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Abstract 15 

The world is currently facing the COVID-19 pandemic that is taking a heavy toll on several 16 

countries. While many infected patients have a good prognosis, in some cases the progression 17 

can be serious and even lead to death. The commonly seen complications are a cytokine storm 18 

and multi-organ failure that require intensive care. The mortality of critically ill patients 19 

depends on age, sex, immune state or co-morbidities. There is an urgent need to discover a 20 

biomarker to identify early on patients at risk of developing serious complications and to find 21 

an effective treatment that could prevent disease progression and critical states. Recent 22 

investigations have pointed to the possible contribution of intestinal dysbiosis to the 23 

pathophysiology of COVID-19. Herein, we hypothesize that butyrate, a short-chain fatty acid 24 
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initially produced by the gut microbiota, could be administered as supportive therapy to prevent 25 

immune system activation and disease progression. 26 
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 50 

 51 

BACKGROUND 52 

 53 

The coronavirus disease (COVID-19) pandemic for which the first case was reported in 54 

December 2019 in Wuhan (China), is a highly contagious and life-threatening viral infection. 55 

For the period from December 2019 to June 2021, it has already affected more than 176 million 56 

people and caused more than 3.8 million deaths worldwide according to the World Health 57 

Organization (1). 58 

 59 

Clinical presentation 60 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is responsible for 61 

COVID-19 is a new member of the Coronaviridae family. Transmission mostly occurs via 62 

respiratory droplets and aerosols from person-to-person. Once in the respiratory tract, the virus 63 

attaches to its specific receptor site, the angiotensin I converting enzyme 2 (ACE-2) and its 64 

entry into cells then requires transmembrane protease serine 2 (TMPRSS2) expressed by 65 

pulmonary epithelial cells. The virus penetrates host cells for replication followed by viral 66 

particles assembling and release of the new virions (2). 67 

The clinical spectrum of COVID-19 ranges from asymptomatic, moderate, severe illnesses, up 68 

to critical states. The most frequent symptoms are fever, dry cough, dyspnea and fatigue that 69 

can be associated to myalgia, rhinorrhea, vomiting and cephalgia. Most of the infected patients 70 

have a good prognosis but in some cases, progression can become severe, possibly leading to 71 

death. The commonly seen complications in critically ill patients are acute respiratory distress 72 

syndrome (ARDS), sepsis, disseminated intravascular coagulation, acute liver or kidney 73 

injuries and pulmonary embolism. In rare cases, multisystem inflammatory syndrome, 74 
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rhabdomyolysis, autoimmune hemolytic anemia and neurological complications have been 75 

observed (3,4). The mortality of critically ill patients depends on age (more than 65 years old), 76 

sex (male), co-morbidities (e.g., metabolic syndrome, diabetes, cerebrovascular, cardiac or 77 

pulmonary diseases) and immune state (5,6). Furthermore, SARS-CoV-2 associated risk is 78 

increased with respect to seasonal influenza since its transmission rate is nearly three times 79 

higher (7,8). Fortunately, influenza vaccine is associated with a better clinical outcomes and 80 

presents no harmful effect on COVID-19 susceptibility (9). 81 

Severe prognosis is correlated to the so-called “cytokine storm” which is frequently observed 82 

in critically ill patients. Such an event is defined by a huge increase of pro-inflammatory 83 

cytokines (namely interleukin (IL)-1β, IL-6, IL-12, interferon (IFN)-⍺/β, tumor necrosis factor 84 

(TNF)-⍺) and chemokines (namely C-C motif chemokine ligand (CCL)2, CCL3, CCL5). A 85 

well-coordinated innate immune response is the first line of defense against pathogens and plays 86 

a crucial role in the prevention of SARS-CoV-2 spreading (10). However, dysregulated and/or 87 

excessive immune responses have been shown to fail at clearing the virus and in turn, can even 88 

contribute to the pathogenesis of ARDS as well as multi-organ failure (3). The excessive 89 

production of cytokines results in tissular infiltration of inflammatory cells (e.g., macrophages 90 

and neutrophils); which favors (i) the alteration of the alveolar-capillary barrier, (ii) lung tissue 91 

damage (vascular leakage, alveolar oedema) and (iii) hypoxia associated with ARDS (11). The 92 

cytokine storm also plays a central role in extrapulmonary multi-organ failure (heart, kidney 93 

and liver) (12). Moreover, decrease in natural killer (NK) and T cell populations ascribed to 94 

lymphocytopenia have been also observed and correlated to disease severity (13,14). The 95 

cytokine storm promotes tissue homing of immune cells and thrombosis. Moreover, a post-96 

COVID syndrome leading to multi-organ sequelae is associated to immunologic aberrations 97 

and inflammatory damages. This syndrome encompass a spectrum of pulmonary, hematologic, 98 

cardiovascular, neuropsychiatric, renal, endocrine, dermatologic and gastrointestinal injuries. 99 
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 100 

Current pharmacological treatment of the cytokine storm 101 

Since the beginning of the pandemic, many antiviral agents have been used or are still under 102 

clinical evaluation for COVID-19 (e.g., lopinavir-ritonavir or darunavir-cobicistat 103 

combinations, remdesivir, favipiravir, camostat mesylate-nafamostat) (15). However, once 104 

immunologic complications occur, the use of standalone antiviral treatment is not sufficient. It 105 

should be combined with anti-inflammatory treatments to manage the cytokine storm as well 106 

as anti-coagulative drugs. Regarding the cytokine storm mechanism, the current therapeutic 107 

approaches consist in: (i) supplementing with IFN-λ to potentiate innate immunity, (ii) using 108 

immunomodulators (e.g., corticosteroids, intravenous immunoglobulins) to restore immune 109 

balance, (iii) inhibiting cytokine productions (e.g., IL-1 or IL-6 antagonists, TNF blockers, IFN-110 

⍺/β inhibitors, ulinastatin, oxidase phospholipids, sphingosine-1-phosphate receptor 1 agonists 111 

and stem cell therapy), (iv) scavenging cytokines (hemofiltration), (v) inhibiting mononuclear 112 

macrophage recruitment and action (toll-like receptor (TLR) 7 antagonist and C-C motif 113 

chemokine receptor type (CCR) 2 blockers), and/or (vi) strengthening the vascular barrier by 114 

activating the endothelial Slit-Robot4 signal pathway (12,15,16).  115 

The period of treatment administration for SARS-CoV-2 is crucial. Indeed, an early exposure 116 

of the aforementioned strategies may inhibit the onset of the host’s immune response, for 117 

example if drugs are administered too early. However, the best strategy is to act before the 118 

production of pro-inflammatory cytokines. For instance, montelukast commonly used in the 119 

treatment of persistent asthma has recently been proposed for COVID-19 treatment in an 120 

intensive care unit (17). Montelukast can inhibit cytokine production through the inhibition of 121 

the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, 122 

which down-regulates pro-inflammatory mediators. This approach seems promising since the 123 
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blockade of cytokine production might be efficient in preventing pro-inflammatory 124 

consequences.  125 

 126 

THE HYPOTHESIS 127 

 128 

In the present article, we aim to propose a new strategy dedicated to block the immune system 129 

overactivation. It is worth mentioning that after virus recognition, macrophages polarize 130 

towards the pro-inflammatory M1 phenotype. M1 macrophages actively produce pro-131 

inflammatory cytokines which in turn drive viral replication and facilitate spreading of 132 

pathogens in the patient and tissue damage (18). Therefore, a very promising therapeutic 133 

alternative could be to modulate the differentiation of macrophages in order to orient them 134 

towards the anti-inflammatory M2 phenotype. 135 

 136 

Indirect proof of macrophages M1/M2 ratio skewing in critically ill COVID-19 patients 137 

Macrophages are major regulators of inflammatory response and also play a central role in host 138 

defense (19). They are featured by an important cell heterogeneity and plasticity. Indeed, in 139 

reaction to microenvironmental stimuli, macrophages can adopt different functional programs. 140 

Macrophages can either differentiate through a pro-inflammatory (M1) or anti-inflammatory 141 

(M2) phenotype (18). M1 macrophage polarization is mediated by IFN-γ, TNF-⍺ or 142 

lipopolysaccharides stimulation. M1 transformation hallmarks are both the inducible nitric 143 

oxide synthase (iNOS) expression and the pro-inflammatory cytokines IL-1β, IL-6, IL-12, IFN-144 

γ, TNF-⍺ and chemokines CCL2, CCL3, CCL4, CCL5, CCL8 production. This leads to 145 

pathogens destruction for which the time-window of inflammatory processes usually ranges 146 

from hours to days, but it has been shown that it can last for months or years, resulting in non-147 

resolving inflammation. On the other hand, M2 macrophage polarization involves other 148 
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interleukins stimulation (namely IL-4 and IL-13) and promotes up-regulation of genes 149 

associated to tissue repair and remodeling (e.g., arginase 1 (arg1)) (18). M2 macrophages exert 150 

their anti-inflammatory response via some specific cytokines like IL-1, IL-13, tumor growth 151 

factor (TGF)-β and chemokines CCL1, CCL2, CCL13 (18). Therefore, M1 and M2 152 

macrophages can easily be distinguished by their cytokine profiles as well as the expression of 153 

cell surface markers.  154 

M1/M2 macrophages balance is finely regulated by specific signaling pathways. NF-κB and 155 

signal transducer and activator of transcription (STAT) 1 signaling pathways lead to M1 156 

phenotype, while STAT3, STAT6 and PPARγ signaling pathways favor the M2 phenotype (19). 157 

An imbalance between these two phenotypes has been already observed in chronic 158 

inflammatory diseases such as asthma, chronic obstructive pulmonary disease or 159 

atherosclerosis (20,21). 160 

According to cytokines and chemokines profiles at the systemic level of critically ill patients 161 

(e.g., IL-1β, IL-6, IL-12, TNF-⍺ and CCL5), it has been suggested that macrophages involved 162 

in the cytokine storm have the pro-inflammatory M1 phenotype (22). However, such an 163 

observation still needs to be validated in clinical samples.  164 

 165 

Intestinal dysbiosis, macrophages polarization and arguments for supportive therapy with 166 

short-chain fatty acids 167 

Clinical characteristics of patients who develop severe forms of COVID-19 consistently suggest 168 

the contribution of intestinal dysbiosis. These patients are those with specific risk factors in 169 

relation to unhealthy gut microbiome status (23). Moreover, COVID-19 infection itself is 170 

associated to the alteration of the gut microbiome characterized by an enrichment of 171 

opportunistic organisms and depletion of beneficial commensals (24,25). Therefore, there is a 172 

link between gut microbiota alterations and the pathophysiology of COVID-19. Maintaining a 173 
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healthy microbiome status is a possible strategy to tame COVID-19 severity. Gut microbiota is 174 

known as a key factor of host immune system homeostasis and its composition has been found 175 

depleted with bacteria associated to immunomodulatory effects in some COVID-19 patients 176 

(24). Furthermore, intestinal dysbiosis has been linked to the decrease of main pro-resolving 177 

mediators.  Faecalibacterium prausnitzii, a butyrate-producing bacteria, has been found 178 

depleted in critically ill patients (26). This has also been associated to a pro-inflammatory state 179 

featured by (i) a decrease of regulatory T cells and (ii) polarization of macrophages into the M1 180 

phenotype (27).  181 

Short-chain fatty acids (SCFAs) belong to the pro-resolving mediators that participate in the 182 

dynamic host-microbiome network to regulate immune response. SCFAs are produced by the 183 

gut microbiota from the anaerobic fermentation of indigestible polysaccharides such as dietary 184 

fibers and resistant starches. Acetate, propionate and butyrate are key since they ensure the 185 

communication between the host and the microbiome, playing an important role in host 186 

homeostasis (28). SCFAs can act on various immune cells in the gut to inhibit inflammation 187 

through multiple mechanisms. For instance, they modulate the differentiation of regulatory T 188 

cells or inhibit histone deacetylase (HDAC). They can also specifically activate some G protein-189 

coupled receptors (GPCRs, e.g., FFAR2, FFAR3) in order to enhance the intestinal barrier 190 

function and to modulate the immune system. Moreover, butyrate mainly triggers the metabolic 191 

shift in macrophages towards anti-inflammatory M2 phenotype via the inhibition of HDAC3 192 

(28). In other words, SCFAs may provide a better control of the inflammatory response, 193 

suggesting that their therapeutic properties are worth exploring.  194 

 195 

Focus on the systemic anti-inflammatory effects of butyrate 196 

SCFAs are first absorbed by intestinal epithelial cells and are then metabolized in the liver. 197 

Only a small fraction reaches the systemic circulation. However, it has been suggested that 198 
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systemic SCFAs are protective against allergic asthma (29). Butyrate can inhibit adhesion of 199 

eosinophils to the endothelium and is known to improve allergen-induced inflammation in mice 200 

(29). Moreover, HDAC inhibitors are protective against vascular inflammation and 201 

atherosclerosis by modulating the endothelial function and production of pro-inflammatory 202 

cytokines, particularly with butyrate. SCFAs also improve kidney function after acute kidney 203 

injury induced by ischemia-reperfusion (28). Butyrate has been thoroughly evaluated as HDAC 204 

inhibitor and pointed as the most pharmacologically active of SCFA (30). HDAC inhibition by 205 

butyrate promotes the inhibition of lipopolysaccharide-induced production of nitric oxide (via 206 

iNOS) and pro-inflammatory cytokines (IL-6, IL-12) release (30). More interestingly, butyrate 207 

has shown inhibition of NF-kB signaling pathway and facilitates the expression of anti-208 

inflammatory cytokines such as IL-10 in mononuclear cells and neutrophils (31). Recently, it 209 

has been shown in gut epithelial organoids and in some gastric cells lines that butyrate can 210 

downregulate genes essential for SARS-CoV-2 infection (Ace2, Tmprss2) and can also 211 

upregulated other antiviral pathways (32,33). Altogether, all these studies provide strong 212 

evidence that SCFA and especially butyrate exhibit a worth-investigating anti-inflammatory 213 

action that might be used to prevent or alter the course of cytokine storm in critically ill COVID-214 

19 patients. 215 

 216 

Butyrate supplementation for preventing the cytokine storm 217 

Similar to the observations made on experimental models of viral infection (e.g., Influenza A), 218 

we propose that the inflammatory response during COVID-19 involves an increased M1/M2 219 

macrophage phenotype ratio (34). The M1 phenotype is likely to be associated to the activation 220 

of the NF-κB pathway and the pro-inflammatory cytokine production (e.g., IL-6, IL-12, TNF-221 

⍺). This could at least partially explain the observed excessive cytokine release. Therefore, a 222 

relevant alternative is to restore the M1/M2 balance ratio by favoring M2 macrophage 223 
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differentiation. Butyrate supplementation is expected to help polarize macrophages into M2 224 

phenotype, which in turn might decrease pro-inflammatory cytokine production. Butyrate is 225 

proposed to inhibit the NF-κB pathway by preventing proteasomal degradation of the NF-κB 226 

inhibitor, namely IκB. Ji et al. elegantly demonstrated that butyrate facilitates M2 macrophage 227 

polarization by HDAC inhibition and STAT6 signaling pathway activation. Furthermore, they 228 

observed an upregulation of M2 markers such as arg1 and found in inflammatory zone 1 (fizz1) 229 

(35). Furthermore, butyrate is known to prevent excessive neutrophil recruitment into the 230 

airways via a GPCR-dependent receptor and by an alteration of the CXCL1 synthesis, which is 231 

a neutrophil chemoattractant produced by macrophages (34). In other words, butyrate 232 

supplementation could also limit inflammatory cell infiltration in the airways, which in turn 233 

might reduce tissue and vascular disruption. In addition, butyrate also stimulates hematopoiesis 234 

by favoring the development of macrophage progenitors with the M2 phenotype (36). Through 235 

the expression of the transcription factor forkhead box protein P3 (foxp3) butyrate also 236 

promotes regulatory T cells, which modulate the immune system and secrete anti-inflammatory 237 

cytokines (IL-10). Butyrate is also known to limit the thrombo-inflammation phenomenon by 238 

activating the tissue-plasminogen activator (t-PA), thus likely to play a role in anti-coagulation 239 

COVID-19 strategies (Figure 1). 240 

 241 

EVALUATION OF THE HYPOTHESIS 242 

 243 

Supportive therapeutic strategy with SCFA  244 

The cytokine storm plays a critical role in COVID-19 pathophysiology depending on 245 

macrophage activation. Supplementation with SCFAs and especially butyrate could help to 246 

modulate the immune system activation early on. Our idea is to systematically associate SCFAs 247 

serum profiling, cytokine dosage and/or M1/M2 macrophages ratio determination in each 248 
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patient positive for COVID-19 at the early stages of the disease. In face of the absence of 249 

validated borderlines of these tests in specific cohort of COVID-19 patients, investigations will 250 

be performed according to limits routinely applied for other pathologies. This might help to 251 

detect intestinal dysbiosis and identify patients at risk of developing severe immune 252 

complications that could benefit from this supportive therapy. In addition to clinical 253 

characteristics, these parameters could also serve to elaborate a strong predictive score of 254 

COVID-19 progression and to initiate early butyrate supplementation as a supportive treatment 255 

in such detected vulnerable patients (Figure 2).  256 

 257 

Preclinical proof-of-concept of butyrate as supportive therapy 258 

Recently, butyrate treatment shows beneficial effects in influenza-induced mice by preventing 259 

excessive neutrophil recruitment into the airways (34). These results have driven the hypothesis 260 

that butyrate could serve as a supportive therapy during COVID-19 infection. Preclinical 261 

investigations performed with gut epithelial organoids or gastric cell lines have shown down-262 

regulation of SARS-CoV-2 entry genes under butyrate treatment (32,33). Another level of 263 

proof-of-concept could be reached by investigating the effects of butyrate supplementation in 264 

a relevant mouse model of SARS-CoV-2 infection. This could be achieved with mice 265 

expressing human ACE2 enzyme, inoculated with SARS-CoV-2 that develop ARDS within 266 

five days (37).  267 

 268 

Clinical trial design 269 

Our hypothesis could be tested through a randomized double-blind prospective trial. This trial 270 

would enroll patients tested positive for SARS-CoV-2 by reverse transcription polymerase 271 

chain reaction (RT-PCR) and who are at risk of progressing to severe COVID-19 (older patients 272 

with confirmed co-morbidities like heart disease, hypertension, chronic respiratory disease, 273 
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obesity, diabetes). After signing the informed consent, patients would be randomized to either 274 

“butyrate” or “placebo” groups. Patients would be proposed either butyrate capsules or placebo 275 

on a daily basis and for a fortnight. A remote telehealth monitoring service for clinical events 276 

would be performed from diagnosis to the final outcome. This would include the use of 277 

validated specific and general health questionnaires to document disease progression. Blood 278 

samples would be collected before treatment initiation and at 7 and 14 days after, for SCFA 279 

profiles and cytokine dosage. The primary endpoint could be a combined score aggregating 280 

clinical adverse events, severity markers, sequential organ failure assessment, the need and 281 

duration of hospitalization, time until virus negativation or death due to SARS-CoV-2 infection 282 

(Figure 3). 283 

 284 

CONCLUSION 285 

 286 

The cytokine storm acts as a critical factor in the occurrence of severe-to-death patients with 287 

COVID-19. This event is mostly defined by the unbalanced increase of circulating pro-288 

inflammatory cytokines, which in turn may lead to multi-organ failure. To counterpoise this 289 

phenomenon, we propose an early identification of patients at risk by investigating 290 

macrophages polarization. The decision to supplement with butyrate will be made on the basis 291 

of SCFA profiles, cytokine dosage and M1/M2 macrophage ratio. SCFAs and mainly butyrate 292 

can be considered as pro-resolving mediators due to their already known role in the immune 293 

response modulation. It is important to note that pro-resolving mediators have the major     294 

advantage of not blocking the initial immune response but rather downregulating the process to 295 

resolve inflammation, which is crucial during COVID-19. 296 

 297 

 298 
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FIGURES LEGENDS 437 

 438 

Figure 1: The proposed mechanism of short-chain fatty acids to prevent cytokine storm 439 

and multi-organ failure 440 

(1) SARS-CoV-2 enters and colonizes the host organism mainly through the airways. (2) 441 

Intestinal dysbiosis is found in patients with severe forms of COVID-19. Lymphocytopenia is 442 

also observed and SARS-CoV-2 inhibits regulatory T cells and leads to activation of the NF-443 

κB signalling pathway which promotes the cytokine storm. (3) Supplementation with butyrate 444 

could help to limit the cytokine storm through the inhibition of the NF-κB pathway and 445 

promotion of anti-inflammatory M2 macrophages.  Moreover, butyrate could restrain the 446 

thrombo-inflammation phenomenon by activating the t-PA. Created with Biorender.com 447 
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 448 

Figure 2: Path for the decision of supportive therapy with SCFA 449 

From the blood sample of a person tested positive for COVID-19, we propose to perform 450 

plasma SCFA profiling, relevant cytokine dosage and M1/M2 macrophages ratio at early stages 451 

of the disease. These data will serve as inputs to build a predictive score of disease severity or 452 

progression and to decide SCFAs supplementation. 453 

 454 

 455 

 456 
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 457 

Figure 3: Flowchart of the proposed clinical trial 458 

This clinical trial will enrol patients positive for COVID-19 (RT-PCR test) at mild to moderate 459 

stage who have co-morbidities. After randomization, blood samples will be collected at 460 

different endpoints for SCFA profile and cytokine dosage. The primary endpoint could combine 461 

clinical adverse events, disease severity markers, sequential organ failure assessment, the need 462 

and duration of hospitalization, time until virus negativation or death due to SARS-CoV-2 463 

infection. 464 


