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OctoPocus in VR: Using a Dynamic Guide for
3D Mid-Air Gestures in Virtual Reality

Katherine Fennedy, Jeremy Hartmann, Quentin Roy, Simon Tangi Perrault, and Daniel Vogel

Abstract—Bau and Mackay’s OctoPocus dynamic guide helps novices learn, execute, and remember 2D surface gestures. We adapt
OctoPocus to 3D mid-air gestures in Virtual Reality (VR) using an optimization-based recognizer, and by introducing an optional
exploration mode to help visualize the spatial complexity of guides in a 3D gesture set. A replication of the original experiment protocol
is used to compare OctoPocus in VR with a VR implementation of a crib-sheet. Results show that despite requiring 0.9s more reaction
time than crib-sheet, OctoPocus enables participants to execute gestures 1.8s faster with 13.8% more accuracy during training, while
remembering a comparable number of gestures. Subjective ratings support these results, 75% of participants found OctoPocus easier
to learn and 83% found it more accurate. We contribute an implementation and empirical evidence demonstrating that an adaptation of
the OctoPocus guide to VR is feasible and beneficial.

Index Terms—User Interfaces, Evaluation/methodology, Artificial, augmented, and virtual realities.

F

1 INTRODUCTION

G ESTURES performed in the 3D space around the user
without physical support, called “3D mid-air ges-

tures”, really should be more common in Virtual Reality
(VR). They match the nature of 6DOF controller input,
they reduce the need for a space-occupying graphical in-
terface, they increase the input vocabulary, and they facil-
itate expert performance: all desirable aspects for VR. Yet
WIMP-inspired interactions, like pointing and “clicking”
on graphical buttons and menus, are often used in VR,
even though they are known to be more difficult without
physical support or haptic feedback [2]. Perhaps the reason
is that, unlike graphical widgets, gestures are not self-
revealing by default [3], so users need to explicitly discover,
learn, and memorize them. This goes against many usability
guidelines [4] and even prompted Norman and Nielsen to
characterize gestures as “a step backward” [5]. Solving this
problem has been challenging for 2D gestures on desktops
and touch surfaces, and grows even more difficult with
the additional degrees-of-freedom (DOF) of mid-air gestures
and challenges when visualizing 3D gesture paths.

A guide can help users discover and learn gestures. A
basic form is a crib-sheet [6], where all available gestures
are displayed as thumbnails with corresponding commands
in a list or grid. This is a simple type of feedforward, since
it displays what can be done and what the result will be
[7, 8]. Feedforward in a crib-sheet is static since it does
not change based on the context of a partially performed
gesture, and it does not integrate feedback useful for learning
other aspects of gesture performance, like system confidence
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when recognizing gesture movements.
Marking Menus [9] and OctoPocus [1] are examples

of dynamic guides for 2D gestures on desktops or tablets.
Both filter feedforward outcomes and options based on a
partially performed gesture, and both provide integrated
recognition feedback. Marking menus are designed for ges-
tures composed of straight lines with minimal feedback and
simple feedforward, while OctoPocus works with gestures
of arbitrary shapes with more continuous feedback and
feedforward. Studies show that dynamic guides outperform
static guides in speed and recall for 2D gestures [1, 10].
Since OctoPocus is more general, we examine how it can
be adapted for 3D mid-air gestures in VR, and we compare
it to a VR crib-sheet.

We note that Delamare et al. [11] implemented a 3D
version of OctoPocus in a related but quite different context.
They used a Kinect for 3DOF indirect input, a mouse button
for delimiting the gesture, and a standard 2D desktop mon-
itor to render 3D guide visualizations. Their main investi-
gation focused on the effect of feedback and feedforward
variations on the speed and movement accuracy of gesture
performance. We adopt a key recommendation emerging
from their work regarding the length of the feedforward
gesture guide. However, their protocol did not measure
gesture-to-command learning, recall, or guide usage rates,
and they only compared OctoPocus to a video crib-sheet
baseline in a 4-person preliminary study. The VR context
is fundamentally different in terms of immersion, stereo
rendering, and 6DOF controller input. It remains unclear if
a video crib-sheet is better than the simpler thumbnail crib-
sheet tested in the original Bau and Mackay’s OctoPocus
study.

We adapt OctoPocus to 3D mid-air gestures in VR. We
introduce a novel exploration mode that leverages VR 6DOF
input to mitigate the challenges of 3D gesture guide visu-
alization. Our system uses an iterative closest point (ICP)
algorithm as a recognizer, which we modified to efficiently
recognize partial 3D strokes suitable for the OctoPocus
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dynamic guide. The technique was evaluated in a near
replication of Bau and Mackay’s study protocol using a VR
crib-sheet as a baseline. This protocol measures more than
execution speed and accuracy. Metrics like learning, recall,
and guide usage rate are also captured.

Our results show participants were 14% more accurate
with OctoPocus, 1.8s faster when executing the gesture, and
found it easier to use. Our study replication also enables
a direct comparison with Bau and Mackay’s OctoPocus
in 2D. Our results are largely consistent, except Bau and
Mackay found crib-sheet and OctoPocus to be comparable
in terms of execution speed. In addition, while Bau and
Mackay showed that OctoPocus improves gesture recall and
incidental learning of non-practised gestures in 2D, we did
not find evidence that these benefits translate to VR. Overall,
our results demonstrate that OctoPocus is viable and even
beneficial for VR mid-air gestures. However, its advantages
over a simpler crib-sheet are not as pronounced as in a 2D
interface.

Our main contributions are: (1) an enhanced design of
OctoPocus for 3D mid-air gestures in VR; and (2) empirical
results demonstrating the efficacy of OctoPocus in VR.

2 RELATED WORK

We describe how guidance can help users discover, perform,
learn, and recall gestures, and we summarize previous
gesture guidance work with a particular focus on methods
that relate to 3D mid-air gesture guidance.

2.1 Gesture Guidance
In principle, a gesture does not require any visual inter-
face: the gesture action is performed, and the associated
command is triggered. Of course, this assumes the user
already knows how to perform the gesture and its command
mapping. A guide is a method to reveal possible gesture
actions and their command mappings to users. This could
be an offline user manual or tutorial video, but our focus
is on visual guidance interaction techniques within the
application interface.

The guidance technique itself can be initiated in many
ways, such as pressing a graphical or physical button, or by
pausing gesture execution for a moment. The latter is often
referred to as “dwelling” or “press-and-hold.” Once trig-
gered, the guidance information may share different spatial
locality [12]: either displayed adjacent to the input area like a
simple crib-sheet, or collocated near the input point to allow
tracing like OctoPocus, or completely separated from the
input area like OctoPocus3D [11]. A study revealed that sys-
tems that use a high level of guidance could maximize user
performance while executing 2D gestures [10]. Each gesture
may be visualized as a rendered line representing the ideal
shape created by a gesture movement. This is sometimes
referred to as a “template” since the line is based on an
internal representation of the gesture path for the purpose
of recognition. Other forms of visualizations include using
arrows [13], user skeletons [14, 15, 16], hand shadows [17],
body silhouettes [18], and “ghosted hints” [19].

Regardless of how and where the guide is displayed, it
is a form of feedforward [7, 8] since it shows the possible

gesture options and outcomes. The feedforward can be
static, meaning it is independent of any partially executed
gesture input, or dynamic when the style and scope of
the display continuously update based on user input for
a partially completed gesture [10]. In addition, a guide may
include feedback, which can also be static or dynamic. An
example of static feedback is a display after gesture execu-
tion indicating what gesture was recognized, possibly with
a level of confidence. On the other hand, dynamic feedback
is provided during execution to communicate information
like the current level of recognition confidence based on a
partial gesture.

A related but tangential aspect of gesture learning is
how to support a novice-to-expert transition [20]. This is
especially important when multiple methods invoke a com-
mand, one designed for novices and another for experts.
Suppose the two methods are quite different, such as graph-
ical menus for novices and gestures for experts. In that case,
there will be an initial drop in performance when users
first adopt the expert method, even if that expert method
is much faster when mastered in the long run [21]. We do
not examine this aspect in our work.

2.2 Guidance for Mouse, Pen, and Surface Gestures
A crib-sheet is a common guide for mouse, pen, and surface
gestures. It is a typically static display showing all gesture
shapes and associated commands, typically in a list or grid.
Past examples permanently display a crib-sheet in a tool-
bar [22], temporarily display a crib-sheet with a graphical
button press [1, 6, 23, 24], or reveal it after dwelling for a
second [17]. In addition, a crib-sheet can be enhanced to
show each gesture’s text descriptions and animated render-
ings, such as in GestureBar [22]. Given the simplicity and
predominance of a crib-sheet guide, it is a common baseline
when evaluating more advanced guides.

Some guides combine characteristics of a crib-sheet with
collocated visualizations and animations for a selected ges-
ture. For example, ShadowGuides [17] is a technique for
tabletop gestures composed of different hand postures and
multi-finger movements. It uses a crib-sheet for initial ges-
ture guide selection, then a dynamic feedforward via an-
notated shadow visualization showing how to perform the
gesture in stages. Arpège [25] is a related guide for multi-
finger chording, which dynamically reveals each finger to
be laid down by the user.

A well-known example of an advanced gesture guide is
the Marking Menu [9, 26], a circular menu of items selected
using directional strokes. When an item is selected, a com-
mand is triggered, or another circular menu of sub-items is
available using the same style of directional stroke move-
ment. The design has a collocated feedforward triggered
by a dwell, and the guide renders directional targets with
labelled commands. It is dynamic because the guide for each
menu level is shown incrementally after each directional
gesture is drawn. Upon completion, feedback is provided as
a beautified rendering of the ideal stroke. Several variations
on the general approach have been proposed, including
FlowMenu [27], Flower Menus [28], and Multi-Stroke Mark-
ing Menus [29, 30]. Studies have shown that radial layouts
like Marking Menus are faster and more accurate than
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(a) (b)

Fig. 1. Bau and Mackay’s OctoPocus for 2D surface gestures: (a) when
first triggered, all possible gesture paths are revealed; (b) as the ’Copy’
gesture is partially traced out, the different ’Paste’ gesture disappears
and the similar, but less likely ’Cut’ gesture path is rendered more
transparent with a thinner line (figure from [1]).

conventional linear menus [31, 32], and radial layouts can
exploit spatial memory by associating commands with car-
dinal orientations [33]. Marking Menus have been extended
to touch [34] and mid-air [35, 36, 37] interactions. However,
Marking Menus are limited to gestures composed of straight
lines and do not support arbitrary gesture shapes such as
curved paths, letters, or symbols.

Bau and Mackay’s OctoPocus
A more general-purpose guidance technique is Bau and
Mackay’s OctoPocus [1]. Also activated with a dwell trigger,
it renders collocated feedforward as possible gesture paths
emanating from the current input location. Each path is
coloured and labelled (Figure 1a), and they are dynamic:
paths are filtered as the gesture is partially completed. Less
likely ones fade away and eventually disappear while the
most likely ones remain (Figure 1b). Continuous dynamic
feedback is provided by how the relative thickness of the
path lines communicates recognizer confidence.

Using a comprehensive experiment protocol, Bau and
Mackay showed OctoPocus improves speed, accuracy, and
recall compared to crib-sheet for arbitrary gestures and
compared to Marking Menus for gestures composed of
connected straight lines. OctoPocus was later integrated in
a soft keyboard to guide gestural shortcuts [38] and was
adapted to teach multi-finger chords [25]. Portions of the
ShadowGuides whole-hand gesture guide are also based
on OctoPocus [17]. Given the success of OctoPocus as a
guide for arbitrary 2D gestures, we explore how it can be
adapted to VR and use Bau and Mackay’s protocol with a
VR adapted crib-sheet baseline as a standard evaluation.

2.3 Guidance for Mid-air and Related Gestures
The additional dimension for movement makes 3D postures
and gestures more complex to learn than their 2D counter-
parts. For mid-air hand gestures, real-time visual guidance
and feedforward could be displayed directly on the hand
using styled arrows [13] or on the screen of a smartphone
held by the hand [39, 40]. In the context of motions
in 3D space, it is common to have gestures that involve
more than a hand. For example, a mirrored reflection of
the user’s skeleton [14, 15, 39] or a shadow of the user’s
body [18, 41] was used to guide whole-body movements
in front of a large display. In both of these techniques, the
feedforward guide is for a single predetermined movement,
not to choose among possible movements. Therefore, their

effectiveness is limited to scenarios with a clear movement
objective like dancing, yoga, and rehabilitation exercises. It
makes sense why some guides were designed to focus on
providing feedback on how far or close users’ actions have
been [42, 43] with only limited feedforward.

However, in our context of command selection tasks,
the choice of gesture is on the user. We need feedforward
strategies to communicate all available gestures, such that
the corresponding guide can be revealed. For instance, Rov-
elo et al. [16] used a hierarchical tree structure to manually
subdivide gestures into several body postures. While they
demonstrated the feasibility of showing three simultaneous
postures within a screen, it remains an open issue regarding
how to scale feedforward to larger vocabularies of 3D mid-
air gestures.

Delamare et al.’s “OctoPocus3D”
Delamare et al. [11] implemented OctoPocus for 3D mid-air
hand gestures and used their system primarily to explore
different feedback and feedforward mechanisms. In two
main experiments, they measure how concurrent feedback,
the portion of gestures displayed, and starting position of
the guides affect completion time and recognition rate. Since
their primary focus is on how participants use guidance,
their experiment task only uses novice mode and their
protocol does not test the learning or recall of gesture-
to-command mappings. The most relevant result for our
work is that rendering only the first 33% of the remaining
guidance path made participants 8% faster than rendering
all of the remaining path.

In a pilot study, Delamare et al. also showed that using
their implementation of OctoPocus resulted in 30% more
accurate gesture movements compared to video demonstra-
tions. However, there were only 4 participants, execution
speed was not reported, and learning or recall was not
measured. In all studies, a Microsoft Kinect was used to
track the hand, a mouse was used for a gesture trigger, and
a desktop monitor to render all feedback and feedforward.
Interaction in immersive VR with a high-precision 6DOF
controller is fundamentally different from a 3D rendered
scene on a desktop monitor with less precise 3DOF Kinect
input (positional errors can be 1 to 3 cm [44]).

3 ADAPTING OCTOPOCUS FOR VR GESTURES

Our implementation of OctoPocus follows Bau and
Mackay’s original design [1] with the guidance design fur-
ther justified by Delamare et al.’s results [11]. We further
enhance OctoPocus for a VR environment with a new ex-
ploration mode, and our system enables efficient recognition
using a refined recognition algorithm. In the description that
follows, we adopt concise terminology used by previous
work: “template” refers to the ideal gesture path rendered
as feedforward, and “prefix” is an emphasized next portion
along the ideal gesture path. Figure 2 provides a visual
walk-through of the guide, and an accompanying video
provides a full demonstration.

3.1 Guidance Visualization and Interaction
The trigger button of the VR controller is used to draw
gestures, analogous to touching a surface or holding a
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(a) (b) (c) (d) (e)

Fig. 2. VR OctoPocus guide walk-through: (a) when the trigger is first pressed, all 16 gestures are equally likely, so all feedforward ideal gesture
paths are fully visible; (b) as the user draws, a white line shows the partially completed gesture path as feedback, and feedforward emphasizes the
next portion of most likely gesture paths for ‘Amsterdam’ and ‘London’ “commands”, while less-likely paths become thinner and more transparent;
(c) the feedforward path for ‘Amsterdam’ is now thicker and more opaque since it is more likely than ‘London’, all other paths have faded completely
away since they are no longer possible; (d) the ‘Amsterdam’ label is highlighted in white to indicate the drawn gesture has met the minimum
detectable threshold set by the recognizer; (e) when the trigger is released, all remaining guide paths disappear and terminal feedback shows the
executed path in green indicating the ‘Amsterdam’ command was selected.

mouse button down in the original design. Like Bau and
Mackay’s implementation and following rehearsal-based
interfaces in general [45], the guide is activated after a short
dwell time. Specifically, activation is when the trigger is held
down and the controller position moves less than 7.5 mm
during a window of 250ms. This is the same duration and
comparable method to Bau and Mackay. Note that the guide
may be triggered at any point, even if the gesture is partially
executed.

A gesture can be executed without any guidance sim-
ply by moving at a reasonable speed without pausing. In
that case, only a trace corresponding to the gesture would
appear. We refer to this as “expert mode” since the gesture
path and the command mapping must be memorized. The
ultimate goal of any “novice” guide like OctoPocus is to
help users learn the gesture set so they can use expert mode.

3.1.1 Path Visualization
When activated, the guide renders all possible gesture tem-
plates as coloured paths, each labelled with the associated
command (Fig. 2a). All paths begin at the initial controller
position. Each template begins with a fully opaque prefix,
with a length equal to one-third of the template path length.
The command label is rendered at the end of each prefix
in the path colour with a thin black outline. Following
Delamare et al.’s recommendation, the rest of the template
is nearly transparent to reduce visual complexity [11].

In an actual application deployment, the orientation of
the guide would appear relative to the user’s orientation.
This could be relative to the user’s head orientation, con-
troller orientation, or if available, their torso or shoulder
orientation. However, choosing and implementing a specific
body-centric orientation technique might introduce more
variation across tasks and be less generalisable. For instance,
it is not clear which is better, head orientation or controller
direction. To simplify our implementation and to eliminate
a potential confound in our experiment, we fixed the guide
orientation to the virtual world and constrained participants

such that they faced the guide. This simulates a best-case
body-centric orientation solution.

3.1.2 Feedback and Feedforward
Like the original version, our VR OctoPocus offers dynamic
feedback and feedforward during partial execution of a
gesture. Dynamic feedforward is accomplished by progres-
sively filtering the template path visualization. As a specific
gesture becomes less likely, the thickness and opacity of its
template and label dynamically decrease (Fig. 2b), eventu-
ally disappearing when not possible at all (Fig. 2c). The
opacity value of each template is determined by the cal-
culation explained in Section 3.2. In addition, feedforward
for the remaining possible paths is dynamically updated by
sliding the emphasized prefix portion along the template, as
if pushed by the controller. Feedback is in the form of path
thickness to indicate recognition confidence, and the com-
mand label for the most likely path is highlighted in white
when enough of the gesture is executed that recognition is
possible (Fig. 2d). After the gesture is completed and the
trigger is released, final feedback renders the actual gesture
path in the recognized gesture colour for 500 ms (Fig. 2e).

3.1.3 Exploration Mode
The third spatial dimension in VR implies more overlap
between templates, with gestures able to project backward
and forward in the z-axis. Understanding the shape of these
templates is more difficult than for surface gestures and
requires greater exploration. We implemented an explo-
ration mode triggered by pressing the controller grip button
(different from the trigger button) after the OctoPocus guide
has been revealed. This switches the orientation from world-
relative to controller-relative, allowing the user to rotate
and translate the visualization of all visible templates. Text
labels, which represent what each gesture is mapped to, are
always rendered facing the user. If the user was previously
executing a gesture (by maintaining the trigger button),
the drawing is paused while in exploration mode. While
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this mode enables template exploration from any desired
orientation, the gesture execution orientation is unchanged.
As the user leaves the exploration mode by releasing the
grip button, the guide snaps back to its original orientation
with a 500ms animation and returns to draw mode at the
new position of the controller.

3.2 Gesture Recognition
Recognizing partial gestures in 3D introduces additional
challenges that are not present within a 2D space. Bau and
Mackay’s 2D gesture recognizer was Rubine’s algorithm [46]
with incremental turning angle representation [47]. They
do not report specific recognition rates, but their overall
accuracy measures of 93% and 95% suggest it worked well
[1]. Delamare et al.’s 3D gesture recognizer used Dynamic
Time Warping (DTW), but they report a low recognition
rate, ranging between 47% and 81%. We chose to base
our 3D gesture recognizer on a modified iterative closest
point (ICP) algorithm [48, 49]. ICP can be considered a
more general extension of the basic method used by the $1
recognizer [50].

Extending and tuning ICP to be efficient for 3D mid-
air gestures requires some important design choices. Even
though only a single spatial dimension is added, the pa-
rameter space to find a match between the user’s path and
the template is doubled for simple translation and rotation
operations. In addition, the scale must also be considered.
This results in 7-dimensional parameter space: 3 for rotation,
3 for translation, and 1 for uniform scale. For each instance
the user is drawing, our process can be described in three
phases.

Phase 1: Finding an optimal fit — For each template
gesture, the drawn path and template are sub-sampled to
reduce input complexity, similar to the initial stage of the
$1 recognizer [50]. These paths are then processed using an
ICP algorithm on the constrained 7-dimensional parameter
space. The constrained ranges are determined prior to opti-
mization, and are tuned based on the needs of the template
dataset. In our implementation, rotation is constrained to be
within ±22.5◦, translation to be within ±0.1m, and scale to
be within 0.2 to 2 times the original path size.

Phase 2: Calculating template weights — The root mean
square error (RMSE) from phase one is used to calculate
the weight (w) for for each template (k). The weights are
calculated based on a simple radial basis function (RBF)
Gaussian kernel [51]:

wk = exp
(−RMSE2

β2

)
. (1)

This effectively converts the resulting RMSE into a weight
between 0 and 1 for each template, with higher weights
when errors are near zero. The parameter β is tuned to the
template dataset and set at 15 by default.

Phase 3: Determining template likelihood — To find the
likelihood (`) of each template (k) based on the complete
or partially complete user drawn path, the weights from the
previous phase are normalized by their total sum, giving:

`k =
wk∑N
i wi

. (2)

This likelihood determines whether that given template is
the one the user is most likely drawing. An elegant property

of this is it allows us to determine equally likely templates
for incomplete gestures and visualize them accordingly
using the thickness or transparency in guidance paths.

4 EXPERIMENT

This experiment examines how our adaptation of OctoPocus
for VR performs relative to a crib-sheet baseline using a near
replication of Bau and Mackay’s protocol [1]. A blocked se-
quence of training and testing trials measures how well par-
ticipants learn to execute 3D gestures and recall associations
between gestures and city names, an abstract representation
of command names. The accompanying video demonstrates
all conditions and tasks.

4.1 Participants and Apparatus
We recruited 12 participants: ages 19 to 29 (M = 24.8,
SD = 3.4); 5 identified as female and 7 identified as male;
all were right-handed. Note that our experiment code sup-
ported left-handed participants. Handedness was not a re-
cruiting criterion. In terms of VR experience, our partici-
pants can be considered novices: 2 use it twice, 6 use it once,
and 4 have never used it. Each participant received $15 for
completing the 1.5-hour study.

As apparatus, we used an Oculus Quest VR head-
mounted display (HMD) tethered to a Windows 10 laptop
(2.6GHz Intel i7, GeForce RTX 2060). The techniques and
experiment tasks were implemented as a Unity 2020.1.2f1
application. Participants were required to stand during ex-
periment trials, and the virtual world environment was a
uniform dark grey space.

4.2 Task and Stimuli
Before each trial, a sphere of diameter 20cm and labelled
’Start’ is rendered at a fixed world location 30cm away from
the user’s head and at the same height. This controls the
participant’s position and body orientation. The participant
moves the controller into the sphere and presses the ‘A’
button to begin the timed trial. Immediately, the sphere
disappears and the target command name appears as white
text with a 5cm line-height rendered 60cm away from the
user.

The participant’s goal for the task is to perform a 3D
gesture that matches the command name. There were two
task variations. In a training trial, the participant could
use a guide according to the experiment condition, either
the OctoPocus technique (explained above) or a crib-sheet
baseline (described below). If the participant chose to use
the guide, the trial is marked as ’novice’. Otherwise, it is
marked as ’expert’. In a testing trial, the participant could
not use a guide. The timed portion of the trial ends when the
participant releases the trigger after performing the gesture.
In both training and testing trials, either the command
corresponding to the performed gesture is displayed, or
if the gesture motion did not meet a minimum threshold
required by the recognizer, “not recognized” was shown.
This visual feedback is positioned right below the target
command name displayed since the beginning of the trial.
Distinctive audio feedback is also provided as a “ding” or a
soft buzzer sound.
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There are three sets of 16 gestures each, one set for
initial familiarization with the experiment task and tech-
niques, and two sets used for measured trials in the main
experiment. The first familiarization set used animal names,
while the other two experimental sets used city names to
represent associated gesture commands. These appeared in
the guide and were used as the trial stimulus. The gestures
were designed to be diverse in 3D shape by starting from
Bau and Mackay’s basic 2D shapes and extending portions
of the strokes along the z-axis directions. In addition, we
maximized the spatial distribution of the gestures across x,
y, and z axes and ensured no mnemonic mapping between
the city name and gesture shape (e.g.no “P” for Paris).

4.3 Crib-Sheet Baseline
Following Bau and Mackay, we used a crib-sheet as a
baseline guide comparison. This required some adaptation
for VR usage, and our implementation works as follows.
Prior to executing a gesture, the participant can press the
controller grip button to view a 4 × 4 grid showing all
gesture templates rendered in 3D (see Fig. 3). The command
associated with each gesture is shown either under or above
the template to minimize occlusion, and a small white
sphere indicates the gesture start position. The templates are
ordered alphabetically row-wise with start positions spaced
35cm horizontally and vertically within the grid. The centre
of the grid is positioned at an offset of 10cm in the z-axis,
away from the controller.

Similar to our OctoPocus exploration mode, the position
and orientation of the grid are relative to the controller. It
may be rotated and translated to observe the 3D templates
from any desired angle. Like OctoPocus, each template and
command label is displayed in an associated colour, and
the participant’s gesture path changes from white to the
associated colour when the trigger is released. Note that Bau
and Mackay’s crib-sheet rendered all templates in black, but
we believe this is a potential confound since colour can help
visual search and retention [52, 53].

4.4 Procedure
We follow Bau and Mackay’s general procedure. After the
participant provided information for demographics and
related experience, the experimenter introduced the VR
system and the experiment tasks and techniques. The main
part of the experiment was completed in two sections, one
per guide technique (OctoPocus and crib-sheet). We first
start each section by asking participants to complete one
training and one testing block with a gesture set of 16 animal
names for about 10 minutes. Then, each section is followed
by three phases: pre-test; main (a sequence of alternating
training and testing sequences); and post-test. Figure 4
summarizes this design. Between each section, participants
rested for up to 10 minutes to prevent accumulated fatigue.
We used a different gesture set of 16 city names in each
section to avoid confounding carryover effects. After both
experiment sections were completed, the participant rated
each guide technique on different aspects using a 7-point
Likert scale: ease of learning, speed, accuracy, comfort, and
ease of recall. Finally, the participant chose which technique
they preferred overall.

Fig. 3. Crib-sheet baseline condition: 16 gesture templates rendered in
3D in a 4x4 grid. The participant can rotate or translate the entire guide
using the controller orientation and position.

OCTOPOCUS + Set 1 CRIBSHEET + Set 2 

CRIBSHEET + Set 1 

OCTOPOCUS + Set 2 

OCTOPOCUS + Set 1 

OCTOPOCUS + Set 2 

CRIBSHEET + Set 1 

CRIBSHEET + Set 2 

Post-testTrain TrainTest Test Train TestPre-test

Main Phase

B1 B3B2

1 Training sequence: 3 repetitions x 8 gestures

1 Test sequence: 1 repetition x 8 gestures

P1

P2

P3

P4

Fig. 4. Experimental Design. Participants started each technique with
a Pre-test phase of testing trials, followed by three blocks of separated
training and testing trials, then a final sequence of post-test testing trials.
In Pre- and Post-test phases, all 16 gestures in the gesture set were
tested. In the main phase blocks, only 8 out of 16 gestures were used
as stimulus and all participants received the same 8 gestures.

4.4.1 Pre-test Phase
The purpose of this phase is to verify the gesture sets used
for each technique are unknown without “guessable” com-
mand mappings, and to establish a relative recall baseline.
The participant completed 16 testing trials, one for each
gesture in the set (i.e. without the guide or correctness
feedback) in random order. This is the first time they see
these gestures and mappings, so they are instructed to
provide their best guess. Like Bau and Mackay, we expect a
low (close to 0%) accuracy.

4.4.2 Main Phase
The purpose of this phase is to measure guide usage, gesture
performance, and gesture mapping learning. Note that the
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participant is trained and tested on only 8 gestures out of the
16 gestures in the set, but the guide displays all 16 gestures.
There are three blocks, each with a sequence of training trials
followed by a sequence of testing trials. At the start of each
block, the participant is reminded to learn as many gestures
as possible because they will be tested at the end of the
block.

Each training sequence has a total of 24 training trials, 8
gestures each with 3 repetitions. Gestures are ordered ran-
domly but repeated three times consecutively for rehearsal.
The training portion of each block measures how the guide
is used and how gestures are performed in terms of speed
and accuracy.

Each test sequence has 8 testing trials, one for each of the
8 gestures they are trained on. Since test trials disable the
guide, the participant has to rely entirely on their memory.
Note that Bau and Mackay did not include a final testing
sequence at the end of the third block. We include this to
more consistently measure recall for the 8 training gestures.
The test portion of each block evaluates recall performance.

4.4.3 Post-test Phase
The purpose of this phase is to re-test recall for the 8
practised gestures and incidental learning of the 8 other
gestures in the set that were not practised. The participant
completes 16 testing trials, one per gesture presented in
random order. Participants were not told that the other 8
gestures would be tested until the beginning of the post-test
phase.

4.5 Design
We used a within-subject design with GUIDE as a pri-
mary independent variable with 2 levels { OCTOPOCUS,
CRIBSHEET }, and gesture SET and main phase BLOCK as
secondary independent variables. The order of presentation
of GUIDE was fully counterbalanced (see Figure 4). SET has 2
levels { SET1, SET2 }, where the same set was paired with a
different GUIDE over alternating participants to avoid any
confounding effect of SET on GUIDE. BLOCK has 3 levels
{ B1, B2, B3 }. In the main phase, each participant completes
144 training trials: 2 GUIDES × 3 BLOCKS × 8 gestures ×
3 repetitions. Each participant completes 112 testing trials
across all phases: 2 GUIDES × [16 pre-test gestures + (3 main
phase BLOCKS × 8 gestures) + 16 post-test gestures].

Like Bau and Mackay, our dependent variables include
trial time, overall execution accuracy, recall, incidental learn-
ing, and subjective ratings. We use modified naming con-
ventions for some measures to improve readability, and
we introduce additional dependent variables to expand our
analysis. These differences are explained below.

5 RESULTS

We identified 40 trials (2.3%) as outliers since they had Trial
Time more than 3 standard deviations from the mean of all
training trials. We also verified there were no main effects
or interactions for SET and guide ORDER on any time or
accuracy measures. For analysis, trials were first aggregated
by participant and factors used in the test. When the as-
sumption of sphericity was violated, we corrected both p-
values and degrees of freedom using Greenhouse-Geisser

(ε < 0.75). If data residuals were found to be non-normal
by Shapiro-Wilk, we name the specific data transformation
used to correct normality for analysis. A GUIDE × BLOCK
ANOVA with pairwise t-tests with Bonferroni corrections
for post hoc comparisons were used for objective contin-
uous measures. Wilcoxon Signed Rank tests were used to
analyze subjective ratings. Similar to [54], we also report
95% confidence intervals as [low, high] for the difference of
means to minimize the over-interpretation of p-values [55].

5.1 Time
We examine three related time measures calculated from
training trials marked as ‘novice’ (i.e. when the participant
uses either guide). Trial Time is from when the target com-
mand label appears until the participant releases the trigger
to complete the gesture. Bau and Mackay called this mea-
sure ‘overall input time’, and unlike Bau and Mackay, we
only include correct novice trials during training. Reaction
Time is the beginning period of a trial before the participant
reacts with explicit input: measured from when the target
command label appears until the participant first presses a
controller button to view the OctoPocus or crib-sheet guide.
This is the same as Bau and Mackay’s ‘access time’. Input
Time is the remaining period of the trial, from when the
participant started viewing the guide until they release the
trigger to complete the gesture. Note that Trial Time is the
sum of Reaction Time and Input Time.

Overall, OctoPocus has a longer Reaction Time but less
Input Time compared to the crib-sheet. Both Trial Time and
Input Time decreased after the first training block for both
techniques.

5.1.1 Trial Time
OctoPocus and crib-sheet are similar in terms of overall trial
time (Figure 5a). There was no main effect of GUIDE on log
transformed Trial Time (F1,11 = 2.27, p = .161, η2G = .03),
and there was no interaction between GUIDE and BLOCK.
Mean times across all blocks: OCTOPOCUS (M = 8.1s) and
CRIBSHEET (M = 9.0s) ([−0.3s, 2.2s]). However, we found
a significant main effect of BLOCK (F2,22 = 10.14, p < .001,
η2G = .11) on Trial Time. Pairwise comparisons show that
participants were slower in B1 (M = 9.7s) as compared to
B2 (M = 8.1s, p < .01, ∆ = −1.6s, [−3.1s,−0.2s]) and B3
(M = 7.7s, p < .01, ∆ = −2.0s, [−3.5s,−0.5s]).

5.1.2 Reaction Time
OctoPocus was on average 0.9s slower than the crib-sheet
to view the guide before starting to draw the gesture
(Figure 5b). There was a significant main effect of GUIDE
(F1,11 = 68.68, p < .00001, η2G = .52) on Reaction Time, with
OCTOPOCUS (M = 2.0s) requiring more time to react than
CRIBSHEET (M = 1.1s,∆ = −0.9s, [−1.1s,−0.7s]). There
was no main effect of BLOCK on Reaction Time (F2,22 = 0.39,
p = .682, η2G = .01) and no interaction between GUIDE and
BLOCK.

5.1.3 Input Time
OctoPocus required 1.8s less time to draw gestures than
crib-sheet, with times decreasing after the first block for both
guides (Figure 5c). There was a significant main effect of
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Fig. 5. Time measurements by training BLOCK for each GUIDE for: (a) Trial Time, (b) Input Time, and (c) Reaction Time (error bars in all graphs
represent 95% confidence intervals). Note that Trial time is the sum of Reaction Time and Input Time.

GUIDE on square-root transformed Input Time (F1,11 = 7.81,
p = .017, η2G = .14) showing OCTOPOCUS (M = 6.1s) is less
than CRIBSHEET (M = 7.9s,∆ = 1.8s, [0.5s, 3.1s]). There
was also a main effect of BLOCK (F2,22 = 13.05, p < .001,
η2G = .12) on Input Time. Pairwise comparisons show that
participants were slower in B1 (M = 8.1s) as compared
to B2 (M = 6.6s, p < .01, ∆ = −1.5s, [−3.0s, 0s]) and B3
(M = 6.2s, p = .032, ∆ = −1.9s, [−3.5s,−0.4s]). We did not
find any interaction between GUIDE and BLOCK.

5.2 Execution Accuracy
We examine three related measures of execution accuracy
also using only training trials. We use “accuracy” to create a
positive measure instead of an equivalent negative measure
of “error rate”. We use the term “execution” because the
participant should know the target gesture since they can
use the guide or they are confident performing the gesture
without the guide. This means this measure represents
how well they can execute the gesture shape to match the
template. Therefore, Overall Execution Accuracy is the extent
to which gestures drawn by a participant match the gesture
template targets during a single block. Bau and Mackay
called this measure ‘overall error rate’, and they did not
also decompose it into two groups based on the trial mode
as we do. We also define Expert Execution Accuracy for trials
without guidance, and Novice Execution Accuracy for trials
with guidance.

Overall, OctoPocus is more accurate than crib-sheet for
all three measures. In addition, Expert Execution Accuracy
decreased in the last two blocks.

5.2.1 Overall Execution Accuracy
OctoPocus was more accurate than crib-sheet by 13.8%
(Figure 6a). There was a significant main effect of GUIDE
(F1,11 = 71.99, p < .00001, η2G = .41) on Reaction Time,
with OCTOPOCUS (M = 90.2%) being more accurate than
CRIBSHEET (M = 76.4%,∆ = −13.8%, [−17.7%,−9.8%]).
There was no main effect of BLOCK on Overall Execution
Accuracy (F2,22 = 0.39, p > .05) and no interaction between
GUIDE and BLOCK.

5.2.2 Expert Execution Accuracy
When participants do not use the guide at all, OctoPocus
was more accurate than crib-sheet by 10.5%, with accuracy

of both guides worsening between the last two blocks (Fig-
ure 6b). There was a significant main effect of GUIDE (F1,11 =

24.87, p < .001, η2G = .18) on Expert Execution Accuracy,
with OCTOPOCUS (M = 87.3%) more accurate than CRIB-
SHEET (M = 77.0%,∆ = −10.3%, [−16.1%,−4.6%]). There
was also a significant main effect of BLOCK (F2,22 = 4.28,
p = .027, η2G = .13) on Expert Execution Accuracy. Pairwise
comparisons show that participants were more accurate in
B2 (M = 86.9%) as compared to B3 (M = 76.4%, p < .01,
∆ = −10.5%, [−17.6%,−3.5%]). There was no interaction
between GUIDE and BLOCK.

5.2.3 Novice Execution Accuracy
When participants use the guide, OctoPocus was more
accurate than crib-sheet by 20.2% (Figure 6c). There was
a significant main effect of GUIDE (F1,11 = 24.90, p < .001,
η2G = .27) on Novice Execution Accuracy, with OCTOPOCUS
(M = 93.4%) being more accurate than CRIBSHEET (M =
73.2%,∆ = −20.2%, [−28.2%,−12.0%]). There was no main
effect of BLOCK on Novice Execution Accuracy (F2,22 = 0.13,
p > .05) and no interaction between GUIDE and BLOCK.

5.3 Learning
We measure how well participants learned gestures by
examining the execution accuracy at different testing trials.
Note that no guide is available in testing trials, so partici-
pants must either guess or rely on what they learned during
any training trials they completed. Recall measures the ac-
curacy of executing the 8 gestures practised during training,
and it is measured during the main phase of the experiment.
“Recall” during the pre-test phase measures performance
without any prior knowledge, which is helpful to verify
that the gesture sets were not easily guessable. Incidental
Learning measures the accuracy of the remaining 8 gestures
not practised during training, and it is measured during
the post-test phase. Bau and Mackay assessed learning at
similar phases but used ‘error rates’ instead.

5.3.1 Recall
During the main phase, OctoPocus and crib-sheet are com-
parable in terms of Recall (Figure 7a), and participants
learned gestures at a similar rate. There was no significant
main effect of GUIDE (F1,11 = 0.02, p > .05) on Recall.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS VOL. XX, NO. X, MONTH YYYY 9

● ●
●

91 92 88

76 77 76

B1−Train B2−Train B3−Train
0

25

50

75

100

Block

Ac
cu

ra
cy

 (%
)

● OCTOPOCUS CRIBSHEET

● ●

●

90 92

79

76
81

73

B1−Train B2−Train B3−Train
0

25

50

75

100

Block

Ac
cu

ra
cy

 (%
)

● ● ●92 93 95

77
71 71

B1−Train B2−Train B3−Train
0

25

50

75

100

Block

Ac
cu

ra
cy

 (%
)

(a) Overall Accuracy (b) Expert Execution Accuracy (c) Novice Execution Accuracy

Fig. 6. Execution Accuracy by training BLOCK for each GUIDE for: (a) all trials, (b) expert trials only, and (c) novice trials only.
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Fig. 7. (a) Recall on 8 practised gestures across all three phases and across BLOCK during the training phase; and (b) Incidental Learning on 8
non-practised gestures by GUIDE during post-test phase.

Mean accuracy of OCTOPOCUS is 63.9% while CRIBSHEET
is 63.2% ([−11.4%, 10.0%]). There was a significant main
effect of BLOCK (F2,22 = 31.13, p < .00001, η2G = .43) on
Recall. Pairwise comparisons show that participants could
recall more gestures after each training block: recall at B1
(M = 44.8%) increased at B2 (M = 65.1%, p < .001,
∆ = 20.3%, [9.8%, 30.8%]), and increased again at B3
(M = 80.7%, p < .001, ∆ = 15.6%, [5.7%, 25.6%]). We did
not find any interaction between GUIDE and BLOCK.

We can consider the pre-test and post-test phases as
additional blocks of testing trials and examine recall across
these five “blocks”. With both guides, participants could re-
call more gestures after the first block of training compared
to the pre-test, and their recall did not significantly change
between the last main phase test block and the post-test
phase. There was no main effect of GUIDE (F1,11 = 0.17,
p > .05) on Recall, but there was a significant main effect
of BLOCK (F4,44 = 94.81, p < .0001, η2G = .74). Pairwise
comparisons show that recall differences are mostly signif-
icant (p < .0001) except that Recall was similar (p > .05)
between main phase’s B3 (M = 80.7%) and post-test phase
(M = 65.1%, [−18.1%, 0.4%]). We did not find any interac-
tion between GUIDE and BLOCK.
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Fig. 8. Usage rates for (a) Expert Mode and (b) Exploration Mode during
training BLOCKS for each GUIDE.

5.3.2 Incidental Learning
During the post-test phase, OctoPocus and crib-sheet are
also comparable in terms of the number of gestures they
learned that they were not explicitly trained on (Figure 7b).
There was no significant main effect of GUIDE (F1,11 = 0.73,
p > .05), participants learned an average of 0.9 other ges-
tures with OCTOPOCUS (M = 11.5%) and 1.4 items with
CRIBSHEET (M = 17.7%, [−21.7%, 9.2%]).
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5.4 Expert Mode Usage
Expert Mode Usage Rate is the ratio of trials performed with-
out any guide to the total number of training trials during
a main phase block. Bau and Mackay measured the inverse,
novice mode usage rate; we focus on expert mode since this
is the goal of a rehearsal-based interface like OctoPocus.
Overall, OctoPocus and crib-sheet are similar in terms of
Expert Mode Usage Rate (Figure 8a). There was no significant
main effect of GUIDE (F1,11 = 2.25, p > .05) with participants
using expert mode with OCTOPOCUS (M = 54.9%) at a com-
parable rate with CRIBSHEET (M = 63.2%, [−1.1%, 17.6%]).
As in several other measures, we found a significant main
effect of BLOCK (F2,22 = 12.70, p < .001, η2G = 0.19). Pairwise
comparisons show that participants used expert mode more
often in B1 (M = 47.6%) as compared to B2 (M = 61.5%,
p < .001, ∆ = 13.9%, [4.0%, 23.7%]) and B3 (M = 68.1%,
p < .001, ∆ = 20.5%, [9.4%, 31.5%]). There was no interac-
tion between GUIDE and BLOCK.

5.5 OctoPocus Exploration Mode Usage
Participants used exploration mode 23.8% of the time in the
first block, but dropped to to slightly less than 6% in the
third block. There was a significant main effect of BLOCK
(F2,22 = 21.41, p < .001, η2G = 0.48) on Exploration Mode Usage
Rate. Pairwise comparisons show that usage rate in B1 (M =
23.8%) is less than B2 (M = 9.6%, p < .01, ∆ = −14.2%,
[−20.1%,−8.1%]) and B3 (M = 5.9%, p < .01, ∆ = −17.9%,
[−23.4%,−12.3%]).

5.6 Subjective Ratings
Each participant rated different aspects of each guide using
a 7-point Likert scale, which forms these measures: Ease
of Learning, Speed, Accuracy, Comfort, and Ease of Recall.
Exact question phrasing is provided in the supplementary
material. Ease of Learning focuses on how effective the guide
was for learning commands and associated gesture move-
ments during training and Ease of Recall captured how well
the guide prepared the participant for testing trials. Speed,
Accuracy, and Comfort capture different aspects of executing
gestures with the help of the guide.

The ratings are comparable for all measures except ease
of learning and accuracy for which OctoPocus was rated
more favourably than crib-sheet (Figure 9). There was a
significant effect of GUIDE (Z = 10.0, p = .03) on Ease of
Learning, where 9 out of 12 participants rated OCTOPOCUS

more favourably than CRIBSHEET. The median rating for
OCTOPOCUS is 6 while the median rating for CRIBSHEET is
5. There was also a significant effect of GUIDE (Z = 9.5,
p = .02) on Accuracy, where 10 out of 12 participants rated
OCTOPOCUS more favourably than CRIBSHEET. The median
rating for OCTOPOCUS is 5.5 while the median rating for
CRIBSHEET is 4.

Each participant was also asked to choose OctoPocus or
crib-sheet as their overall favourite, and 7 out of 12 chose
OctoPocus.

6 DISCUSSION

We first discuss overall patterns in our experiment results,
and then compare them against Bau and Mackay’s original
OctoPocus as well as Delamare et al. [11]’s work.

6.1 Our Evaluation of OctoPocus for VR
Our results revealed several advantages when using Oc-
toPocus as a guide in VR, but also that a simpler crib-sheet
can be as good or better in some cases.

Time trade-off between OctoPocus and crib-sheet
OctoPocus and crib-sheet guides resulted in similar overall
trial times, but analysis of reaction and input portions of
a trial revealed differences. Participants activated the crib-
sheet 0.9s faster, but participants performed gesture input
1.8s faster after using the OctoPocus guide. We believe
the increased speed of gesture input with OctoPocus is
because the guide enables participants to directly map their
input movement to the collocated template visualization.
The slower reaction time for OctoPocus can partially be
attributed to how it is only revealed after pausing once
drawing starts. This not only adds 250ms for the dwell
time, but it also requires more time to initially prepare to
draw as the controller is moved to a central comfortable
position. With crib-sheet, there is no delay and the guide is
activated with a button independent of the drawing state.
Some participants asked if they could “view the guide before
drawing” [P3,7] in OctoPocus because “the act of pressing the
trigger button feels like committing to an action” [P7]. This
disadvantage for OctoPocus may disappear over time since
participants quickly switched from novice to expert mode
(Figure 8a).

OctoPocus leads to more accurate gestures
Participants were more accurate with OctoPocus than with
crib-sheet during gesture execution. The trend is the same
whether the guide is used in novice trials or after gestures
are learned in expert trials: OctoPocus is 10.3 to 20.2 per-
centage points more accurate (Figure 6). This difference was
noticed by participants, who rated OctoPocus more highly
for accuracy (Figure 9). Participants commented that Oc-
toPocus enabled them to “build a spatial map” [P11] through
its feedforward mechanism, further shown by 7 participants
who commented OctoPocus helped them to “trace paths ac-
curately”. On the other hand, participants found crib-sheet
less accurate because they had to “draw from memory” [P2,4],
which likely resulted in the spatial mismatch between target
and drawn gestures.
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OctoPocus and crib-sheet comparable for learning
While we did not observe a difference between OctoPocus
and crib-sheet for recall, we noted that recall increased
across blocks of test trials to reach an average of 80.7%
during the last block (Figure 7a), suggesting that partici-
pants learned gestures quickly. This effect is corroborated by
the proportion of expert trials during training trials, which
increased from an average of 47.6% in the first block to 68.1%
in the last block (Figure 8a). By the end of training, more
than 2 out of 3 trials are done in expert mode on average.

Both OctoPocus and crib-sheet support incidental learning
Participants were able to learn gestures that they did not
practice: 14.6% of gestures or 1.2 new gestures out of 8
(Figure 7b). Participants commented that “OctoPocus teaches
(them) more gestures implicitly because when a gesture is being
drawn, the neighbouring gestures will appear near it” [P6] and
that crib-sheet allows them to “quickly glance across many ges-
tures” [P1,3,7]. The incidental learning greatly varied across
participants. One participant [P4] learned 6 out of the 8 un-
practised gestures with OctoPocus, while two participants
[P6,P9] learned 3 new gestures and 4 participants learned 2
new gestures with either technique.

Visualization benefits and challenges
The general pattern of our results shows OctoPocus was as
good or better in almost all measures, suggesting there are
benefits to a collocated dynamic visualization for a 3D ges-
ture guide. Our special OctoPocus “exploration mode” was
also used by participants, especially during initial training.
We believe this helped to mitigate some of the challenges of
visualizing multiple collocated 3D gesture paths. However,
there are still challenges. Some participants commented that
OctoPocus creates “one big lump of lines” [P12] that “looks com-
plicated” [P3] and “congested, as everything is everywhere” [P10],
making it “harder to find the labels” [P3,P4,P6]. This led some
to speculate that OctoPocus may be less desirable [P4,P6] if
more commands need to be displayed.

Although the subjective ratings did not show a clear
preference for crib-sheet on any measure, some participants
commented that its organized grid presentation enabled
them to “quickly glance across many gestures” [P1,P3,P7]. This
may suggest a hybrid approach combining OctoPocus with
a crib-sheet where different groups of gestures are clustered
in a grid, and the collocated gesture group is dynamic,
perhaps shifting smoothly to the controller position as it be-
comes more likely. This could be by group, or even a cross-
group filter that moves most likely gesture templates to the
collocated controller position. Another approach could be
to make “explore mode” more like a crib-sheet, with the
gesture templates spread out for this initial visualization. A
related approach is to use another 3D mid-air gesture input
feature to dynamically select among groups of collocated
gestures. For example, using different hand postures to filter
out groups of templates, reminiscent of Freeman et al.’s
tabletop guidance system [17].

6.2 Comparison to Bau and Mackay’s 2D OctoPocus
Our near replication of Bau and Mackay’s experiment de-
sign enables us to contrast and compare the performance of

OctoPocus and crib-sheet when gestures are 3D in VR and
2D on a desktop.

OctoPocus vs. crib-sheet
Like our study, Bau and Mackay found OctoPocus signifi-
cantly more accurate than a crib-sheet baseline, suggesting
that OctoPocus is better at training people to perform more
precise gesture movements in 2D and 3D. However, Bau and
Mackay also found overall trial time for OctoPocus lower
than crib-sheet, while we observed no overall difference in
trial time, there is a trade-off between reaction time and
input time. Bau and Mackay found no difference between
conditions for input time or reaction time. In addition, Bau
and Mackay found a significantly higher post-test recall for
OctoPocus, but this appears to be because recall for our
crib-sheet condition (83%) was much better than Bau and
Mackay’s (57%).

These different results across studies may be because
our crib-sheet interaction design was more optimized for
activation speed and recall cues. Just like OctoPocus, our
crib-sheet guide could be activated anywhere using the
controller grip, but Bau and Mackay’s crib-sheet required
moving the mouse across the interface and clicking on a
button. Just like OctoPocus, our crib-sheet guide rendered
gesture templates using distinct and memorable colours,
but Bau and Mackay’s crib-sheet rendered all templates in
black and white. We made these guide-independent design
choices to make crib-sheet as equivalent to OctoPocus as
possible. We suspect that the crib-sheet tested in the Bau
and Mackay study introduced interaction design confounds
that led to significant differences in time and recall.

3D gestures are harder to execute
Overall, OctoPocus in 2D seems faster than 3D (5.7s vs.
8.1s for trial time) and more accurate (96% vs. 90.2% for
accuracy in training). Notably, OctoPocus was used with
comparable frequency in 2D (40%) and 3D (45%), so these
differences are not due to guide usage. These differences
are likely due to the additional complexity of performing
and remembering a 3D gesture. For example, the VR input
context uses larger, less precise drawing motions with a
6DOF controller in mid-air compared to smaller, precise,
and physically supported drawing motions with a 2DOF
mouse. Based on McMahan [56]’s Framework for Interac-
tion Fidelity Analysis (FIFA), user performance does not
necessarily increase with higherer interaction fidelity [57].
For example, a study conducted by Bhargava et al. [58]
demonstrated that in some motor skill training simulations,
mid-fidelity conditions performed worse than the relatively
lower and higher fidelity conditions. This evidence sup-
ports our results, and it suggests that future interaction
researchers explore lower fidelity alternatives to support the
execution of 3D gestures in VR.

3D gestures are harder to learn
Like Bau and Mackay, we observed a significant trend over
blocks of reduced time for training trials and increased
recall for testing trials. However, the final post-test recall
and incidental learning rates appear quite different. Bau
and Mackay only report a combined post-test “error rate”
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of 27% (i.e. 73% “recall”) that includes both the final recall
of the eight trained items and incidental learning rates of the
other eight untrained items. We can estimate the incidental
learning rate by considering that 73% of 16 total items
means 11.7 items were recalled. Further assuming that all
8 trained items were perfectly recalled, we can estimate at
least 3.7 items were recalled by incidental learning. This is
substantially higher than incidental learning of 0.9 items in
our study. We believe this is due to 3D gestures being much
harder to learn overall and the increased visual complexity
of the 3D OctoPocus visualization.

6.3 Comparison to Delamare et al.’s “OctoPocus3D”
Delamare et al.’s 3D OctoPocus implementation and study
designs are very different, and they provide few details
about their video crib-sheet baseline condition. However,
with these limitations in mind, we can still make some
meaningful comparisons. First, Delamare et al.’s OctoPocus
required between 10s and 17s (an estimated 11s on average)
to complete a trial, which is 36% longer than the mean time
for our OctoPocus technique (8.1s). Second, Delamare et al.
report recognition rates of 55%-81% for OctoPocus across all
studies and 47% for video crib-sheet in their preliminary
pilot with only 4 participants. This appears lower than
our overall accuracy measures of 90% for OctoPocus and
76% for our static crib-sheet. This suggests that our ICP
recognizer is more reliable than Delamare et al.’s DTW
method. These differences support the contribution of our
work in designing and testing a VR version of OctoPocus,
but we note that Delamare et al.’s focus on feedback and
feedforward methods was different.

6.4 Limitations
Unrecognized gestures
For any gesture recognition system, there is a subtle inter-
play between what the user thinks the gesture is, how the
system interprets them, and what its actual representation
is as a ground truth. This is considerably more apparent
in 3D than in 2D, as the user has an extra degree of
freedom when externalizing an internal representation of
a gesture they just learned. Our recognizer used a database
of hand-drawn templates which may account for some
of the false-negatives that occurred since there may have
been a disconnect between the hand-drawn template and
the participants’ interpretation of it. Supplementing each
template with additional samples could further improve
the detection of these edge cases and improve the overall
accuracy of the gesture recognition system.

Arbitrary gesture shapes and mappings
The execution and recall of a gesture may have been affected
by the diverse 3D gesture path shapes and the arbitrary
mapping to city names. Initially, some participants found it
“challenging to build a mental mapping” [P7,11,12] between the
gestures and names of each city because we intentionally
avoided explicit mnemonic associations, just like Bau and
Mackay’s study. However, with practice, participants were
“able to recall better with gestures that have a weird or unique
shape” [P6,10]. This is supported by a study [59] whose

evidence suggests that leveraging “desirable difficulty” can
improve learning. In general, there is a need to balance the
familiarity and complexity of 3D gestures, both individually
and as a holistic set.

Recognition feedback during testing
As explained earlier, test trials provided visual and audio
feedback about the recognition and correctness of the drawn
gesture. One might question if the presence of such feed-
back provided a hint for subsequent trials within the same
block. We investigated this potential bias by examining
all 1,344 testing trials for cases where an incorrect gesture
was drawn, and the recognized gesture was a match for a
future test trial in the same block. This identified 52 (3.9%)
correct trials where participants might have benefited from
feedback on prior incorrect trials, but also 39 (2.9%) incorrect
trials where participants fail to leverage the possible benefit
from prior incorrect trials. The small and similar counts in
both cases suggest that feedback in testing trials did not
have any pronounced effect on recall accuracy.

OctoPocus label occlusion
We designed the gesture set in such a way that the templates
emanate as evenly as possible into different directions,
which helped minimize label occlusion globally. This could
be further improved by automatically testing for occlusions
with other labels or gesture templates and making any
needed local refinements in label positions. Some partici-
pants noted OctoPocus labels could be “harder to find [than
in crib-sheet ] because some may overlap with other labels or
gestures” [P5,10]. Occlusion could be further optimized using
view management techniques like the Hedgehog labelling
approach proposed by Tatzgern et al. [60]. In addition, we
plan to investigate how OctoPocus can be adapted to hier-
archical groupings of gestures into menus in 3D, and how
labels of multiple commands belonging to the same category
could be merged into one. For example, labels for “pear”
and “strawberry” could be merged into “fruit”.

7 CONCLUSION

In this paper, we leveraged a design recommendation from
Delamare et al. [11] in our adaptation of Bau and Mackay’s
OctoPocus [1] original design for an immersive VR environ-
ment. To better understand the performance, we compared
it to a 3D adaptation of a crib-sheet for VR and replicated
Bau and Mackay’s experiment protocol. Our results suggest
that when executing gesture movements, participants were
faster and more accurate with OctoPocus. Both guidance
techniques were comparable for learning gestures and in-
cidental learning, with participants remembering gestures
they were not trained on. Comparing our implementation
with the original 2D OctoPocus, we find that 3D interaction
is more complex, both in terms of execution and visualiza-
tion, which explains why participants were faster and more
accurate in 2D OctoPocus.

While our specific implementation and study are for
VR, 3D mid-air gestures can also be used as input in
other settings, like large displays and spatial augmented
reality (SAR) [61]. In these contexts, the lack of a personal
stereoscopic 3D for display may be challenging, but we
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believe that OctoPocus could also work in these contexts
with appropriate modifications and optimizations. For in-
stance, a SAR setting could rely on multiple 2D planes
like surrounding walls and floors to simulate 3D, or on-
body projections like LightGuide [13] to render dynamic
feedforward for multiple gestures simultaneously.

While our results show that OctoPocus is an effective
guide for 3D mid-air gestures in VR, the good performance
of crib-sheet suggests that simpler and lower fidelity guid-
ance should still be considered. We hope this will lead to
more VR interfaces exploiting the power of gestures and
fully leverage the input and visualization affordance of VR.
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Teaching mid-air gestures for large interactive
displays,” in Proceedings of the 7th ACM International
Symposium on Pervasive Displays, ser. PerDis
’18. New York, NY, USA: Association for
Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3205873.3205887

[42] M. Sousa, J. a. Vieira, D. Medeiros, A. Arsenio, and
J. Jorge, “Sleevear: Augmented reality for rehabilitation
using realtime feedback,” in Proceedings of the 21st
International Conference on Intelligent User Interfaces,
ser. IUI ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 175–185. [Online].
Available: https://doi.org/10.1145/2856767.2856773
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