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1.  Introduction
Soil heterotrophic respiration (SHR), the CO2 flux produced by free-living microbial heterotrophs and soil 
fauna feeding on soil organic matter (Carbone et al., 2016; Hanson et al., 2000), constitutes a key ecosys-
tem-to-atmosphere carbon flux that affects soil carbon storage and carbon-climate feedbacks. Since the 
magnitude of SHR is roughly four times of global annual anthropogenic fossil fuel emission (Le Quéré 
et al.,  2018) and SHR can regulate the net ecosystem carbon exchange variability in some regions (Liu, 
Ballantyne, et al., 2018), even small changes in this flux can cause carbon redistribution between soil and 
atmosphere, and modify the carbon sink. Enhanced microbial dynamics in soil organic matter decompo-
sition have been detected as the dominant factor in an increasing imbalance between higher CO2 loss rate 
and CO2 uptake by plants (Bond-Lamberty et al., 2018). Therefore, a detailed understanding of the SHR 
spatial and temporal dynamics under changing climate conditions is pivotal to improve projections of the 
carbon–climate feedback (Ballantyne et al., 2017; Bradford et al., 2019).

However, unlike other components of the terrestrial carbon cycle like gross primary productivity (GPP) 
that can be measured through eddy covariance flux tower at plot scale, SHR observations mainly come 
from small-scale chambers, combined with intrusive methods (trenching, root exclusion, root extraction), 
or non-intrusive methods of isotope labeling with uncertainty in 14C measurements (Bond-Lamberty 
et al., 2004; Hanson et al., 2000) to partition the heterotrophic and autotrophic soil fluxes. Due to the con-
siderable uncertainty underlying these measurements, SHR is the most poorly constrained ecosystem and 
global carbon flux (Ciais et al., 2020; Konings et al., 2019).

Abstract  Soil heterotrophic respiration (SHR) is important for carbon-climate feedbacks because 
of its sensitivity to soil carbon, climatic conditions and nutrient availability. However, available global 
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quantify the global distribution of SHR and its response to climate variability, we produced a new global 
SHR data set using Random Forest, up-scaling 455 point data from the Global Soil Respiration Database 
(SRDB 4.0) with gridded fields of climatic, edaphic and productivity. We estimated a global total SHR 
of 56.3

38.646.8  Pg C yr−1 over 1985–2013 with a significant increasing trend of 0.03 Pg C yr−2. Among the 
inputs to generate SHR products, the choice of soil moisture datasets contributes more to the difference 
among SHR ensemble. Water availability dominates SHR inter-annual variability (IAV) at the global scale; 
more precisely, temperature strongly controls the SHR IAV in tropical forests, while water availability 
dominates in extra-tropical forest and semi-arid regions. Our machine-learning SHR ensemble of data-
driven gridded estimates and outputs from process-based models (TRENDYv6) shows agreement for a 
strong association between water variability and SHR IAV at the global scale, but ensemble members 
exhibit different ecosystem-level SHR IAV controllers. The important role of water availability in driving 
SHR suggests both a direct effect limiting decomposition and an indirect effect on litter available from 
productivity. Considering potential uncertainties remaining in our data-driven SHR datasets, we call for 
more scientifically designed SHR observation network and deep-learning methods making maximum use 
of observation data.
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Most existing SHR-related research has focused on testing the sensitivities of SHR to environmental varia-
tions through multi-factorial manipulation experiments at small scales like soil warming (Noh et al., 2016; 
Schindlbacher et al., 2009), rainfall exclusion (Hinko-Najera et al., 2015; S. Huang et al., 2018), water addi-
tion (Liu, Lü, et al., 2018; Zou et al., 2018), and nitrogen fertilization experiments (Z. Chen et al., 2018; Peng 
et al., 2018). Although these studies enable us to understand local SHR responses under different environ-
mental conditions, large-scale spatial information of SHR is still limited, and contains large uncertainty. 
For example, global SHR estimates from Earth System Models (ESMs) range from 40 to 70 PgC yr−1 during 
1965–2004 (Hashimoto et al., 2015; Shao et al., 2013) with large inter-model differences. Apart from these 
ESM estimates, we know of only four global SHR maps available at present (Table 1). The first data-driven 
SHR map was generated by Hashimoto et al. (2015) who upscaled in situ measurements of soil respiration 
with a modified version of functional relations from Raich and Potter (1995) and Raich et al. (2002) to calcu-
late total soil respiration using monthly temperature and precipitation, and then used a constant partition-
ing ratio to scale down total soil respiration to SHR. One limitation acknowledged by this study is that only 
53 sites from Bond-Lamberty et al. (2004) were used to derive that coarse ratio. Warner et al. (2019) used a 
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Data type Reference
Target 

variable
Number of site 

data Method Period
Spatial 

resolution Uncertainty

Site-level 
data

Bond-Lamberty and 
Thomson (2010)

Rs, SHR 3,379 records 
of Rs; 333 
records of 

SHR (if we use 
same filtering 

criterion)

Collecting published studies 1961–2007 - -

Global 
map

Hashimoto 
et al. (2015)

Rs, SHR 1,638 records 
of Rs

Monthly Rs = f(monthly 
temperature, monthly 

precipitation, precipitation of 
the previous month)

1965–2012 0.5° × 0.5° -

A globally constant coarse 
ratio is used to transform 

Rs to SHR: ln(annual 
SHR) = 1.22 + 0.73*ln(annual 

Rs)

Tang et al. (2020) SHR 504 records of 
SHR (with 

update from 
Chinese 

publications)

Random Forest 1980–2016 0.5° × 0.5° -

Warner et al. (2019) Rs; SHR 2,657 records 
of Rs

Quantile regression forest on Rs, 
and empirical equation on 

SHR.

- 1 km Sampling bias 
uncertainty

Adachi et al. (2017) Rs Only five sites 
were used in 

validation

Empirical equation 2001–2009 4 km -

Konings 
et al. (2019) 
– top-down

SHR - Inverting land surface carbon 
balance

2010–2012 4° × 5° Inversion 
uncertainty

This study SHR 455 records of 
SHR (after 
filtering)

Random Forest 1985-2013 
(overlapped 

period 
affected by the 

explanatory 
variables)

0.5° × 0.5° Extrapolation 
uncertainty and 

uncertainty 
from alternative 

gridded input 
datasets

Note. Rs: soil respiration.
Abbreviation: SHR, soil heterotrophic respiration.

Table 1 
Comparison With Previously Published Respiration Datasets
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similar approach, first computing total soil respiration and then SHR from a partitioning ratio, to generate a 
static high resolution global SHR map. Tang et al. (2020) used Random Forest model to produce a data-driv-
en global SHR data set but this lacked uncertainty evaluation. Finally, Konings et al.  (2019) employed a 
constrained carbon balance framework using atmospheric inversion based on net ecosystem productivity 
(NEP), solar-induced fluorescence based GPP, and modeled carbon use efficiency to produce a top-down 
global SHR estimation; this is available at relatively coarse spatial resolution (4° × 5°) and for a short time 
period (2010–2012), which limits its validation against in situ measurements. Considering the limitations of 
the above-mentioned datasets, there is a clear need for spatially explicit data-driven global-scale SHR maps 
at a finer resolution and for a longer time period with full uncertainty accounting, which can be used for 
evaluation and optimization of process-based models (N. Huang et al., 2020; J. Li et al., 2016).

A decade ago, Bond-Lamberty and Thomson (2010) compiled a large soil respiration database — the Global 
Soil Respiration Database (SRDB), with soil respiration observations from peer-reviewed literature stud-
ies. The number of soil respiration records has reached 6,634 (4,111 valid values) in the latest SRDB 4.0 
(Bond-Lamberty & Thomson, 2018) although SHR observations are far fewer (674 valid values before fil-
tering); very recently, the SRDB 5.0 (Jian et al., 2021, not used here) was released with 1,147 annual SHR 
values. A data-driven SHR estimate from site to regional even global scale is thereby becoming feasible 
now, and Bond-Lamberty et al. (2016) suggested that machine learning could be an ideal tool toward the 
large-scale data-driven SHR estimation. Machine learning algorithms are powerful tools for data-driven 
up-scaling estimation of a target variable in ecological studies (Jung et al., 2011; Steidinger et al., 2019; Yao 
et al., 2018). Research on predictions of carbon or water flux (Jung et al., 2010; Z. Zeng et al., 2014) and 
crop yield (Cai et al., 2019; Feng et al., 2019) have affirmed the utility of those algorithms. Estimation with 
such data-oriented techniques gives us a new opportunity to evaluate SHR and its dynamics in response to 
environmental variations globally.

In this study, we apply Random Forest (RF) algorithms to estimate global annual SHR at 0.5° × 0.5° spatial 
resolution over the period 1985–2013 with meteorological, edaphic factors and GPP as explanatory varia-
bles. With this method, we can produce an ensemble of different data-driven SHR gridded data set at global 
scale over last three decades, and we are also able to examine the contribution of dynamic climate drivers 
to SHR inter-annual variability (IAV), including annual temperature, precipitation or soil moisture, and 
radiation.

2.  Materials and Methods
2.1.  Soil Respiration Database

The Global SRDB, is composed of soil respiration measurements from peer-reviewed studies. It was first 
released in Bond-Lamberty and Thomson (2010) and updated in Bond-Lamberty and Thomson (2018) as 
SRDB version 4.0. We used 455 site-year observations after data filtering. There are 290 sites in total and 
most sites have records less than 3. Our data filtering criteria included: (a) removing records without de-
tailed temporal, coordinates and annual SHR information, and (b) excluding observations from manipu-
lation experiments and soda lime measurements, which tend to underestimate soil CO2 fluxes (Haynes & 
Gower, 1995). Records using isotope, gas chromatography or other measurements were retained. Figure 1 
shows that current SHR observations after filtering mainly distributed in temperate zones, with higher 
sample density in East Asia, Europe and North America. These available observations belong to seven eco-
system types (Friedl et al., 2010).

Here we introduce different climatic, soil moisture and GPP datasets that are used to produce large ensem-
ble global SHR datasets by upscaling SRDB point data, which improves on previous studies with only few 
available SHR members resulting in incomplete uncertainty accounting.
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2.2.  Climatic Datasets

2.2.1.  Temperature, Precipitation and Radiation

2.2.1.1.  CRUNCEP

The climatic variables of annual temperature, annual precipitation and annual short-wave radiation used 
in this study are obtained from the CRUNCEP v6.1 (Viovy, 2015) covering the period 1901 to 2015. CRUN-
CEP is a combination of two existing datasets: the Climate Research Unit (CRU) TS3.2 observation-based 
monthly climatological data in spatial resolution of 0.5° × 0.5°, and the National Center for Environmental 
Prediction (NCEP) reanalysis product in 2.5° × 2.5° and 6-hour temporal step. The latter is used to define 
the diurnal and daily variation of the climate forcing.

2.2.1.2.  CRUJRA

CRUJRA v1.1 is based on the same methodology as CRUNCEP but uses the Japanese Reanalysis Data (JRA) 
produced by the Japanese Meteorological Agency (JMA) with a spatial resolution of 0.5° × 0.5°adjusted to 
match the CRU TS 3.26 data (Harris et al., 2014; Kobayashi et al., 2015). These data are available at a 6-hour 
time-step from 01/1901 to 12/2017. The annual temperature, annual precipitation and annual short-wave 
radiation from CRUJRA are also used in this study.

2.2.1.3.  Princeton Climate Data Set

This global meteorological forcing data set is a blend of NCEP/NCAR reanalysis data and a series of global 
observations to form global 0.25°×0.25° daily temperature and precipitation datasets from 1948 to 2016 
(Sheffield et al., 2006). We aggregate daily data to annual values first.

2.2.1.4.  WFDEI Meteorological Forcing Data Set

This WFDEI meteorological forcing data set is a combination of ERA-interim re-analysis data with daily 
variability and monthly in-situ observation. There are two precipitation products available from WFDEI: 
one is corrected using CRU observations, and the other using the Global Precipitation Climatology Centre 
(GPCC) data set (Weedon et al., 2014). WFDEI-CRU and WFDEI-GPCC are both used in this study. These 
two datasets span from 1979 to 2016 and are provided at 0.5°×0.5° spatial resolution.

2.2.1.5.  Climate Prediction Center (CPC)

This CPC climatological data set includes daily maximum and minimum temperature (tmax and tmin) and 
daily precipitation. Daily average temperature is generated by averaging tmax and tmin. Then the daily tem-
perature and daily precipitation are aggregated to annual values. This data set starts from 1979, has been 
updated through 2021, and is available at 0.5° × 0.5°.

2.2.2.  Soil Moisture Datasets

2.2.2.1.  CPC Soil Moisture

The CPC monthly soil moisture data set is estimated by a one-layer leaky-bucket model (J. Huang et al., 1996; 
Van den Dool et al., 2003). The driving fields for the model include temperature and precipitation from CPC 
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Figure 1.  The spatial distribution of selected soil heterotrophic respiration observation sites (bold circles) by ecosystem 
type. The land cover used to define ecosystems from MCD12Q1 is shown in a color lighter than the circles in same 
category. Numbers in brackets denote the available sites and records for a given ecosystem.
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precipitation reconstruction over Land (M. Chen et al., 2002) and CPC Global Land Surface Air Tempera-
ture Analysis (Fan & Van den Dool, 2008). This data set starts from 1948 and updates in real time (currently 
to 2021), with a spatial resolution of 0.5° × 0.5° (Fan & van den Dool, 2004). The CPC moisture is calculated 
with a soil depth of 1.6 m.

2.2.2.2.  Gravity Recovery and Climate Experiment Terrestrial Water Storage Reconstruction 
(GRACE-Rec TWS)

Humphrey et al. (2017) constructed a statistical model by linking the anomalies of the main meteorological 
drivers to the terrestrial water storage (TWS) anomalies observed by the GRACE satellite after 2002. The 
pre-2002 TWS anomalies are reconstructed based on this calibrated statistical model, driven by precipita-
tion and temperature. This reconstructed TWS data set covers 1985–2015 and is provided at a spatial resolu-
tion of 0.5° × 0.5°. It should be noted that this variable is not equal to soil moisture but also includes change 
in land ice, and free water (Humphrey et al., 2017). In the results section below, “GRACE-rec” is used as an 
abbreviation for GRACE reconstruction.

2.2.2.3.  Global Land Data Assimilation System (GLDAS) Version 2

GLDAS version 2 data is composed by GLDAS 2.0, which uses the Princeton meteorological data as forcing 
data for 1948–2010, and GLDAS 2.1, which is forced by a combination of model and observation based 
datasets from 2000 to present (Beaudoing & Rodell, 2016; Rodell et al., 2004). The output soil moisture is at 
0.25° × 0.25° and has four soil layers, 0–0.1 m, 0.1–0.4 m, 0.4–1.0 m, and 1.0–2.0 m. We take the sum of soil 
moisture in these four layers.

2.3.  Soil Properties Datasets

2.3.1.  Soil Carbon Content

Soil carbon content is extracted from Harmonized World Soil Database (HWSD), which is produced by 
FAO and IIASA by combining existing global regional and national inventories for soil information in over 
15,000 different soil mapping units (Nachtergaele et al., 2010; Wieder et al., 2014). Top-soil (0–0.3 m) and 
sub-soil (0.3–1.0 m) organic carbon content are provided and employed.

2.3.2.  Soil Nitrogen Density

We also used a soil nitrogen density data set (unit: g N m−2) from Global Gridded Surfaces of Selected Soil 
Characteristics developed by the International Geosphere-Biosphere Program Data and Information Sys-
tem (IGBP-DIS). A statistical bootstrapping approach is applied by the SoilData System to link the global 
pedon records to the FAO/UNCESCO digital soil map. The total soil nitrogen content is for a soil depth of 
0–1.0 m. Soil nitrogen density was treated as explanatory variable for SHR estimate.

2.4.  Land Cover Data Set

The MODIS land cover type product (MCD12Q1) is derived using a supervised decision tree classification 
algorithm (Friedl et al., 2010). We group land cover types in the MODIS product to correspond with the clas-
sification in SRDB following Table S1. In this study, we do not consider the effect of land use/cover change 
(cf. N. Huang et al., 2020), and we use a static land cover map in 2001 as input for the estimation model.

2.5.  Gross Primary Productivity Datasets

2.5.1.  FLUXCOM

GPP drives net primary production and litterfall, thus it is used as a predictor of SHR. We used an ensemble 
of gridded GPP products generated by training three machine learning algorithms (Random Forest, Mul-
tivariate Adaptive Regression Spline, and Artificial Neural Network) on daily GPP estimates from 224 flux 
towers (Jung et al., 2017; Tramontana et al., 2016). The combinations between three available algorithms 
and two GPP estimates (due to two partitioning methods) produce 6 GPP ensembles spanning 1980–2013 in 
monthly intervals. Each GPP member is used as one GPP data source for SHR estimation.
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2.5.2.  P-Model GPP

P-model is a Light Use Efficiency (LUE) model (Wang et al., 2017), in which monthly LUE is predicted on 
the basis of changing environmental conditions and an optimality criterion with respect to stomatal behav-
iors and other related traits (Prentice et al., 2014). Daily GPP, which is then calculated by monthly LUE and 
daily varying absorbed photosynthetically active radiation, can be further aggregated to annual time step. 
This product is released at a spatial resolution of 0.25×0.25°and over a time span of 1982–2016 (Stocker 
et al., 2019). This GPP data set includes the soil moisture effects on LUE.

2.6.  Random Forest Algorithm and Its Performance

To generate a data-driven SHR estimation, we implemented a Random Forest ensemble machine learning 
algorithm, as in former carbon research studies (Baccini et al., 2012; Buermann et al., 2018; Jung et al., 2017; 
Schwalm et al., 2017; Zhu et al., 2017). Random Forest, as one of the widely used and fast running algo-
rithms, is suited for handling non-linear relationship between the target and the corresponded independent 
variables, without requiring predefined functional forms or a normal sample distribution (Breiman, 2001). 
A RF model consists of multiple uncorrelated regression trees, each of which uses a subset of all the training 
samples with replacement (∼63%) to reach the same total sample size and random subset of explanatory 
variables (Breiman, 2001). This bootstrapping procedure can decrease the influence of noise and outliers, 
and raise the stability of model predictions, by averaging over all constructed trees. In our study, the num-
ber of trees is set to be 1,000. In addition to the mean value output from 1,000 trees, we also obtain 95% 
confidence interval of outputs from these trees. The feature importance is provided by assessing the differ-
ence in prediction error (Mean Squared Error for this study) on out-of-bag data before and after variable 
permutation.

To get a robust evaluation of model performance, we use Leave-One-Out Cross Validation (hereinafter 
LOOCV). The goal of cross-validation is to test the model's ability to work on independent samples, in order 
to identify problems like over-fitting. Each time a sample is excluded and the remaining samples are used to 
train a RF model, the predicted value of the excluded one is estimated by that fitted model. Instead of tak-
ing average of out-of-bag R2 from all trained RF models, we use the LOOCV-based predicted value of each 
observation to get R2 as metric. LOOCV is used both at the sample and site levels.

Since the observed SHR data are provided at annual timescale, we need to aggregate the high temporal 
resolution to coarser time scale (annual) as inputs to the RF model. The RF model was first fitted on our fil-
tered 455 site-year observation data set, and then applied to predict annual SHR for each 0.5° × 0.5° grid cell 
driven by meteorological factors and other environmental indicators (Table 2). We obtain 126 (6*7*3 = 126) 
global SHR members in total derived from crossing combinations of six climate datasets, seven GPP data-
sets (six members from FLUXCOM and one member from P-model) and three soil moisture/ TWS datasets 
(CPC, GRACE-rec and GLDAS) used as gridded inputs to RF model. Considering that different climate 
datasets (temperature and precipitation), soil moisture datasets, and GPP datasets served as our efficient 
explanatory variables and their different time period coverage, we choose 1985–2013 as the common time 
length for estimation.

2.7.  Soil Heterotrophic Respiration Datasets Used for Comparison

2.7.1.  Soil Respiration Data Set From Hashimoto et al. (2015)

Hashimoto et al. (2015) applied climate-driven functions modified from Raich et al. (2002) to fit soil respi-
ration from 1,638 data points. The soil respiration was solely driven by temperature and precipitation, and 
the partitioning between its autotrophic and heterotrophic part followed two fixed parameters summarized 
from the data in Bond-Lamberty et al. (2004) (an approach also used by Warner et al., 2019). Two parame-
ters in the model were assumed to be globally constant, so that the spatial heterogeneity in the Hashimoto 
et al. (2015) data set is provided only by variations in climatic drivers. This data-driven model was extrap-
olated to 1901–2012. We downloaded this data set from http://cse.ffpri.affrc.go.jp/shojih/data/index.html.
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2.7.2.  Soil Heterotrophic Respiration Data From Tang et al. (2020)

Tang et al. (2020) upscaled site-level observations in SRDB4.0 using Random Forest model to produce an 
annual global SHR data set spanning 1980–2016 in spatial resolution of 0.5° × 0.5°. The explanatory vari-
ables include mean annual temperature, mean annual precipitation, diurnal temperature range, nitrogen 
deposition, Palmer Drought Severity Index, shortwave radiation, soil carbon content, soil nitrogen content 
and soil water content. We downloaded this data set from https://doi.org/10.6084/m9.figshare.8882567.

2.7.3.  Top-Down SHR Data Set From Konings et al., (2019)

Konings et al., (2019) produced a top-down SHR estimate from 2010 to 2012 in spatial resolution of 4° × 
5°. Total ecosystem respiration was first derived from carbon balance method by the difference between 
GPP and NEP and carbon use efficiency from model-data fusion framework was used to partition the au-
totrophic and heterotrophic respiration. NEP is from atmospheric inversion of NASA Carbon Monitoring 
System-Flux. GPP is based on satellite-observed solar-induced fluorescence. Monthly top-down SHR data 
was aggregated to an annual time step.

2.7.4.  TRENDY Global Models

We use simulations of 12 dynamic global vegetation models from the project “Trends and drivers of the 
regional scale sources and sinks of carbon dioxide” (TRENDY) v6 for the period of 1985–2013. These mod-
els used a common set of observed climate, atmospheric CO2 concentration, land-use change, and experi-
mental protocols. Our analysis uses model SHR outputs (named as Rh in models) under the TRENDY “S3” 
experiment (which included the effects of time-varying CO2 concentrations, climate change, and land use 
change). The 12 models are CABLE (Haverd et al., 2018), CLASS-CTEM (Melton & Arora, 2016), CLM4.5 
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Variable name Variable variability state Data access

Annual temperature Inter-annual CPC:
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.

globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.

globalprecip.html
CRUNCEP:
http://dods.extra.cea.fr/store/p529viov/cruncep/
CRUJRA:
http://dx.doi.org/10.5285/13f3635174794bb98cf8ac4b0ee8f4ed
Princeton:
http://hydrology.princeton.edu/data.pgf.php
WFDEI:
http://www.eu-watch.org/data_availability

Annual precipitation Inter-annual

Annual short-wave radiation Inter-annual

Annual soil moisture Inter-annual CPC:
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
GRACE reconstruction:
http://doi.org/10.5905/ethz-1007-85
GLDAS:
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_
V2.1/summary

Annual gross primary productivity Inter-annual FLUXCOM:
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
P-model: https://doi.org/10.5281/zenodo.1423484

Annual nitrogen deposition Inter-annual https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_
Driver.html

Soil carbon content Static https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247

Total nitrogen density Static https://daac.ornl.gov/SOILS/guides/igbp-surfaces.html

Land cover classification Static https://modis.gsfc.nasa.gov/data/dataprod/mod12.php

Abbreviations: CPC, climate prediction center; GLDAS, global land data assimilation system; GRACE, gravity recovery and climate experiment.

Table 2 
Explanatory Variables Used for Soil Heterotrophic Respiration Upscaling and Their Data Access

https://doi.org/10.6084/m9.figshare.8882567
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_V2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_V2.1/summary
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html
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(Oleson et al., 2013), ISAM (Jain et al., 2013), JSBACH (Reick et al., 2013), JULES (Clark et al., 2011), LPX 
(Keller et  al.,  2017), OCN (Zaehle & Friend,  2010), ORCHIDEE-MICT (Guimberteau et  al.,  2018), OR-
CHIDEE (Krinner et al., 2005), VEGAS (N. Zeng et al., 2005) and VISIT (Kato et al., 2013).

2.8.  Attribution Analysis for SHR Inter-Annual Variability (IAV)

We apply the carbon flux anomaly decomposition approach proposed in Jung et  al.  (2017) to diagnose 
the contribution of different climate variables on SHR IAV, including annual temperature (TEMP), annual 
water availability proxies (precipitation or soil moisture, PREC or SMC) and annual short-wave radiation 
(RAD). We first obtain detrended annual SHR anomalies and climate indicators anomalies in each pixel 
by removing their linear trend on annual basis (least-squares fitting). Then we implement multiple linear 
regressions with zero-intercept between anomalies in SHR and all variables to separate their contribution. 
The estimated SHR sensitivity to climate anomaly (shown as the linear regression slopes var

sa  in Equation 1) 
multiplied by the corresponding forcing anomaly (shown as ,vars y  in Equation 1) defines the SHR anomaly 
component var

,SHRs y  driven by each forcing variable. These components can be added together to form a 
reconstructed SHR anomaly ( ,SHRs y

  in Equation 2). A correlation coefficient is calculated to demonstrate 
the consistency between the climate-reconstructed SHR anomalies ( ,SHRs y

 ) and the detrended estimates 
( ,SHRs y ). We also implement similar procedures on SHR from the Hashimoto and Tang datasets and 
TRENDY models. In all attribution analyses (except Hashimoto), both precipitation and soil moisture are 
considered as water-related proxies in the regression processes (Equations 1–4).

TEMP PREC RAD
, , , , , , , , , , , , ,SHR TEMP PREC RADs y e s e s y e s e s y e s e s y e s y ea a a           � (1)

TEMP PREC RAD
, , , , , , , ,SHR SHR SHR SHRs y e s y e s y e s y e

      � (2)

TEMP SMC RAD
, , , , , , , , , , , , ,SHR TEMP SMC RADs y e s e s y e s e s y e s e s y e s y ea a a           � (3)

TEMP SMC RAD
, , , , , , , ,SHR SHR SHR SHRs y e s y e s y e s y e

      � (4)

Subscripts s, y, and e refer to index of grid cells, every year from 1985 to 2013, and one member from the 
SHR ensemble, respectively.

2.9.  Factorial Analysis for SHR Trend

To understand the controlling variables for the regional variation in SHR trend map, we performed factorial 
estimation by removing the inter-annual variation of each dynamic explanatory variable, that is, keeping 
each variable static during 1985–2013. Dynamic explanatory variables of annual temperature, annual pre-
cipitation, annual radiation, annual GPP, annual soil moisture and annual nitrogen deposition were tested.

2.10.  Statistical Software

All data processing and statistical analysis were performed in R statistical software (R Development Core 
Team, 2019) version 3.5.0 using packages “randomForest” version 4.6–14 (Liaw & Wiener, 2018), “raster” 
version 3.0–7 (Hijmans et al., 2019), “pracma” version 2.2.5 (Borchers, 2019).

3.  Results
3.1.  Performance of Random Forest Via Cross Validation

After testing on all combinations of these temperature and precipitation datasets, soil moisture and GPP 
choices, we derived the LOOCV R2 of these RF models, which is 0.57 ± 0.01 (0.01 is the standard devia-
tion of LOOCV R2 from all combinations). We can see that at least at site-level, different climate datasets 
sources, soil moisture and GPP variable choices do not result in any R2 or RMSE difference (Figure 2a). We 
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also try leave-one-site-out evaluation, which resulted in a lower R2 (Figure 2b). Tests of model performance 
with more input explanatory variables are shown in Figures S1–S3. We show the importance of different 
variables in Figure 2c. Annual precipitation and annual temperature are the two most important variables, 
whereas static variables such as land cover type, soil carbon and nitrogen content contribute relatively less 
to model performance.

3.2.  Spatiotemporal Pattern of Global SHR

The spatial pattern of mean annual SHR at 0.5°×0.5° spatial resolution during 1985–2013 is shown in Fig-
ure 3a, and follows the geographic GPP variations to a large degree (see Figure S4). Annual SHR decreases 
from tropics to high-latitude area, with the highest values in wet tropics of exceeding 800 gC m−2 yr−1 and 
the lowest in northern boreal area including Alaska, northern Canada and Siberia area (less than 200 gC 
m−2 yr−1). Such a latitudinal SHR gradient particularly appears in Australia (from coastal area to inland), 
Africa and South America. Similar spatial gradients appear among all members of our data-driven SHR 
estimates.

The global mean of our data-driven SHR is 46.8 Pg C yr−1 over 1985–2013, (95% confidence interval: 38.6–
56.3 Pg C yr−1 based on the estimates of 1,000 Random Forest model trees), with an increasing trend of 
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Figure 2.  The performance of Random Forest evaluated by (a) Leave-One-Record-Out Cross Validation and (b) 
Leave-One-Site-Out Cross Validation. The error bar on each point denotes the standard deviation of soil heterotrophic 
respiration predictions estimated on the basis of different temperature and precipitation, soil moisture and gross 
primary productivity (GPP) datasets combinations. Different colors show the land cover types of the observation data 
(same color setting as Figure 1). (c) Feature importance scores ranking deduced from increase of mean squared error 
(MSE) after permuting variable. MAT (annual temperature), MAP (annual precipitation), MAR (annual radiation), 
Ndep (nitrogen deposition), GPP, soil moisture are time specific values depending on the observation year.
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0.03 Pg C yr−2 (0.015–0.044 Pg C yr−2, P < 0.01), which is similar to the 1.2% increase of SHR detected 
in Bond-Lamberty et al. (2018) over a similar timespan. The global total SHR is close to global total NPP 
(48.8 Pg C yr−1 during 2001–2015, Table S2) when we applied the same spatial mask. We do expect SHR to 
be globally smaller than NPP, because of lateral export by ecosystems that reduce considerably the fraction 
of NPP given to soil as litter for SHR (Ciais et al., 2020).

The choice of soil moisture variables contributes more to the difference among these data-driven SHR 
members rather than that of GPP, temperature and precipitation data sources (Figure S5). For example, 
using CPC soil moisture data produces an almost 1 Pg C yr−1 lower global SHR value than other data-driv-
en estimates using GLDAS soil moisture (Figure S5c). In spite of these differences, the total amount of all 
our data-driven SHR members consistently displays a drop in 1992 and a peak in 2010 across all members 
(Figure S5).

3.3.  Comparison With Previous Data Products and Models

Our data-driven SHR estimation is close to that of Hashimoto et al. (2015), who predicted a global flux of 
46.5 Pg C yr−1 and temporal trend of 0.05 Pg C yr−2 (Figure 4). These two sets of gridded SHR products also 
show similar frequency distributions, although the spatial variation of Hashimoto et al. (2015) as smoother, 
as SHR in that data set depends only on climate (Figure 3b). Compared to our data-driven estimate, Hashi-
moto et al. (2015) presented higher SHR values in boreal area and lower values in tropics (Figures S6a, S6b 
and S7). Conversely, Tang et al. (2020) found lower values in Amazon and central Africa and higher values 
in temperate areas; their global total SHR amount of 46.9 Pg C yr−1 after applying same land mask was simi-
lar (Figures S6c and S6d). Global total amount of top-down SHR was about 40.8 Pg C yr−1 during 2010–2012 
(Konings et al., 2019). The top-down SHR shows more distinct spatial gradients (Figure 3d) and larger val-
ues than this study in both tropics and boreal area (Figures S6e and S6f).
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Figure 3.  Spatial pattern of (a) ensemble mean of our data-driven soil heterotrophic respiration (SHR) members, (b) Hashimoto et al. (2015), (c) Tang 
et al. (2020), (d) top-down and (e) TRENDY model ensemble mean. Frequency distribution of SHR in different levels for each SHR data set is shown in the 
bottom left of each panel. It should be noted that the studied period of Hashimoto product is up to 2012 and the studied period of top-down SHR data set is 
between 2010 and 2012.
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The ensemble mean SHR over all TRENDY models is larger than empirically estimated SHR products, in-
creasing from 49.9 Pg C yr−1 to 53.8 Pg C yr−1 during our studied period, due to a four times larger temporal 
trend (0.14 Pg C yr−2 vs. 0.03 Pg C yr−2 in our data-driven products) (Figure 4). The TRENDY multi-model 
ensemble mean shows more drastic geographic contrasts across the globe (Figure 3e), with a different fre-
quency distribution of SHR from our data-oriented estimate (Figures 3a and 3e). Large inter-model discrep-
ancies are present among TRENDY models both for global totals and spatial details; the standard deviation 
can be as high as 8–9 Pg C yr−1 in each year and both underestimation and overestimation of SHR appear in 
different models in comparison to our data-oriented products (Figures S6g, S6h and s8–s9).

With respect to the spatial distribution of temporal trend of SHR, we can find that there is no uniform 
trend in our data-driven products (Figure S10a). To understand the controlling variables for the regional 
variation in SHR trend map, here we ran factorial estimation for one SHR member only for efficiency (see 
Section 2.9). Through comparison between Figures S11 and S12 we can see that change in soil moisture 
dominates the negative SHR trend in South America and central Africa, as well as the positive trend in 
Arctic tundra, and the increase in atmospheric nitrogen deposition contributes to patterns of positive SHR 
trend in Asia near urbanized areas. Tang et al. (2020) found clearly positive SHR trends in Arctic tundra 
areas (Figure S10c). Hashimoto et al. (2015) and TRENDY ensemble mean also produced positive trends in 
most areas, matching their increasing global trends (Figures 4, S10b,  and S10d).

3.4.  SHR Anomalies in Relation to Meteorological Factors

We attribute the factors contributing to SHR IAV using a linear decomposition approach described in Sec-
tion 2.8. We first verified that the SHR anomaly reconstructed with climate factors can correctly reproduce 
the detrended SHR time series spatially (evaluated by the correlation coefficients as shown in Figure S13). 
It should be noted that both soil moisture and precipitation are used in upscaling of SHR but only one water 
proxy is used in the reconstruction of SHR anomalies. The quality of the reconstruction is impacted by the 
choice of water-related variables in linear decomposition process. For example, when CPC soil moisture is 
employed in the up-scaling of SHR, including it allows for better reconstruction of the SHR IAV than when 
using precipitation (Figure S13). Conversely, when using GLDAS soil moisture as input, precipitation has 
better performance in reconstructing SHR anomaly than the soil moisture variable. When the reconstructed 
anomalies are integrated to the global scale, we find that the correlation coefficient between reconstructed 
and detrended SHR anomalies can reach 0.9 when annual precipitation is used as a predictor, and 0.94 
when soil moisture is used.

In general, we can see from Figure 5 that the globally integrated SHR IAV is mainly controlled by water 
availability, with higher correlation coefficients between reconstructed SHR and the water related SHR 
anomalies (SHRPREC or SHRSMC). However, the strength of this control varies depending on the water 
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Figure 4.  Global total amount of soil heterotrophic respiration (SHR) over 1985–2013. The shaded area in gray 
indicates the spread over all members from Random Forest models (RF). The zoomed plot in the top right shows the 
global mean of our data-driven (“RF”), Tang and Hashimoto SHR estimates more clearly. The dashed lines refer to 
fitted global total SHR time series against time. The global total amount of SHR in each TRENDY model is shown as 
thin blue line.
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availability variables that are used in the SHR estimation and subsequent regression. For SHR up-scaled 
using GRACE-rec TWS, the correlation coefficient between SHRSMC and SHR IAV is two times higher than 
when using precipitation as a regressor, although the overall reconstruction efficiency does not differ great-
ly (Figure  S14). This should be expected since TWS anomaly is not always comparable to soil moisture 
and precipitation. Specifically, there are two most prominent anomalies in all data-driven SHR estimation 
members in 1992 and 2010 consistently (Figure S15). According to the similarity between SHR IAV driven 
by each climatic factor and the detrended series locally, we found that the negative SHR anomaly in 1992 is 
particularly driven by water-related proxies under cooler and drier climate after the Mount Pinatubo erup-
tion (Figures S16–S18). The contribution of precipitation variability to the positive SHR anomaly in 2010 
is larger than the one from temperature anomaly (Figure 5). We also identified the climatic drivers for the 
Tang et al. (2020) SHR product, and found that, similarly, precipitation or soil moisture anomaly dominate 
its SHR IAV (Figure S19).

We analyzed the drivers for SHR IAV from TRENDY model ensembles using the same approach. For 
TRENDY models, their simulated soil moisture is also used in the regression. In general, climate variables 
had a good capacity for reconstructing TRENDY SHR anomalies (Figures  S20 and  S21). SHR IAV from 
TRENDY ensemble mean displays dominance by water availability at global scale (Figures 5b and 5d). The 
driving factors for SHR IAV differ widely among TRENDY models (Figure S22), with six models showing 
dominance of water availability fluctuation on SHR IAV at the global scale, and five exhibiting dominance 
by temperature. The TRENDY models capture the negative SHR anomaly in 1992 and precipitation varia-
bility can better account for that. With regard to the distinctly positive anomaly in 2010, TRENDY ensemble 
mean also shows an apparent dominance of precipitation variability (Figure 5b). We repeated the analysis 
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Figure 5.  Climatic variables controls on soil heterotrophic respiration (SHR) inter-annual variability (IAV) at global 
scale. The black lines indicate detrended SHR anomalies. The colored lines indicate SHR anomalies driven by different 
climate factors. ‘SUM’ means the sum of SHR IAV driven by three climatic factors. The top panels include regressions 
using precipitation as a water proxy; in the bottom panels, the water proxy is soil moisture. The correlation coefficient 
between SHR anomaly and the component driven by a forcing is labeled. An asterisk denotes the significance of the 
corresponding correlation coefficient (P < 0.05). Shaded areas represent the spread among ensembles of Random Forest 
or TRENDY products. Due to the difference between soil moisture and water storage variables, only SHR estimated 
using soil moisture (CPC and GLDAS) is shown here. Regression for SHR estimated from GRACE-rec TWS is shown in 
Figure S14.
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on the Hashimoto data set and we show the result in the supporting information section of this paper 
(Text S1).

3.5.  Biome-Scale SHR Anomalies Attribution

To check whether the dominance of water availability on SHR IAV differs between biome types and regions, 
we aggregate SHR anomalies to tropical forest, extra-tropical forest, semi-arid region, Arctic tundra, grass 
and crop area (Figure S23, adapted from Ahlström et al. (2015)). To confirm whether the uncertainty affects 
the relationship between SHR and climatic factors, here we show the pattern of correlation between SHR 
anomaly driven by each climatic factor and SHR anomaly in Figure S24. We can find that precipitation 
and soil moisture significantly control the SHR IAV in Arctic tundra, semi-arid regions and extra-tropical 
forests. In tropical forests, as well as grass and cropland, fluctuations in both temperature and precipitation 
show significant effects on SHR IAV in more than half of our SHR ensembles (63 of 126 members). Such 
a statistically significant response to climatic factors across multiple members allows us to analyze the re-
gional drivers of SHR IAV.

In tropical forests, SHR IAV is mainly driven by temperature variability, whereas in extra-tropical forests 
and semi-arid areas, precipitation variability plays a dominant role (Figure  S25). Precipitation variabili-
ty is comparable to temperature in driving SHR anomalies in grass and crop areas. In Arctic tundra, the 
dominant factor for SHR IAV is the fluctuation in soil water content, regardless of the moisture variable 
being used, while fluctuation in temperature seems to be less important (Figures 6, S25,  and S26). When 
considering regression against soil moisture, we notice that the ranking of factors is shuffled to some ex-
tent (Figures 6 and S25), which may be due to the difference between variability in precipitation and soil 
moisture regionally (Figures S17 and S18). For example, in extra-tropical areas, the importance of water 
availability increases greatly when regression is carried out against soil moisture (CPC or GLDAS, Figures 6 
and S25). For the Tang data set, we found that a dominance of precipitation or soil moisture also appears in 
tropical and extra-tropical forests, semi-arid areas, and Arctic tundra (Figure S27). In grass and cropland, 
temperature is also important for SHR IAV regionally (Figure S27). Our attribution of climatic drivers for 
SHR IAV differs from Tang et al. (2020) mainly in tropical forests (temperature is dominant in our study vs. 
precipitation in Tang et al., 2020).

Attribution of the TRENDY ensemble shows consistent water-driven estimation in semi-arid areas but dif-
fers from our data-driven results mainly in the tropical forest (Figure 6): in these regions, TRENDY SHR IAV 
is mainly driven by precipitation or soil moisture variability rather than temperature variability (Figures 6 
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Figure 6.  Environmental controls on soil heterotrophic respiration (SHR) inter-annual variability (IAV) in different ecosystems. Panels in top row are derived 
using our data-driven SHR products. Panels in the bottom row are derived using TRENDY multi-ensemble mean. The correlation coefficients between SHR 
IAV and SHR anomalies driven by a given factor are labeled in each panel. An asterisk denotes the significance of the corresponding correlation coefficient 
(P < 0.05). The decomposition using precipitation anomaly is shown in Figure S25.
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and S28). In extra-tropical forest and Arctic tundra, the controlling effect of temperature on TRENDY SHR 
anomaly is also non-negligible compared to that of water availability (Figure 6). In grass and crop area, 
TRENDY ensemble mean shows that both precipitation and soil water effects outbalance temperature ef-
fects, which does not perfectly match our estimation. Furthermore, it also should be noted that the different 
TRENDY models disagree on the attribution of SHR anomalies between water versus temperature across 
different ecosystems (Figures S28 and S29).

During the reconstruction process, we also computed the distinct sensitivities of SHR to climate factors, 
especially temperature and water availability (Figures 7 and S30). Regional heterogeneity of the sensitivity 
of SHR to temperature and precipitation/ soil moisture may alter the overall trajectory of SHR because of 
coexistence of regional deceleration and acceleration of SHR and/or compensatory effects of temperature 
and precipitation. For our data-driven SHR members, for example, in the tropics, positive temperature sen-
sitivity in Amazon, central Africa, as well as negative sensitivity to precipitation in these areas lead to op-
posite temperature and precipitation driven SHR anomalies in the cooler and drier year of 1992. In Siberia, 
negative SHR sensitivity to temperature and positive sensitivity to precipitation contribute to additive cli-
mate driven sub-components in IAV under warm but dry condition. The sensitivity of SHR to soil moisture 
depends on the data set used, especially in boreal regions and central Africa (Figure S30). More negative 
sensitivity to soil moisture availability was found in wet tropics areas when using GLDAS soil moisture 
(0–2.0 m) as a predictor than when using CPC (0–1.6 m), indicating that soil moisture increases in deeper 
layers can be more negatively related to SHR than changes in shallow layers if we assume little difference of 
soil moisture in their common depth intervals.

4.  Discussion
4.1.  Implications and Future Directions of Data-Driven SHR estimation

In this study, we generated a newly up-scaled SHR data set using a Random Forest algorithm and explana-
tory variables of climatological indicators, GPP as well as soil properties. We carefully evaluated the model 
performance with cross-validation and assessed the estimated uncertainty, which has generally not been 
done in previous studies. Our products can be utilized to evaluate the sensitivities of process-based models 
and constrain their performances in both spatial and temporal scales (Ichii et al., 2017).

Our results exhibited both similarities and differences compared to results from previous analyses. The 
similarities in spatial distribution with Hashimoto et al. (2015) could be due to two reasons. First, both stud-
ies used observation records from SRDB, which ensured their similar SHR range (although a more recent 
version of SRDB, with much more data, was used here). Second, both two studies are vulnerable to uneven 
sampling and potential extrapolation problem to some extent. In terms of the Tang SHR data, both differ-
ences in explanatory variables selection and sample data set affect regional SHR variation between Tang 
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Figure 7.  Spatial distribution of the sensitivities of our data-oriented soil heterotrophic respiration (SHR) to anomalies in (a) temperature and (b) precipitation. 
A negative temperature sensitivity means that when temperature increases, SHR decreases.
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et al. (2020) and our SHR datasets, and the inclusion of records with annual SHR above 1,100 gC m−2 yr−1 
influences the magnitude of SHR in tropical regions (Figures S31a and S31d). When we exclude GPP from 
explanatory variables sets, SHR differs especially in central Africa and India, where inclusion of GPP helps 
produce higher SHR in central Africa and lower SHR in India (Figures S31a and S31c). It also should be 
noted that Tang et al. (2020) included more sample data in China, which also contributes to the difference 
of their SHR estimation in temperate climate regions like China and Europe. RMSE from LOOCV was 20% 
smaller in our study (112 gC m−2 yr−1) compared to Tang et al. (2020), with RMSE of 143 gC m−2 yr−1.

We found that TRENDY models underestimate boreal region SHR, and overestimate SHR especially in 
tropics, with a conspicuous spatial contrast along latitudes (Figure S8). A misrepresentation of nitrogen 
constraints, and oversimplified treatment of processes like microbial dynamics and the climatological de-
pendence of decomposition in different soil texture types, may be responsible for this tendency to produce 
unrealistic SHR values compared to observations, in turn suggesting areas for focused model research and 
improvement (Shao et al., 2013; Yan et al., 2018). Our newly derived estimation can thus help improve mod-
el ability to accurately predict response of soil carbon to future climate change scenarios.

Nevertheless, limitations undoubtedly remain in our data-driven products, which we suggest can be split 
into uncertainties in the (a) underlying soil respiration observation data, (b) the driving climate and GPP 
gridded data, and (c) the up-scaling process. First of all, the uncertainty introduced by partitioning of auto-
trophic and heterotrophic (i.e., SHR) components of the measured soil respiration flux is poorly understood 
but potentially large. Approaches such as isotope labeling bring less disturbance to the root-soil system, 
but introduce their own uncertainties from for example, mixing model assumptions. Root extraction meth-
ods neglect the contribution of priming mechanism (Kuzyakov & Larionova, 2005), the amplified effect 
of which is ∼12% in permafrost ecosystem (Keuper et al., 2020). Trenching approaches feature significant 
disturbance but subsequent simpler inference. Better partitioning will reduce uncertainties entered into the 
estimation model (Carbone et al., 2016), and we suggest that it is the right time for a meta-analysis examin-
ing the potential biases of these different approaches.

Second, observation data of SHR is provided at coarse temporal resolution of a year. Our upscaled SHR data 
set thus incorporates responses to environmental variations only annually, which mask different sensitiv-
ities (possibly different signs of sensitivities as well) at the seasonal scales (Shao et al., 2013). More SHR 
observations at daily, monthly, and seasonal measurements will help us understand more of its responses 
to varying environmental conditions like seasonal lagged responses (Vargas et al., 2010) and also benefit 
model evaluations.

Third, the biased sampling of observations at the global scale (Schimel et  al.,  2015; Xu & Shang,  2016) 
forces up-scaling approaches to extrapolate to under-sampled area, affecting the accuracy of model predic-
tion. For example, the tropics are predicted to have the largest SHR fluxes, but are greatly under-sampled, 
leading to the largest uncertainty in our data-driven SHR data set. The climate space sampled by all filtered 
observations ranges from 11.5 to 5,302 mm in mean annual precipitation and from −10 to 31.5°C in mean 
annual temperature. Relatively few reported data exist from cold areas, warm dry areas, and warm humid 
areas (Figure S32). The space of GPP, soil moisture, soil carbon content and annual nitrogen deposition 
under-sampled by measurement records are shown in Figure S33. The spread of 1,000 trees in Random 
Forest can reflect the uncertainty from such extrapolation to under-sampled domain, from which the 95% 
CI is 38.6–56.3 Pg C yr−1. This uncertainty measure has also been used in J. Zeng et al. (2020) for net eco-
system productivity and Warner et al. (2019) as well as Stell et al. (2021) for soil respiration. Through the 
comparison of two sources of uncertainties (alternative gridded explanatory data and uncertainty from 
extrapolation to under-sampled domain by spread of trees), we find that uncertainty from individual trees 
in Random Forest model is far larger than that from different explanatory variables datasets. Our similarity 
with Hashimoto data set in spatial gradient could also be partly explained by the under-sampling issue in 
both studies. In the Hashimoto work, the two globally fixed parameters to derive SHR from soil respiration 
can possibly narrow the real range of SHR compared to broader coverage of soil respiration point data in cli-
mate space. Therefore, the priority should be more data collection in under-sampled areas to constrain the 
current wider prediction distributions, as an optimized network design has been demonstrated to decrease 
uncertainty in global estimates (Stell et al., 2021).
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In addition, unlike eddy-covariance records extending more than 20 years, most available SHR observations 
are of short duration (the longest continuous observation lasted 6 years in SRDB 4.0). The “space substitu-
tion for time” concept is common under such circumstances but should be treated with caution since the 
prediction accuracy of such substitution requires consistency between temporal and spatial variation in cli-
mate space (Blois et al., 2013). Therefore, we call for more valid sub-sampling, which can be indispensable 
to fill the gap between spatial and temporal climatic gradients. Further data compilation and integration 
are extremely valuable for upscaling and improving performances of SHR estimation models (Bond-Lam-
berty, 2018; Harden et al., 2018).

With regard to uncertainty emerged during the up-scaling process, it is worth noting that some variables 
are poorly represented within our procedure. For example, land cover is found to contribute the least to 
change in model error as shown in Figure 2c. Although our way of handling this categorical variable, one-
hot encoding (Lantz, 2013), is good at tackling discrete variables, land cover's effect may covary with other 
environmental gradients and climatic proxies. In addition, climatological and other physiological inputs are 
less certain, especially in the tropics. Besides, some key explanatory variables remain unavailable currently, 
for example, other nutrients like phosphorus availability, microbial activity, mycorrhizal types (Crowther 
et al., 2019), as well as disturbance information including land use/ cover change (LUCC). The uncertain-
ties in inputs and the lack of consideration of other potential factors can be responsible for the underes-
timation in prediction for observed SHR exceeding 1000 gC m−2 yr−1 in tropics (Figure 2a). Disturbances 
affect how SHR varies over vegetation succession and then lead to changes of ecosystem soil carbon pools 
(Harmon et al., 2011), but limited mapping of this information, and the highly uncertain consequences of 
SHR responses to LUCC, impede our careful consideration of its effect. The treatment of disturbance his-
tory has been attempted in the case of taking stand age to account for disturbance effects on forest carbon 
dynamics (Xiao et al., 2014), and a similar approach could be used to extend our estimation framework 
toward better SHR prediction.

Recently, scientists have started to explore the application of deep-learning in data-driven earth system 
science (Reichstein et al., 2019). Recurrent Neural Network (RNN) may have great potential in modeling 
dynamic time series like net ecosystem productivity, with advantages over other regression methods in 
considering legacy effects or lagged indicators (Reichstein et al., 2018). Considering that time-lag responses 
of SHR to climate anomalies are important in evaluating terrestrial carbon cycle feedbacks to climate warm-
ing (X. Zhou et al., 2010), and photosynthesis can also influence soil respiration with hysteresis regionally 
(Kuzyakov & Gavrichkova, 2010), deep learning frameworks like RNN are ideal tools for improving our 
SHR estimation. Given the large demand for observation samples in deep learning neural networks, we 
highlight again that more SHR observations should be implemented and compiled. Since eddy covariance 
data provides ecosystem respiration records (auto-plus heterotrophic respiration) as well, a reasonable mod-
el as partition tool from autotrophic parts can also be an ideal solution for collecting more available SHR 
data (Koerber et al., 2016).

4.2.  Climatic Drivers of SHR Anomalies

Since many studies emphasize the controls of water availability on ecosystem carbon fluxes (Humphrey 
et al., 2018; Jung et al., 2017), it is not surprising that we found that global SHR IAV is mainly controlled 
by the fluctuation in water condition. The dominance of water variation exists, yet the sensitivity of SHR 
IAV to water depends on the choice of proxy for water content (using soil moisture or precipitation in 
linear decomposition of SHR anomalies). Similar findings have been identified in Ballantyne et al. (2017) 
and Yan et al. (2018). This can be expected since SHR depends on soil water content (Skopp et al., 1990), 
although this relationship can be influenced by soil property (Moyano et al., 2012, 2013), microbial diversity 
(Zhang & Zhang, 2016), historical rainfall condition (Hawkes et al., 2017), and background water condition 
(Hinko-Najera et al., 2015; Matteucci et al., 2015). In addition, water content also affects the microbial com-
munity composition (Zhao et al., 2016), substrates availability, activities of extracellular enzymes (Schindl-
bacher et al., 2012), and even temperature sensitivity to SHR (Suseela et al., 2012).

Regionally speaking, our result of dominant water controls of SHR in extra-tropical forest and semi-arid 
regions are consistent with plot-scale experimental tests (Hursh et al., 2017; W. Liu et al., 2009). In semi-ar-
id areas, a small response to temperature fluctuation is possibly restrained by soil moisture and substrate 
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availability (N. Zhang et al., 2013). As for Arctic tundra, such colder high-latitude areas can be more respon-
sive to warming (Carey et al., 2016) and warmer temperature can cause shifts from heterotrophic to auto-
trophic respiration (Hicks Pries et al., 2015). Nevertheless, our diagnosed soil moisture control on tundra 
SHR IAV is not unrealistic, as some researchers have also reported that soil moisture affects ground thaw 
and the magnitudes of carbon loss is driven by soil moisture (Natali et al., 2015). There are also few records 
from Arctic tundra, meaning that incorrect spatial extrapolation might explain this particular positive re-
sponse of tundra SHR to water availability.

Given that large-scale droughts will likely to happen by the end of the 21st century (Lu et al., 2019), our ex-
amined response of SHR to variability in water condition is a first step toward making reliable projections of 
soil carbon loss. However, we only consider the nonlag (yearly) response of SHR to environmental variabil-
ity in current year; in the real world, lagged or adapted responses are non-negligible (Arnone Iii et al., 2008; 
de Nijs et al., 2019; Göransson et al., 2013). As noted above, applying deep learning techniques such as RNN 
(Kraft et al., 2019) hold great promise to robustly deal with such dynamics.

Despite the prevalent positive water controlling effects of SHR in most ecosystems, we also note that our 
ecosystem-level IAV attribution found that temperature anomalies dominate tropical forest SHR variability. 
Warming stimulating soil respiration has been demonstrated in many previous studies (Hursh et al., 2017; 
O'Connell et al., 2018), although thermal acclimation of heterotrophic microbes occurs (Carey et al., 2016; 
Crowther & Bradford, 2013). Since warming could also lead to soil water loss, primary positive effects of 
temperature mainly distribute in non-water-limited areas. Tropical forests account for the largest fraction of 
global SHR, and current tropical temperatures seem still lower than the physiological optima for respiration 
(M. Huang et al., 2019; Liu, He, et al., 2018). In other words, a stimulation effect from warming to SHR still 
exists, which may greatly affect the local soil-atmospheric carbon fluxes fluctuations and place tropical soil 
carbon storage at risk given the positive sensitivity to temperature. In addition, any interplay among differ-
ent factors is not accounted for in our multiple linear regression formula. Therefore, further research is re-
quired to clarify the interaction effects between two associated factors of temperature and water availability.

The responses of SHR from TRENDY models to climatic variability differ among models at biome and glob-
al scales (Figures S22 and S28). This could be due to different specific formula forms of SHR parameteriza-
tions with climatic factors among models, like Arrhenius, hill or monotonic type (Todd-Brown et al., 2013) 
and to different degrees of couplings between productivity and respiration. For example, CABLE, ISAM and 
VEGAS exhibit dominant temperature controls on SHR IAV, which are different from the water effects iden-
tified in nearly all data-driven products in our study. The underestimation of water effects on year-to-year 
fluctuations of net carbon fluxes in process-based models has already been highlighted (Green et al., 2017; 
Humphrey et  al.,  2018; Liu, Ballantyne, et  al.,  2018). Therefore, the internal parameterization schemes 
should be rigorously constrained and improved with the aid of causal perspectives in sensitivities of SHR to 
climate variability from our data-driven estimation. Using such causal statistics as a benchmark can better 
constrain the modeled carbon cycle feedback (Claessen et al., 2019), reducing the uncertainties in climate 
projections (Friedlingstein et al., 2014).

4.3.  Effects of Other Environmental Factors on SHR

Apart from the climate variables that have been used in our attribution analyses, other explanatory variables 
like GPP (affected by climate) and nitrogen availability are non-negligible factors affecting SHR through 
substrate availability and/ or microbial activity (Figure 2c). The spatial gradient reflected in our data-driv-
en SHR resembles that of GPP. This is expected, as decomposition of fresh or recent organic matter like 
leaves and fine roots contributes to the main component of SHR (Janssens et al., 2001). However, the as-
sociation between productivity and substrate availability is not constant or always predictable (Peterson & 
Lajtha, 2013), and the dependence of SHR on productivity can be confounded by temperature effects (P. Li 
et al., 2013).

We also found that nitrogen deposition influences the change in mean squared error of predicted SHR 
(Figure 2c). Nitrogen content may exert a major control on soil microbial activity (Janssens et al., 2010), 
indirectly expressed as soil acidification (Wang et al., 2019), limitation on substrate sources supply through 
harm on specific enzymes (Y. Li et al., 2015), and functional changes in the microbial community (Allison 
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et al., 2008). Higher carbon to nitrogen ratio in soil organic matter decreases decomposer carbon use ef-
ficiency and often impedes decomposition (Manzoni et al., 2017; H. Zhang et al., 2018), but not always 
(Bowden et al., 2004; Guo et al., 2017; Olsson et al., 2005). Controversy still exists on the stimulatory or sup-
pressive effects of nitrogen addition on SHR (Z. Chen et al., 2018), which also vary depending on original 
nitrogen availability (X. Liu et al., 2017; Sun et al., 2014), the amount of addition (Gao et al., 2014) and even 
ecosystem types (Cusack et al., 2010; Maaroufi et al., 2019; Mo et al., 2008; L. Zhou et al., 2014). Since any 
SHR reduction caused by nitrogen addition could reach the same order of magnitude of forest carbon sink 
(Janssens et al., 2010), further fundamental research is needed to understand how SHR responds to nitrogen 
deposition in different ecosystems, and whether possible negative effect on SHR could offset the warming 
induced increase in carbon loss, to better predict SHR changes given increasing nitrogen deposition in the 
future.

5.  Conclusion
Our study integrates a large number of in-situ SHR measurements, satellite and meteorological observa-
tions using Random Forest models to produce an ensemble of data-driven global SHR products. This en-
semble data set is independent of process-based model outputs and is expected to be beneficial for the 
model sensitivity parameter calibration. Our attribution analysis provides evidence for an important role of 
water availability in impacting year-to-year fluctuations of carbon fluxes, although of which can be mediat-
ed to some extent by choice of water content proxies in attribution process. To reduce SHR uncertainty and 
advance our ability to diagnose the state of SHR, we argue that more evenly distributed SHR observations—
especially from cold, warm dry and warm humid areas—and more powerful deep learning methods should 
be considered in further global SHR mapping tasks.

Data Availability Statement
The detailed R codes for producing the soil heterotrophic respiration data can be obtained from http://doi.
org/10.5281/zenodo.4321758. Soil heterotrophic respiration data from 1985 to 2013 (all 126 combinations 
using Random Forest) are available at https://doi.org/10.6084/m9.figshare.11340770.
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