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Abstract
Climate model outputs are commonly corrected using statistical univariate bias correction methods. Most of the time, 
those 1d-corrections do not modify the ranks of the time series to be corrected. This implies that biases in the spatial or 
inter-variable dependences of the simulated variables are not adjusted. Hence, over the last few years, some multivariate 
bias correction (MBC) methods have been developed to account for inter-variable structures, inter-site ones, or both. As 
proof-of-concept, we propose to adapt a computer vision technique used for Image-to-Image translation tasks (CycleGAN) 
for the adjustment of spatial dependence structures of climate model projections. The proposed algorithm, named MBC-
CycleGAN, aims to transfer simulated maps (seen as images) with inappropriate spatial dependence structure from climate 
model outputs to more realistic images with spatial properties similar to the observed ones. For evaluation purposes, the 
method is applied to adjust maps of temperature and precipitation from climate simulations through two cross-validation 
approaches. The first one is designed to assess two different post-processing schemes (Perfect Prognosis and Model Output 
Statistics). The second one assesses the influence of nonstationary properties of climate simulations on the performance of 
MBC-CycleGAN to adjust spatial dependences. Results are compared against a popular univariate bias correction method, 
a “quantile-mapping” method, which ignores inter-site dependencies in the correction procedure, and two state-of-the-art 
multivariate bias correction algorithms aiming to adjust spatial correlation structure. In comparison with these alternatives, 
the MBC-CycleGAN algorithm reasonably corrects spatial correlations of climate simulations for both temperature and 
precipitation, encouraging further research on the improvement of this approach for multivariate bias correction of climate 
model projections.

Keywords Bias correction · Spatial dependence · Post-processing · Climate simulations · Generative adversarial networks · 
Model output statistics

1 Introduction

With ongoing climate change, mitigation and adaptation 
strategies have to be anticipated by decision makers in order 
to reduce potential future consequences of climate change 
on human societies and activities (IPCC 2014). Such con-
sequences are commonly assessed through climate change 
impact studies, for instance in hydrology (e.g., Bates et al. 
2008), agronomy (e.g., Wheeler and von Braun 2013) or epi-
demiology (e.g., Caminade et al. 2014). They rely on impact 

model simulations, the quality of which highly depends on 
the reliability of the climate information used as inputs (e.g., 
Muerth et al. 2013; Ramirez-Villegas et al. 2013). Besides 
observations, global and regional climate models (GCM 
and RCM) are the major tools to understand the climate 
system and its evolutions in the future (Randall et al. 2007; 
Reichler and Kim 2008). However, despite considerable 
improvements in climate modelling, climate simulations 
often remain biased compared to observations: even for the 
current climate, key statistical features such as mean, vari-
ance or the dependence structures between physical vari-
ables or between sites can differ from those calculated for 
observational references (e.g., Eden et al. 2012; Cattiaux 
et al. 2013; Mueller and Seneviratne 2014). Consequently, 
biases are expected to be present in climate projections for 
future periods, making bias correction an often unavoidable 
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data pre-processing step for impact studies (e.g., Christensen 
et al. 2008; Maraun et al. 2010; Teutschbein and Seibert 
2012).

In the recent years, many statistical bias correction (BC) 
methods have been developed that aim to correct (selected 
features of) the distribution of climate variables. The idea 
of statistical bias correction is to find a mathematical trans-
formation that makes climate simulations have similar sta-
tistical properties as a reference dataset over the historical 
period, and then apply this transformation for the modeled 
projection. Such transformations may be determined with 
statistical models based on either perfect prognosis (PP) or 
model output statistics (MOS) approaches (Maraun et al. 
2010). The PP approach consists in determining the sta-
tistical link between a variable of interest from references 
(predictand) and one or several observed variables (predic-
tors) occurring at the same time. Simultaneous values of 
predictand and predictors are indeed required to implement 
the PP approach and learn the (synchronous) relationships 
between them. By applying these relationships to predictors 
from climate simulations, this approach implicitly makes the 
assumption that these predictors are realistically simulated 
(Wilks 2006). In the MOS approach, observed and simu-
lated variables are not considered to be synchronized in time, 
and biases relate to differences in some statistics (such as 
means or variances) or in distributions between references 
and modeled climate variables. Adjustments can be made to 
the simulated mean (e.g., Delta method, Xu 1999), variance 
(e.g., simple scaling adjustment, Berg et al. 2012) and also 
all moments of higher order and percentiles (e.g.,“quantile-
mapping”, Haddad and Rosenfeld 1997; Déqué 2007; Gud-
mundsson et  al. 2012). In particular, quantile-mapping 
technique has received a keen interest since it permits for 
adjusting not only the mean and variance but also the whole 
distribution of climate variables. It has been conducive to 
the development of many variants (e.g., Vrac et al. 2012, 
2016; Tramblay et al. 2013; Cannon et al. 2015), and applied 
for various studies (e.g., Vigaud et al. 2013; Defrance et al. 
2017; Bartok et al. 2019; Tong et al. 2020). However, such 
BC methods are designed to only correct statistical aspects 
of univariate distributions. Simulated variables are indeed 
adjusted separately for each physical variable at each specific 
location. Thus, potential biases in the spatial dependence 
structure of modeled variables are not corrected (e.g., Wil-
cke et al. 2013), which can generate corrections with inap-
propriate multivariate situations and can affect subsequent 
analyses that depend on spatial characteristics of climate 
variables (e.g., Zscheischler et al. 2019). For instance, this 
can occur with flood risk assessment, that depends on spatial 
(and temporal) properties of precipitation, soil moisture and 
river flow (Vorogushyn et al. 2018) or with drought-related 
impacts, that depend on complex interaction of natural and 
anthropogenic processes (Van Loon et al. 2016). It is hence 

crucial to provide end users with bias corrections of climate 
simulations that present not only relevant 1-dimensional 
information at each individual site but also appropriate spa-
tial representation.

Over the last years, a few multivariate bias correction 
(MBC) methods have been developed to address the issues 
of biases in multivariate dependencies. Not only do these 
methods correct marginal properties of simulated variables, 
they are also designed to adjust statistical dependencies 
between variables. Although it has been found for specific 
cases that MBC methods do not particularly outperform 
univariate ones for the adjustment of dependencies between 
multiple variables (Räty et al. 2018), this finding cannot be 
generalized to all applications and methods. For instance, 
François et al. (2020) showed the added value of MBC to 
improve inter-variable dependence and spatial structures 
for temperature and precipitation over Europe. More gener-
ally, MBCs could be of great interest for compound events 
studies, where dependencies between drivers of extreme 
events with large impacts are crucial to evaluate their risks 
(Zscheischler et al. 2018).

A categorization of MBC methods in three main families 
of approaches has been proposed in the literature (e.g., Vrac 
2018; François et al. 2020):

• the “marginal/dependence” correction approach, that 
consists of MBC methods adjusting in two distinct steps, 
i.e. separately, marginal distributions and multivariate 
dependencies of climate simulations (e.g., Bárdossy and 
Pegram 2012; Mehrotra and Sharma 2016; Hnilica et al. 
2017; Nahar et al. 2018; Cannon 2018; Nguyen et al. 
2019; Guo et al. 2019; Vrac and Thao 2020).

• the “successive conditional” category, made up of MBC 
methods performing successive univariate corrections of 
climate variables conditionally on the previously adjusted 
ones (e.g., Piani and Haerter 2012; Dekens et al. 2017).

• the “all-in-one” correction approach, that adjusts directly 
the whole statistical distribution (i.e. both univariate and 
multivariate properties) of climate simulations at the 
same time (e.g., Robin et al. 2019).

Based on this categorization, François et al. (2020) per-
formed an intercomparison and critical review of MBC 
methods. It presents a global picture of the performances 
of MBCs in terms of multivariate adjustments of climate 
simulations, as well as the different assumptions and statisti-
cal techniques used.

In parallel, i.e., in contexts other than bias correction, 
over the last decades, machine learning techniques have 
emerged as a promising approach to model highly non-
linear and complex relationships between statistical vari-
ables. Major improvements have been obtained with Deep 
Learning models (see the overview of Schmidhuber 2015), 
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which have proved to be efficient to extract high-level feature 
information from various datasets. In particular, convolu-
tional neural networks (CNNs, see e.g., Lecun and Bengio 
1995) showed that they can capture with great performances 
complex spatial structures. Initially developed for computer 
vision problems (e.g., Szegedy et al. 2015; He et al. 2016), 
they found numerous applications in climate sciences: for 
instance for weather forecast prediction uncertainty (Scher 
and Messori 2018), emulations of atmospheric dynamics 
(Shi et al. 2015; Scher and Messori 2019; Chapman et al. 
2019), detection of extreme weather events (Liu et al. 2016; 
Racah et al. 2017) and statistical downscaling (Vandal et al. 
2017; Rodrigues et al. 2018; Baño-Medina et al. 2020). A 
recent overview of Deep Learning applications for Earth 
system science is offered by Reichstein et al. (2019).

Recently, a new class of artificial neural networks, named 
Generative Adversarial Networks (GANs; Goodfellow et al. 
2014), has led to tremendous interests due to their ability 
to infer high dimensional probability distributions. Initially, 
this machine-learning method has been developed for esti-
mating the distribution of images from a target dataset, with 
the aim of sampling new (and unseen) images from this dis-
tribution. GANs, implemented with deep convolutional neu-
ral networks, have achieved impressive results in computer 
vision problems (e.g., Radford et al. 2016) and are a subject 
of active research to improve computing architectures (e.g., 
Salimans et al. 2016; Karras et al. 2018; Menick and Kalch-
brenner 2018) and optimization techniques (e.g., Mao et al. 
2017; Arjovsky et al. 2017; Roth et al. 2017). Conditional 
formulations of GANs have also been developed, for which 
additional information, such as class labels or images, can 
serve as inputs to condition the generation of the new images 
(e.g., Mirza and Osindero 2014; Gauthier 2014; Denton 
et al. 2015; Kim et al. 2017; Isola et al. 2017). In particular, 
image-conditional GANs permit to perform image-to-image 
translation tasks by learning how to map the statistical distri-
bution of one set of images (source dataset) to the statistical 
distribution of another set (target dataset). Depending on 
the correspondence between images of the source and target 
datasets, different versions of image-conditional GANs have 
been developed. When all the images are paired (i.e., there is 
a known one-to-one correspondence between every images 
of the source and target datasets), conditional GANs are 
trained by supervised learning (Yoo et al. 2016; Isola et al. 
2017). When only a few images are paired, semi-supervised 
is used (Gan et al. 2017) and when all points are unpaired, 
only unsupervised learning can be applied (Kim et al. 2017; 
Yi et al. 2017; Zhu et al. 2017). Due to the stochastic and 
high-dimensionality nature of many physical processes of 
the Earth system, GANs and conditional GANs are particu-
larly appealing for atmospheric science problems. Recently, 
they have been used for various Earth-science related appli-
cations: for instance for statistical downscaling (Leinonen 

et al. 2020; Wang et al. 2021), temporal disaggregation of 
spatial rainfall fields (Scher and Peßenteiner 2020), sam-
pling of extreme values (Bhatia et al. 2020), modelling of 
chaotic dynamical systems (e.g., Xie et al. 2018; Wu et al. 
2020), classification of snowflake images (Leinonen and 
Berne 2020), weather forecasting (Bihlo 2020) and stochas-
tic parameterization in geophysical models (Gagne II et al. 
2020).

In climate modelling context, no one-to-one correspond-
ence exists between observations and model simulations 
as they have different internal variabilities and thus are not 
synchronized in time. Biases refer to differences in distribu-
tional properties between references and simulated climate 
variables. Hence, in this context, bias correction can be seen 
as an unsupervised image-to-image problem that aims to 
map daily images from model simulations to daily images 
from historical observational references in order to adjust the 
distributional properties of the climate model.

In this study, we adapt a specific formulation of condi-
tional GANs, initially used for unsupervised image-to-image 
translation problems (CycleGAN, Zhu et  al. 2017), for 
multi-site corrections of climate simulations. The new MBC 
method, referred to as MBC-CycleGAN in the following, is 
introduced and applied in a proof-of-concept context for the 
correction of daily temperature and precipitation fields with 
a simple neural network architecture. In order to investigate 
and evaluate the proposed methodology, applications and 
comparisons of MBC-CycleGAN based on PP (correspond-
ing to a supervised context) and MOS (unsupervised con-
text) approaches are performed through a cross-validation 
method. In addition, a second cross-validation method is 
used in this study to assess the performances of MBC-Cycle-
GAN in a context of different degrees of nonstationarity 
of the climate model between present (i.e., calibration) and 
future (i.e., projection) periods. One univariate quantile-
mapping-based BC method and two MBC algorithms are 
included in the study in order to gain a better understanding 
of the performances of MBC-CycleGAN concerning uni-
variate, spatial and temporal properties.

The paper is organized as follows: Section 2 presents 
the model and reference data used, and Sect. 3 describes 
the MBC-CycleGAN algorithm. Then, Sect. 4 displays the 
experimental setup used in this study, and results are pro-
vided in Sect. 5. Conclusions, discussions and perspectives 
for future research are finally proposed in Sect. 6.

2  Reference and model data

In this study, the dataset employed as reference for the bias 
correction is the “Système d’Analyse Fournissant des Ren-
seignements Atmosphèriques á la Neige” (SAFRAN) rea-
nalysis (Vidal et al. 2010) with an approximate 8 km × 8 



 B. François et al.

1 3

km spatial resolution. Daily temperature and precipitation 
time series from 1 January 1979 to 31 December 2016 are 
extracted over the region of Paris, France ([47.878, 49.830◦ 
N] × [0.949,3.947◦ E]), which corresponds to a domain with 
28 × 28 = 784 continental grid cells.

For the climate simulations data to be corrected, daily 
temperature and precipitation time series are taken from 
runs of the IPSL-CM5A-MR Earth system model (Marti 
et al. 2010; Dufresne et al. 2013) with a 1.25◦ × 2.5◦ spatial 
resolution over the same region of Paris. For the 1979–2005 
period, a historical run is extracted and concatenated with a 
run under RCP 8.5 scenario (i.e., the scenario with highest 
CO2 concentration) for the 2006–2016 period, to obtain the 
desired 1979–2016 period. To perform a bias correction, 
a one-to-one correspondence between model and reference 
grid cells is needed, i.e., spatial resolutions between ref-
erence and model data have to be the same. Hence, IPSL 
data are regridded to the SAFRAN spatial resolution with a 
bilinear interpolation for both temperature and precipitation.

More data are required for this study, in particular for the 
implementation of the PP approach and to assess the influ-
ence of nonstationary properties of climate simulations on 
the performance of the proposed MBC method. For sake 
of clarity and make reading easier, these data will be intro-
duced thereafter in the appropriate sections.

For illustration purpose, Fig. 1a displays the topographic 
map of France with the region of Paris in a box, as well as 
the mean daily temperature (Fig. 1b, c) and precipitation 
(Fig. 1d, e) maps for SAFRAN and IPSL datasets during 
winter over the 1979–2016 period for Paris.

3  Methodology

3.1  GAN

In its most basic formulation, a generative adversarial net-
work consists of two neural networks that are trained con-
jointly: a generator and a discriminator. We first consider 
one random variable � living in ℝd , with a probability dis-
tribution denoted ℙ� . This random variable characterizes 
the available data, such as images of the target dataset (i.e., 
references), and hence takes its values in a high-dimensional 
space. We assume to have at hand samples �1,… , �n drawn 
according to the density ℙ� on ℝd . The generator, denoted 
G, is a function from ℝd′ to ℝd and is intended to be applied 
to a d′-dimensional random variable � , usually multivariate 
Gaussian random noise (with d′

<< d ), such that the ran-
dom variable G(�) follows the law of � , i.e. ℙ� = ℙ�(�) . 
Let �1,… ,�n be a sample drawn from the distribution of 
� . To train the generator G, the discriminator D� , that is a 
function from ℝd to [0, 1],  is used as complex loss function 
(Goodfellow et al. 2014). This neural network is a binary 

classifier that returns the probability that a given observa-
tion, or image, comes from ℙ� . The discriminator is trained 
in a supervised way to return maximal probability values on 
the reference images �i and minimal values on the artificially 
generated images G(�i) . Conversely, the goal of the genera-
tor is to “fool” the discriminator by making the distribution 
of G(�i) as indistinguishable as possible from that of �i , i.e., 
making difficult for the discriminator to determine that a 
sample G(�i) comes from a distribution different from ℙ� . 
Generator and discriminator are trained in turns and are in 
competition (i.e. “adversarial training”) to improve them-
selves until it reaches an optimal equilibrium state.

The original formulation of GANs explained above is 
unconditional: the generator G only takes as input noise 
vectors �i to produce new samples that are drawn from the 
target distribution ℙ� . The idea of conditional GANs (e.g., 
Goodfellow et al. 2014; Mirza and Osindero 2014) is to add 
some information as inputs to direct the generation. By con-
ditioning the generation on an input image, the generator is 
able to generate a corresponding output image, rendering the 

Fig. 1  a Topographic map of France with the selected region over 
Paris in a box, b, c temperature and d–e precipitation daily mean 
computed at each grid cell during winter over the 1979–2016 period 
for Paris. Results are shown for SAFRAN reference and plain IPSL 
outputs
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conditional GANs appropriate for image-to-image transla-
tion tasks (e.g., Isola et al. 2017).

3.2  CycleGAN for unsupervised image‑to‑image 
translation

CycleGAN (Zhu et al. 2017) is a particular image-con-
ditional GANs that is commonly used for unsupervised 
image-to-image translation. In the original application, 
CycleGAN has been applied with great success to transform 
photographs into the styles of master paintings by modify-
ing colour information (i.e., RGB colour channels and/or 
spatial features of colours) of the photographs. Instead of 
the random noise � , we introduce another random vari-
able � , with probability distribution ℙ� , living in the same 
dimensional space as � (i.e., ℝd ). This random variable � 
characterizes the images of the source dataset (i.e., biased 
simulations to correct). The CycleGAN approach consists 
in learning a mapping (i.e., a generator) G�→� ∶ ℝ

d
→ ℝ

d 
such that the random variable G�→�(�) follows the law of 
� (i.e., ℙ� = ℙG�→�(�)

 ). In addition to samples �1,… , �n , 
we assume to have at hand image samples �1,… , �n drawn 
according to density ℙ� on ℝd . Similarly as unconditional 
GANs, the mapping G�→� is learned using an adversarial 
loss, i.e. with a discriminator D� which forces the generator 
G�→� to generate images from a distribution close to the 
target distribution ℙ� . The adversarial loss is defined as:

G�→� aims to minimize this adversarial objective against D� , 
that means, tries to fool the discriminator with its generated 
images (i.e., maximizing the probability D�(G�→�(�i)) ). 
On the contrary, the discriminator D� aims to maximize 
the adversarial loss by distinguishing between transferred 
samples G�→�(�i) and samples �i from the distribution ℙ� . 
A perfect discriminator D� would return probability values 
equal to 1 for samples drawn from ℙ� and equal to 0 for 
samples generated by G�→� . Hence, G�→� is designed to 
solve the optimization problem against D�:

As highlighted by Zhu et al. (2017), this adversarial objec-
tive for unsupervised problems is under-constrained: there 
is no guarantee that “an individual input �i and output �i are 
paired up in a meaningful way” with such a mapping G�→� . 
In fact, without further constraints, several different map-
pings can optimize similarly the adversarial loss by transfer-
ring the same set of images from ℙ� to any random permuta-
tion of a same set of images from the distribution ℙ� . 
Moreover, optimizing in practice this under-constrained 

(1)

LGAN(G�→�,D�) =
1

n

n∑

i=1

lnD�(�i) +
1

n

n∑

i=1

ln
(
1 − D�◦G�→�(�i)

)
.

(2)G�→� = argmin
G�→�

max
D�

LGAN
(
G�→�,D�

)
.

adversarial objective alone has been found to be difficult for 
unsupervised problems, often leading to a well-known prob-
lem called “mode collapse”. Mode collapse appears when a 
generator fails to model the complete range of input images. 
This results in a lack of diversity in the generated outputs. 
To address these issues, Zhu et al. (2017) propose to reduce 
the number of possible mapping functions by adding more 
constraints to the optimization problem. To do so, they intro-
duce the inverse mapping G�→� ∶ ℝ

d
→ ℝ

d , as well as a 
second discriminator D� aimed to recognize images from 
the distribution ℙ� . Similarly to the mapping G�→� , an 
equivalent adversarial loss can be used to learn the mapping 
G�→� by solving argmin

G�→�

max
D�

LGAN(G�→�,D�) . Zhu et al. 

(2017) proposed to use G�→� to enforce the learned map-
pings to be cycle-consistent. That means that, for each input 
image �i , the mappings G�→� and G�→� can be constrained 
such that it learns to translate �i back to the initial image, i.e. 
G�→�◦G�→�(�i) ≈ �i (and similarly for image �i , such that 
G�→�◦G�→�(�i) ≈ �i ). This property can be enforced by 
using a “cycle-consistency” loss which is defined as:

Finally, to ensure that images in �1,… , �n that already seem 
to be draw from the distribution ℙ� (and vice-versa) are not 
mapped to another images, an identity mapping loss can 
also be defined as:

which further reduces the solution space of mapping func-
tions and prevents even more the optimization problem from 
being under-constrained. The full objective function of the 
CycleGAN architecture can be expressed as follows:

where �cyc and �id control the relative importance of both 
cycle-consistency and identity losses. Finally, the Cycle-
GAN aims to solve:

(3)

Lcyc
(
G�→�,G�→�

)
=
1

n

n∑

i=1

|||G�→�(G�→�(�i)) − �i
|||1

+
1

n

n∑

i=1

|||G�→�(G�→�(�i)) − �i
|||1.

(4)

Lid
(
G�→�,G�→�

)
=
1

n

n∑

i=1

|||G�→�(�i) − �i
|||1

+
1

n

n∑

i=1

|||G�→�(�i) − �i
|||1,

(5)

L
(
G�→�,G�→�,D�,D�

)
=LGAN

(
G�→�,D�

)
+ LGAN

(
G�→�,D�

)

+ �cycLcyc(G�→�,G�→�)

+ �idLid
(
G�→�,G�→�

)
,

(6)

(
G�→�,G�→�

)
= arg min

G�→�,G�→�

max
D�,D�

L
(
G�→�,G�→�,D�,D�

)
.
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Although estimating the inverse mapping G�→� is not nec-
essarily the initial goal of many image-to-image translation 
problems, its use to constrain the optimization problem 
has been found to be crucial in an unsupervised context 
for the convergence of the algorithm and the estimation of 
the desired mapping G�→� . Illustrations of the adversarial, 
cycle-consistent and identity losses within the CycleGAN 
architecture are given in Fig. 2.

3.3  The MBC‑CycleGAN approach

3.3.1  Adaptation of CycleGAN for MBC

The main idea of the proposed methodology, named MBC-
CycleGAN, is to adapt the CycleGAN approach so that it 
turns daily maps of a simulated variable with spatial fea-
tures inappropriate compared to a reference dataset, to more 
realistic maps. Here, MBC-CycleGAN is developed in the 
context of the “marginal/dependence” MBC category, i.e., 
correcting separately marginal distributions and dependence 

relationships. In addition to marginal distributions, we con-
sider the adjustment of spatial dependence structures. The 
algorithm is trained on a historical period (i.e., calibration) 
for which both climate simulations and reference datasets 
are available. Once the adversarial neural network has con-
verged, adjustment of climate simulations over a projection 
period (e.g., a future time period) is performed using the 
pretrained algorithm. The MBC-CycleGAN proceeds as 
follows: 

1. As MBC-CycleGAN belongs to the marginal/depend-
ence category, univariate distributions of modeled cli-
mate variables are first corrected independently using a 
univariate BC method for both calibration and projection 
periods. In this study, the quantile-quantile (QQ) map-
ping method is used (Déqué 2007).

2. Then, quantile-quantile and reference data over the cali-
bration time period are transformed to belong to [0, 1] 
using a pointwise min-max normalization. For each grid 
cell, the minimum and maximum values from the refer-

Fig. 2  a Illustration of the 
adversarial training for the map-
ping function G�→� , associated 
with the adversarial discrimina-
tor D� . D� encourages G�→� to 
generate outputs that are indis-
tinguishable from the probabil-
ity distribution of � . A similar 
adversarial training is used for 
G�→� using D� (not presented 
in this figure). In CycleGAN 
architectures, the mappings 
G�→� and G�→� are enforced 
to be cycle-consistent, i.e., b 
if an initial image from � is 
translated using G�→� and back 
again using G�→� , the initial 
image should be obtained. c In 
addition, to ensure that images 
from � that already seem to be 
drawn from the distribution of 
� are not modified too much, 
the identity property is used 
by enforcing G�→� applied to 
images from � to resemble to 
initial inputs from � (and vice 
versa for G�→� ). In our study, 
samples from � and � are 
replaced by QQ outputs and 
references, respectively

Samples from X

Generator GX→Y

Generated samples
Discriminator DY

Samples from Y

Cost function
Do images come from

the distribution of Y?

Backpropagation

(a) Adversarial training

Samples from X

Generator GX→Y

Generated samples

Generator GY→X

Reconstructed samples

(b) Cycle-Consistency

Cycle-consistency loss: L1 norm

Samples from Y

Generator GX→Y

Generated samples

(c) Identity

Identity loss: L1 norm
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ence during the calibration are taken to compute the nor-
malization. The resulting daily maps are then given to a 
CycleGAN model to learn the transfer between the two 
distributions of images. Generators and discriminators 
are trained until the spatial distribution of the corrected 
maps stops improving. More details about the criteria 
used to evaluate spatial distributions are presented there-
after.

3. Once the CycleGAN model has been trained for the 
calibration period, the same pointwise normalization 
is performed for quantile-quantile data over the projec-
tion period, i.e., using the same minimum and maximum 
values from the reference during the calibration period. 
Normalized daily maps from quantile-quantile data in 
the projection period are translated in the normalized 
reference domain using the pretrained adversarial neu-
ral network. Then, the corrected outputs obtained are 
rescaled to physical values by applying the inverse of 
the pointwise min-max normalization used.

4. Finally, by taking advantage of the Schaake Shuffle tech-
nique (Clark et al. 2004), quantile-quantile data for the 
projection period obtained from Step 1 are reordered 
such that the rank structure of the data obtained from 
Step 3 is reproduced. This shuffling technique, already 
employed in a few multivariate bias correction methods 
(e.g., Vrac 2018; Cannon 2018; Mehrotra and Sharma 
2019), permits here to obtain bias-corrected data with 
marginal properties from quantile-quantile outputs and 
rank dependence structure from CycleGAN outputs.

A summary of the successive steps in the form of a flowchart 
is provided in Fig. 3. More details about the different algo-
rithmic steps are presented in Appendix 1.

3.3.2  Network architecture

To infer the weights for the cycle-consistency mapping loss 
�cyc and the identity mapping loss �id , preliminary tests 
have been conducted by checking a couple of combina-
tions of weights and verifying that our optimization process 
improved the spatial structure of the climate simulations. 
With respect to these results (not shown), the weights have 
been chosen equal to �cyc = 10 and �id = 1.

Additionally, in this paper, we only present results 
obtained with a simple architecture for the CycleGAN neu-
ral networks. Our work being a proof of concept, we did 
not tune any further the architecture or the hyperparame-
ters of the neural networks. However, the results presented 
later in Sect. 5 appear sufficient to illustrate the potential 
of CycleGANs for MBC. Schemes for the convolutional 
neural networks for both generators and discriminators are 
presented in Fig. 4. Architecture of generators for the map-
ping and inverse mapping are identical and are based on 

deep convolutional layers (DCGAN, Radford et al. 2016). 
First, the daily maps, i.e. images of size 28 × 28 are given as 
inputs to the generators. Then, images flow through three 2D 
convolution layers with an increasing number of 3 × 3 filters 
(64–128–256). Two of them are performing convolutions 
that downsample input images to capture complex patterns 
at different scales. Then, two 2D transpose convolutional 
layers with a decreasing number of 4 × 4 filters (128–64) are 
used to perform inverse convolution operations and upsam-
pling input data. Finally, one 2D convolution layer with one 
1 × 1 filter is used to generate an output image of the same 
size as the initial one. Skip connections between convolu-
tion and transpose convolutional layers are used to ease the 
training of the CycleGAN network (He et al. 2016). All the 
other hyperparameters for the neural network architecture of 
the generators are detailed in Appendix 2.

Concerning the discriminators, they take as well as inputs 
images of size 28 × 28 . Then, two 2D convolution layers 
with an increasing number of 3 × 3 filters (64–128) are 
used. Finally, outputs are flattened, i.e., are converted into a 
1-dimensional array before being given to a fully connected 
layer (dense layer) that computes the sigmoïd values (i.e., 
probabilities) for the classification of images.

The number of parameters is equal to 1,025,281 for 
each generator and 80,769 for each discriminator, bringing 
the total number of parameters to 2,212,100 for the whole 
CycleGAN architecture. Please note that each convolution 
and transpose convolutional layer used within the neural 
network architectures of both generators and discriminators 
includes a bias vector to fit. The number of parameters added 
by individual convolutional layers depends on its number 
of filters f2 , the filter size (here 3 × 3 ) and also the number 
of filters f1 from the previous convolutional layer. Adding 
an additional convolutional layer in a generator architec-
ture with f2 filters will add (3 × 3 × f1 + 1) × f2 parameters. 
Hence, constructing a (deeper) neural network with more 
and more layers increases drastically the number of parame-
ters to train. In order to keep an algorithm which is relatively 
fast to train while being stable, we decided not to add further 
layers to generators and discriminators architectures. For a 
concise summary of network architectures used, we refer to 
the Tables 3 and 4 in Appendix 2.

3.3.3  Training details

In this study, CycleGAN networks are trained using the 
Adam optimizer (Kingma and Ba 2017) with learning 
rates of 1e−4 and 5e−5 for the generators and discrimina-
tors, respectively. Please note that no grid search has been 
performed to determine optimal values of learning rates, 
and hence there is room for improvement. For the perfor-
mance assessment of the CycleGAN model during training, 
the energy distance (Székely and Rizzo 2004; Székely and 
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Rizzo 2013) is used. This metric, already used in the bias 
correction literature (e.g., Cannon 2018), permits to measure 
the statistical discrepancy between two multivariate distri-
butions that are potentially in high dimension. Given two 
k-multivariate independent random vectors � and � with 
multivariate probability distributions � and � respectively, 
the energy distance E between the two distributions is:

E(�, �) =
√
2E‖� −�‖ − E‖� − ��‖ − E‖� −��‖,

with E denoting the expected value, �′ (resp. �′ ) independ-
ent and identically distributed copy of � (resp. � ) and ‖.‖ 
the Euclidean distance. The corresponding energy statistic 
of E between two k- dimensional statistical samples � and � 
can be computed as follows:

Fig. 3  Flowchart for the MBC-
CycleGAN method to adjust 
climate simulations for the 
projection period

References and model simulations
datasets for calibration (0) period.

References and model simulations
datasets for projection (1) period.

• Adjust each variable using the univariate
QQ method for period 0.

• Adjust each variable using the univariate
QQ method for period 1.

Step 1: Correction of univariate properties

• Apply a pointwise min-max normalization
of QQ and references data for period 0.

• Train the CycleGAN model to adjust for
spatial biases.

Step 2: Training of the CycleGAN

• Apply a pointwise min-max normalization
of QQ data for period 1.

• Adjust for spatial biases using the
CycleGAN model from Step 2.

• Rescale data by applying the inverse of the
pointwise min-max normalization.

Step 3: Application of CycleGAN
to correct spatial dependence

• Reorder QQ data with the Schaake Shuffle
technique for period 1 such that the rank
structure of the data obtained at the end of
Step 3 is reproduced.

Step 4: Reordering of the QQ data
Raw-CycleGAN outputs for period 1.

MBC-CycleGAN outputs for period 1.
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where �i denotes the realizations of � at the time step i 
across the k dimensions (and similarly for �m with � ). The 
energy statistic goes to zero when the two multivariate sam-
ples � and � are drawn from the same distribution.

During training, computations of energy distances are 
performed every 10 epochs, i.e. each time that the Cycle-
GAN has worked 10 times through the entire training 
dataset. Estimated energy distances Ê are calculated on 
multivariate distributions of ranks between references and 
bias-corrected data. It permits to assess along the training 
the performance of the method to correct the whole spatial 
dependence structure of climate simulations. Computing 
energy distance using ranks instead of raw values allows 
the removal of the influence of univariate properties on the 
spatial relationships. The CycleGAN model that minimizes 
the energy distance on ranks during training is chosen for 
the correction of the projection period. Training 1000 epochs 
takes ∼ 4 h on a single NVIDIA Tesla V100 GPU.

Ê(�, �) =

�
2

n1n2

n1�

i=1

n2�

m=1

‖�i − �m‖ −
1

n2
1
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−
1

n2
2

n2�
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2
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4  Design of experiments

For evaluation purposes, the proposed MBC-CycleGAN 
method is applied to adjust climate simulations outputs with 
SAFRAN data as references. Bias correction is performed 
on separate seasons in order to preserve seasonal proper-
ties. In the following, for sake of clarity, only the winter 
results are presented. Data are available for the 1979–2016 
period (i.e, 3420 winter days), and need to be divided into a 
calibration period and a projection period to train and evalu-
ate our algorithm. In accordance with common practices 
in machine learning, the 1979–2016 period is split as fol-
lows: 70% (2394 days) as training dataset and 30% (1026 
days) as evaluation dataset. In this study, two different cross-
validation methods—that differ in how calibration and pro-
jection periods are constructed—are used to evaluate our 
methodology.

4.1  Model output statistics (MOS) vs. Perfect prog 
(PP)

The first cross-validation method consists in drawing 
randomly the days that define the calibration and projec-
tion periods. As these periods are drawn randomly, the 

Fig. 4  Scheme of the convolu-
tional neural networks for the a 
generators and b discriminators 
used in this study within the 
MBC-CycleGAN procedure. 
For each convolutional and 
transpose convolutional layers, 
the number of filters used is 
indicated by the third coordinate 
of their output size
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potential climate change signal present in the data during the 
1979–2016 period vanishes. Hence, for this cross-validation 
method, no changes in marginal and dependence properties 
are expected between the calibration and projection periods, 
allowing for the assessment of the method in a stationary 
context. We take advantage of this first stationary cross-
validation technique to apply our method in both PP and 
MOS post-processing schemes for the adjustment of IPSL 
climate simulations. Implementing and evaluating both the 
PP and MOS approaches in such a validation context permits 
to determine which approach is better suited in our con-
text of bias correction of climate simulations. For the MOS 
approach, MBC-CycleGAN is applied directly to IPSL data 
according to the 4 steps already described in Sect. 3.3. Con-
cerning the implementation of the PP approach, the same 
procedure is applied but the CycleGAN model is trained 
in a slightly different way. Indeed, as already explained in 
Sect. 1, a PP approach consists in establishing the statisti-
cal relationships between large–cale predictors and local-
scale predictands from observational or reanalysis data 
(including for the predictors) before applying them to cli-
mate model data. Hence, large-scale predictors temporally 
matching the SAFRAN dataset are needed to a PP approach. 
For this purpose, a new climate dataset is constructed for 
both temperature and precipitation as follows: initial local-
scale SAFRAN data with 8 km × 8 km spatial resolution are 
upscaled using conservative interpolation on a large-scale 
grid of 32 km × 32 km spatial resolution. Then, the obtained 
large-scale data are regridded using bilinear interpolation to 
the initial grid of SAFRAN, allowing to train CycleGAN. It 
results in “biased” daily maps of temperature and precipi-
tation (large-scale predictors) of the initial SAFRAN data 
(local-scale predictands), temporally matching the chronol-
ogy of the SAFRAN time series. Using these new data—
hereafter referred to as “low-resolution (LR) SAFRAN”—a 
CycleGAN model is trained for the implementation of the 
PP approach by learning the transfer of maps from 1d-BC 
large-scale predictors (QQ(LR SAFRAN)) to maps from 
local-scale predictands (SAFRAN). This trained model is 
then used to bias correct IPSL simulations over the projec-
tion period and, hence, evaluate the CycleGAN results in a 
PP context.

4.2  Nonstationarity investigation

To evaluate the nonstationary behavior of the proposed 
method, a second cross-validation method is defined, 
which consists in dividing the 1979–2016 period chrono-
logically. By still defining the calibration and the projection 
periods based on the 70–30% split, it results in obtaining 
approximately the 1979–2005 and 2006–2016 portions as 
calibration and projection periods, respectively. Hence, the 
potential climate change signal between the calibration and 

projection periods is not removed by the cross-validation 
technique. Within this second cross-validation method, IPSL 
simulations and SAFRAN references can potentially have 
different marginal and spatial dependence changes between 
calibration and projection periods. In this respect, depending 
on the level of agreement in changes between simulations 
and references, and how MBC methods account for these 
changes in their correction procedure, the quality of the 
correction for projection periods can possibly be different. 
Hence, to provide a global picture of the performances of 
the MBC-CycleGAN method in the nonstationary context, 
three bias correction exercises of climate data with different 
statistical changes are performed with respect to SAFRAN 
references:

• the correction of IPSL simulations that present different 
marginal and spatial properties from SAFRAN, and with 
potentially different changes than those from SAFRAN.

• the correction of LR SAFRAN dataset (presented above), 
whose marginal and spatial properties as well as their 
changes are in line with those from SAFRAN.

• the correction of a third dataset called IPSLbis (presented 
below) that presents different marginal and spatial prop-
erties from SAFRAN, but for which their changes are in 
line with those from SAFRAN.

For the sake of clarity, a summary of the different attributes 
of the three datasets to correct is presented in Table 1.

LR SAFRAN dataset already presented above has, by 
construction, little bias with SAFRAN references: its biases 
are only due to the interpolation technique used to obtain 
data with a lower resolution. Hence, statistical changes 
between the calibration and projection periods for LR 
SAFRAN are in line with those from the SAFRAN data-
set. Adjusting LR SAFRAN data for the projection period 
permits to assess if the MBC-CycleGAN method is able 
to reproduce the changes from the reference in the correc-
tion. Also, the LR SAFRAN dataset presents the particular-
ity of being synchronous in time with references. Hence, in 
addition to evaluate the proposed method in terms of dis-
tributional properties, which is not considered as sufficient 
to identify successful bias correction techniques (Maraun 
2016), this pairwise correspondence between predictors 
and predictands offers the possibility to directly compare 
corrected daily maps with those from the references using 
classic forecast verification statistics.

As IPSL simulations compute a different combination 
of variability and warming than those from the SAFRAN 
reanalysis, IPSL model and SAFRAN references are likely 
to present disagreeing changes in their statistical (marginal 
and dependence) properties between calibration and projec-
tion periods. To evaluate the influence of these potential 
disagreeing changes on the performance of correction of the 
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proposed method, we constructed the third dataset, referred 
to as “IPSLbis”, for the projection period only. IPSLbis is 
specifically constructed so that its marginal and dependence 
changes between calibration and projection periods are in 
line with those from the reference. In order to ease the com-
parison of results with the first bias correction exercise, we 
forced IPSLbis to have the same changes as LR SAFRAN. 
This is reached by using a two-step procedure that takes 
advantage of a nonstationary quantile mapping technique 
for marginal changes (CDF-t, Vrac et al. 2012) and a matrix-
recorrelation technique for dependence changes (Bárdossy 
and Pegram 2012). More details about the generation of the 
IPSLbis data can be found in Appendix 3 and a detailed 
evaluation of the evolution of statistical properties of the dif-
ferent dataset between the calibration and projection period 
is provided in Appendix 4. In particular, results presented 
in Appendix 4 indicate that, as expected, changes in spatial 
structures from SAFRAN references are (globally) in agree-
ment with those from LR SAFRAN for both temperature and 
precipitation. However, concerning changes in spatial struc-
tures for IPSL simulations, conclusions are not the same 
depending on the physical variable. While, for temperature, 
simulated changes of spatial correlations are partially in line 
with those from LR SAFRAN, IPSL model presents discrep-
ancy of changes for precipitation. Globally, the construc-
tion of IPSLbis with the two-step procedure described in 
Appendix 3 permits to impose to IPSL data spatial changes 
for both temperature and precipitation that are in line with 
those from LR SAFRAN.

4.3  Comparisons to existing MBCs: R 2D2 and dOTC

Although evaluating the performance of correction for IPSL 
simulations is of primary interest, applying our method on 
these three datasets (IPSL, IPSLbis, LR SAFRAN) permits 
to assess gradually how well our method is performing 
depending on the biases present in the dataset to correct. 
Note that, as IPSL and IPSLbis data during calibration are 
identical, there is no need to train for a second time the 
CycleGAN model for IPSLbis data: the CycleGAN model 
trained with IPSL data can be used directly to adjust IPSLbis 
simulations for the projection period. In addition, two MBCs 
with different assumptions about nonstationarity are applied 
for comparison using the second cross-validation method: 
the “Rank Resampling For Distributions And Dependences” 
(R2D2 , Vrac and Thao 2020) and the “Dynamical Optimal 
Transport Correction” (dOTC, Robin et al. 2019) methods.

R2D2 , developed in the context of marginal/dependence 
category, relies on an analogue-based method that allows to 
resample ranks from a reference dataset according to some 
conditioning information and reconstructs dependence struc-
ture of the simulated time series. The information to condi-
tion the analogues can be multivariate by considering, for 

example, a set of variables to be corrected at a given time t. 
Conditioning for the ranks resampling can also be extended 
to ranks sequences, i.e. conditioning by not only one but 
several lagged time steps. Please note that, for the different 
implementations of R2D2 in this study, the multivariate con-
ditioning used includes 4 grid points that cover uniformly 
the region of interest. In addition, 5 lagged time steps are 
used for the conditioning, as it has been found to stabilize 
the R2D2 method (not shown). Also, the QQ method is used 
to correct the marginal properties for R2D2 outputs.

Concerning the dOTC method, it was developed in the 
all-in-one category, i.e., adjusting the univariate distribu-
tions and dependence structures at the same time. The dOTC 
method takes advantage of the optimal transport theory to 
construct a multivariate transfer function, named a trans-
port plan, for the adjustment of climate simulations with 
respect to references while minimizing an associated cost 
function. This particular transfer function permits to link, 
through conditional laws, all the multivariate elements from 
the biased multivariate distribution to their corrections. Cor-
rections are then derived by drawing directly from these con-
ditional laws to obtain the bias corrected data.

Both R 2D2 and dOTC methods are applied according to 
the spatial-dimensional configuration (hereinafter referred to 
as “Spatial-”), where all the 784 time series for a particular 
physical variable are corrected jointly. While R 2D2 assumes 
spatial dependence structures (i.e., the rank correlations, or 
copulas) to be stable in time, the dOTC method makes the 
hypothesis of nonstationarity of the dependence structure 
between the calibration and the projection periods, which 
allows for taking into account the changes of the model 
(e.g., due to climate change) in the bias correction proce-
dure. Intercomparing the results from both Spatial-R2D2 and 
Spatial-dOTC for adjusting spatial dependence structure 
of climate simulations with those from MBC-CycleGAN 
allows to better assess how the proposed method performs 
in a nonstationary context.

5  Results

In this section, analyses are presented for the winter season 
(December, January and February) only. CycleGAN mod-
els are trained during the calibration period and selected 
such that energy distances on ranks are minimized. All 
evaluations are performed on the projection period for the 
corrected outputs obtained from the two cross-validation 
methods and results are compared to those from the refer-
ence dataset. For bias-corrected precipitation time series, 
thresholding of 1 mm is applied before evaluation to replace 
values lower than 1 mm by 0. Bias correction outputs from 
the first and second cross-validation methods are evaluated 
in terms of both marginal and spatial properties. Analyses of 
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temporal properties are only provided for outputs from the 
second cross-validation method, in which calibration and 
projection periods are divided chronologically and hence do 
not distort temporal properties, contrary to the first cross-
validation method that randomly defines these periods. To 
assess the potential benefits of considering spatial aspects in 
the correction procedure, the univariate QQ method (Déqué 
2007) is also included in the study as a benchmark.

5.1  MOS vs. PP

5.1.1  Training of MBC‑CycleGANs

Figure 5 shows energy distances with respect to SAFRAN 
references for temperature computed on physical values 
(Fig. 5a, b) and ranks (Fig. 5c, d) for LR SAFRAN, plain 
IPSL simulations, 1d-QQ, and MBC-CycleGAN (MBC-CG) 
outputs during the training on the calibration period. In addi-
tion, results for Raw-CycleGAN (Raw-CG) are presented. 
Differences between Raw-CG and MBC-CG only lie in their 
marginal properties: while Raw-CG corresponds to the out-
puts obtained from the CycleGAN after denormalization at 

the end of Step 3, MBC-CG is the combination of the spatial 
structure from Raw-CG and univariate properties from QQ 
outputs (see the flowchart provided in Fig. 3). The results 
for precipitation are presented in Fig. S1 of the Supplement.

Clearly, Fig. 5a, b show large energy distances computed 
on physical values of temperature for LR SAFRAN and IPSL 
datasets, indicating some biases on spatial structures for 
those dataset with respect to SAFRAN references. Adjusting 
marginal properties with the univariate QQ method reduces 
values of energy distance computed on physical values, 
highlighting the influence of marginal properties on spa-
tial features. Correction of the spatial dependence structure 
provided by MBC-CG occurs relatively quickly, with energy 
distances on physical variables reduced by 2 compared to 
QQ after approximately 1000 epochs for both PP and MOS 
approaches. However, for Raw-CG, marginal properties 
generated by the inverse pointwise min-max normalization 
do not seem to improve values of energy distances, which 
justifies the post-processing of univariate properties adopted 
in the MBC-CycleGAN method with the Schaake Shuffle.

Figure 5c, d show that computing energy distances on 
ranks for temperature removes the influence of univariate 

Fig. 5  Values of the energy dis-
tances with respect to SAFRAN 
reference for temperature 
computed on a, b physical 
values and c, d ranks during the 
training of MBC-CycleGAN. 
Results are shown for the differ-
ent datasets involved in a, c the 
Perfect Prognosis approach and 
b, d the MOS approach. Please 
note that results of QQ and 
low-resolution SAFRAN (resp. 
IPSL) for ranks are the same. 
Red and orange lines are there-
fore superimposed in c (resp. 
d). This remark also applies for 
Raw-CycleGAN (blue line) and 
MBC-CycleGAN (green line)

(a) (b)

(c) (d)
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properties on spatial features. Energy distances for both LR 
SAFRAN and IPSL with their respective QQ corrections 
are indeed the same (Fig. 5c). The same remark holds for 
MBC-CG and Raw-CG energy distances on ranks that have, 
by construction, similar spatial dependence structures. As 
explained in Sect. 3.3.3, the CycleGAN model that mini-
mizes the energy distance on ranks of MBC-CycleGAN 
outputs is selected.

For precipitation (Fig. S1), the same conclusions hold, 
indicating a relative ability of the CycleGAN to adjust spa-
tial dependence structure of precipitation fields. Neverthe-
less, contrary to temperature, one should remark that energy 
distances on ranks are different for LR SAFRAN, IPSL and 
their respective QQ corrections (Figs. S1c, d), which is spe-
cific to precipitation variables that can contain several null 
values for dry events. Indeed, ranks are computed here such 
that, when tied values are encountered, the minimum value 
of rank is attributed to each tied value. The combination of 
the correction with the QQ method and the thresholding for 
precipitation below 1 mm could modify the frequency of 
dry events, which could result in obtaining different rank 
structures, and hence, mechanically, different energy dis-
tances with respect to SAFRAN references. This mechanism 
is also obtained between MBC-CG and Raw-CG (Figs. S1c, 
d), that present different energy distances due to the differ-
ence of dry events.

5.1.2  Univariate distribution properties

Once the CycleGAN models have been selected for both the 
PP and MOS approaches, the corrections of IPSL simula-
tions can be performed for the projection period. First, bias-
corrected data are evaluated in terms of univariate statistics. 
For temperature and precipitation, differences of mean val-
ues between the bias corrected data and the SAFRAN refer-
ences are computed at each grid cell. For temperature mean, 
absolute differences are computed, while for precipitation 
variables having absolute zeros, relative mean differences 
are more appropriate. Maps of differences with respect to 
the reference—for IPSL simulations and the bias-corrected 
data—are displayed in Fig. 6 for both temperature and pre-
cipitation. The mean absolute error (MAE) with respect to 
the reference dataset is also reported on each map. For more 
results on marginal properties, maps of standard deviation 
relative differences for both physical variables are also pro-
vided in Fig. S2 of the Supplement.

For both temperature and precipitation, the maps for the 
IPSL model (Fig. 6c, d) present large values of mean dif-
ferences with respect to the SAFRAN map (Fig. 6a, b) and 
highlight the need to adjust univariate properties of simula-
tions. Maps provided by 1d-QQ outputs (Fig. 6e, f) indicate 
that, as expected, the univariate method globally improves 
marginal properties at each individual site. In agreement 

(f)(e)

(h)(g)

(j)(i)

(d)(c)

(b)(a)

Fig. 6  Mean differences for c, e, g, i temperature and relative mean 
differences for d, f, h, j precipitation computed at each grid cell 
between SAFRAN reference and the different datasets (plain IPSL, 
QQ, MBC-CycleGAN-PP and MBC-CycleGAN-MOS outputs) 
during winter over the projection period. Note that the color scales 
between panels c, e, g, i and d, f, h, j are not the same to better 
emphasize intensities of values for the two physical variables. Maps 
of daily mean for SAFRAN references are also shown for a tempera-
ture and b precipitation
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with the properties of the marginal/dependence MBC meth-
ods, maps for MBC-CG for PP (MBC-CG-PP, Fig. 6g, h) 
and MOS (MBC-CG-MOS, Fig. 6i, j) are exactly the same 
as those from the 1d-QQ method. Indeed, by construction, 
the univariate distribution properties are identical between 
QQ and MBC-CycleGAN outputs, regardless of the spatial 
correlation adjustments. Although MBC-CG-PP and MBC-
CG-MOS do not use the same data for the training of the 
CycleGAN to adjust spatial features, same marginals are 
taken from the QQ outputs of IPSL data, which results in 
obtaining the same univariate properties between the three 
corrections.

5.1.3  Spatial correlations

Quality of the corrections in terms of spatial correlations is 
now assessed. For each grid cell, spatial dependencies are 
evaluated for temperature and precipitation by computing 
Pearson pairwise correlations between the cell of interest 
and each of the remaining 783 grid cells over the region of 
Paris for the different climate datasets. The biases of these 
783 spatial Pearson correlations are then summarized by 
computing the Mean Squared Error (MSE) with the cor-
responding 783 correlations computed for the references. 
By computing the MSE values for each grid cell, 784 MSE 
values are obtained for each climate dataset and can be 
intercompared from one dataset to another. Figure 7 shows 
the boxplots of the MSE values obtained for both tempera-
ture and precipitation for the plain IPSL simulations and 
BC outputs. For both variables, the boxplots for the IPSL 
simulations indicate strong values of MSE with respect to 
SAFRAN references. For QQ outputs, only slight reductions 
of MSE of spatial correlations are observed compared to 
those from IPSL, indicating that QQ globally conserves the 
spatial structure of the IPSL model. This result could have 
been expected, as, for each site, the univariate QQ method 

does not modify (too much) rank sequences of the simulated 
time series. The slight improvement of spatial statistics, 
which is greater for precipitation (Fig. 7b) than temperature 
(Fig. 7a), is in fact mainly attributable to the correction of 
univariate properties provided by the QQ method. Concern-
ing MBC-CycleGAN, the PP and MOS approaches display 
different performances in adjusting the spatial properties of 
simulations. Boxplots of MSE for MBC-CG-MOS indicate 
clear improvements of spatial correlations with respect to 
QQ outputs for both temperature and, to a lesser extent, pre-
cipitation. However, results for MBC-CG-PP show less pro-
nounced improvements, suggesting a failure for the MBC-
CG-PP approach to adjust spatial properties. This difference 
of performance for the PP approach indicates that, although 
CycleGAN models are able to learn the spatial relation-
ships between large-scale predictors (LR SAFRAN) and 
local-scale predictands (SAFRAN) during the training of 
the algorithm, as previously shown in Figs. 5 and S1, these 
relationships do not prove to be suited for adjusting IPSL 
simulations. Indeed, simulated large-scale predictors seem 
here to present too large biases with respect to LR SAFRAN 
to make the CycleGAN fitted in a PP context applicable to 
the IPSL simulations. Hence, the perfect-prognosis approach 
should be discarded in our context of bias correction of cli-
mate simulations. Therefore, in the following, only the MOS 
approach of MBC-CG is further investigated.

5.2  MBC‑CycleGAN in the nonstationary context

In the following, analyses are presented for the application 
of the MBC-CycleGAN method with the MOS approach in 
a nonstationary context using the second cross-validation 
method. Results for the correction of the three datasets - 
IPSL, IPSLbis and LR SAFRAN - with different changes in 
marginal and dependence properties between the calibration 
and projection periods are provided.

Fig. 7  Boxplots of mean 
squared errors of Pearson 
spatial correlations computed 
at each grid cell for a tempera-
ture and b precipitation over 
the projection period. Results 
are shown for plain IPSL, QQ, 
MBC-CycleGAN-PP and MBC-
CycleGAN-MOS outputs

(a) (b)
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5.2.1  Univariate distribution properties

Similarly to the first cross-validation method, univariate 
properties are evaluated using mean differences computed 
at each grid cell. Figure 8 shows, for the bias-corrected out-
puts from the three bias correction exercises, the maps of 
temperature mean differences with respect to SAFRAN ref-
erences. Maps for precipitation relative mean differences are 
presented in Fig. S6 of the Supplement. For information pur-
poses only, standard deviation relative mean differences for 
temperature and precipitation are also displayed in Figs. S7 
and S8, respectively.

For temperature, values of IPSL and IPSLbis mean dif-
ferences (Fig. 8b, c) are high, indicating strong biases of 
temperature mean with respect to the SAFRAN reference 
dataset (Fig. 8a), although less pronounced for IPSLbis. 
This was somehow expected since IPSLbis data are specifi-
cally constructed to mimic the SAFRAN changes in terms 
of marginal (and dependence) properties. It results here in 
having IPSLbis temperature means closer to those from 
SAFRAN reference for the projection period. Map for LR 
SAFRAN (Fig. 8d) shows small differences with the ref-
erence. Clear improvements of the temperature mean are 
provided by the QQ method for each of the bias correction 
exercises (Fig. 8e–g). Nevertheless, quite interestingly, QQ 
method provides less pronounced improvements for IPSL 
data (Fig. 8e), suggesting a degrading effect on results of 
correction when changes of marginal properties between 
calibration and projection periods for the climate data to be 
corrected are not in agreement with those from the refer-
ences. With regard to the performances of the MBC meth-
ods, MBC-CycleGAN presents exactly the same results as 
the QQ method (Fig. 8h–j), in agreement with the marginal/
dependence MBC properties. For Spatial-R2D2 (S-R2D2 ), 
very slight modifications of the marginal mean values pro-
vided by QQ are observed (Fig. 8k–m), due to the use of 
the multivariate conditioning to adjust spatial dependence 
structure (Vrac and Thao 2020). Concerning Spatial-dOTC 
(S-dOTC), the corrected outputs for IPSLbis (Fig. 8o) and 
LR SAFRAN (Fig.  8p) present results similar to those 
obtained for QQ and MBC-CycleGAN. However, it is 
worth mentioning that, for the correction of IPSL, S-dOTC 
(Fig. 8n) slightly improves marginal properties (MAE=0.37) 
compared to those obtained from QQ outputs (MAE=0.42).

For precipitation relative mean differences (Fig. S6), the 
same conclusions hold for each (M)BC method, indicat-
ing no particular influence of the variable to correct on the 
results of the marginal statistics adjustment.

5.2.2  Spatial correlations

We now evaluate the ability of MBC-CycleGAN to adjust 
spatial dependence. First, as for the Sect. 5.1, we compute 

MSE of spatial Pearson correlations for both temperature 
and precipitation. Figure 9 displays the results with box-
plots for the different datasets to correct and their adjusted 
outputs. Scatterplots of MSE values with respect to QQ out-
puts are presented in Fig. S9 to better assess the potential 
benefits of using MBC methods relative to univariate ones. 
For temperature (Fig. 9a), the positive values of MSE for 
IPSL suggest biases with respect to the SAFRAN references, 
illustrating the necessity to correct spatial properties of the 
model before using it in subsequent analyses. For IPSLbis, 
MSE values are slightly smaller, but still indicates strong 
differences of spatial correlations with respect to the refer-
ences. The difference of results between IPSL and IPSLbis 
highlights that discrepancies of changes with the references 
can potentially have a non-negligible effect on spatial prop-
erties; in fact, reducing those discrepancies as it is done with 
the generation of IPSLbis leads here to reduce biases in spa-
tial correlations. Concerning LR SAFRAN, MSE values are 
small, suggesting that upscaling the reference dataset deteri-
orates only slightly its spatial structure. By simply correcting 
univariate distributions, the three QQ outputs do not present 
a particular improvement of temperature MSE values. Clear 
improvements of the spatial correlation structures are pro-
vided by the MBC-CycleGAN method for the adjustment of 
IPSL, IPSLbis and LR SAFRAN, although some differences 
of performances are observed between the three corrected 
outputs. Temperature MSE values are indeed closer to 0 for 
the correction of LR SAFRAN than for the correction of 
IPSLbis and IPSL, for which similar results are obtained.

Concerning Spatial-R2D2 , the corrections of IPSL and 
IPSLbis provide major improvements in adjusting the spa-
tial correlations. In particular, better results are obtained for 
the correction of IPSLbis. However, with regard to the Spa-
tial-R2D2 outputs with LR SAFRAN, the benefits provided 
by R2D2 are smaller, as not all of the spatial correlations are 
improved. This result can better be seen in Fig. S9e. This 
contrasted performance for the R2D2 method appears in the 
context of the correction of LR SAFRAN that already pre-
sents small spatial biases with respect to SAFRAN refer-
ences. The correction obtained for LR SAFRAN suggests 
that the R2D2 method is too constrained by the selected con-
ditioning to find an appropriate collection of analogues for 
the projection period of this specific dataset.

For Spatial-dOTC outputs, results present low MSEs val-
ues for each bias correction exercise, indicating that spatial 
correlations are satisfyingly corrected by this method. Nev-
ertheless, the adjustments are slightly better for the corrected 
output of IPSL than for those for IPSLbis, which may be 
confusing here. Indeed, as dOTC is specifically designed 
to take into account the changes of the data to adjust in the 
correction procedure, better results for IPSLbis, for which 
changes of spatial correlations are in line with those from 
SAFRAN references, would have been expected. The great 
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Fig. 8  Mean differences for 
temperature with SAFRAN 
reference for BC methods using 
as inputs b, e, h, k, n IPSL, c, 
f, i, l, o IPSLbis and d, g, j, m, 
p LR SAFRAN data. Results 
are shown during winter over 
the projection period for IPSL, 
IPSLbis, LR SAFRAN, QQ, 
MBC-CycleGAN, Spatial-R2

D
2 

and Spatial-dOTC datasets. The 
map of daily mean for SAFRAN 
references is also shown for 
temperature (a)

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)
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performance of dOTC to correct spatial correlations for 
IPSL could be due to the fact that, as explained in Appen-
dix 4, IPSL simulated changes for temperature are not in 
total disagreement with those from SAFRAN, and hence 
there is no strong discrepancy of changes affecting the 
corrections.

For precipitation (Fig. 9b), the same conclusions as those 
drawn for temperature hold. Nevertheless, quite interest-
ingly, IPSL and IPSLbis data present even larger differences 
of MSE values. This shows the effects on spatial correla-
tions of the strong discrepancies of precipitation changes 
between the IPSL model and the references observed in 
Appendix 4: reducing this discrepancy of marginal and spa-
tial changes with IPSLbis decreases significantly the biases 
on spatial correlations. In contrast with temperature, these 
differences of spatial correlations for precipitation between 
IPSL and IPSLbis are significant enough to spread itself in 

the bias-corrected outputs: for each of the BC methods, the 
corrected outputs for IPSLbis present systematically lower 
MSE values compared to the corrections of IPSL.

To better assess spatial structure adjustments brought by 
MBCs, the calculation of energy distances between the bias-
corrected time series and the references are performed for 
each physical variable according to two different multivari-
ate distributions:

• on values of the physical variable directly over the whole 
region of Paris to assess differences of spatial properties 
(i.e., including both the marginals and their dependence);

• on ranks of the physical variable over the whole region 
of Paris to assess differences of spatial dependence struc-
tures (i.e., without the influence of marginal properties).

Fig. 9  Boxplots of mean 
squared errors of Pearson 
spatial correlations computed 
at each grid cell for a tempera-
ture and b precipitation over 
the projection period. Results 
are shown for IPSL, IPSLbis, 
LR SAFRAN, QQ, MBC-
CycleGAN, Spatial-R2

D
2 and 

Spatial-dOTC datasets

(a)

(b)
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Values of energy distances are estimated using a bootstrap 
method. It consists for each dataset in (i) sampling (with 
replacement) daily fields, (ii) computing the energy distance 
on the bootstrapped dataset, and (iii) repeating the previous 
two steps 1000 times to construct the bootstrap sampling 
distribution. From this bootstrap sampling, distribution is 
deduced by the bootstrap estimator (mean of the 1000 energy 
distances obtained) and a 90% bootstrap sampling interval to 
provide uncertainty bands of the estimated distance. Results 
for temperature and precipitation are displayed in Fig. 10. 
The closer the values of the energy distances are to 0, the 
closer the spatial properties of the outputs are to the one of 
the reference data.

For temperature, the two estimators of energy distances 
on physical values (Fig. 10a) and ranks (Fig. 10b) for IPSL 
and IPSLbis data are quite high compared to those for LR 
SAFRAN, which is in agreement with the differences of 
spatial properties already observed between these datasets 
and the references in Fig. 9. For the three QQ outputs, while 

energy distances on physical values are lower (Fig. 10a), 
similar energy distances on ranks as those from the dataset 
to correct are obtained (Fig. 10b). It highlights again that, 
although the QQ method adjusts the univariate distributions, 
it is not supposed to modify rank sequence of time series, 
and therefore spatial dependence structures, during the cor-
rection procedure. With regard to the three MBC methods 
for the correction of IPSL, dOTC performs slightly better on 
raw values (Fig. 10a) than MBC-CycleGAN and R2D2 , for 
which comparable results are obtained. For energy distances 
computed on ranks (Fig. 10b), dOTC and R2D2 produce sim-
ilar results. Slightly poorer performances of MBC-Cycle-
GAN are obtained compared to the two other MBC methods, 
although strongly improving the spatial dependence struc-
tures of IPSL simulations. Note that, while bootstrap sam-
pling intervals of energy distances on temperature values are 
overlapping for the three MBC methods, it is less the case 
for energy distances on temperature ranks, thereby permit-
ting to determine with more confidence the best method for 

Fig. 10  Values of the estimated 
energy distances with respect 
to the reference SAFRAN for 
temperature (a, b) and precipita-
tion c, d computed on physical 
values (a, c) and ranks (b, d) 
during the projection period. 
Results are presented for IPSL, 
IPSLbis, LR SAFRAN, QQ, 
MBC-CycleGAN, Spatial-R2

D
2 

and Spatial-dOTC outputs. 
Estimates are evaluated using 
a bootstrap method (1000 
replicates) that independently 
samples with replacement the 
daily fields from datasets. Note 
that same sequences of random 
days (i.e., same sampled days) 
are used to estimate values of 
energy distance for the different 
datasets. Error bars shows 90% 
bootstrap sampling intervals

(a) (b)

(c) (d)
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the adjustment of spatial dependence properties. However, it 
must be mentioned that results of energy distances between 
the three MBCs are very close. Consequently, differences 
in performances between MBCs might not be significant. 
Concerning the correction of IPSLbis, best performances are 
provided by dOTC for both multivariate distributions. For 
multivariate distributions with raw values, MBC-CycleGAN 
is second best, while being third for rank dependence struc-
ture. This swap of performances between raw values and 
ranks for MBC-CycleGAN and R2D2 must be analyzed with 
caution as differences of estimated energy distances between 
the two MBC methods are again very small and thus might 
not be significant. This swap can however be explained by 
both the strong influence of marginal properties on energy 
distances and the slight deterioration of marginal properties 
provided by R2D2 compared to the QQ outputs, already men-
tioned in Sect. 5.2.1. For the corrections of LR SAFRAN, 
MBC-CycleGAN performs best and dOTC second best, with 
a more significant difference of performance for estimated 
energy distances evaluated on rank values (Fig. 10b).

For precipitation (Fig. 10c, d), conclusions similar to 
those obtained for temperature can be drawn for IPSL, 
IPSLbis and LR SAFRAN outputs. However, conclusions 
are slightly different for QQ and the MBCs. As already 
explained in Sect. 5.1, QQ modifies the frequency of dry 
events and consequently changes the rank dependence struc-
ture of precipitation, which results here in an improvement 
of spatial energy distances on ranks for the 1d-QQ correc-
tions of IPSL, IPSLbis and LR SAFRAN. Concerning the 
performances of the three MBCs for IPSL, R2D2 performs 
best on energy distances for both raw values and ranks, while 
MBC-CycleGAN produces reasonable results, in particu-
lar for the adjustment of the rank dependence structure of 
precipitation. The dOTC method produces results that are 
clearly unsatisfactory concerning the rank dependence struc-
ture of precipitation. Instead of improving the rank depend-
ence structure, dOTC correction strongly degrades it. This 
underperformance is in fact due to the presence of too many 
wet events in the corrections provided by dOTC (not shown) 
compared to the references, which mechanically largely 
affects the quality of its rank dependence structure for pre-
cipitation. For the same reason, this underperformance on 
precipitation rank dependence structure is also observed for 
the adjustments of IPSLbis and LR SAFRAN with dOTC. 
For IPSLbis, estimated energy distances on ranks are similar 
between MBC-CycleGAN and R2D2 . Note here that similar 
values of energy distances do not necessarily imply that their 
spatial dependence structures are similar. Concerning LR 
SAFRAN corrections, MBC-CycleGAN again outperforms 
both dOTC and R2D2 algorithms according to estimated 
energy distances on raw values and ranks.

5.2.3  Temporal structure

In this section, bias-corrected data are evaluated relative to 
temporal properties. As a reminder, MBC-CycleGAN and 
dOTC methods have been specifically implemented to only 
adjust marginal and spatial properties of climate simulations. 
Similarly, the R2D2 algorithm is applied to adjust marginal 
and spatial features but, contrary to the two other methods, 
it also takes into account (part of) the temporal dependence 
properties through the multivariate conditioning chosen for 
its implementation, as previously explained in Sect. 4. In 
theory, this choice of conditioning dimensions allows R2D2 
to partially recover temporal properties of the reference 
dataset (Vrac and Thao 2020). Adjusting spatial coherence 
necessarily modifies the rank sequences of the initial time 
series during the correction procedure (e.g., Vrac 2018). It 
is hence interesting to quantify how strong those modifica-
tions are depending on the MBC method, whether temporal 
properties are taken into account in the correction procedure 
or not. Evaluation of temporal properties is performed by 
computing 1-d lag Pearson autocorrelations (AR1) at each 
grid cell for both temperature and precipitation. The result-
ing maps of differences with respect to SAFRAN references 
for the different BC outputs are presented in Fig. 11 (resp. 
Fig. S10) for temperature (resp. precipitation).

For temperature, IPSL shows relatively low values of 
AR1 differences (Fig. 11b), indicating that temporal proper-
ties for temperature are relatively in line with those from the 
SAFRAN references (Fig. 11a). A similar differences map 
is provided by IPSLbis outputs (Fig. 11c). In fact, IPSLbis 
temporal properties are inherited from IPSL outputs: even 
in a high-dimensional context, the two-step procedure—
and in particular, the matrix-recorrelation technique—used 
to construct IPSLbis from IPSL does not lead to a strong 
modification of temporal properties. This result on temporal 
properties of data preprocessed with this matrix-recorrela-
tion technique is consistent with the conclusions obtained 
in François et al. (2020) for a MBC method (MRec) using 
the same matrix-recorrelation. For LR SAFRAN outputs 
(Fig. 11d), values of AR1 differences are very close to 0, 
highlighting that the upscaling step used to construct LR 
SAFRAN data does not strongly modify the temporal prop-
erties of the initial SAFRAN reference dataset, which was 
expected by construction. Difference maps for temperature 
from QQ outputs (Fig. 11e–g) are relatively similar to those 
from the three datasets to adjust, respectively. However, for 
the three MBC methods used to adjust spatial dependence 
structure, modifications of temporal properties for tempera-
ture are not equivalent. With regard to MBC-CycleGAN and 
dOTC outputs (Fig. 11h, i, j, n, o and p), temporal statistics 
are close to that from the QQ outputs. It hence suggests 
that both MBC-CycleGAN and dOTC algorithms, although 
correcting the spatial features, perform little changes of the 
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Fig. 11  Differences of order 
1 Pearson autocorrelation for 
temperature with SAFRAN 
reference for BC methods using 
as inputs (b, e, h, k, n) IPSL, c, 
f, i, l, o IPSLbis and d, g, j, m, 
p LR SAFRAN data. Results 
are shown during winter over 
the projection period for IPSL, 
IPSLbis, LR SAFRAN, QQ, 
MBC-CycleGAN, Spatial-R2

D
2 

and Spatial-dOTC datasets. The 
map of order 1 Pearson autocor-
relation for SAFRAN references 
is also shown for temperature 
(a)

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)
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temporal sequencing of the time series to correct. For MBC-
CycleGAN, this is partly explained by the fact that, within 
the CycleGAN procedure, input maps from QQ outputs are 
transformed to outputs with improved spatial features, whilst 
not modifying too much the initial input image. It hence 
results in partially preserving the temporal properties of the 
QQ outputs used as inputs of the CycleGAN while providing 
improvements of the spatial representation. This particular 
point is thereafter discussed in greater details. Concerning 
R2D2 outputs, different results are obtained depending on 
the dataset to correct. For the correction of both IPSL and 
IPSLbis (Fig. 11k, l), R2D2 provides small improvements of 
temporal properties of temperature, which illustrates that, by 
including lags in the conditional dimensions, R2D2 is able to 
improve—in addition to spatial properties—temporal struc-
ture of climate datasets. However, for the correction of LR 
SAFRAN (Fig. 11m), a deterioration of AR1 temperature 
differences is obtained with respect to initial LR SAFRAN 
data (Fig. 11d). This result can be linked with the previously 
mentioned contrasted performances of the R2D2 method to 
adjust LR SAFRAN dataset in Subsect. 5.2.2.

For precipitation (Fig. S10), same conclusions hold for 
IPSL, IPSLbis and LR SAFRAN outputs. However, contrary 
to temperature, 1d-QQ corrections of IPSL and IPSLbis 
(Figs. S10e, f) show a pronounced improvement of temporal 
properties for precipitation, highlighting the potential influ-
ence of marginal properties of precipitation time series on 
its autocorrelation values. Moreover, the improvements of 
temporal properties of temperature provided by R2D2 for the 
corrections of IPSL and IPSLbis are no longer observed for 
precipitation (Fig. S10k, l). Instead, temporal properties with 
unexpected behaviors are obtained, potentially due to the 
difficulty of R2D2 to correct physical variables with events 
occuring at local scale, such as precipitation (Vrac and Thao 
2020). It can also be due to the choice of the conditioning 
information made in R2D2 . As a reminder, it is indeed the 
rank structure of simulated precipitation (resp. tempera-
ture) that serves as a conditioning to generate Spatial-R2D2 
outputs for precipitation (resp. temperature). As temporal 
properties (including rank sequences) of precipitation time 
series are not well simulated by IPSL model (Fig. S10b) 
compared to temperature (Fig. 11b), it potentially affects the 
quality of the corrections—and its temporal properties—pro-
vided by Spatial-R2D2 for precipitation. This highlights the 

importance of choosing a relevant conditioning dimension 
for the implementation of R2D2 (Vrac and Thao 2020).

To illustrate the fact that MBC-CycleGAN performs little 
changes of the temporal sequencing of the inputs to adjust, 
we compare corrected daily maps from LR SAFRAN with 
those from the references. As the LR SAFRAN dataset is 
temporally matching the SAFRAN dataset by construc-
tion, classic forecast statistics such as Root Mean Square 
Error (RMSE) can indeed be interesting to assess the per-
formances of MBC methods. Table 2 shows, for tempera-
ture and precipitation, the RMSE values with respect to 
SAFRAN references for the different BC outputs of LR 
SAFRAN. For temperature, the RMSE value between daily 
maps of the reference and the LR SAFRAN dataset is around 
0.36. Slight improvement in terms of RMSE is provided by 
the QQ method (RMSE = 0.31). As the QQ method pre-
serves the temporal sequencing of the times series to correct, 
this improvement is only due to the correction of marginal 
properties. The MBC-CycleGAN method presents better 
results (RMSE = 0.23), permitting to state with more con-
fidence that, while adjustment of spatial dependence struc-
ture are performed, it modifies only slightly the temporal 
sequencing of the times series to correct. For R 2D2 outputs, 
the RMSE value is quite large (RMSE=1.51), suggesting a 
strong modification of temporal properties. It can be linked 
with the underperformance of R 2D2 already observed in 
Fig. 11m for the correction of LR SAFRAN. Concerning 
dOTC outputs, the RMSE value (= 0.42) is slightly higher 
than those observed for LR SAFRAN and QQ outputs. It 
suggests that the influence of the correction of univariate 
distributions and spatial dependence on temporal properties 

Table 1  Summary of attributes of the different climate data to correct

Climate data Marginal prop. Spatial prop. Changes of marginal prop. Changes of spatial prop.

IPSL model From raw IPSL From raw IPSL Potentially not in line with SAFRAN Potentially not in line 
with SAFRAN

LR SAFRAN ∼ Same as SAFRAN ∼ Same as SAFRAN ∼ In line with SAFRAN ∼ In line with SAFRAN
IPSLbis ∼ Same as IPSL model ∼ Same as IPSL model ∼ In line with SAFRAN ∼ In line with SAFRAN

Table 2  RMSE values between the reference SAFRAN and the dif-
ferent climate datasets in rows for temperature and precipitation dur-
ing winter over the projection period

As LR SAFRAN dataset is temporally matching the SAFRAN refer-
ences, results are presented for LR SAFRAN and its MBC correc-
tions only. For each physical variable, the best performing method is 
underlined

Physical 
variable

LR SAFRAN QQ MBC-CG S-R2D2 S-dOTC

TAS 0.36 0.31 0.23 1.51 0.42
PR 0.75 0.73 0.51 3.41 1.03
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provided by dOTC is strong enough to affect its ability to 
provide appropriate forecasts at a daily scale. For precipita-
tion, the same conclusions hold for the different BC outputs. 
To better illustrate the results from Table 2, two animations 
presenting the successive daily temperature and precipitation 
maps generated by MBC-CycleGAN for the correction of 
LR SAFRAN, as well as the corresponding daily maps from 
the references and the different BC methods, are provided as 
supplementary materials.

6  Conclusion, discussion and future work

6.1  Conclusions

Climate simulations biases are typically corrected with uni-
variate BC methods, adjusting one physical variable and 
one location at a time, and thus spatial dependencies remain 
uncorrected. In this study, MBC-CycleGAN, an adaptation 
of the CycleGAN approach (Zhu et al. 2017) used to train 
image-to-image translation models, was presented, allow-
ing for the adjustment of not only univariate distributions 
but also spatial dependence structures of climate simula-
tions. The new suggested MBC method takes advantage 
of convolutional neural networks with simple architecture 
that are trained in competition to adjust spatial properties 
of simulated variables. The MBC-CycleGAN method was 
tested by adjusting temperature and precipitation time series 
from IPSL simulations with respect to the SAFRAN dataset 
over the region of Paris using two different cross-validation 
methods. The first cross-validation, that defines randomly 
calibration and projection periods, allows to test the new 
methodology in a stationary context. We took advantage 
of this first cross-validation method to compare two post-
processing schemes (PP and MOS) approaches that differ 
in the statistical relationships the MBC-CycleGAN model 
learns to adjust spatial dependences. The MOS approach 
that considers biases to refer to systematic distributional 
differences between references and simulated climate vari-
ables was found to be more appropriate for the implementa-
tion of the MBC-CycleGAN method and was chosen to be 
applied for the rest of the study. The second cross-validation 
method, that defines chronologically calibration and projec-
tion periods, was then used to evaluate the ability of the 
MBC-CycleGAN method to adjust climate datasets in a non-
stationary context. As IPSL simulations and SAFRAN refer-
ences present different marginal and spatial changes between 
calibration and projection periods, two additional climate 
datasets (LR SAFRAN and IPSLbis) with changes that are 
in line with the references were specifically constructed and 
adjusted, allowing to better assess the quality of the cor-
rections provided by the new method depending on the sta-
tistical biases of the data to be corrected. A wide range of 

metrics has been used to evaluate bias adjustment outputs 
with references and initial climate data and assess the cor-
rections of univariate distributions, spatial correlations and 
temporal properties. In addition to the 1d-QQ method, two 
state-of-the-art MBC ( R2D2 and dOTC) methods have been 
implemented and used as benchmarks to better evaluate the 
influence of nonstationary properties on the results of the 
MBC-CycleGAN method. The results indicate that all the 
(M)BC methods implemented in this study generally pre-
sent similar corrections of univariate distributions. Regard-
ing spatial properties, the benefits of using MBC methods 
are clear compared to the 1d-QQ method. The MBC-Cycle-
GAN method produced reasonable adjustments of spatial 
correlations with respect to R2D2 and dOTC methods for 
both temperature and precipitation and the three different 
climate datasets to adjust. Concerning the temporal aspect, 
the MBC-CycleGAN method is not designed to correct this 
specific statistical property and tends to conserve the tempo-
ral sequencing of the time series to correct. Combined with 
the corrections of spatial features, this property has proved 
to be particularly interesting for the applications of MBC-
CycleGAN when the data to correct temporally match the 
references (e.g., as for LR SAFRAN and SAFRAN dataset, 
see Sect. 5.2.2). The proposed method indeed outperformed 
all the others (M)BC alternatives for the correction of LR 
SAFRAN by generally presenting both spatial and temporal 
statistics closer to those from the references. Concerning 
nonstationary properties, it has been found that changes of 
both marginal and spatial properties between the calibra-
tion and projection periods of the climate data to adjust can 
have a non-negligible effect on the quality of corrections 
from the MBC-CycleGAN algorithm, and more generally 
from all (M)BC outputs. In a general way, better results are 
obtained for the corrections of simulations with changes that 
are in agreement with those from the references, whether the 
MBCs make the assumption of nonstationarity of marginal 
properties and dependence structures or not.

6.2  Discussion and perspectives

In this study, the development of the MBC-CycleGAN 
method was mainly intended as a proof of concept, in order 
to test if GANs can be used for multivariate bias correc-
tion of climate simulations. Although bringing results with 
comparable performances of correction to that of well-estab-
lished MBC methods, several avenues can be considered for 
the improvement of the proposed algorithm.

First, in order to remain in a context of proof of con-
cept, a simple architecture of neural networks with a small 
number of convolutional layers has been considered for the 
discriminators and generators constituting the MBC-Cycle-
GAN method. In the same idea, a classic formulation of 
the CycleGAN procedure—-as initially described in Zhu 
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et al. (2017)—has been used with a binary-cross entropy 
loss function for the adversarial training (Eq. 1). Improving 
the training performances of GANs through more advanced 
architectures and optimization techniques is an active area 
of research (e.g., Salimans et al. 2016; Arjovsky et al. 2017; 
Karras et al. 2018, among others). A first natural step to 
potentially improve results would be to opt for a more 
sophisticated CycleGAN model. For example, it can be done 
by adding more layers in the neural network architectures 
of both generators and discriminators to potentially capture 
more complex spatial relationships for the correction of cli-
mate simulations. Also, modifying the initial adversarial loss 
functions ( LGAN in Eq. 1), as proposed in Arjovsky et al. 
(2017), would be interesting as it could permit to improve 
the stability of the learning and can prevent from mode 
collapse issues. However, although progress is constantly 
increasing concerning GANs, it is well-known that this par-
ticular class of neural networks can be more difficult to train 
than classical neural networks (e.g., Wu et al. 2020). The 
possibilities of modifications of the parameters defining a 
CycleGAN model are numerous, and a priori do not guaran-
tee to improve the overall performance of the CycleGAN for 
the specific application of bias correction. Testing the differ-
ent possibilities goes way beyond the scope of the present 
study and is left for future work.

Second, it has to be noted that our method, by combining 
the 1d-QQ method and the CycleGAN approach to adjust 
both marginal and spatial properties, is not designed to spe-
cifically account for any simulated changes for future peri-
ods. For marginal properties, other 1d-BC methods that are 
able to account for potential changes of univariate CDFs 
from the calibration to the projection period (e.g., CDF-t or 
QDM, Vrac et al. 2012; Cannon et al. 2015) can of course 
be employed instead of QQ, as long as they do not modify 
(too much) rank sequence of temperature and precipita-
tion time series and thus do not distort the convergence of 
the CycleGAN procedure. Concerning changes of spatial 
properties, the CycleGAN approach as implemented in this 
study is based on the key assumption that the conditional 
distributions �|� and �|� are the same in the training (i.e., 
calibration) and test (i.e., projection) datasets. It results in 
our context in making a strong assumption on copula sta-
tionarity between present and future periods. Although spa-
tial dependence structures can be considered to be stable in 
time as imposed by physical laws over a specific region of 
interest (e.g., Vrac 2018), it can not be generalized to each 
of the physical variables and regions. For example, more 
concentrated spatial rainfall events are expected with higher 
temperatures in the future (Guinard et al. 2015; Wasko et al. 
2016). Therefore, should the changes in spatial properties in 
the simulations between calibration and projection periods 
be reproduced in the correction? By comparing our results 
obtained with different levels of nonstationarity in the model 

evolution and with two well-established MBCs based on 
copula stationarity ( R2D2 ) and nonstationarity (dOTC) 
for future periods, we shed light on how the nonstationary 
properties of the simulations are taken into account by the 
different multivariate BC methods. The benefits of consider-
ing MBC methods assuming copula nonstationarity for the 
correction of such climate dataset are not always as clear-cut 
as expected compared to MBC methods assuming copula 
stationarity. This raises the question of whether developing 
MBC methods assuming copula nonstationarity is justified, 
i.e., whether it is worth striving for developing complicated 
statistical methods that consider the simulated evolution of 
copula in the correction procedure, and, in the end, do not 
produce drastically better results than MBCs assuming cop-
ula stationarity. In practice, accounting for nonstationarity 
of simulations in bias correction procedures still remains an 
open question which needs to be answered on a case-by-case 
basis. Developing new MBC methods that are specifically 
able to reproduce these simulated changes in the correction 
is of course an important perspective but the application of 
such methods would be inappropriate as long as the changes 
from climate simulations for future periods have not been 
first identified as relevant.

Third, the MBC-CycleGAN method has been developed 
to correct spatial correlations of climate simulations for each 
physical variable separately, and thus does neither consider 
the adjustment of inter-variable correlations nor temporal 
structure. A possible extension of the initial method can be 
the consideration of inter-variable and/or temporal corre-
lations by providing to the CycleGAN model images with 
not only one but several channels of the different physical 
variables to correct. For example, for the adjustment of inter-
variable correlations between temperature and precipitation, 
concatenated images of daily temperature and precipitation 
maps in an array of dimension 2 × 28 × 28 can be provided 
as inputs to the adversarial neural network. Similarly, 
adjusting temporal correlations could be considered by 
adding channels with lagged versions of the physical vari-
able. Using images with additional channels would imply to 
change, at least, the neural network architecture by replacing 
2d-convolutional neural networks with 3d-ones to allow the 
CycleGAN model to consider inter-channels correlations. 
However, as adding additional channels can potentially make 
the training of the CycleGAN more complicated, it is likely 
that others changes relative to the architecture of neural net-
works and optimization techniques would be required, as 
those mentioned previously.

Fourth, according to the results for the correction of the 
references at large-scale (LR SAFRAN), MBC-CycleGAN 
showed greater improvements of both spatial and tempo-
ral statistics compared to the other MBC methods. These 
promising results suggest that MBC-CycleGAN can be used 
directly in downscaling applications, a practice that is not 
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initially recommended with univariate quantile mapping 
techniques (Maraun 2013; Gutmann et al. 2014). Although 
producing reasonable results of adjustments for temperature 
and precipitation spatial distributions of IPSL and IPSLbis 
datasets, the outperformance of MBC-CycleGAN observed 
for the correction of LR SAFRAN is not obtained for these 
climate outputs. A possible reason explaining why the per-
formances of MBC-CycleGAN differ between these three 
exercises of correction concerns the importance of the dis-
tributional differences between the inputs and target dataset 
considered. Indeed, unsupervised image-to-image transla-
tion algorithms such as CycleGAN can present difficulties to 
map two random variables � and � with probability distri-
butions that exhibit strong differences (Gokaslan et al. 2019; 
Royer et al. 2020). As LR SAFRAN presents smaller bias 
with the references than IPSL and IPSLbis data, outstanding 
results are obtained for the correction of LR SAFRAN with 
MBC-CycleGAN, while more moderate quality results are 
produced for IPSL and IPSLbis. Improving the MBC-Cycle-
GAN algorithm such that it is able to produce satisfactory 
results even when distributions with very strong (marginal 
and spatial) differences are considered is of great interest to 
allow its use for operational purposes.

Fifth, in this study, particular precautions have been 
taken to prevent overfitting during training of CycleGAN 
networks, such as including a regularization technique called 
“dropout” in both generators and discriminators architec-
tures (see Appendix B for further details), or verifying that 
the performances of MBC-CycleGAN on projection periods 
are not deteriorated along training (not shown). These pre-
cautions permit to apply with confidence MBC-CycleGAN 
algorithms on projection periods. The issue of overfitting 
raises the question of the generalization capability of sta-
tistical models, and how they cope with new (and unseen) 
data. In most of the study, calibration and projection periods 
have been defined chronologically for the 1979–2016 period, 
and one can argue that small differences in terms of spatial 
properties are obtained between the two periods. Assessing 
the performances of the MBC-CycleGAN algorithm for the 
adjustment of climate projections with very different spatial 
structures remains an interesting perspective. For example, 
this could be done by adapting the methodology used for the 
generation of IPSLbis to generate alternative climate simula-
tions for the projection period with strong spatial changes, 
and apply the pretrained CycleGAN neural network used for 
the correction of IPSL in this study.

Finally, as implemented in this study, the proposed MBC-
CycleGAN algorithm produces a single correction (output) 
for a given input. Although essential in climate applications, 
uncertainty quantification of MBC-CycleGAN outputs is not 
estimated here. An interesting possibility of extension to 
model uncertainty of corrected outputs would be to intro-
duce some stochasticity into the correction procedure by 

giving to the generators not only daily maps to adjust but 
also vectors of random noises. Then, for a given daily map, 
it would produce an ensemble of plausible corrections. The 
spread between the ensemble members would represent the 
uncertainty associated with the multivariate bias correction.

We hope that this study serves as a starting point for the 
use of GANs for multivariate bias correction of climate sim-
ulations. One of the main advantages of using MBC-Cycle-
GAN is that adjustment is performed images by images, 
i.e. maps by maps. If well trained, discriminators somehow 
guarantee that individual generated maps produced by gen-
erators are realistic with respect to references, while daily 
maps with strong statistical artefacts are rejected. This is not 
the case for the other MBC methods such as R2D2 or dOTC, 
that provide corrected simulations with appropriate distri-
butional statistics without being particularly constrained to 
generate realistic daily maps. Providing corrections with 
realistic maps at a daily scale can be useful for the scien-
tific community working on climate change impacts, e.g., 
in hydrology, for which daily spatial features are of major 
concern.

Appendix A: Details on the MBC‑CycleGAN 
method

Let consider the correction of a random variable, denoted � 
(e.g., biased climate simulations outputs) with respect to a 
reference random variable, denoted � . In our study, � and 
� live in dimension 28 × 28 = 784 dimensions. We denote 
�0 and �1 the random variables to correct from climate 
simulations during the calibration and projection period, 
respectively. Similarly, �0 is considered as the random vari-
able of references for the calibration period. The goal of any 
BC methods is to infer future unobserved data �1 from the 
reference variable �0 during calibration, and the variables 
from model simulations for calibration ( �0 ) and projection 
( �1 ) periods.

In practice, BC methods are applied to correct samples 
(�0

1
,… , �0

n
) and (�1

1
,… , �1

n
) from the random variables 

�0 and �1 , with respect to a sample (�0
1
,… , �0

n
) from the 

random variable �0 . For example, 1d-bias corrections of 
(�0

1
,… , �0

n
) and (�1

1
,… , �1

n
) with the QQ method can be 

denoted (��0
1
,… , ��0

n
) and (��1

1
,… , ��1

n
) . As explained in 

Sect. 3, the CycleGAN approach within the MBC-Cycle-
GAN methodology is applied between 1d-QQ outputs and 
references. Hence, two generators G��→� and G�→�� are 
considered, as well as two discriminators D�� and D� . The 
different steps constituting the MBC-CycleGAN method are 
described in an algorithmic way as follows: 
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Algorithm 1 MBC-CycleGAN training algorithm. In all experiments pre-
sented in the paper, a batch size m = 32 is used.
Require: αdisc - the learning rate for the discriminators, αgen - the learning rate for the

generators, m - the batch size.
Require: δQQ, δY - the initial discriminators’ parameters. θGQQ→Y , θGY→QQ - the initial

generators’ parameters.
(x0

1, . . . ,x
0
n) a sample of the random variable X0.

(x1
1, . . . ,x

1
p) a sample of the random variable X1.

(y0
1, . . . ,y

0
n) a sample of the random variable Y0.

Ensure: (z01, . . . , z
0
n) and (z11, . . . , z

1
p) the corrections of (x0

1, . . . ,x
0
n) and (x1

1, . . . ,x
1
p).

1: Compute (qq0
1, . . . ,qq

0
n) and (qq1

1, . . . ,qq
1
p) the 1d-bias corrections of (x0

1, . . . ,x
0
n) and

(x1
1, . . . ,x

1
p) using the quantile-mapping method (Déqué 2007).

2: Compute (˜qq0
1, . . . , q̃q

0
n) and (˜qq1

1, . . . , q̃q
1
p), the point-wise min-max normalizations of

(qq0
1, . . . ,qq

0
n) and (qq1

1, . . . ,qq
1
p) with the range of (y0

1, . . . ,y
0
n).

3: Compute (˜y0
1, . . . , ỹ

0
n), the point-wise min-max normalization of (y0

1, . . . ,y
0
n).

4: while Ê, the estimated energy distance on ranks between (y0
1, . . . ,y

0
n) and (z01, . . . , z

0
n),

has not converged do
5: Sample {˜qq0

i }
m/2
i=1 a batch from the dataset (˜qq0

1, . . . , q̃q
0
n).

6: Sample {ỹ0
i}

m/2
i=1 a batch from the dataset (˜y0

1, . . . , ỹ
0
n).

7: Generate “fake” samples {ỹ0,fake
i }m/2

i=1 :

∀i ∈ �1, . . . ,m/2�, ỹ0,fake
i = GQQ→Y(˜qq0

i ).

8: Generate “fake” samples {q̃q0,fake
i }m/2

i=1 :

∀i ∈ �1, . . . ,m/2�, q̃q0,fake
i = GY→QQ(˜y0

i ).
9: Update δQQ, using Adam optimizer and the learning rate αdisc, by computing the

adversarial loss function (Eq. 1) and its gradients with the samples {˜qq0
i }

m/2
i=1 and

{q̃q0,fake
i }m/2

i=1 . The adversarial loss function must be maximized.
10: Update δY, using Adam optimizer and the learning rate αdisc, by computing the

adversarial loss function (Eq. 1) and its gradients with the samples {˜y0
i }

m/2
i=1 and

{ỹ0,fake
i }m/2

i=1 . The adversarial loss function must be maximized.
11: Compute the full loss function (Eq. 6) and its gradients with respect to the parameters

θGQQ→Y and θGY→QQ of the generators GQQ→Y and GY→QQ.
12: Update the parameters θGQQ→Y and θGY→QQ by minimizing the full loss function,

using Adam optimizer, according to its gradients and the learning rate αgen.
13: Compute ( ˜s01, . . . , s̃0n) the normalized data with a corrected spatial dependence struc-

ture for the calibration period:
∀i ∈ �1, . . . , n�, ˜s0i = GQQ→Y(˜qq0

i ).
14: Reorder each 1d-bias corrected dimension from the dataset (qq0

1, . . . ,qq
0
n) according

to its rank structure in the dataset ( ˜s01, . . . , s̃0n) with the Schaake Shuffle method
(Clark et al 2004) to obtain (z01, . . . , z

0
n), the bias correction of (x0

1, . . . ,x
0
n).

15: Compute the estimated energy distance on ranks Ê evaluated between (y0
1, . . . ,y

0
n)

and (z01, . . . , z
0
n).

16: end while
17: Compute ( ˜s11, . . . , s̃1p) the normalized data with a corrected spatial dependence structure

for the projection period:
∀i ∈ �1, . . . , p�, ˜s1i = GQQ→Y(˜qq1

i ).
18: Reorder each 1d-bias corrected dimension from the dataset (qq1

1, . . . ,qq
1
p) according to

its rank structure in the dataset ( ˜s11, . . . , s̃1p) with the Schaake Shuffle method to obtain
(z11, . . . , z

1
p), the bias correction of (x1

1, . . . ,x
1
p).
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Appendix B: Details on the simple 
architecture of neural networks used 
in MBC‑CycleGAN

The simple neural network architectures used for the dis-
criminators and generators constituting the MBC-CycleGAN 
method in this study are described with more details in this 
appendix.

Appendix B.1: Architecture of the generators

As explained in Sect. 3.3.2, skip connections are used in the 
architecture of the generators to ease the training process. 
Skip connections permit to provide information to a given 
layer that comes not only from the direct previous layer, but 
also from other upstream convolution layers in the architec-
ture. Skipping over layers permits to avoid vanishing gradi-
ents issues, which is a problem that can make the network 
hard to train. All layers except the first one have leaky recti-
fied linear unit (leaky-ReLu) activation functions defined as: 

y =

{
x if x ≥ 0,

�x otherwise,
 with � = 0.2 . Dropout regularization, 

that refers to ignoring neurons chosen at random during 
training, is used after the second and third 2D convolutional 
layers to prevent from overfitting (e.g., Srivastava et al. 
2014). The probability used for dropout is 0.4. A summary 
of the simple neural network architecture used for the gen-
erators in described below in Table 3.

Appendix B.2: Architecture of the discriminators

A summary of the simple neural network architecture used 
for the discriminators is described below in Table 4.

Appendix C: Methodology 
for the generation of IPSLbis

For the generation of IPSLbis data, a two-step procedure is 
developed to construct, from IPSL data, climate data that 
present marginal and spatial changes that are in line with 
those from references between the calibration and projection 
periods. In order to stay with comparable changes as those 
from LR SAFRAN, LR SAFRAN changes are reproduced. 
We recall that, for the calibration period, IPSL and IPSLbis 
data are strictly identical. The two-step procedure is only 
used to produce alternative climate data for the projection 
period.

Appendix C.1: Marginal changes with CDF‑t

The first step of the procedure consists in producing time 
series for the projection period of IPSLbis by taking into 

account marginal changes of LR SAFRAN with the 1d-BC 
named CDFt (Vrac et al. 2012). Initially, CDF-t is a ver-
sion of univariate quantile mapping method designed to 
correct at each individual grid cell marginal properties of 
climate simulations outputs during the calibration and the 
projection period according to the data from the reference 
observed during calibration. CDF-t, by defining a specific 
transfer function, has been conceived to take into account 
the potential simulated changes of univariate distributions 
from the calibration to the projection period in order to pro-
duce the adjusted data such that the marginal changes are in 
line with those from the simulations. While, traditionally, 
this quantile-mapping approach is used to find, in a bias 
correction context, a mathematical transformation allow-
ing to go from simulations to references, we here applied 
CDF-t to go from “large scale” references (LR SAFRAN) 
to simulations for future periods. By proceeding this way, 
the produced time series are projected distributions in the 
domain of IPSL simulations that have been obtained while 
taking into account the potential evolution of CDFs of the 
LR SAFRAN dataset between the calibration and projec-
tion periods. By concatenating times series from IPSL for 
the calibration period and those obtained from the CDF-t 
method for the projection period, new climate times series 
are obtained, presenting marginal distributions changes in 
line with those from references.

Appendix C.2: Spatial changes 
with a matrix‑recorrelation technique

The second step consists in deriving a spatial dependence 
structure for the projection period such that spatial changes 
of LR SAFRAN are reproduced. To do so, we take advan-
tage of a matrix-recorrelation technique used for the MBC 
method presented in Bárdossy and Pegram (2012) to impose 
to climate data a specific spatial dependence structure for 
the projection period. Our methodology is summarized 
in Table 5. It consists in first projecting individually each 
variable of both IPSL simulations and LR SAFRAN during 
calibration and projection periods to the univariate normal 
distribution with a Gaussian quantile mapping method. This 
“Gaussianization” step is particularly suited for variables 
with mixed distributions such as precipitation (composed of 
wet and dry events). Computing Pearson correlation matri-
ces on such Gaussianized data instead of raw data permits 
to better describe its dependence structure. Thus, Pearson 
correlation matrices of the different Gaussianized data are 
computed. They are respectively denoted as CI,C , CI,P , C(bis)

I,C
 , 

C
(bis)

I,P
 , CS,C , CS,P for IPSL during calibration, IPSL during 

projection, IPSLbis during calibration, IPSLbis during pro-
jection, LR SAFRAN during calibration and LR SAFRAN 
during projection. Additionally, let rI,C , rI,P , r(bis)

I,C
 , r(bis)

I,P
 , rS,C , 

rS,P denote one of their entry. Note that by construction, CI,C 
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is the same as C(bis)

I,C
 and that C(bis)

I,P
 is unknown. Assessing 

the changes of LR SAFRAN spatial correlations between 
calibration and projection periods is now required to derive 
the spatial dependence structure of IPSLbis for the pro-
jection period. A simple approach to determine r(bis)

I,P
 , the 

correlation of the Gaussianized data of IPSLbis for pro-
jection, would be to compute it based on the difference of 
correlations from Gaussianized LR SAFRAN data such as 
r
(bis)

I,P
= rI,C + rS,P − rS,C . However, computing r(bis)

I,P
 this way 

can lead to obtain correlation values that are out of range, i.e. 
being greater than 1 or less than -1, which is not appropriate.

From Bárdossy and Pegram (2012), given rI,C , rS,C , rS,P , 
one can derive rIbP using Fisher-Z transformation (Fisher 
1915) as following:

Fisher-Z transformation permits to transform a bounded 
random variable to another random variable that can be 
assumed to be Normal, and for which additive correction 
can be performed (see Mehrotra and Sharma (2019) for the 
derivation of Eq. 7). By deriving this way all the new cor-
relation coefficients, the potential changes in correlations in 
the Gaussianized LR SAFRAN data are preserved and the 
Pearson correlation matrix for Gaussianized IPSLbis during 
the projection period is obtained.

(7)r
(bis)

I,P
=

(1+rS,P)

(1+rS,C)
(1 + rI,C) −

(1−rS,P)

(1−rS,C)
(1 − rI,C)

(1+rS,P)

(1+rS,C)
(1 + rI,C) +

(1−rS,P)

(1−rS,C)
(1 − rI,C)

.

Now that the Pearson correlation matrix, C(bis)

I,P
 , is com-

puted, a combination of “decorrelation” and “recorrelation” 
steps using decompositions of correlation matrices through 
singular value decomposition (SVD, Beltrami 1873; Jordan 
1874a, b; Stewart 1993) is applied on the Gaussianized data 
of IPSL during projection period, forcing its Pearson cor-
relation matrix to be exactly the same as the Pearson correla-
tion matrix, C(bis)

I,P
 . The new dependence structure for IPSLbis 

is obtained. Finally, a reordering of time series from CDF-t 
outputs according to this new dependence structure is per-
formed using the Schaake Shuffle method to obtain IPSLbis 
data for the projection period.

Appendix D: Spatial correlation changes 
analysis

We present a spatial changes analysis to provide a better 
picture of the properties of the climate data in terms of 
changes between the calibration and projection periods. 
As a reminder, IPSLbis data are generated using the two-
step procedure described in Appendix 3 such that its mar-
ginal and dependence changes are in line with those from 
LR SAFRAN (and therefore SAFRAN) for the projection 
period. Fig. S3 displays scatterplots of differences between 
Spearman spatial correlations of temperature and precipita-
tion evaluated for all pairwise combinations of sites, com-
puted for the calibration (1979–2005) and the projection 
(2006–2016) period, respectively. Scatterplots compares dif-
ferences of Spearman correlation with respect to those from 
LR SAFRAN. It permits one to visually verify if changes 
in the spatial dependence structure are in line to those from 
references at large-scale. Using rank correlation here per-
mits to measure in isolation the spatial dependence between 
two sites rid of their marginal properties. Figures for the 
analysis of marginal changes– -in particular, mean and 
standard deviation changes—are also displayed in Figs. S4 
and S5 for information purposes only. Results on univariate 

Table 3  The architecture of the generators used in the MBC-Cycle-
GAN network

Layer Layer name Filter Stride size Output size

1 Input layer n.a. n.a. 28 × 28 × 1

2 Conv2D 3 × 3 × 64 (1, 1) 28 × 28 × 64

3 Conv2D 3 × 3 × 128 (2, 2) 14 × 14 × 128

Leaky ReLU + 
Dropout

n.a. n.a. 14 × 14 × 128

4 Conv2D 3 × 3 × 256 (2, 2) 7 × 7 × 256

Leaky ReLU + 
Dropout

n.a. n.a. 7 × 7 × 256

5 Conv2DTranspose 4 × 4 × 128 (2, 2) 14 × 14 × 128

Skip connection 
(Layer 3)

n.a. n.a. 14 × 14 × 128

+ Leaky ReLU
6 Conv2DTranspose 4 × 4 × 64 (2, 2) 28 × 28 × 64

Skip connection 
(Layer 2)

n.a. n.a. 28 × 28 × 64

+ Leaky ReLU
7 Conv2D 1 × 1 × 1 (1, 1) 28 × 28 × 1

Skip connection 
(Layer 1)

n.a. n.a. 28 × 28 × 1

+ Leaky ReLU

Table 4  The architecture of the discriminators used in the MBC-
CycleGAN network.

Layer Layer name Filter Stride size Output size

1 Input layer n.a. n.a. 28 × 28 × 1

2 Conv2D 3 × 3 × 64 (2, 2) 14 × 14 × 64

Leaky ReLU + 
Dropout

n.a. n.a. 14 × 14 × 64

3 Conv2D 3 × 3 × 128 (2, 2) 7 × 7 × 128

Leaky ReLU + 
Dropout

n.a. n.a. 7 × 7 × 128

4 Flatten n.a. n.a. 6272
5 Dense + sigmoïd 1 n.a. 1
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properties can be briefly summarized as such: changes in 
marginal properties from SAFRAN references (resp. IPSL 
model) are in agreement (resp. disagreement) with those 
from LR SAFRAN for both temperature and precipitation. 
For IPSLbis, the application of the CDF-t method permits to 
obtain marginal changes for both temperature and precipita-
tion similar to those from LR SAFRAN. Concerning spa-
tial properties, as expected, changes in spatial correlations 
from SAFRAN references are (partially) in agreement with 
those from LR SAFRAN for both temperature (Fig. S3a) 
and precipitation (Fig. S3d). Concerning changes in the 
IPSL simulations, simulated changes of spatial correlations 
for temperature (Fig. S3b) are globally in line with those 
from LR SAFRAN, highlighting the ability of the climate 
model to provide appropriate temperature changes in spatial 
structure between the calibration and the projection peri-
ods. However, conclusions are quite different for precipita-
tion, for which simulated changes are not in agreement at 
all with those from the reference at large scale (Fig. S3e). 
Hence, IPSL model presents discrepancy of changes for pre-
cipitation with respect to LR SAFRAN (and thus, SAFRAN 
references), that could potentially affect the quality of the 
correction depending on how MBC-CycleGAN accounts for 
these changes in its correction procedure. Concerning the 
results for IPSLbis, changes for both temperature (Fig. S3c) 
and precipitation (Fig. S3f) are similar to those from LR 
SAFRAN, confirming that the two-step methodology used 
to impose to IPSL specific changes of spatial correlations is 
appropriate here.
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