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On the characterization of equilibria of nonsmooth minimal-time mean
field games with state constraints

Saeed Sadeghi Arjmand1 and Guilherme Mazanti2

Abstract— In this paper, we consider a first-order determin-
istic mean field game model inspired by crowd motion in which
agents moving in a given domain aim to reach a given target
set in minimal time. To model interaction between agents,
we assume that the maximal speed of an agent is bounded
as a function of their position and the distribution of other
agents. Moreover, we assume that the state of each agent is
subject to the constraint of remaining inside the domain of
movement at all times, a natural constraint to model walls,
columns, fences, hedges, or other kinds of physical barriers
at the boundary of the domain. After recalling results on the
existence of Lagrangian equilibria for these mean field games
and the main difficulties in their analysis due to the presence
of state constraints, we show how recent techniques allow us to
characterize optimal controls and deduce that equilibria of the
game satisfy a system of partial differential equations, known
as the mean field game system.

I. INTRODUCTION

The concept of mean field games (referred to as “MFGs”
in this paper for short) was first introduced around 2006
by two independent groups, P. E. Caines, M. Huang, and
R. P. Malhamé [1], [2], and J.-M. Larsy and P.-L. Lions [3],
[4], motivated by problems in economics and engineering
and building upon previous works on games with infinitely
many agents such as [5], [6]. Roughly speaking, MFGs are
game models with a continuum of indistinguishable, rational
agents influenced only by the average behavior of other
agents, and the typical goal of their analysis is to characterize
their equilibria. We refer the interested reader to [7] for more
details on MFGs.

In this paper, we study an MFG model inspired by crowd
motion in which agents want to reach a given target set
in minimal time, their maximal speed being bounded in
terms of the distribution of other agents and their state being
constrained to remain in a given bounded set. Modeling and
analysis of crowd motion have been the subject of a large
number of works from different perspectives, such as [8]–
[10], and some deterministic and stochastic MFG models
have been already proposed, for instance, in [11]–[16]. MFG
models for crowd motion usually try to capture strategic
choices of the crowd based on the rational anticipation by
an agent of the behavior of others.
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The MFG model we consider in this paper is that of [15],
its detailed description is provided in Section II. An impor-
tant feature of the model from [15] which renders its analysis
more delicate is the fact that the final time of the movement
of an agent is not prescribed, but it is part of the agent’s
optimization criterion. Reference [15] establishes existence
of equilibria of the considered MFG model, but additional
properties, such as characterization of optimal controls and
characterization of equilibria through the system of PDEs
known as MFG system, are only obtained in [15] under the
restrictive assumption that the target set of the agents is the
whole boundary of the domain, which avoids the presence of
state constraints in the minimal-time optimal control problem
solved by each agent. The main contribution of the present
paper is to characterize optimal controls and obtain the MFG
system without such a restrictive assumption.

The major difficulty in analyzing optimal control problems
with state constraints is that their value functions may fail
to be semiconcave (see, e.g., [17, Example 4.4]), the latter
property being important in the characterization of optimal
controls (see, e.g., [18]). In this paper, we rely instead on
the techniques introduced in [16] to characterize optimal
controls, which do not rely on the semiconcavity of the value
function and also allow for weaker regularity assumptions
on the dynamics of agents. In order to obtain the classical
necessary optimality conditions from Pontryagin Maximum
Principle (PMP) under state constraints and few regularity
assumptions, we rely on the nonsmooth PMP from [19]
and make use of the technique from [20] to deal with state
constraints. We also refer the interested reader to [21]–[23]
for an alternative approach for dealing with other MFG
models with state constraints.

Our main results are Theorem 3.6 and its Corollary 3.8,
which provide the characterization of optimal controls, and
Theorem 4.1, which relies on that characterization to show
that equilibria of the MFG satisfy a suitable system of PDEs.

This paper is organized as follows. Section II presents the
MFG model and the definition of equilibria and recalls the
major previous results useful for this paper. We then study,
in Section III, the corresponding optimal control problem,
providing the characterization of optimal controls under state
constraints. This analysis is finally used in Section IV to
show that equilibria of the mean field game satisfy a system
of PDEs made of a continuity equation on the density of
agents and a Hamilton–Jacobi equation on the value function
of the corresponding optimal control problem.

Notation. In this paper, d denotes a positive integer, the set of



nonnegative real numbers is denoted by R+, Rd is endowed
with its usual Euclidean norm |·|, and Sd−1 denotes the unit
sphere in Rd . For R≥ 0, we use BR to denote the closed ball
in Rd centered at the origin and with radius R. The closure
of a set A⊂ Rd is denoted by Ā.

Given a Polish space X , the set of all Borel probability
measures on X is denoted by P(X), which is always
assumed to be endowed with the weak convergence of
measures. When X is endowed with a complete metric d
with respect to which X is bounded, we assume that P(X)
is endowed with the Wasserstein distance W1 defined by
W1(µ,ν) = supφ

∫
X φ(x)d(µ−ν)(x), where the supremum is

taken over all 1-Lipschitz continuous functions φ : X → R.
Given two metric spaces X ,Y and M ≥ 0, we denote

by C(X ,Y ) the set of all continuous functions f : X → Y ,
Lip(X ,Y ) the subset of C(X ,Y ) of all Lipschitz continuous
functions, and by LipM(X ,Y ) the subset of Lip(X ,Y ) of those
functions whose Lipschitz constant is bounded by M. When
X =R+, the above sets are denoted simply by C(Y ), Lip(Y ),
and LipM(Y ), respectively.

For compact A ⊂ Rd , the space C(A) is assumed to
be endowed with the topology of uniform convergence on
compact sets, with respect to which C(A) is a Polish space.
For t ∈R+, we let et : C(A)→ A denote the evaluation map,
defined for γ ∈C(A) by et(γ) = γ(t).

If X and Y are two metric spaces endowed with their Borel
σ -algebras, f : X→Y is Borel measurable, and µ is a Borel
measure in X , we denote the pushforward of µ through f by
f#µ , i.e., f#µ is the Borel measure in Y defined by f#µ(A) =
µ( f−1(A)) for every Borel subset A of Y .

II. DESCRIPTION OF THE MFG MODEL AND PREVIOUS
RESULTS

In this paper, we fix an open and bounded set Ω⊂Rd and
we let Γ ⊂ Ω̄ be a closed nonempty set. We shall always
assume that Ω satisfies the following hypothesis.
(H1) There exists D > 0 such that, for every x,y ∈ Ω̄, there

exists a curve γ included in Ω̄ connecting x to y and
of length at most D|x− y|.

Note that (H1) means that the geodesic distance in Ω̄ is
equivalent to the usual Euclidean distance.

Let K : P(Ω̄)×Ω̄→R+ be bounded and m0 ∈P(Ω̄). The
MFG considered in this paper, denoted by MFG(K,m0), is
described as follows. A population of agents moves in Ω̄ and
is described at time t ≥ 0 by a time-dependent probability
measure mt ∈P(Ω̄), where m0 is the prescribed probability
measure. Each agent wants to choose their trajectory in Ω̄

in order to reach the target set Γ in minimal time, with the
constraints that the agent must remain in Ω̄ at all times and
that their maximal velocity at time t and position x is given
by K(mt ,x), i.e., the trajectory γ of each agent solves the
control system

γ̇(t) = K(mt ,γ(t))u(t), γ(t) ∈ Ω̄, u(t) ∈ B1,

where u(t) is the control of the agent at time t, chosen in
order to minimize the time to reach Γ. We also assume that,
once an agent reaches Γ, they stop.

Note that agents interact through the maximal velocity
K(mt ,x), which depends on the distribution of agents mt at
time t. Hence, the trajectory of an agent depends on mt and,
on the other hand, mt is determined by the trajectories of the
agents. We are interested here in equilibrium situations, i.e.,
situations in which, starting from an evolution t 7→ mt , the
optimal trajectories chosen by the agents induce an evolution
of the initial distribution m0 that coincides with t 7→ mt
(a more mathematically precise definition of equilibrium is
provided in Definition 2.2 below).

The interaction term K(mt ,x) can be used to model con-
gestion phenomena in crowd motion by choosing a function
K such that K(mt ,x) is small when mt is “large” around
x, which means that it is harder to move on more crowded
regions. For instance, K may be chosen as

K(µ,x) = g
(∫

Ω̄

χ(x− y)dµ(y)
)
,

where χ is a convolution kernel representing the region
around an agent at which they look in order to evaluate local
congestion and g is a decreasing function. Note that we do
not assume this specific form for K in this paper.

A. The auxiliary optimal control problem

Let us describe the optimal control problem solved by
each agent of the game. Let k : R+× Ω̄→ R+ be bounded
and consider the control system

γ̇(t) = k(t,γ(t))u(t), γ(t) ∈ Ω̄, u(t) ∈ B1, (1)

where γ(t) is the state and u(t) is the control at time t ≥ 0.
An absolutely continuous function γ : R+→ Ω̄ is said to be
an admissible trajectory of (1) if it satisfies (1) for a.e. t ≥ 0
for some measurable u : R+ → B1, and the corresponding
function u is said to be the control associated with γ . The set
of all admissible trajectories for (1) is denoted by Adm(k).
For γ ∈ Adm(k) and t0 ≥ 0, the first exit time after t0 of γ

is the value τΓ(t0,γ) = inf{T ≥ 0 | γ(t0 +T ) ∈ Γ}, with the
convention that inf∅=+∞.

We consider the optimal control problem OCP(k) defined
as follows: given (t0,x0) ∈ R+× Ω̄, solve

inf
γ∈Adm(k)
γ(t0)=x0

τΓ(t0,γ). (2)

A trajectory γ attaining the above infimum is called an
optimal trajectory for (k, t0,x0) and its associated control u
is called an optimal control. Note that an optimal control u
for γ remains optimal if it is modified outside of the interval
[t0, t0+τΓ(t0,γ)]. In order to avoid any ambiguity, we always
assume, in this paper, that optimal controls are equal to 0 in
the intervals [0, t0) and (t0 +τΓ(t0,γ),+∞), and in particular
optimal trajectories are constant in the intervals [0, t0] and
[t0 + τΓ(t0,γ),+∞). The set of all optimal trajectories for
(k, t0,x0) is denoted by Opt(k, t0,x0).

The link between MFG(K,m0) and OCP(k) is that, given
an evolution of agents t 7→ mt , each agent of the crowd
solves OCP(k) with k(t,x) = K(mt ,x). The optimal control
problem OCP(k) is a minimum time problem, which is a



classical problem in control theory for which several results
are available (see, e.g., [18, Chapter 8] and [24, Chapter IV]).
A classical tool in the analysis of optimal control problems
is the value function ϕ : R+×Ω̄→R+, defined for (t0,x0)∈
R+× Ω̄ by setting ϕ(t0,x0) to be equal to the value of the
infimum in (2).

We shall consider in this paper OCP(k) under the follow-
ing assumption.
(H2) We have k ∈ Lip(R+× Ω̄,R+) and there exist positive

constants Kmin,Kmax such that k(t,x) ∈ [Kmin,Kmax] for
every (t,x) ∈ R+× Ω̄.

We collect in the next proposition classical results on
OCP(k) that will be of use in this paper (see, e.g., [15,
Section 4]).

Proposition 2.1: Consider OCP(k) under hypotheses (H1)
and (H2) and let (t0,x0) ∈ R+× Ω̄.
(a) The set Opt(k, t0,x0) is nonempty.
(b) The value function ϕ is Lipschitz continuous on R+×

Ω̄.
(c) For every γ ∈Adm(k) such that γ(t0) = x0, we have, for

every h≥ 0,

ϕ(t0 +h,γ(t0 +h))+h≥ ϕ(t0,x0), (3)

with equality if γ ∈ Opt(k, t0,x0) and h ∈ [0,τΓ(t0,γ)].
Conversely, if γ ∈ Adm(k) satisfies γ(t0) = x0, if γ is
constant on [0, t0] and on [t0 + τΓ(t0,γ),+∞), and if
equality holds in (3) for every h ∈ [0,τΓ(t0,γ)], then
γ ∈ Opt(k, t0,x0).

(d) The value function ϕ satisfies the Hamilton–Jacobi
equation

−∂tϕ(t,x)+ |∇ϕ(t,x)|k(t,x)−1 = 0 (4)

in the following sense: ϕ is a viscosity subsolution of
(4) in R+× (Ω\Γ), a viscosity supersolution of (4) in
R+× (Ω̄\Γ), and satisfies ϕ(t,x) = 0 for every (t,x) ∈
R+×Γ.

(e) If γ ∈ Opt(k, t0,x0), t ∈ [t0, t0 +ϕ(t0,x0)), γ(t) ∈ Ω \Γ,
and ϕ is differentiable at (t,γ(t)), then |∇ϕ(t,γ(t))| 6= 0
and

γ̇(t) =−k(t,γ(t))
∇ϕ(t,γ(t))
|∇ϕ(t,γ(t))|

.

B. Lagrangian equilibria and their existence

In this paper, we study MFG(K,m0) in a Lagrangian
setting, in which the evolution of agents is described by
a measure Q ∈ P(C(Ω̄)) in the space of all continuous
trajectories C(Ω̄). This classical approach in optimal trans-
port has become widely used in the analysis of MFGs with
deterministic trajectories in recent years (see, e.g., [13], [15],
[21], [25], [26]). Note that the distribution mt of agents at
time t ≥ 0 can be retrieved from Q using the evaluation
map et by mt = et #Q. The definition of an equilibrium
of MFG(K,m0) is formulated in the Lagrangian setting as
follows.

Definition 2.2: Consider MFG(K,m0). A measure Q ∈
P(C(Ω̄)) is called a Lagrangian equilibrium (or simply
equilibrium) of MFG(K,m0) if e0#Q = m0 and Q-almost

every γ ∈ C(Ω̄) is an optimal curve for (k,0,γ(0)), where
k : R+× Ω̄→ R+ is defined by k(t,x) = K(et#Q,x).

The next assumption is the counterpart of (H2) for
MFG(K,m0).
(H3) We have K ∈ Lip(P(Ω̄) × Ω̄,R+) and there ex-

ist positive constants Kmin,Kmax such that K(µ,x) ∈
[Kmin,Kmax] for every (µ,x) ∈P(Ω̄)× Ω̄.

We recall in the next theorem the main result of [15]
concerning existence of equilibria.

Theorem 2.3: Consider MFG(K,m0) under assumptions
(H1) and (H3). Then there exists an equilibrium Q ∈
P(C(Ω̄)) for MFG(K,m0).

III. FURTHER PROPERTIES OF THE OPTIMAL CONTROL
PROBLEM

We provide in this section further properties of OCP(k)
with the aim of providing a characterization of optimal con-
trols. For that purpose, we assume the following additional
hypothesis on Ω.
(H4) The boundary ∂Ω is a compact C1,1 manifold.

We will denote in the sequel by d± the signed distance
to ∂Ω, defined by d±(x) = d(x,Ω)− d(x,Rd \Ω), where
d(x,A) = infy∈A|x− y| for A ⊂ Rd . Recall that, under as-
sumption (H4), d± is C1,1 in a neighborhood of ∂Ω, its
gradient has unit norm, and ∇d± is a Lipschitz continuous
function extending the exterior normal vector field of Ω to
a neighborhood of ∂Ω (see, e.g., [27]).

A. Consequences of Pontryagin Maximum Principle

In order to obtain additional properties of optimal trajecto-
ries, we apply Pontryagin Maximum Principle to a modified
optimal control problem without state constraints, following
the techniques from [20]. Assume that k satisfies (H2) and
is extended to a Lipschitz continuous function defined on
R+×Rd . We also assume, with no loss of generality, that
the extension of k is C1 on R+× (Rd \ Ω̄). For ε > 0, define
kε : R+×Rd → R+ by

kε(t,x) = k(t,x)
(

1− 1
ε

d(x,Ω)

)
+

, (5)

where a+ is defined by a+ = max(0,a) for a ∈ R. Consider
the control system

γ̇ε(t) = kε(t,γε(t))uε(t), γε(t) ∈ Rd , uε(t) ∈ B1 (6)

and the optimal control problem OCPε(kε) of, given (t0,x0)∈
R+ ×Rd , finding a measurable control uε such that the
corresponding trajectory γε solving (6) reaches Γ in minimal
time. The next lemma states the main consequences of
Pontryagin Maximum Principle when applied to OCPε(kε).

Lemma 3.1: Consider OCPε(kε) under assumptions (H1),
(H2), and (H4) and with kε defined by (5). Let (t0,x0) ∈
R+× Ω̄, γε be an optimal trajectory for OCPε(kε), Tε be
the first exit time of γε , and uε : [t0, t0 + Tε ] → B1 be an
optimal control associated with γε . Then d(γε(t),Ω)< ε for
every t ∈ [t0, t0+Tε ] and there exist λε ∈{0,1} and absolutely



continuous functions pε : [t0, t0 +Tε ]→ Rd and qε : [t0, t0 +
Tε ]→ R such that, for a.e. t ∈ [t0, t0 +Tε ],

q̇ε(t) ∈ |pε(t)|π1∂
Ckε(t,γε(t)), (7a)

−ṗε(t) ∈ |pε(t)|π2∂
Ckε(t,γε(t)), (7b)

qε(t) = |pε(t)|kε(t,γε(t))−λε , (7c)
max
w∈B1

pε(t) ·w = pε(t) ·uε(t), (7d)

qε(t0 +Tε) = 0, (7e)
λε + max

t∈[t0,t0+Tε ]
|pε(t)|> 0, (7f)

where ∂C denotes Clarke’s gradient (see [19] for its defini-
tion) and π1,π2 are the projections onto the first and second
factors of the product R×Rd , respectively.

The proof of Lemma 3.1 is standard and can be car-
ried out by showing first that d(γε(t),Ω) < ε for every
t ∈ [t0, t0 + Tε ], which holds since, otherwise, γε would
belong, for some time, to a region outside of Ω̄ where
kε is identically zero, and hence γε would be constant,
contradicting its optimality. With this fact, we can apply
[19, Theorem 5.2.3] to the autonomous augmented system
d
dt

(
t,γε(t)

)
=
(
1,kε(t,γε(t))uε(t)

)
and deduce (7) from its

conclusions.
As a consequence of Lemma 3.1, we obtain the following

properties of optimal controls for OCPε(kε).
Lemma 3.2: Under the assumption and notations of Lem-

ma 3.1, for every t ∈ [t0, t0 + Tε ], we have |pε(t)| 6= 0 and
uε(t) =

pε (t)
|pε (t)| . As a consequence, uε is Lipschitz continuous

and γε is C1,1, and the Lipschitz constant of uε depends only
on ε , Kmax, and the Lipschitz constant of k.

Proof: Let L be the Lipschitz constant of k. From the
definition of kε and standard properties of Clarke’s gradient
(see, e.g., [19, Proposition 2.1.2]), we have that |ζ | ≤ L+
Kmax

ε
for every (t,x)∈R+×Rd and ζ ∈ π2∂Ckε(t,x). Hence,

integrating (7b), we deduce that, for every t, t1 ∈ [t0, t0 +Tε ],

|pε(t)| ≤ |pε(t1)|+
(

L+
Kmax

ε

)∫ max{t,t1}

min{t,t1}
|pε(s)|ds.

Hence, by Grönwall’s inequality, for every t, t1 ∈ [t0, t0+Tε ],

|pε(t)| ≤ |pε(t1)|e(L+Kmax
ε )|t−t1|.

If there exists t1 ∈ [t0, t0 + Tε ] such that pε(t1) = 0, then
pε(t)= 0 for every t ∈ [t0, t0+Tε ]. Thus, by (7c), qε(t)=−λε

for every t ∈ [t0, t0+Tε ], and since qε(t0+Tε) = 0 by (7e), it
follows that λε = 0, which contradicts (7f), establishing thus
that |pε(t)| 6= 0 for every t ∈ [t0, t0 +Tε ].

Thanks to this fact, one deduces immediately from (7d)
that uε(t) =

pε (t)
|pε (t)| . Denoting by bε : [t0, t0 + Tε ] → Rd a

measurable function such that −ṗε(t) = |pε(t)|bε(t) for a.e.
t ∈ [t0, t0 +Tε ], we deduce that, for a.e. t ∈ [t0, t0 +Tε ],

u̇ε(t) =−bε(t)+(uε(t) ·bε(t))uε(t).

Since bε(t) ∈ π2∂Ckε(t,γε(t)) for a.e. t ∈ [t0, t0 + Tε ], we
conclude that |u̇ε(t)| ≤ L+ Kmax

ε
, showing that u is Lipschitz

continuous, as required.

Similarly to [20], we now establish the main link between
OCP(k) and OCPε(kε).

Proposition 3.3: Consider OCP(k) under the assumptions
(H1), (H2), and (H4), as well as the problem OCPε(kε) with
kε defined by (5). There exists ε0 > 0 such that, for every
ε ∈ (0,ε0) and (t0,x0)∈R×Ω̄, the following properties hold.

(a) If γε is an optimal trajectory for OCPε(kε) starting from
(t0,x0), then γε(t) ∈ Ω̄ for every t ≥ 0.

(b) If γ ∈ Opt(k, t0,x0), then γ is an optimal trajectory for
OCPε(kε).

As a consequence, if γ ∈Opt(k, t0,x0) and u is its associated
optimal control, then γ is C1,1 and u is Lipschitz continuous
on [t0, t0+τΓ(t0,γ)], and the Lipschitz constant of u depends
only on ε0, Kmax, and the Lipschitz constant of k.

Proof: To prove (a), let Tε be the first exit time of
γε and assume, to obtain a contradiction, that there exist
a,b∈ [t0, t0+Tε ] such that a < b, γε(t) /∈ Ω̄ for t ∈ (a,b), and
γε(t)∈ ∂Ω for t ∈ {a,b} (recall that Γ⊂ Ω̄ and x0 ∈ Ω̄, so γε

starts and ends its movement in Ω̄). The map t 7→ d±(γε(t)) is
differentiable in a neighborhood of [a,b], strictly positive for
t ∈ (a,b), and equal to 0 for t ∈ {a,b}, and thus its derivative
is nonnegative at a and nonpositive at b, i.e.,

γ̇ε(a) ·∇d±(γε(a))≥ 0, γ̇ε(b) ·∇d±(γε(b))≤ 0.

Since γ̇ε(t) = kε(t,γε(t))
pε (t)
|pε (t)| and kε (t,γε (t))

|pε (t)| > 0 for every
t ∈ [t0, t0 +Tε ], we have

pε(a) ·∇d±(γε(a))≥ 0, pε(b) ·∇d±(γε(b))≤ 0. (8)

Consider the map α : t 7→ pε(t) ·∇d±(γε(t)). Since d± is
C1,1 in a neighborhood of ∂Ω and d(γε(t),Ω)≤ ε for every
t ∈ [t0, t0 +Tε ] by Lemma 3.1, if ε0 > 0 is small enough, we
deduce that γε(t) belongs to the neighborhood at which d±

is C1,1 for every t ∈ (a,b). Thus α is absolutely continuous
on [a,b] and, recalling that k is C1 on R+× (Rd \ Ω̄) and
using (7b), we have, for t ∈ (a,b),

α̇(t) = ṗε(t) ·∇d±(γε(t))+ pε(t) ·
d [∇d± ◦ γε ]

dt
(t)

=−|pε(t)|
(

1− 1
ε

d(γε(t),Ω)

)
+

∇xk(t,γε(t)) ·∇d±(γε(t))

+ |pε(t)|
1
ε

k(t,γε(t))|∇d±(γε(t))|2 + pε(t) ·
d [∇d± ◦ γε ]

dt
(t)

≥ |pε(t)|
[
−L+

Kmin

ε
−LKmax

]
,

where L is an upper bound on the Lipschitz constants of d±

and k. Up to decreasing ε0, we have −L+ Kmin
ε
−LKmax > 0

for every ε ∈ (0,ε0), and hence α̇(t)> 0 for t ∈ (a,b), which
contradicts (8). This contradiction establishes (a).

To establish (b), let γε be an optimal trajectory for
OCPε(kε) starting at (t0,x0) and denote by Tε its first exit
time after t0. Since γ ∈ Opt(k, t0,x0), γ is admissible for
OCPε(kε), and thus τΓ(t0,γ) ≥ Tε . On the other hand, by
(a), we have γε ∈ Adm(k), and thus Tε ≤ τΓ(t0,γ). Thus
τΓ(t0,γ) = Tε , concluding the proof.



B. Boundary condition of the Hamilton–Jacobi equation

Having established in particular in Proposition 3.3 that
optimal controls for OCP(k) are Lipschitz continuous, we are
now able to deduce a boundary condition for the Hamilton–
Jacobi equation (4).

Proposition 3.4: Consider OCP(k) under the assumptions
(H1), (H2), and (H4), and let ϕ be its value function and n be
the exterior normal of Ω. Then ϕ satisfies ∇ϕ(t,x) ·n(x)≥ 0
for (t,x)∈R+×(∂Ω\Γ) in the viscosity supersolution sense.

Proof: Let (t0,x0) ∈R+× (∂Ω\Γ) and ξ be a smooth
function defined on a neighborhood V of (t0,x0) in R+× Ω̄

such that ξ (t0,x0) = ϕ(t0,x0) and ξ (t,x)≤ ϕ(t,x) for (t,x)∈
V . Assume, to obtain a contradiction, that ∇ξ (t0,x0) ·n(x0)<
0. Let γ ∈ Opt(k, t0,x0), denote by u its associated optimal
control, and define γ̃ : [t0 − ε,+∞) → Ω̄ for ε > 0 small
enough by γ̃(t) = γ(t) for t ≥ t0 and as the solution of ˙̃γ(t) =
−k(t, γ̃(t)) ∇ξ (t0,x0)

|∇ξ (t0,x0)|
for t ∈ [t0 − ε, t0] with final condition

γ̃(t0) = x0 (we extend k to negative times in a Lipschitz
manner if needed). Applying Proposition 2.1(c) to γ̃ , we get
that ϕ(t0,x0)≥ϕ(t0−h, γ̃(t0−h))−h for every h∈ [0,ε], and
thus ξ (t0,x0)≥ ξ (t0−h, γ̃(t0−h))−h. Since ξ (t0−h, γ̃(t0−
h)) = ξ (t0,x0)−h∂tξ (t0,x0)−h ˙̃γ(t−0 ) ·∇ξ (t0,x0)+o(h), we
deduce that

−∂tξ (t0,x0)+ k(t0,x0)|∇ξ (t0,x0)|−1≤ 0. (9)

Since γ ∈ Opt(k, t0,x0), we have, by Proposition 2.1(c),
that ϕ(t0,x0) = ϕ(t0 + h,γ(t0 + h)) + h for h ≥ 0 small
enough, and thus ξ (t0,x0)≥ ξ (t0+h, γ̃(t0+h))+h. Perform-
ing the first order expansion of ξ (t0 + h,γ(t0 + h)) on h as
before and using the fact that γ satisfies (1), we deduce
that ∂tξ (t0,x0) + k(t0,x0)∇ξ (t0,x0) · u(t0) + 1 ≤ 0. Adding
with (9), we deduce that ∇ξ (t0,x0) ·u(t0)+ |∇ξ (t0,x0)| ≤ 0
and, since u(t0) ∈ B1, this implies that u(t0) = − ∇ξ (t0,x0)

|∇ξ (t0,x0)|
.

Since ∇ξ (t0,x0) ·n(x0) < 0, this would imply that γ leaves
Ω̄ at some t0 +h for h > 0 small enough, contradicting the
fact that γ ∈Opt(k, t0,x0). This contradiction establishes that
∇ξ (t0,x0) ·n(x0)≥ 0, as required.

C. Characterization of optimal controls

Using Propositions 3.3 and 3.4, we are now in position
to characterize optimal controls of OCP(k). We start by
introducing the two main objects that we will use in our
characterization.

Definition 3.5: Consider OCP(k) under assumptions (H1),
(H2), and (H4). Let ϕ be its value function and take (t0,x0)∈
R+× Ω̄.
(a) We define the set U (t0,x0) of optimal directions at

(t0,x0) as the set of u0 ∈ Sd−1 for which there exists γ ∈
Opt(k, t0,x0) such that the optimal control u associated
with γ satisfies u(t0) = u0.

(b) We define the set W (t0,x0) of directions of maximal
descent of ϕ at (t0,x0) as the set of u0 ∈ Sd−1 such that

lim
h→0+

ϕ(t0 +h,x0 +hk(t0,x0)u0)−ϕ(t0,x0)

h
=−1.

(10)

Note that U (t0,x0) 6= ∅ for x0 ∈ Ω̄ \Γ and, by Proposi-
tion 2.1(c), the quantity on the left-hand side of (10) whose
limit is being computed is greater than or equal to −1+o(1)
as h→ 0+. The main result of this section is the following.

Theorem 3.6: Consider OCP(k) and its value function ϕ

under (H1), (H2), and (H4) and let (t0,x0) ∈ R+× Ω̄.

(a) If ϕ is differentiable at (t0,x0), then W (t0,x0) ={
− ∇ϕ(t0,x0)
|∇ϕ(t0,x0)|

}
.

(b) For every γ ∈ Opt(k, t0,x0) and t ∈ (t0, t0 + ϕ(t0,x0)),
U (t,γ(t)) contains exactly one element.

(c) We have U (t0,x0) = W (t0,x0).
Proof: Assertion (a) follows easily from (10) by using

Proposition 2.1(d) and (e) (see also [16, Proposition 4.13]
for a proof in the case with no state constraints). Assertion
(b) follows from the fact that optimal controls are Lipschitz
continuous (Proposition 3.3) and its proof is very similar to
that of [15, Proposition 4.7]. As for assertion (c), its proof is
very similar to that of [16, Theorem 4.14] and we sketch it
here for completeness. First, note that it suffices to consider
the case x0 ∈ Ω̄\Γ since both sets are empty if x0 ∈ Γ. The
inclusion U (t0,x0)⊂W (t0,x0) can be obtained by applying
Proposition 2.1(c) and taking the limit as h→ 0+ in (10).
For the converse inclusion, let u0 ∈W (t0,x0) and note that,
if x0 ∈ ∂Ω\Γ, then necessarily u0 points towards the inside
of Ω. Let γ0 be the solution of (1) starting from (t0,x0) and
with constant control u0, defined in [t0, t0+h] for some h > 0
small enough, define t1 = t0 +h and x1 = γ0(t0 +h), and let
γ1 ∈Opt(k, t1,x1). The conclusion follows by letting h→ 0+

if one assumes that the optimal control u1 associated with
γ1 satisfies u1(t1)→ u0 as h→ 0+, using the fact that limits
of optimal trajectories are also optimal.

We prove by contradiction that we necessarily have
u1(t1) → u0 as h → 0+. Indeed, assume that this is not
the case, let γ̄1 be the solution of (1) starting from (t1,x1)
and with constant control u1(t1), and define t2 = t1 + h,
x2 = γ1(t2), and x̄2 = γ̄1(t2). Define also γ2 as the solution of
(1) starting from (t0,x0) and with constant control x̄2−x0

|x̄2−x0|
, τ

be the time at which γ2 arrives at x̄2, and γ3 be the solution
of (1) starting from (τ, x̄2) and with constant control x2−x̄2

|x2−x̄2|
(see Figure 1 for an illustration of these constructions). Note
that, since u0 points towards the inside of Ω, all points and
trajectories in this construction remain in Ω̄ for h small
enough.

γ0
γ2

γ1

γ̄1
γ3

x0

x1 x̄2

x2

Fig. 1. Illustration of the constructions used in the proof of Theorem 3.6(c)
(adapted from [16]).

Since the angle between γ0 and γ̄1 at x1 is different from
π as h→ 0+, one can prove that there exists ρ < 1 such that
the time τ − t0 that γ2 takes to go from x0 to x̄2 is at most



2ρh+O(h2). On the other hand, since γ1 and γ̄1 are tangent at
x1, the time that γ3 takes to go from x̄2 to x2 is at most O(h2).
We have thus constructed two trajectories to go from x0 to x2:
one obtained as the concatenation of γ0 and γ1, which takes
a time 2h, and another obtained as the concatenation of γ2
and γ3, which takes a time 2ρh+O(h2) < 2h. By applying
Proposition 2.1(c) to both trajectories, letting h→ 0+, and
using [15, Proposition 4.4], one gets the conclusion that ρ ≥
1, yielding the desired contradiction.

Motivated by Theorem 3.6(a), we provide the following
definition.

Definition 3.7: Consider OCP(k) under assumptions (H1),
(H2), and (H4), let ϕ be its value function, and take (t0,x0)∈
R+×Ω̄. If W (t0,x0) contains exactly one element, we denote
this element by −∇̂ϕ(t0,x0), and call it the normalized
gradient of ϕ at (t0,x0).

As a consequence of Theorem 3.6, we obtain the following
characterization of optimal trajectories.

Corollary 3.8: Consider OCP(k) under assumptions (H1),
(H2), and (H4), let ϕ be its value function, and take (t0,x0)∈
R+× Ω̄ and γ ∈ Opt(k, t0,x0). Then, for every t ∈ (t0, t0 +
ϕ(t0,x0)), ϕ admits a normalized gradient at (t,γ(t)) and
γ̇(t) =−k(t,γ(t))∇̂ϕ(t,γ(t)).

We also have the following result on the normalized
gradient, whose proof is very similar to that of [16, Propo-
sition 4.17] (see also [15, Proposition 4.9]).

Proposition 3.9: Consider OCP(k) and its value function
ϕ under assumptions (H1), (H2), and (H4). Then ∇̂ϕ is
continuous on its domain of definition.

IV. THE MFG SYSTEM

Following the results on OCP(k) and using the relation
between MFG(K,m0) and OCP(k), we are now ready to
obtain, as a consequence of Proposition 2.1(d), Proposi-
tion 3.4, Corollary 3.8, and Proposition 3.9, that equilibria
of MFG(K,m0) satisfy a system of PDEs.

Theorem 4.1: Consider MFG(K,m0) under the assump-
tions (H1), (H3), and (H4). Let Q ∈P(C(Ω̄)) be an equi-
librium of MFG(K,m0), mt = et #Q for t ≥ 0, k be defined
from K by k(t,x) = K(mt ,x), and ϕ be the value function of
OCP(k). Then, (mt ,ϕ) solves the MFG system

∂tmt −div
(
mtK(mt ,x)∇̂ϕ

)
= 0 in R∗+× (Ω̄\Γ),

−∂tϕ + |∇ϕ|K(mt ,x)−1 = 0 in R+× (Ω̄\Γ),

ϕ = 0 on R+×Γ,

∇ϕ ·n≥ 0 on R+× (∂Ω\Γ),
(11)

where the first equation is satisfied in the sense of distribu-
tions and the second and fourth equations are satisfied in the
viscosity senses of Propositions 2.1(d) and 3.4, respectively.
In addition, mt |t=0= m0 and mt |∂Ω

−
t
= 0, where ∂Ω

−
t is the

part of ∂Ω at which ∇̂ϕ ·n > 0.
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