. This traditional approach has the advantage of inherent fault-containment, but neglects
poorly coordinated control, and complex and fault-prone pilot interfaces, inducing a safety
cost, "mode confusion" and causing fatal airplane crashes [18]. Instead, grouping all these sys-
tem functions on a same platform would drastically reduce the costs but raises some concerns:
there could be design bugs leaving the system unfunctional or, even worse, unreliable.
Rushby introduces therefore the notion of a separation kernel [19]: it should reproduce a dis-
tributed system on a single device with the same initial guarantees. The separation kernel re-
lies on partitioning, where no partition hosting system functions should behave differently as if
they were physically separated. In other words, a failure in one partition should not propagate
to other partitions, so the purpose of partitioning is fault-containment.

2.2. Challenges for a separation kernel
Spatial isolation protects partitions running in a shared environment from accessing or altering
each other’s content. Temporal isolation should also be enforced to ensure real-time services
stay unaffected from the behavior of other partitions.
Moreover, as Rushby shows, fault-containment shares common fights with cybersecurity. In-
deed, Software-Of-Unknow-Provenance (SOUP) or Commercial-Off-The-Shelf (COTS) Software,
that could be faulty or malicious and most of the time proprietary protected black-boxes, mixed
with mission-critical software could lead to non-functioning system and/or system exploited
to perform attacks and information leakage. While a separation kernel protects the sensitive
assets from the previous concerns, achieving isolation is a critical prerequisite.

2.3. Achieving isolation
Isolation creates a trusted environment where the integrity, confidentiality and availability of
isolated components are protected. From there, a Trusted Computing Base (TCB) can be com-
posed by any components that need to be trusted (and not necessarily trustworthy) for the sys-
tem to be reliable for software execution. This isolated partition could be the base of a Secure
Execution Environment (SEE), prerequisite for a Trusted Execution Environment (TEE) [20].
Isolation techniques vary in costs, performance and heaviness and could be mainly classified
in two categories: compile-time and runtime techniques. Among compile-time techniques, we
find namespaces but mixed in the final compiled executable, strongly typed languages like
Rust or unit code testing however depending on the quality of the tests and the code coverage.
Rutime isolation techniques could be further sub-divided in software runtime isolation and
hardware runtime isolation. On the software side, it could for example be assertions or byte-
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code verifiers. Hardware-based isolation consists of hardware support dedicated to achieve
isolation [4]. A taxonomy of hadware-based isolation used in mainstreams OSs and kernels for
contrained devices is proposed in Table 1.

3. Upheavals caused by the IoT emergence

IoT means world wide connected embedded systems [6, 7]. But bringing connectivity to legacy
systems also exposes these devices to cyberattacks as never before, which competes with the
expected reliability of IoT devices; sometimes we even trust them with our lifes. For example,
in 2015, two researchers managed to remotely hack a Jeep Cherokee, taking control of some
inboard systems and critical physical systems such as the steering and braking, foresighting
tragical scenarios [14]. Moreover, IoT security is not only about attacks the way down to the
devices, but also the other way around. For example, the Mirai botnet which took place in 2016
broke down major parts of the internet by taking control of a large number of devices [13].
However, as exposed previously, time-to-market drives the embedded development and fig-
ures constrast sharply speaking about security: security is the top IoT developer concern whereas
it ranks last in the embedded world. Furthermore, only 4% of the design time of an embedded
system is spent on security/privacy threat/risk assessment. However, the embedded world
seems to acknowledge the need for security in their systems since security is the top 3 greatest
technology challenge [6].
Overall, on the 25 billion of IoT devices expected on the market in 2021 [8], the great majority
of them will suffer from cyberattacks and the new business ecosystem will be the playground
of cybercrimes capturing 300 billion to 2 trillion dollars worldwide and every year [17].
With potentially high impacts, the ecosystem is in a stringent need of high-level guarantees.

4. Composing the TCB for secure embedded systems

4.1. Market insights and available technological bricks
IoT devices and embedded systems have common grounds, reflected in their use of the tech-
nologies. One of the major similarities is the choice of the CPU architecture: Arm dominates
thanks to its power efficiency. Arm is driven by the constrained device market capturing 67% of
the market shares thanks to the ARMv7 architecture [7]. Arm estimates one trillion of devices
to be on the market in 2035 [22] (40 billion in 2025) and gains popularity among the embed-
ded vendors [6] even with a dominant position. 32-bit architectures win more than 60% of the
market [7], but 64-bit architectures gain popularity in the recent years [6]. Developers of the
two worlds choose about the same operating systems. On the IoT side, FreeRTOS dominates
constrained devices, followed by Contiki-NG, MbedOS, RIOT OS and QNX [7, 21]. On the
embedded side, Embedded Linux, FreeRTOS, Android and custom/inhouse OSs are mostly
used [6].

4.2. Focus on the Memory Protection Unit
A computer system usually has two or more privileged levels. The most privileged ones are
able to disable interrupts, change system settings, switch privileged modes, and reconfigure
the Memory Protection Unit (MPU) among other things. This prevents lower privileged levels
to do so and potentially give untrusted code rights for full system control. However, non-
privileged code still can access any memory locations, peripheral devices and have executable
rights over unwanted regions like out of RAM causing unacceptable threats. The MPU is there
to overcome this unwanted scenario.
The MPU can be traced back as far as in the ARMv4t. It is a programmable unit inside the
processor, configurable at runtime by a privileged software (typically an OS kernel). It can be
used to protect the system address space by dividing the memory into memory regions. The
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MPU defines these memory regions to have specific access permissions (read, write, execute)
and memory attributes (cacheable, shareable...). The number of memory regions that can be
configured is implementation-defined, generally 8 to 16 regions.
In the Cortex-M series, architectures ARMv6/v7/v8 support respective Protected Memory Sys-
tem Architectures (PMSA) as an optional extension. The MPU implements this extension to
protect a 4GB address space. As such, all micro-architectures of the Cortex-M series propose
an optional MPU, except Cortex-M0 and Cortex-M1 [1].
Since Arm dominates the mobile, embedded and IoT markets, it means the MPU is de facto
the most widely available hardware component to protect memory assets and already used in
many OSs for constrained devices. However, the reality is different, the MPU is not present in
all implementations or, when it is present, is set aside. Several reasons push device manufac-
turers not to use the MPU: too high memory footprint, too high energy consumption, too high
performance overhead, too high time-to-market pressure to take the time to integrate, compat-
ibility issues, limited regions and thus flexibility or no guarantee of system protection [23].
The MPU is thus suitable enough to protect the memory space if properly configured and if the
architecture had been thought to ensure isolation of the system components at any time.

4.3. Perspectives and needs for constrained objects
Constrained objects have inherently very constrained resources: low memory capacities, low
energy, low computational power, low operational frequencies. This would correspond to the
Arm Cortex-M family (32-bit), MSP430 (16-bit) and AVR (8-bit) for example.
With the IoT revolution pressing the manufacturers, but the reluctance and maybe helpless
situation to ensure security guarantees for their products, big players of the sector announce
almost turnkey security solutions. For example, Arm created the TrustZone technology to pro-
vide a hardware-based isolation mechanism that would split the system in a secure world and
a normal world. For many years, the embedded systems community seldom used the Trust-
Zone, because of a lack of clarity in its usage [16]. Legacy designed systems can run in the
unsecure world and make use of the secure functions in the secure world. TockOS, pushed
by Google, shows the interest of heavy actors for security in this sector. Created in 2018, it
promises to give each application an isolated space, also isolated from the kernel code. The
kernel isolation is carried out by the use of Rust and the application isolation is performed by
the MPU. While isolation is hardware-based and allows the creation of a TEE, the guarantees
are weak. Open-source code and a large community is enough to create trust but not enough
to avoid vulnerabilities, as can be experienced with Linux [5].
However, new technology adoption is not straightforward in the embedded world, and system
designers have their expectations [6]. It comes out that the majority of them rely on a 32-bit
architecture with ARM architectures prevailing in this category and they usually use the same
processor across their projects. For the operating system, they use less and less inhouse/custom
OSs. If they have an OS, they are happy with the current solutions and have no reason to switch,
also to be able to maintain software compatibility and make use of the expertise and familiarity.
The reason to change operating system are mostly because the hardware or processor changed
or designers were chosen an OS without any decision taking. It shows they are not willing to
change their development environment without any major factor, mostly independent of their
will. Among the most important factors to choose an OS is the full access to the source code, the
availability of the technical support, the compatibility with other software, systems and tools,
no royalties and real-time performances.
Based on Table 1, the MPU seems to be the minimal hardware component that can be used
to acquire isolation properties. While TrustZone is heavily pushed to be adopted and ready-
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to-use tools made available to accelerate the adoption, it goes against the designers’ desires to
keep the same processor since the majority of devices are ARMv7 based.

5. Related works

Many operating systems are already widely used for constrained devices and some of the most
famous ones are recalled in Table 1. While most of them have been chosen by their popular-
ity and isolation mechanisms, the majority require a manual intervention to set up isolation
between components and they are almost all written in an unsafe programming language like
C. ProvenCore-M [2] is one, if not the only, to target the microcontroller sector and to expose
strong guarantees of isolation by formal proofs. It proposes an OS architecture close to PSA,
either to sandbox applications or to set at disposal secure functions. It makes use of the Trust-
Zone if available or a dual-CPU architecture where it runs in a separate CPU. It is available to
the industry. The main drawback is its proprietary classification which is why few inner work-
ings have been disclosed. For bigger systems, seL4 [9] is also a kernel OS that exposes strong
guarantees with formal methods and available for the industry, however open-source. The
major drawback is that it doesn’t target small objects for now, using the MMU as a hardware-
enabler isolation, hardware not present in tiny objects. Also, while the TCB is kept minimal, it
exposes the features of a complete kernel like memory capabilities, making the learning curve
less obvious. In the same sector, Pip [11] is instead a protokernel, open-source as well, drasti-
cally lowering down the size of the TCB with only memory management and context switching
features. Isolation is also formally proven and is MMU-based. The small exposed feature set
makes it very flexible for upper implementations, so that designers could keep their actual
project while soaking the system with strong isolation guarantees. Again, the major drawback
is that it doesn’t fit constrained devices. The MINION [12] architecture also identified the re-
luctance of system designers to use the MPU and proposed a way to automatically analyse
statically a firmware and reorder the memory sections to group the ones of similar nature and
isolate processes and kernel. However, this time, it is not formally proven and subject to more
vulnerabilities because of memory view over-approximation.

6. Creating the TCB for secure constrained objects with the Pip protokernel

Following the remarks and enlightments of the previous sections, it does not seem possible
to build a system for constrained objects which provides strong guarantees of isolation with
current tools and technologies while completely satisfying system developers’ expectations.
Because it is open source, formally proven, flexible, but using the MMU, we propose to adapt
the Pip protokernel so that it fits the imagined solution depicted in the Table 1 (Pip-MPU).

6.1. The Pip protokernel
Far from the monolithic kernels like Linux which exposes a huge TCB (36 millions of LoC [15]),
the microkernels are reducing this TCB to some specific modules, the remaining becoming ex-
ternal services in the user space. Pip belongs to the protokernel family which reduces the TCB
to two mechanisms: memory and control flow management. This means only these two kernel
features can run in a privileged level (kernel space), the remaining, and so the applications and
OS, run in an unprivileged level (user space) and can use the minimal kernel API of 9 system
calls. This is enough to create simple applications but can be complemented by a rich OS to
retrieve full OS features. Pip supports a recursive partitioning schema where each partition can
donate a part of its memory to another partition. The relation created by this memory donation
creates a hierarchical view where each partition is part of a partition tree. In that respect, a root
partition is created during the system initialization and will be the parent of child partitions,
themselves possibly parents to other paritions and so on. By ensuring recursive memory attri-
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bution, the kernel never experiences memory exhaustion and respects the availability security
pilar. Furthermore, the kernel and the partitions are isolated, just as well as between the parti-
tions themselves, ensured by formal proofs on each kernel API. Each partition is thus a trusted
environment with strong guarantees of isolation.
While the formal proofs are conducted in the Coq Proof Assistant [10], the Pip API is available
as a C library, thus understandable and open to investigation by any embedded developer since
C and C++ are the most used languages in that area [6].

6.2. The challenges to port Pip-MPU and future work
The port from an MMU-based Pip to an MPU-based Pip raises some challenges. The proven
isolation principle remains unchanged since it builds up an effective trusted environment. As
a consequence, the properties should stay the same and most of the kernel API as well. What is
more uncertain is the modification of the kernel code. Indeed, while MMU and MPU share the
memory protection concept, they work differently. First, the MPU works directly on physical
addresses while the MMU enables paging to fragment the memory in smaller equally sized
pages (usually of 4KB). Since the proofs in Coq make use of properties that relate to the MMU’s
inner workings, this part could be heavily impacted. Also, Pip uses dedicated structures to
keep trace of the partition tree and accelerate the MMU’s table configuration which depends
again on the MMU. The challenge is to combine the two perspectives and investigate how
straightforward it is to recycle code and proofs to cover both.
Next to investigate is its compliance with constrained devices. As shown, the MPU is suitable
for this type of devices. What is to show is that the design of such a system answers the expec-
tations of the system designers expressed earlier. First of all, the TCB created by Pip is minimal
and as such has a very low footprint. Pip is also open source and will still be after the port.
At the opposite of security-by-obscurity, its trustworthiness emanates from the proofs and the
simple architecture comprehension. Pip is perfectly compatible with the developers claim to
keep the same development environment, notably their OS. Pip, as a protokernel, lies below
the OS layer which will just be deprived from the memory management and context switching
features. For the application developers, the port would be almost transparent. However, this
means the port should go along with reference implementations of modified Pip-compatible
OSs. Such an approach has already been demonstrated with FreeRTOS and Linux [3]. Lastly,
many device users expect real-time performances. On the one hand, as the kernel code is static
and atomic, the determinism of the operations can be ensured and, as for the current version,
has reasonable performance overhead. As embedded systems are generally statically designed
for real-time concerns, the number of times the kernel APIs will be called and thus this over-
head can be prior evaluated. On the other hand, context switching determinism is still under
study and needs to be evaluated to check its compatibility with real-time scenarios. The tran-
sition to the industrial scale of the proposed technology will need these appropriate measures
as key indicators of an adoption possibility to quickly and massively inject isolation.

7. Conclusion

Embedded devices become more and more connected and will most probably suffer from mas-
sive cyberattacks. Indeed, current tools and technologies seldom include security mechanisms,
and even less propose better protecting hardware-based mechanisms. Making use of the MMU,
the Pip protokernel implements the isolation principle for a separation kernel with formally
proven kernel APIs. We showed in this article that a modified version of Pip, based on the
MPU instead of the MMU, could be suitable to secure constrained devices while following the
expectations and needs of the current embedded developers. For a massive adoption of the
technology, future works will embrace the direction overcoming the identified challenges.
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Table 1: Taxonomy of the hardware-based isolation mechanisms natively present in constrained
devices OSs and kernels.

Hardware isolation possibilities

OSs/kernels for
constrained de-
vices

Full

sou
rce

cod
e

acc
ess M

atu
rit

y

Port
ab

ilit
y

OS
flex

-

ibi
lit

y
typ

e
gu

ara
ntee

s

po
ssi

bil
iti

es

flex
ibi

lit
y

ha
rd

ware

com
po

-

nen
ts

TrustedFirmware-M
based systems
(MbedOS, Zephyr,
FreeRTOS Amazon)

3 Industry ARMv8 enclaves 2 isolated domains
(secure/non-secure) PSA Level 1 TrustZone

3 Industry ARMv8 enclaves

2 isolated domains
(secure/non-secure)+

compile-time fixed number of
isolated secure partitions in

secure world

PSA Level 2&3
TrustZone with
MPU in secure

world

MbedOS

3 Industry
ARMv6
ARMv7
ARMv8

apps
en-

claves

MPU Management (RAM
execute lock + ROM write
lock) + netsocket (EMAC

drivers features)

MPU (auto
enabled)

3 Industry ARMv8 enclaves

TrustZone
w/wo MPUs in

secure world
(see TF-M)

3 Industry ARMv8 enclaves

For Musca_A1/B1 boards:
SPM implementation (same

possibilities as TF-M
TrustZone with MPU)

(Non-secure
world not
protected)

TrustZone with
MPU in secure

world

3 Industry ARMv8 enclaves

2 isolated domains +
compile-time fixed number of

isolated secure partitions in
secure world + other OS/app

isolation using MPU in
non-secure world

PSA Levels
2&3 +

non-secure
app-defined
MPU regions

TrustZone with
MPU in secure

world and MPU
in non-secure

world

MbedOS2
+ uVisor
(deprecated)

3 Industry
ARMv6
ARMv7
ARMV8

enclaves secure boxes MPU

RIOT-OS 3
Research

and
Industry

ARMv6
ARMv7
ARMv8
MSP430
RISC-V

Memory-
limited
thread

number

7 7 7 7 7

ProvenCore-M
7 Industry ARMv7

ARMv8 enclaves Proven secure functions (same as
TF-M)

Memory-
limited

applications of
same size

Probably MPU

7 Industry ARMv8 enclaves Proven isolated processes Same as TF-M TrustZone

7 Industry ARMv7 enclaves Proven secure functions (same as
TF-M) Same as TF-M dual CPUs

Tock OS 3
Research

and
Industry

ARMv6
ARMv7
RISC-V

High
memory
context

per
process

apps
en-

claves
sandboxed processes

Memory-
limited

applications
MPU

FreeRTOS
(Amazon) 3 Industry

ARMv6
ARMv7
ARMV8
MSP430
RISC-V

7 7 7 7 7

FreeRTOS-MPU 3 Industry ARMv7
ARMV8 enclaves user defined regions 3 enclaves per

task MPU

Pip-MPU
(target) 3 Industry ARMv7

ARMv8

recursive
en-

claves
Proven Recursive hierachical

partitions

Memory-
limited

hierarchical
partitions

MPU


