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Abstract. To derive an optimal observation system for sur-
face ocean pCO2 in the Atlantic Ocean and the Atlantic sec-
tor of the Southern Ocean, 11 observation system simula-
tion experiments (OSSEs) were completed. Each OSSE is a
feedforward neural network (FFNN) that is based on a dif-
ferent data distribution and provides ocean surface pCO2
for the period 2008–2010 with a 5 d time interval. Based
on the geographical and time positions from three observa-
tional platforms, volunteering observing ships, Argo floats
and OceanSITES moorings, pseudo-observations were con-
structed using the outputs from an online-coupled physical–
biogeochemical global ocean model with 0.25◦ nominal res-
olution. The aim of this work was to find an optimal spatial
distribution of observations to supplement the widely used
Surface Ocean CO2 Atlas (SOCAT) and to improve the accu-
racy of ocean surface pCO2 reconstructions. OSSEs showed
that the additional data from mooring stations and an im-
proved coverage of the Southern Hemisphere with biogeo-
chemical ARGO floats corresponding to least 25 % of the
density of active floats (2008–2010) (OSSE 10) would signif-
icantly improve the pCO2 reconstruction and reduce the bias
of derived estimates of sea–air CO2 fluxes by 74 % compared
to ocean model outputs.

1 Introduction

The ocean is a major sink of anthropogenic CO2 (Ciais et al.,
2013; Friedlingstein et al., 2020). For the period 2010–2019
the ocean uptake was 2.5± 0.6 GtC yr−1 with a strong inten-
sification (from 1.9 to 3.1 GtC yr−1) and an increase of CO2

emissions (Friedlingstein et al., 2020). The ocean carbon sink
estimate is derived from global ocean biogeochemical mod-
els (Hauck et al., 2020) and data-based reconstructions of
surface ocean partial pressures of carbon dioxide (pCO2).
The data-based reconstructions rely on the interpolation of
surface ocean pCO2 – derived from measurements of sur-
face ocean CO2 fugacity – by a variety of methods (e.g. Wat-
son et al., 2020; Gregor et al., 2019; Denvil-Sommer et al.,
2019; Bittig et al., 2018; Landschützer et al., 2013, 2016;
Rödenbeck et al., 2014, 2015; Fay et al., 2014; Zeng et al.,
2014; Nakaoka et al., 2013; Schuster et al., 2013; Takahashi
et al., 2002, 2009). These methods provide converging esti-
mates of the global ocean carbon sink and its variability at
seasonal and interannual timescales (Rödenbeck et al., 2015;
Denvil-Sommer et al., 2019). They are, however, sensitive
to the observation coverage in space and time, which con-
tributes to inconsistent results over regions with sparse data
(Denvil-Sommer et al., 2019; Rödenbeck et al., 2015) and to
persistent uncertainties at a global scale (Gregor et al., 2019;
Hauck et al., 2020).

The majority of observations contributing to the Surface
Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) are still ob-
tained by underway sampling systems on board volunteering
observing ships. The data density is not homogenous, with
southern latitudes being less well sampled in space and time
(Monteiro et al., 2010). Sparse data coverage and the lack of
observations covering the full seasonal cycle challenge map-
ping methods and result in noisy reconstructions of surface
ocean pCO2 and disagreements between different models
(Denvil-Sommer et al., 2019; Rödenbeck et al., 2015). The
ship-based sampling effort is progressively complemented

Published by Copernicus Publications on behalf of the European Geosciences Union.



1012 A. Denvil-Sommer et al.: Observation system simulation experiments in the Atlantic Ocean

by autonomous observing platforms, such as biogeochemi-
cal ARGO floats equipped with pH sensors. The expansion
of the observing system to autonomous platforms is of par-
ticular relevance in regions that are undersampled either be-
cause of the presence of fewer regular shipping lines (e.g.
the South Atlantic) or because adverse weather conditions
prevent year-round sampling (e.g. the Southern Ocean). The
benefits of combining ship-based measurements of pCO2
and data from biogeochemical ARGO floats was recently
demonstrated for the assessment of Southern Ocean CO2
fluxes (Bushinsky et al., 2019). Majkut et al. (2014) and Ka-
menkovich et al. (2017) reported on observing system sim-
ulations with autonomous biogeochemical profiling floats in
the Southern Ocean that improve estimates of carbon diox-
ide uptake and biogeochemical variables. While Majkut et
al. (2014) used a coarse-resolution model and fixed floats,
Kamenkovich et al. (2017) extended this work to a more re-
alistic case with moving floats and high-resolution numer-
ical simulations. Both studies showed that 150–200 floats
can be sufficient to reconstruct a seasonal climatological
CO2 flux (Kamenkovich et al., 2017) with an error less than
0.1 PgC yr−1 for the Southern Ocean uptake (Majkut et al.,
2014). Based on a coupled climate carbon model and obser-
vations, Lenton et al. (2009) proposed sampling strategies
to obtain large-scale integrated CO2 fluxes in the North Pa-
cific and North Atlantic. They show that regular sampling of
ocean surface pCO2 with a 3-month time step and every 6◦

in latitude and 10◦ in longitude is sufficient to capture more
than 80 % of total CO2 flux variability.

Here, we extended the scope to the Atlantic basin, in-
cluding the Atlantic sector of the Southern Ocean. We
explored design options for a future augmented Atlantic-
scale observing system that would optimally combine data
streams from various platforms and contribute to reduce the
bias in reconstructed surface ocean pCO2 fields and sea–
air CO2 fluxes. A series of observation system simulation
experiments (OSSEs) were carried out in a perfect model
framework using output from an online-coupled physical-
biogeochemical global ocean model at 0.25◦ nominal reso-
lution. Since all fields used by the feed forward neural net-
work (FFNN) are produced by the same model run and thus
internally consistent, the comparison between reconstructed
and modelled pCO2 distributions allows for assessing the
theoretical skill for each experiment. Starting from measure-
ments extracted from the SOCAT database, the goal was to
identify how and where the new data from biogeochemical
ARGO floats can improve surface ocean pCO2 reconstruc-
tions and how to optimally integrate them with other exist-
ing platforms. Pseudo-observations were obtained by sub-
sampling model output at sites of real-world observations.
Surface ocean pCO2 was reconstructed from these pseudo-
observations at basin scale by applying a non-linear FFNN
(Bishop, 1995; Rumelhart et al., 1986). The choice of the
FFNN for our experiments was motivated by its overall per-
formance reported in Denvil-Sommer et al. (2019). The ar-

chitecture of the FFNN method was adapted to the cur-
rent problem and differs from the one presented in Denvil-
Sommer et al. (2019).

The remainder of the article is structured as follows.
Sect. 2 presents the model output, the observing systems,
observations, the design experiments, and the description of
the statistical model. Results are presented and discussed in
Sect. 3. Section 4 is dedicated to the conclusion and the pre-
sentation of perspectives.

2 Data and methods

Here we present the ensemble of observing platforms that
either already perform measurements to estimate pCO2 or
have the possibility to be equipped with new sensors to pro-
vide biogeochemical measurements (Williams et al., 2017).
These datasets provide information on geographical, as well
as temporal, positions and hence the distribution of pCO2
measurements. In this section we also describe the ocean
model output and how we use it in the OSSEs. As mentioned
in the introduction, the data from the model co-localised
with real positions of observing systems are called pseudo-
observations.

2.1 Data

2.1.1 Observing platforms

Three observing platforms were selected for the study:
(1) volunteering observing ships providing in situ measure-
ments of surface ocean CO2 fugacity (fCO2), (2) moorings
(OceanSITES), and (3) profilers (Argo). These observations
form the dataset of geographical and temporal positions for
our experiments. Surface ocean measurements of fCO2 from
multiple platforms are converted to pCO2 and compiled in
the SOCAT database (Bakker et al., 2016). Moorings are not
routinely equipped with sensors of CO2 fugacity. We used
their geographical positions to identify possible locations for
additional measurements. Biogeochemical ARGO floats are
increasingly equipped with pH sensors, allowing computing
pCO2 from pH and SST-based alkalinity. For the design ex-
periments, we considered distributions of physical ARGO
floats (2008–2011) from Gasparin et al. (2019) and supposed
that they were equipped with pCO2 sensors.

1. SOCAT database v5. The database provides a good cov-
erage of the Northern Hemisphere (Bakker et al., 2016;
https://www.socat.info/index.php/data-access/, last ac-
cess: 20 February 2018). Data for the period 2001–
2010 were used, representing∼ 60 % of data in SOCAT
database (Fig. 1a). The use of data for the period 2001–
2010 allows us to capture interannual variability from
a long historical record of SOCAT data and to explore
how SOCAT data can be enhanced by other observa-
tional platforms. It also provides more data for the train-
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ing of the neural network. While the data from 2001
to 2010 are used in training, the reconstruction focuses
only on the years 2008 to 2010. We used the synthesis
files SOCATv5, these are the raw data from which the
gridded SOCAT product is derived. There are 24 moor-
ings in SOCATv5 that provided CO2 fugacity measure-
ments between 2001 and 2010. These moorings were
excluded from OceanSITES data (see below).

2. Argo profilers. We used the network of Argo (Gould et
al., 2004; Argo, 2000) distributions provided by Mer-
cator Ocean (details can be found in Gasparin et al.,
2019) for the period 2008–2010. This network provides
a synthetic homogeneous distribution of one profiler
per 3◦× 3◦ grid box per 10 d, amounting to 310–360
measurements per day (Fig. 1b) based on real trajec-
tories of Argo floats. This synthetic Argo distribution
was built based on the time, date and location of Argo
profiles during the 2009–2011 period (Gasparin et al.,
2019). To provide a homogeneous coverage Gasparin
et al. (2019) removed some float trajectories in well-
sampled regions, for example the Gulf Stream, or added
floats in the low-sampled tropical and South Atlantic re-
gions. The target for BioGeoChemical Argo (25 % of
ARGO coverage) (Bittig et al., 2018) was derived from
this distribution. It is worth noting that Argo floats pro-
vide measurements every 10 d. Floats dive to a depth of
2000 m and then rise to the surface by measuring verti-
cal profiles of ocean variables. In this study we use a 5 d
time step (see below Sect. 2.1.2), which can be a limi-
tation to apply our results to real observations as it does
not represent an average value over 5 d. We paid more
attention to the spatial distribution, and we believe that
with Argo measurements recorded over a longer period
our results can be applied to 1-month time steps. In this
case, three monthly measurements can be representative
of a monthly mean.

3. OceanSITES. This dataset combines observations from
open-ocean Eulerian time series stations providing data
since 1999 (Fig. 1c). We used all available locations of
moorings (except moorings included in SOCATv5) and
added this information to the period of reconstruction,
i.e. 2008–2010 (http://www.oceansites.org/, last access:
20 February 2018). It provided 318 additional positions
to our dataset.

For this study, the same set of predictors was used as in
Denvil-Sommer et al. (2019) for training the machine learn-
ing (ML) algorithm: sea surface salinity (SSS), sea surface
temperature (SST), sea surface height (SSH), mixed-layer
depth (MLD), chlorophyll a concentration (Chl a) and at-
mospheric CO2 (pCO2,atm). These variables are known to
represent the main physical, chemical and biological drivers
of surface ocean pCO2 (Takahashi et al., 2009; Landschützer
et al., 2013).

2.1.2 Model output and pseudo-observations

Here we used the numerical output from an online-coupled
physical–biogeochemical global ocean model, the Nucleus
for European Modelling of the Ocean (NEMO)/PISCES
model, at 5 d resolution. This configuration of the NEMO
framework was implemented on a global tripolar grid. It cou-
pled the ocean general circulation model OPA9 (Madec et
al., 1998), the sea ice code LIM2 (Fichefet and Maqueda,
1997) and the biogeochemical model PISCESv1 (Aumont
and Bopp, 2006). Information on the simulation is given in
Gehlen et al. (2020) and Terhaar et al. (2019), including the
evaluation of the modelled mean state and the seasonal cycle
of sea surface temperature and sea–air fluxes of CO2 (Gehlen
et al., 2020). The geographical and time positions identified
from the data mentioned before were used to create pseudo-
observations by sub-sampling NEMO/PISCES model output
at sites of real-world observations. Thus, the positions of SO-
CAT, Argo floats and mooring stations were chosen over 5 d
centred on the NEMO/PISCES date and sub-sampled on the
model grid. The model grid coordinate closest to the real geo-
graphical position was chosen. If several measurements were
co-localised at the same grid coordinate and same time step,
it is counted as one measurement. No Argo floats were added
to grid cells if there was already a measurement identified in
the SOCAT database. All predictors and target pCO2 were
taken from model output at corresponding coordinates. These
outputs served as the reference for validation and evaluation
of our experiments and for assessing the ML method’s accu-
racy. The simulation covers the period 1958 to 2010; the last
3 years were retained for the design study.

2.2 Observational system simulation experiences

Table 1 summarises experiments designed for different com-
binations of observing platforms.

The first test is based on individual sampling data ex-
tracted from the SOCAT database. As mentioned before,
these data provide a good coverage of the Northern Hemi-
sphere. The lesser coverage in the Southern Hemisphere re-
sults in a larger dispersion of methods based on these obser-
vations only (Denvil-Sommer et al., 2019; Rödenbeck et al.,
2015). This has motivated experiments with additional data
from Argo profilers limited to the Southern Hemisphere. An
experiment based on the full physical ARGO network was
included to evaluate the method for a high spatial and tem-
poral coverage (an optimal, yet unrealistic case).

We have tested combinations of SOCAT data and (1) to-
tal Argo data, (2) Argo only in the Southern Hemisphere, and
(3) 25 % or (4) 10 % of the initial (total) Argo distribution. Fi-
nally, these experiments were repeated with additional moor-
ing data. It is worth noting (Table 1) that OSSE 4 is closest
to the target of the BioGeoChemical (BGC)-Argo program,
with a BGC-Argo density corresponding to 25 % of the exist-
ing Argo distribution. However, we decided to choose OSSE
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Figure 1. Spatial distribution of datasets used for training (number of measurements per grid point and 5 d time step): (a) SOCAT data for
the period 2001–2010, (b) synthetic Argo data for the period 2008–2010, and (c) mooring positions modelled for the period 2008–2010.

Table 1. Information on Observation System Simulation Experiments.

Data OSSE Period for training Averaged
number number of

Argo floats
per 5 d

SOCAT OSSE 1 2001–2010 0
Argo (3◦× 3◦) OSSE 2 2008–2010 404
SOCAT+Argo (3◦× 3◦) OSSE 3 2001–2010 (SOCAT)+ 2008–2010 (Argo) 403
SOCAT + Argo 25% (3◦× 3◦) OSSE 4 2001–2010 (SOCAT)+ 2008–2010 (Argo) 101
SOCAT+Argo 10 % (3◦× 3◦) OSSE 5 2001–2010 (SOCAT)+ 2008–2010 (Argo) 40
SOCAT+Argo south (3◦× 3◦) OSSE 6 2001–2010 (SOCAT)+ 2008–2010 (Argo south) 195
SOCAT+Argo 25 % south (3◦× 3◦) OSSE 7 2001–2010 (SOCAT)+ 2008–2010 (Argo south) 48
SOCAT+Argo 10 % south (3◦× 3◦) OSSE 8 2001–2010 (SOCAT)+ 2008–2010 (Argo south) 19
SOCAT+Argo south+moorings OSSE 9 2001–2010 (SOCAT)+ 2008–2010 (Argo south, moorings) 195
SOCAT+Argo south 25 %+moorings OSSE 10 2001–2010 (SOCAT)+ 2008–2010 (Argo south, moorings) 48
SOCAT+Argo south 10 %+moorings OSSE 11 2001–2010 (SOCAT)+ 2008–2010 (Argo south, moorings) 19

3 as a benchmark against which to evaluate individual exper-
iments. This experiment has a high data density and provides
additional information on a potential future BGC-Argo net-
work.

2.3 Method

We used a feed-forward neural network (FFNN) based on
Denvil-Sommer et al. (2019) to reconstruct surface ocean
pCO2 over the Atlantic Ocean. Compared to the previous
study, we skipped the first step consisting of the reconstruc-
tion of the pCO2 climatology. The reconstruction covered

January 2008 to December 2010 with a 5 d frequency and
at the spatial resolution of the tripolar ORCA025 model
grid (nominal 0.25◦ resolution). The approach consisted of
a method that reconstructs the non-linear relationships be-
tween the target pCO2 and predictors responsible for pCO2
variability:

pCO2,n = f
(
SSSn, SSTnSSHn, Chln, MLDn,

pCO2,atm,n, SSSanom,n, SSTanom,n,

SSHanom,n, Chlanom,n, MLDanom,n,

pCO2,atm,anom,n, latn, long1,n, long2,n
)
. (1)

Ocean Sci., 17, 1011–1030, 2021 https://doi.org/10.5194/os-17-1011-2021
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As in Denvil-Sommer et al. (2019), we use Keras, a high-
level neural network Python library (Chollet, 2015; https:
//keras.io, last access: 28 July 2021) to construct and train
the FFNN models. We first identified an optimal configura-
tion (number and size of hidden layers, the activation func-
tions, etc.) of the FFNN model. Based on our earlier work
(Denvil-Sommer et al., 2019), a hyperbolic tangent was cho-
sen as an activation function for neurons in hidden layers, and
a linear function was chosen for the output layer. As an opti-
misation algorithm, the mini-batch gradient descent or “RM-
Sprop” was used (adaptive learning rates for each weight,
Chollet, 2015; Hinton et al., 2012).

The numbers of hidden layers and parameters/weights de-
pend on the number of data used for training. In this work, the
FFNN was applied separately for each month (one model for
January, one model for February, etc.). A sub-set of 50 % of
data was used for training. A total of 25 % participated in the
evaluation of the model during the training algorithm, and
25 % were used to validate the model after training. These
data were chosen regularly in time and space: every third grid
point was kept for evaluation, and every fourth grid point was
kept for validation. Tables S1 in the Supplement presents the
numbers of training data for each month and each OSSE. To
adjust the number of FFNN parameters/weights we followed
the empirical rule that suggests limiting the number of pa-
rameters to the number of training data points divided by 10
to avoid overfitting (Amari et al., 1997). The FFNNs for all
OSSEs except OSSE 2 have four layers (two hidden layers)
with 1116 parameters in total. The input layer has 15 input
nodes and 20 output nodes that represent the input for the
first hidden layer. The first hidden layer has 25 output nodes,
and the second hidden layer has 10 output nodes. The OSSE
2, which is based on Argo data for the period 2008–2010, has
significantly fewer data for training, and thus the FFNN for
the OSSE 2 is different: three layers (one hidden layer with
20 input and 10 output nodes) with 541 total parameters.

All data have to be normalised before their use in the
FFNN, as exemplified for SSS:

SSSn =
SSS−SSS
SD(SSS)

. (2)

SSS is the total mean of variable SSS, and SD(SSS) is stan-
dard deviation of SSS.

Normalisation is required to rank all predictors on the
same scale and to avoid the possible influence of one pre-
dictor with strong variability (Kallache et al., 2011).

Following Denvil-Sommer et al. (2019) we normalised the
geographical positions (lat, long) in the following way:

latn = sin(lat · π/180),
longn,1 = sin(long · π/180),
longn,2 = cos(long · π/180).

A K-fold cross-validation was used to evaluate and vali-
date the FFNN architecture. The cross-validation is based on

Figure 2. Map of biomes (following Rödenbeck et al., 2015; Fay
and McKinley, 2014) focused on the region 70◦W–30◦ E and used
for comparison between OSSEs.

K = 4 different subsamples where 25 % of independent data
are chosen for validation. In each of the four cases, 25 % of
the data are different and there is no overlap. Thereby, each
run has four outputs. Different architectures of the FFNN
were tested and the final one was chosen based on skill as-
sessed by the root-mean-square difference (RMSD), the r2

and the bias of four outputs for each architecture. To ensure a
good accuracy of the method and check that there is no over-
fitting, we compared the RMSD, r2 and bias estimated from
the validation dataset with those estimated from the train-
ing dataset. Denvil-Sommer et al. (2019) provide a detailed
description of the model, including the accuracy of the ML
method and its ability to correctly reproduce the pCO2 vari-
ability.

2.4 Diagnostics

The comparison between OSSEs is done per biome, follow-
ing Rödenbeck et al. (2015) (Fig. 2, Table 2). Biome 8, North
Atlantic ice, has been omitted due to poor data coverage in
all OSSEs. It is expected that reconstructions over this re-
gion will yield large biases susceptible to interfere with the
interpretation of results from individual OSSEs.

In order to simplify the comparison, we used Taylor and
target diagrams with standard deviation, biases, correlation
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Table 2. Biomes from Fay and McKinley (2014) used for time se-
ries comparison (Fig. 2).

Number Name

8 (Omitted) North Atlantic ice
9 Subpolar seasonally stratified North Atlantic
10 Subtropical seasonally stratified North Atlantic
11 Subtropical permanently stratified North Atlantic
12 Equatorial Atlantic
13 Subtropical permanently stratified South Atlantic
15 Subtropical seasonally stratified Southern Ocean
16 Subpolar seasonally stratified Southern Ocean
17 Southern Ocean ice

and normalised RMSD (uRMSD) of the mean of four FFNN
outputs for each OSSE. Here uRMSD is estimated as fol-
lows:

uRMSD =
√

mean
({[
pCO2 OSSE−pCO2 OSSE

]
−
[
pCO2 NEMO− pCO2 NEMO

]}2)
. (3)

For each OSSE and each output of the k-fold cross-
validation, we estimated a time mean difference between its
pCO2 and NEMO pCO2 at each grid point:

Diffj,i =meanT (pCO2 OSSE j,i −pCO2 NEMO)

=
1
T

T∑
t = 1

(pCO2 OSSE j,i,t −pCO2 NEMO t ),

where meanT is a time mean over the period, T is a number
of time steps, j is an index of the OSSE and i is an index of
output from 1 to 4.

Further, the maximum absolute value from four outputs,
maxValuej , was estimated for each OSSE:

maxValuej =maxi(abs(Diffj,i)),

where maxi is a maximum value on i, the index of output, for
each fixed j , i.e. the OSSE index. The index i of the maxi-
mum absolute value of FFNN outputs is called imax.

The final mean difference meanDj was estimated as fol-
lows:

meanDj = sign(Diffj,imax) ·maxValuej , (4)

where sign(x) is a function that returns the sign of a value x,
either −1 or 1.

The SD of the mean difference Diffj,i is estimated for each
OSSE as follows:

SDj = SD(Diffj,i), (5)

where j is fixed and all outputs of FFNN i are included in
the estimation of SD.

The time series of the mean value from four FFNN out-
puts for pCO2 were provided per biome, with the maximum
and minimum values from these four outputs indicated by
shading. The time series of CO2 sea–air flux are shown in
the same way as the ones for pCO2. The sea–air CO2 flux,
fgCO2, was calculated following Rödenbeck et al. (2015):

fgCO2 = kρL(pCO2−pCO2,atm), (6)

ρ is seawater density andL is the temperature-dependent sol-
ubility (Weiss, 1974). k is the piston velocity estimated as
follows (Wanninkhof, 1992):

k = 0u2(ScCO2/Scref)−0.5.

The global scaling factor 0 was estimated following Röden-
beck et al. (2014) with the global mean CO2 piston velocity
equaling 16.5 cm h−1. Sc corresponds to the Schmidt num-
ber estimated according to Wanninkhof (1992). The wind
speed was computed from 6-hourly NCEP wind speed data
(Kalnay et al., 1996). To simplify the interpretation of results,
the NEMO/PISCES CO2 sea–air flux was also calculated by
using Eq. (4) and NCEP wind speed.

3 Results

Figure 3 shows the Taylor diagram (correlation coefficient
between reconstructed pCO2 and model output and standard
deviation of reconstructed fields) of 11 OSSEs in the region
of eight biomes (pink) and in each of these biomes separately
(colour code corresponds to Fig. 2). The target diagrams per
biome for each OSSE are presented on Fig. 4. Over regions
well covered with observations (biomes 9, 10, 11), results of
different OSSEs lie close to each other. The OSSE 1 (marker
symbol “+”; Fig. 3a) that is based only on SOCAT data has
a lower correlation coefficient over the whole region (0.67,
pink) and per biome (Fig. 3a). Over regions with poor ob-
servational coverage the results from OSSE 1 lie at a dis-
tance from results of all other OSSEs. OSSE 1 also shows
the largest uRMSDs (Fig. 4), as exemplified for biome 17
with uRMSD of 17.33 µatm, SD of 21.11 µatm (compared to
24.03 µatm estimated from NEMO/PISCES data) and bias of
−11.63 µatm (all values in the Figs. 3 and 4 are presented in
Tables 3 and 4). The OSSE 2 (based on all Argo data, “O”)
and OSSE 3 (combination of Argo and SOCAT data, “X”)
provide comparable results (Fig. 3b and c). OSSE 3 tends to
have a smaller uRMSD and bias and lies closer to the SD
values from the NEMO/PISCES model (Fig. 4). OSSE 3 is
based on the maximum of pseudo-observations for training
and most likely represents an unrealistic endmember. How-
ever, as mentioned before, OSSE 3 is used as the benchmark
to find other OSSEs with similar results and more feasible
data coverage.

OSSE 4 (square) and OSSE 5 (rhombus) are based on
OSSE 3, the only difference being the percentage of Argo

Ocean Sci., 17, 1011–1030, 2021 https://doi.org/10.5194/os-17-1011-2021
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Figure 3. Taylor diagram of 11 OSSEs summarised in Table 2; the colour code corresponds to Fig. 2, and the purple colour represents all of
the eight biomes combined: (a) OSSE 1, which uses SOCAT data only; (b) OSSE 2, which uses synthetic Argo data only; (c) OSSE 3, which
uses SOCAT and synthetic Argo data; (d) OSSE 4, which uses SOCAT data and 25 % of the original synthetic Argo data; (e) OSSE 5, which
uses SOCAT data and 10 % of the original synthetic Argo data; (f) OSSE 6, which uses SOCAT data and synthetic Argo data in the Southern
Hemisphere; (g) OSSE 7, which uses SOCAT data and 25 % of the original synthetic Argo data in the Southern Hemisphere; (h) OSSE 8,
which uses SOCAT data and 10 % of the original synthetic Argo data in the Southern Hemisphere; (i) OSSE 9, which uses SOCAT data,
synthetic Argo data in the Southern Hemisphere, and data from mooring stations; (j) OSSE 10, which uses SOCAT data, 25 % of the original
synthetic Argo data in the Southern Hemisphere, and data from mooring stations; and (k) OSSE 11, which uses SOCAT data, 10 % of the
original synthetic Argo data in the Southern Hemisphere, and data from mooring stations.

data used: OSSE 3 uses 100 %, OSSE 4 uses 25 % and
OSSE 5 uses 10 %. The results of OSSEs 4 and 5 are sim-
ilar to those obtained for OSSE 3. The largest difference is
observed over biome 17 (Figs. 3, 4i): correlation coefficients
are 0.85 (OSSE 3), 0.77 (OSSE 4), and 0.75 (OSSE 5); biases
are −0.66, −2.25, and −4.02 µatm; and uRMSDs are 10.18,
11.75, and 11.8 µatm (Tables 3, 4).

OSSEs 6 (triangle), 7 (inverted triangle), and 8 (pentahe-
dron) were trained on SOCAT data complemented with Argo

data in the Southern Hemisphere. In general, the skill scores
are lower compared to OSSE 3, especially for OSSE 8 (10 %
of Argo data in the Southern Hemisphere) where results ap-
proach those of OSSE 1 (Fig. 3). Large differences are ob-
tained for biomes 12 and 17 (Figs. 3, 4e and i): in biome
12 (17), correlation coefficients for OSSE 6, 7, 8 are 0.64
(0.86), 0.54 (0.8), and 0.52 (0.66) compared to 0.79 (0.85) for
OSSE 3; uRMSDs are 11.46 (10.01), 13.3 (11.03), and 13.87
(15.16) µatm compared to 8 (10.18) µatm for OSSE 3; and
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Figure 4. Target diagram per biome for 11 OSSEs, the colour code corresponds to Fig. 2, and the purple colour represents all of the
eight biomes combined: (a) all eight biomes, (b) biome 9 (subpolar seasonally stratified North Atlantic), (c) biome 10 (subtropical seasonally
stratified North Atlantic), (d) biome 11 (subtropical permanently stratified North Atlantic), (e) biome 12 (equatorial Atlantic), (f) biome 13
(subtropical permanently stratified South Atlantic), (g) biome 15 (subtropical seasonally stratified Southern Ocean), (h) biome 16 (subpolar
seasonally stratified Southern Ocean), (i) biome 17 (Southern Ocean ice). OSSE 1 uses SOCAT data only; OSSE 2 uses synthetic Argo data
only; OSSE 3 uses SOCAT and synthetic Argo data; OSSE 4 is SOCAT data and 25 % of the original synthetic Argo data; OSSE 5 uses
SOCAT data and 10 % of the original synthetic Argo data; OSSE 6 uses SOCAT data and synthetic Argo data in the Southern Hemisphere;
OSSE 7 uses SOCAT data and 25 % of the original synthetic Argo data in the Southern Hemisphere; OSSE 8 uses SOCAT data and 10 % of
the original synthetic Argo data in the Southern Hemisphere; OSSE 9 uses SOCAT data, synthetic Argo data in the Southern Hemisphere,
and data from mooring stations; OSSE 10 uses SOCAT data, 25 % of the original synthetic Argo data in the Southern Hemisphere, and data
from mooring stations; and OSSE 11 uses SOCAT data, 10 % of the original synthetic Argo data in the Southern Hemisphere, and data from
mooring stations. OSSEs 1, 3 and 10 are in bold as we focus our detailed comparison on these three OSSEs.

biases are 3.82 (−0.18), 3.77 (−1.8), and 2.7 (−4.12) µatm
compared to −0.14 (−0.66) µatm for OSSE 3 (Tables 3, 4).
Over biome 12 all OSSEs show SD values lower than the one
computed for NEMO/PISCES model output (Table 3). This
could result from the SD of the mean output being slightly
lower than the individual SDs for four OSSE FFNN outputs
(not shown). However, individual SDs also underestimate the
NEMO/PISCES SD, which might suggest that the ensemble

of predictors does not properly represent the variability over
the equatorial Atlantic.

Reconstruction skill scores are improved by the addition
of data from mooring stations to OSSEs 6, 7 and 8 in OSSEs
9 (hexagon), 10 (star) and 11 (triangle centroid) (Fig. 3 and
4, Tables 3 and 4). Over the ensemble of eight biomes the de-
crease in the number of Argo data goes along with a general
decrease of correlation coefficients, i.e. 0.88 (OSSE 9), 0.85
(OSSE 10), 0.83 (OSSE 11), and an increase of uRMSDs,
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Table 3. Correlation coefficient and standard deviation (µatm) of 11 OSSEs from Table 2 estimated over eight Atlantic Ocean biomes and at
basin scale; the results are presented in Fig. 3. OSSEs 1, 3 and 10 are in bold as we focus our detailed comparison on these three OSSEs.

OSSE Biome

All biomes 9 10 11 12 13 15 16 17

NEMO SD 25.34 28.17 17.29 19.59 17.89 18.84 15.20 10.79 24.03
OSSE 1 0.67/26.08 0.88/27.44 0.92/16.67 0.89/18.42 0.46/12.48 0.68/16.11 0.31/15.28 0.70/11.76 0.57/21.11
OSSE 2 0.89/22.82 0.91/22.28 0.96/17.09 0.97/19.14 0.83/15.42 0.92/18.19 0.76/8.89 0.87/9.43 0.90/19.56
OSSE 3 0.87/23.79 0.93/25.78 0.96/17.00 0.95/19.03 0.79/14.33 0.91/17.91 0.73/11.21 0.83/10.55 0.85/21.06
OSSE4 0.82/23.99 0.92/25.91 0.95/17.11 0.93/18.31 0.70/12.13 0.88/17.62 0.63/11.62 0.80/10.99 0.77/21.2
OSSE 5 0.80/24.18 0.92/26.48 0.94/17.16 0.92/18.83 0.65/11.39 0.86/16.95 0.59/11.86 0.75/11.3 0.75/20.58
OSSE 6 0.85/24.72 0.89/27.40 0.93/16.66 0.91/18.73 0.64/12.34 0.91/17.51 0.72/11.56 0.82/10.84 0.86/22.41
OSSE 7 0.82/24.48 0.89/27.87 0.93/16.32 0.91/18.19 0.54/11.17 0.88/17.33 0.66/11.71 0.80/11.12 0.80/20.90
OSSE 8 0.77/25.10 0.89/27.90 0.93/16.19 0.91/18.3 0.52/11.66 0.86/16.92 0.57/11.74 0.79/11.17 0.66/22.63
OSSE 9 0.88/24.51 0.92/28.17 0.95/16.11 0.94/17.67 0.68/12.98 0.92/17.84 0.72/11.31 0.84/10.89 0.91/21.63
OSSE 10 0.85/24.89 0.91/28.28 0.94/17.10 0.94/18.41 0.63/12.90 0.88/17.36 0.65/11.35 0.78/11.01 0.89/22.25
OSSE 11 0.83/24.67 0.91/28.39 0.93/16.4 0.93/18.10 0.58/13.20 0.86/16.79 0.56/11.29 0.74/10.96 0.88/21.92

Table 4. Normalised root-mean-square differences and biases (µatm) of 11 OSSEs from Table 2 estimated over eight Atlantic Ocean biomes
and at basin scale; the results are presented in Fig. 4. OSSEs 1, 3 and 10 are in bold as we focus our detailed comparison on these three
OSSEs.

OSSE Biome

All biomes 9 10 11 12 13 15 16 17

OSSE 1 14.13/−4.25 11.63/−3.26 6.32/−0.39 6.63/−2.93 15.41/0.17 12.5/2.12 15.97/1.32 8.08/−5.41 17.33/−11.63
OSSE 2 10.11/0.36 17.10/−2.02 4.21/0.09 3.94/0.19 7.26/0.22 4.98/0.38 12.63/−0.43 4.31/−0.21 10.00/2.50
OSSE 3 8.32/−0.46 9.59/−0.32 4.56/−0.30 4.24/−0.71 8.00/−0.14 5.73/0.57 11.87/−0.85 4.20/−0.97 10.18/−0.66
OSSE 4 9.40/−0.84 10.08/−0.53 5.08/−0.05 5.01/−0.88 10.41/−0.29 6.96/0.85 12.59/−0.40 4.87/−0.93 11.75/−2.25
OSSE 5 9.82/−1.46 10.43/−0.83 5.50/0.50 5.35/−0.98 11.11/−0.25 7.93/0.85 12.72/−0.54 5.71/−1.69 11.80/−4.02
OSSE 6 9.12/−0.54 11.40/−2.57 5.93/0.02 6.48/−1.86 11.46/3.82 5.75/0.53 12.06/−0.51 4.35/−0.56 10.01/−0.18
OSSE 7 9.75/−1.22 11.79/−2.64 6.16/−0.10 6.26/−2.68 13.30/3.77 6.90/0.58 11.97/−0.56 4.90/−1.68 11.03/−1.80
OSSE 8 11.36/−1.89 11.62/−2.59 6.02/0.49 5.91/−2.80 13.87/2.70 7.84/0.90 12.55/−0.89 5.42/−2.03 15.16/−4.12
OSSE 9 8.37/−0.44 10.58/−2.52 5.47/−0.001 5.13/−1.33 11.34/2.91 5.37/0.41 12.18/−0.88 4.16/−0.75 8.51/0.37
OSSE 10 8.71/−0.39 10.79/−2.35 5.54/0.79 4.94/−0.71 12.64/3.35 6.82/1.01 12.25/−0.92 4.89/−0.90 8.61/−0.21
OSSE 11 9.16/−1.18 10.85/−3.21 5.91/−0.68 5.32/−1.97 14.28/2.41 7.59/0.002 12.49/−1.18 5.13/−1.56 9.23/−0.77

i.e. 8.37 µatm (OSSE 9), 8.71 µatm (OSSE 10), 9.16 µatm
(OSSE 11) (Figs. 3, 4a, Tables 3 and 4). Statistics are slightly
worse for OSSE 11 compared to OSSEs 9 and 10, which have
comparable results. While OSSE 10 shows a smaller corre-
lation coefficient over the whole region compared to OSSE
9, its SD (24.89 µatm) lies closer to the NEMO/PISCES SD
(25.34 µatm), and it has a smaller bias (−0.39 µatm). Simi-
lar results are found over other biomes: in biome 12, OSSEs
9 and 10 have correlation coefficients close to each other
(0.68 and 0.63, respectively) and larger than for OSSEs 6,
7 and 8, while for OSSE 11 it is 0.58. The SDs are almost
equal (OSSE 9: 12.98 µatm; OSSE 10: 12.9 µatm), and the
uRMSDs have a small difference compared to the one com-
puted for OSSE 3 (8 µatm) (Tables 3, 4). Thus, the remain-
der of the discussion will focus on OSSE 10 in comparison
to OSSEs 1 and 3. OSSE 10 provides comparable results to
OSSE 9 and is in good agreement with OSSE 3 while using
a lower percentage of data for training. Figures 3 and 4 are
summarised in Fig. S1 of the Supplement.

Figure 5a, b and c present the differences between recon-
structed pCO2 distributions (Fig. 5a – OSSE 1; Fig. 5b –
OSSE 3; Fig. 5c – OSSE 10) and NEMO/PISCES output.
The maximum in absolute value from four outputs for each
OSSE FFNN is shown (Eq. 4). There is a large improve-
ment in the Southern Hemisphere for OSSEs 3 (Fig. 5b) and
10 (Fig. 5c) compared to OSSE 1 (Fig. 5a): the difference
varies mostly between −3 and 3 µatm for OSSEs 3 and 10,
and between −15 and 15 µatm for OSSE 1 (Fig. 5). How-
ever, the average values of the mean over biomes are not
always better for OSSE 3 (Table 5): in biome 13, OSSE 1
shows a small positive difference of 0.11 µatm, while for
OSSE 3 a negative difference of −0.32 µatm is computed,
exceeding 0.11 µatm in its absolute value. This is due to er-
ror compensation by averaging; the reduction of the positive
difference in the middle of biome 13 in OSSE 3 increases
the impact of negative small differences in this region. Er-
ror compensation also contributes to positive biases com-
puted for OSSEs 6–11 for biome 12 (Table 4). Additional
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Table 5. Differences (Eq. 4) between OSSE FFNN outputs and NEMO/PISCES pCO2 and its standard deviation (SD) (Eq. 5) (in µatm).

OSSE Region Biome

80◦ S–80◦ N, All eight biomes 9 10 11 12 13 15 16 17
70◦W–30◦ E

OSSE 1 −6.57/14.49 −6.57/ 13.54 −4.84/10.17 −1.46/6.98 −4.21/7.62 −2.03/13.88 0.11/13.88 −1.35/14.96 −8.04/8.99 −14.90/20.83
OSSE 3 −1.70/8.12 −1.50/7.15 −1.36/7.52 −0.90/4.62 −1.48/4.64 −1.49/7.09 −0.32/5.58 −1.93/7.16 −1.89/4.42 −2.05/10.59
OSSE 10 −2.34/8.64 −1.54/7.50 −3.54/8.59 −0.10/6.18 −1.52/5.42 1.93/9.38 −0.04/6.51 −2.15/8.18 −1.91/5.21 −1.55/8.99

data from Argo floats correct the negative bias in the south-
ern part of the biome close to the African coast (Fig. 5c).
Thus, the strong positive bias in the northern part becomes
dominant and results in a total positive bias. A large improve-
ment is obtained in biomes 16 and 17: from −8.04 µatm for
OSSE 1 to −1.89 and −1.91 µatm for OSSEs 3 and 10 in
biome 16, respectively, and from −14.9 µatm for OSSE 1
to −2.05 and −1.55 µatm for OSSEs 3 and 10, respectively,
in biome 17 (Table 5). Over the whole region (80◦ S–80◦ N,
70◦W–30◦ E), OSSE 1 has a mean difference of−6.57 µatm,
it is −1.7 and −2.34 µatm for OSSEs 3 and 10. The differ-
ence between OSSEs 3 and 10 results from the Labrador Sea
and Baffin Bay: OSSE 10 has fewer data in this region com-
pared to the OSSE 3. However, there is an improvement in
OSSE 10 compared to OSSE 1 and 3 in the Greenland Sea
(Fig. 5). It results from the addition of mooring data in the
Greenland Sea region (Fig. 1c).

Figure 5d, e and f present the standard deviations (SD) of
differences for all four outputs for each OSSE FFNN (Fig. 5d
– OSSE 1; Fig. 5e – OSSE 3; Fig. 5f – OSSE 10) (Eq. 5).
Over most of the Atlantic Ocean, SD varies between 0 and
10 µatm for OSSEs 3 and 10. In each case there is a strong
SD along the coasts and in the Labrador Sea and Baffin Bay.
In general, the mean value of SD tends to decrease (Table 5)
from OSSE 1 to OSSEs 3 and 10. In the Southern Hemi-
sphere SD reaches up to 30 µatm (Fig. 5d, e and f) when only
SOCAT data are used in the FFNN algorithm (OSSE 1). It is
significantly reduced in response to the addition of float data
in OSSEs 3 and 10, which also show less spatial variabil-
ity. The results for other OSSEs are added to the Supplement
(Table S2, Figs. S2, S3).

Figure 6 shows the correlation between the mean value
of four OSSE outputs and NEMO/PISCES pCO2 (Fig. 6a –
OSSE 1; Fig. 6b – OSSE 3; Fig. 6c – OSSE 10). The ad-
ditional data from Argo floats and mooring stations increase
the correlation coefficient from 0.68 in the case of OSSE 1
(SOCAT data only) to 0.86 and 0.85 in the case of OSSEs 3
and 10 (Table 6). A higher correlation was also obtained for
these two OSSEs compared to OSSE 1 over the region cov-
ering the Greenland Sea, the Norwegian Sea and Barents Sea
(mostly biome 9). In the Southern Hemisphere the correla-
tion with NEMO/PISCES pCO2 is also larger when Argo
data are included, especially in biomes 16 and 17: 0.7 and
0.57 for OSSE 1, 0.83 and 0.85 for OSSE 3, and 0.78 and
0.89 for OSSE 10 (Table 6). However, there is a low corre-

lation along the African coasts, which is in agreement with
our previous results for mean difference and SD (Fig. 5).
It reflects the predominantly open-ocean data used for this
exercise. A well-pronounced decrease in correlation is ob-
served for biome 15 (subtropical seasonally stratified South-
ern Ocean). Such a decrease can result from the spatial distri-
bution of data or from the predictor dataset. We will discuss
it further in the next section. The results for other OSSEs are
presented in the Supplement (Table S3, Fig. S4).

In Fig. 7, time series of pCO2 for OSSEs 1, 3 and 10 are
compared to corresponding NEMO/PISCES model output.
For each OSSE, the mean pCO2 from four FFNN outputs is
shown, as well as the mean bias (OSSE–NEMO/PISCES).
Figure 7a and b presents the pCO2 time series over the
period of reconstruction 2008–2010 for OSSE 1, 3 and
10 compared to NEMO/PISCES pCO2 used as reference
(black) over all biomes. For OSSE 1 (SOCAT data only)
a large difference and an underestimation of reconstructed
pCO2 (blue) compared to NEMO/PISCES pCO2 (black)
are found: the maximum error is up to −10 µatm (Fig. 7b).
On the contrary, OSSEs 3 and 10 show a good agreement
with NEMO/PISCES model output. Averages of pCO2 over
the eight biomes are 372.18 µatm for OSSE 3, 372.26 µatm
for OSSE 10 and 368.39 µatm for OSSE 1, compared to
372.65 µatm for NEMO/PISCES (Table 7). The experiment
corresponding to the BGC-Argo distribution target over
the entire Atlantic basin, OSSE 4 (Figs. S8, S9), has a
basin-wide average pCO2 equal to 371.8 µatm (Table 7).
This corresponds to a larger difference with NEMO/PISCES
(−0.84 µatm) compared to OSSEs 3 and 10.

Figure 7c–h illustrate time series of reconstructed pCO2
for biomes with varying data coverage. Biome 11, the
subtropical permanently stratified North Atlantic (Fig. 7c
and d), is well covered by data. All three OSSEs yield
pCO2 reconstructions that are in good accordance with the
NEMO/PISCES reference. The amplitude and the phasing
of the seasonal cycle are well reproduced. The bias varies
within a range of ±5 µatm for OSSEs 3 and 10. A pre-
dominantly negative bias is found for OSSE 1 with values
as high as −10 µatm. The pCO2 averaged over biome 11
for OSSE 10 is close to NEMO/PISCES with, respectively
389.39 and 390.11 µatm (Table 7). OSSE 1 yields a biome-
averaged pCO2 equal to 387.11 µatm, while it is 389.39 µatm
for the OSSE 3.
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Figure 5. Differences between OSSE FFNN outputs and NEMO/PISCES pCO2 and its standard deviation (SD; in µatm): (a, b, c) its
maximum and minimum values from four outputs for each OSSE FFNN (Eq. 4) and (g, h) standard deviation of differences for all four
outputs for each OSSE FFNN (Eq. 5). (a, d) OSSE 1 using SOCAT data only; (b, e) OSSE 3 using SOCAT and synthetic Argo data; and
(c, f) OSSE 10 using SOCAT data, 25 % of the original synthetic Argo data in the Southern Hemisphere, and data from mooring stations.
Contours and numbers on maps correspond to biomes.

Biome 13, the subtropical permanently stratified South
Atlantic (Fig. 7e and f), corresponds to a region with a
low data coverage. This region has a dynamic similar to
biome 11 in the Northern Hemisphere; however, the data cov-
erage in biome 13 represents only 15 % of data coverage in
biome 11 (Fig. S5). We observe a large difference between

pCO2 reconstructed by OSSE 1 (blue) and NEMO/PISCES
(black). While the phasing of the reconstructed seasonal cy-
cle is satisfying, it is noisy with a systematic overestima-
tion in spring by up to 18 µatm (Table 7). However, the to-
tal averaged pCO2 over biome 13 for OSSE 1 is close to
the one of NEMO/PISCES: 391.66 µatm versus 389.54 µatm.
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Figure 6. Correlation coefficient between OSSE FFNN outputs and NEMO/PISCES pCO2: (a) OSSE 1 using SOCAT data only; (b) OSSE 3
using SOCAT and synthetic Argo data; and (c) OSSE 10 using SOCAT data, 25 % of the original synthetic Argo data in the Southern
Hemisphere, and data from mooring stations. Contours and numbers on maps correspond to biomes.

Table 6. Correlation coefficient between OSSEs and NEMO/PISCES pCO2.

OSSE Region Biome

80◦ S–80◦ N, All eight biomes 9 10 11 12 13 15 16 17
70◦W–30◦ E

OSSE 1 0.68 0.67 0.88 0.92 0.89 0.46 0.68 0.31 0.70 0.57
OSSE 3 0.86 0.87 0.93 0.96 0.95 0.79 0.91 0.73 0.83 0.85
OSSE 10 0.85 0.85 0.92 0.94 0.94 0.63 0.88 0.65 0.78 0.89

The preceding suggests that while the variability of the pre-
dictors (mainly SST) is sufficient to constrain the biome-
average pCO2 and the phasing of the seasonal cycle at the
first order, an improved coverage by in situ observations is
needed for a smooth reconstruction of the seasonal cycle and
its amplitude. Reconstructions are largely improved by the
addition of data from Argo floats (OSSE 3) and moorings
(OSSE 10). Biases mostly range between −3 and 3 µatm for
these OSSEs.

The Southern Ocean ice biome (biome 17) is characterised
by sparse data coverage and a bias towards the ice-free sea-
son. The results for biome 17 are presented in Fig. 7g and
h. OSSE 1 underestimates the pCO2 in this region over the
full seasonal cycle. The maximum difference is obtained in
September–October, which also corresponds to the months
with the lowest number of available observations (Fig. S5).
The biome-wide average is 351.44, −11.63 µatm below the
NEMO/PISCES reference. The reconstruction is much im-
proved for OSSEs 3 and 10 for the phasing and ampli-

tude of the seasonal cycle and for the biome-wide averages.
The averages are 362.42 and 362.87 µatm, respectively, for
OSSE 3 and OSSE 10, compared to 363.08 µatm computed
for NEMO/PISCES (Table 7).

Results for all OSSEs and for all biomes are included in
the Supplement (Table S4, Figs. S6–S11).

Figure 8 shows the sea–air CO2 flux time series (nega-
tive, uptake of CO2 by the ocean). Over all biomes and in
the region 80◦ S–80◦ N, 70◦W–30◦ E, OSSEs 3 (red) and
10 (green) show a good agreement with NEMO/PISCES
f gCO2: the differences vary around zero and mostly do not
exceed ±0.3 Pg yr−1 (Fig. 8b, d, f and h). The total aver-
aged f gCO2 for OSSE 3 and 10 are −0.74 Pg yr−1 com-
pared to −0.7 Pg yr−1 in NEMO/PISCES, while for OSSE 1
it equals −0.99 Pg yr−1 (Table 8). The mean value over
biome 11 is slightly better for OSSE 10 than for OSSE 3
compared to NEMO/PISCES: −0.06 Pg yr−1 (OSSE 10),
−0.07 (OSSE 3) and −0.03 Pg yr−1 for NEMO/PISCES.
The OSSE 1 (blue) shows again a large difference, it over-
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Figure 7. (a, c, e) Mean of four FFNN outputs for OSSE 1 (blue) (SOCAT data only), 3 (red) (SOCAT and synthetic Argo data), and
10 (green) (SOCAT data, 25 % of the original synthetic Argo data in the Southern Hemisphere, and data from mooring stations); shading
corresponds to the maximum and minimum values from four FFNN outputs for each OSSE. The black curve shows NEMO/PISCES pCO2.
(b, d, f) Mean of differences of four FFNN outputs between OSSE 1 (blue), 3 (red), and 10 (green) and NEMO/PISCES pCO2; shading
corresponds to the maximum and minimum values of differences from four FFNN outputs for each OSSE. (a, b) Estimates are available
over all biomes presented in Fig. 2, except biome 8: (c, d) biome 11 (subtropical permanently stratified North Atlantic), (e, f) biome 13
(subtropical permanently stratified South Atlantic), and (g, h) biome 17 (Southern Ocean ice).
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Table 7. pCO2 averaged over the region (80◦ S–80◦ N, 70◦W–30◦ E) and biomes from Fig. 2 for the NEMO/PISCES model; OSSEs 1, 3,
and 10; and the corresponding averaged differences between OSSEs and NEMO/PISCES (in µatm).

OSSE Region Biome

80◦ S–80◦ N, All eight 9 10 11 12 13 15 16 17
70◦W–30◦ E biomes

NEMO 371.13 372.65 350.36 373.18 390.11 397.18 389.54 376.14 376.99 363.08

OSSE 1 367.09/ 368.39/ 347.10/ 372.78/ 387.17/ 397.36/ 391.66/ 377.46/ 371.58/ 351.44/
−4.04 −4.25 −3.26 −0.39 −2.93 0.17 2.12 1.32 −5.41 −11.63

OSSE 3 370.62/ 372.18/ 350.04/ 372.88/ 389.39/ 397.04/ 390.10/ 375.29/ 376.02/ 362.42/
−0.51 −0.46 −0.32 −0.30 −0.71 −0.14 0.57 −0.85 −0.97 −0.66

OSSE 10 370.14/ 372.26/ 348.01/ 373.98/ 389.39/ 400.53/ 390.55/ 375.22/ 376.09/ 362.87/
−0.99 −0.39 −2.35 0.79 −0.71 3.35 1.01 −0.92 −0.90 −0.21

estimates the ocean sink computed by the NEMO/PISCES
model mostly during the whole period (Fig. 8b). In the
well data-covered biome 11, OSSE 1 also has a tendency
to overestimate the sea–air CO2 flux (Fig. 8d): the total av-
eraged f gCO2 is −0.18 Pg yr−1 for OSSE 1, while it is
−0.03 Pg yr−1 in the model. While the phasing and ampli-
tude of the seasonal cycle of sea–air fluxes of CO2 are well
reproduced over biome 13 by OSSEs 3 and 10, the f gCO2
reconstructed by OSSE 1 is noisy with differences with re-
spect to the model reference of up 1 Pg yr−1 (Fig. 8e). The
maximum differences between OSSE 1 and NEMO/PISCES
are systematically found in January and June, the months
with the lowest number of available observations for training
(Fig. S5). The biome-wide mean sea–air flux of CO2 is close
to zero in NEMO/PISCES: −0.004 Pg yr−1. This slight up-
take of CO2 by the ocean in the model reference is not repro-
duced by the OSSEs that yield a source over biome 13, albeit
of variable strength: 0.19 Pg yr−1 for OSSE 1, 0.05 Pg yr−1

for OSSE 3 and 0.08 Pg yr−1 for OSSE 10. Over the South-
ern Ocean biome 17 (Fig. 8g and h), OSSE 1 (blue) overes-
timates fgCO2 by −0.65 g yr−1 (Table 8). OSSE 10 (green)
reproduces the local maxima and minima of the fgCO2 time
series slightly better than OSSE 3, with average differences
equaling −0.03 and −0.06 Pg yr−1, respectively. Results for
all OSSEs and for all biomes can be found in the Supplement
(Table S5, Figs. S12–S17).

The relationship between the average number of Argo
floats (5 d period) and the error in fgCO2 estimates (Tables 8,
S5) is shown in Fig. 9 for all biomes (a), biome 11 (b),
biome 13 (c) and biome 17 (d). Figure 9a illustrates how
the increase of the number of floats usually yields a reduc-
tion in the error of fgCO2 estimates. Considering the whole
region, OSSE 10 provides the best results with less Argo
floats (−0.04 PgC yr−1 and 48 Argo floats). At the biome
scale, the addition of floats does not, however, systemati-
cally reduce the error. This holds for biome 11 (Fig. 9b),
which is well covered by observations, but also for biome 13
with a much sparser data coverage (Fig. 9d). For biome 11,

OSSE 10 has the best trade-off between error reduction and
number of floats. The largest error (0.22 PgC yr−1) is ob-
tained for OSSE 2 (only Argo data). It suggests that the pe-
riod chosen for this study is too short to adequately capture
the seasonal variability. This hypothesis is supported by the
fact that while OSSE 3 and OSSE 2 share the same num-
ber of Argo data, OSSE 3 is further constrained by SOCAT
data that cover the period 2001–2010. These additional data
from SOCAT introduce the information needed for the re-
construction of the seasonal cycle. For biome 13 (Fig. 9c),
the combination of SOCAT data and Argo float data im-
proves estimates of fgCO2. The errors in OSSE 10 are com-
parable to OSSE 3 (benchmark), 0.08 PgC yr−1 (OSSE 10)
and 0.06 PgC yr−1 (OSSE 3). The error is even lower for
OSSE 11 (0.04 PgC yr−1), the experiment with the smallest
number of Argo floats (19), than for OSSE 3. Unfortunately,
results provided by OSSE 11 are less good over the remain-
der of the biomes. The tendency for a decrease of fgCO2 error
with an increase of the number of Argo floats is confirmed
for biome 17 (Fig. 9d). The additional data from mooring
stations (OSSE 9, 10 and 11) improve OSSEs with smaller
numbers of floats in particular. An error of−0.03 PgC yr−1 is
computed for OSSE 10 (49 floats) over biome 17. The results
for other biomes can be found in the Supplement (Fig. S18).

4 Summary and conclusion

The aim of this work was to identify an optimal observa-
tional network of pCO2 over the Atlantic Ocean. The anal-
ysis was based on results obtained with a feed-forward neu-
ral network model trained on the SOCAT database. The SO-
CAT database has sparse coverage in the Southern Hemi-
sphere. The approach consisted of adding the position of
mooring data and Argo trajectories in the Atlantic Ocean
to find an optimal distribution and combination of data to
reconstruct pCO2 with a good accuracy. The advantage of
the SOCAT database is the long time period covered by its
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Figure 8. (a, c, e) Mean of fgCO2 from four FFNN outputs for OSSE 1 (blue) (SOCAT data only), 3 (red) (SOCAT and synthetic Argo
data) and 10 (green) (SOCAT data, 25 % of the original synthetic Argo data in the Southern Hemisphere, and data from mooring stations);
shading corresponds to the maximum and minimum values from four FFNN fgCO2 estimates for each OSSE. The black curve shows
NEMO/PISCES fgCO2. (b, d, f) Mean of differences of four FFNN outputs between OSSE 1 (blue), 3 (red), and 10 (green) fgCO2 and
NEMO/PISCES fgCO2; shading corresponds to the maximum and minimum values of differences from four FFNN fgCO2 for each OSSE.
(a, b) Estimates are available for all biomes presented in Fig. 2, except biome 8: (c, d) biome 11 (subtropical permanently stratified North
Atlantic), (e, f) biome 13 (subtropical permanently stratified South Atlantic), and (g, h) biome 17 (Southern Ocean ice).

https://doi.org/10.5194/os-17-1011-2021 Ocean Sci., 17, 1011–1030, 2021



1026 A. Denvil-Sommer et al.: Observation system simulation experiments in the Atlantic Ocean

Table 8. fgCO2 averaged over the region 80◦ S–80◦ N, 70◦W–30◦ E and biomes from Fig. 2 for the NEMO/PISCES model; OSSEs 1, 3, 4,
and 10; and the corresponding averaged differences between each OSSEs and NEMO/PISCES (in Pg yr−1).

OSSE Region Biome

80◦ S–80◦ N, All 8 biomes 9 10 11 12 13 15 16 17
70◦W–30◦ E

NEMO −0.76 −0.70 −2.34 −1.14 −0.03 0.53 −0.004 −0.74 −0.50 −0.52
OSSE 1 −1.03/−0.26 −0.99/−0.28 −2.57/−0.23 −1.17/−0.03 −0.18/−0.15 0.42/−0.10 0.19/0.20 −0.68/0.06 −1.15/−0.64 −1.17/−0.65
OSSE 3 −0.80/−0.04 −0.74/−0.04 −2.36/−0.02 −1.16/−0.02 −0.07/−0.03 0.49/−0.04 0.05/0.06 −0.82/−0.07 −0.61/−0.10 −0.59/−0.06
OSSE 10 −0.83/−0.06 −0.74/−0.04 −2.50/−0.15 −1.09/0.04 −0.06/−0.03 0.56/0.03 0.08/0.08 −0.82/−0.07 −0.60/−0.09 −0.56/−0.03

Figure 9. Averaged number of Argo profiles per 5 d time step over 2008–2010 versus averaged differences between each OSSE fgCO2
and NEMO fgCO2 (in Pg yr−1), the colour code corresponds to Fig. 2, the purple colour represents the total of the eight biomes: (a) all
biomes, (b) biome 11 (subtropical permanently stratified North Atlantic), (c) biome 13 (subtropical permanently stratified South Atlantic),
and (d) biome 17 (Southern Ocean ice). OSSE 1 uses SOCAT data only; OSSE 2 uses synthetic Argo data only; OSSE 3 uses SOCAT and
synthetic Argo data; OSSE 4 uses SOCAT data and 25 % of the original synthetic Argo data; OSSE 5 uses SOCAT data and 10 % of the
original synthetic Argo data; OSSE 6 uses SOCAT data and synthetic Argo data in the Southern Hemisphere; OSSE 7 uses SOCAT data and
25 % of the original synthetic Argo data in the Southern Hemisphere; OSSE 8 uses SOCAT data and 10 % of the original synthetic Argo data
in the Southern Hemisphere; OSSE 9 uses SOCAT data, synthetic Argo data in the Southern Hemisphere, and data from mooring stations;
OSSE 10 uses SOCAT data, 25 % of the original synthetic Argo data in the Southern Hemisphere, and data from mooring stations; OSSE 11
uses SOCAT data, 10 % of the original synthetic Argo data in the Southern Hemisphere, and data from mooring stations. OSSEs 1, 3 and 10
are in bold as they represent the main OSSEs of our comparisons.

records, which allows us to reconstruct the interannual vari-
ability with a good accuracy. However, its data coverage is
biased towards the North Atlantic, which leads to larger re-
construction errors over the South Atlantic by the neural net-
work. As a long-term perspective, the inclusion of data from
Argo floats will contribute to a more homogenous data dis-
tribution and provide better spatial coverage. The Argo floats

and moorings used here do not currently provide pCO2 mea-
surements, and hence only their positions were used to build
OSSEs. A series of experiments were performed using out-
puts from the NEMO/PISCES model. The model simula-
tions were sub-sampled at co-localised sites of observing
platforms for all predictors (SSS, SST, SSH, CHL, MLD,
pCO2,atm) used in the FFNN and the target (pCO2) to cre-
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ate pseudo-observations with a 5 d time step. These exper-
iments should be useful for the planning of future deploy-
ments of BGC-Argo floats (Biogeochemical-Argo Planning
Group, 2016) and moorings equipped with the sensors to
measure pCO2 or CO2 fugacity. In this study we focused
on the reconstruction of short-term interannual variability
(3 years: 2008–2010) of pCO2. The results can be different
for long-term variability, which will strongly depend on the
data availability and data distribution over a longer period
(Gloege et al., 2021).

The results suggest that the addition of data from Argo
floats could significantly improve the accuracy of FFNN-
based ocean pCO2 reconstructions over the Atlantic Ocean
and the Atlantic sector of the Southern Ocean compared to
the case when only SOCAT data are used (OSSE 1). How-
ever, even with an improved coverage over the open ocean,
additional observations are required in coastal regions and
shelf seas that are not accessible to floats, as well as in re-
gions with a strong seasonal variability of pCO2 and all pre-
dictors. This is exemplified by OSSE 2, the experiment based
on all Argo data, which yields high RMSDs in biome 9, the
subpolar seasonally stratified North Atlantic (Figs. 3, 4b, Ta-
ble 4). The RMSD of 17.1 µatm reflects the poor coverage of
this region by Argo floats (Fig. 1b), in particular the Green-
land Sea and the North Sea, with a large part of the latter
not suitable for the deployment of floats. The combination
of SOCAT data and Argo floats (OSSE 3) improves the re-
construction with a RMSD reduced to 9.59 µatm (Fig. 4b,
Table 4).

The reduction of the percentage of Argo data used in our
experiments slightly decreases the accuracy (Figs. 3 and 4,
Tables 3 and 4). A lower percentage of Argo data corre-
sponds, however, to a more realistic distribution of instru-
ments and to the target of the global BGC-Argo network.
The results are still comparable to OSSE 3. The best com-
promise between the statistics yielded by the comparison
between reconstructed pCO2 and NEMO/PISCES outputs,
as well as the feasibility of a future observation network, is
found for OSSE 10. In this experiment SOCAT data are com-
bined with simulated mooring data and 25 % of the initial
distribution of Argo floats placed only in the Southern Hemi-
sphere (around 49 floats with a 5 d sampling period). The use
of only SOCAT data results in a correlation coefficient of
0.67 compared to NEMO/PISCES output and a standard de-
viation of 26.08 µatm (25.34 µatm for NEMO/PISCES) over
the region of study. The successful OSSE 10 has a correlation
coefficient of 0.85 and a standard deviation of 24.89 µatm.
These results are close to the unrealistic benchmark case
with total Argo float distribution over 2008–2010: 0.87 and
23.79 µatm. The total pCO2 over the whole region is also
close to NEMO/PISCES, ∼ 370 and ∼ 371 µatm, respec-
tively. The sea–air flux fgCO2 is −0.83 Pg yr−1 (OSSE 10)
and −0.76 Pg yr−1 (NEMO). The bias in sea–air CO2 fluxes
compared to NEMO/PISCES is reduced by 74 % in OSSE 10
compared to OSSE 1 (fgCO2 is −1.03 Pg yr−1).

The OSSE 10 network could be further improved by in-
strumenting Baffin Bay, the Labrador Sea, the Norwegian
Sea, and regions along the coast of Africa (10◦ N to 20◦ S),
all regions with pronounced biases in all OSSEs, with moor-
ings or gliders as well as sail-drones and sail buoys along the
shelf break and on the continental shelf.

The inclusion of errors from in situ measurements is one
of the next steps of this work. The real measurements con-
tain instrumental and representation errors. The inclusion of
errors in pseudo-observations will help to estimate the im-
pact of observations on the reliability of OSSEs presented in
this work. It will include the errors for predictor values (SSS,
SST, SSH, CHL, MLD, pCO2,atm) that are measured directly
or derived from remote sensing (e.g. SST, chlorophyll, SSH),
as well as the errors related to the computation of pCO2 from
pH and alkalinity. The new FFNN runs could provide impor-
tant information on the effect of biases from observational
datasets and identify predictors or targets that have large er-
rors and thus must be corrected. The consistent introduction
of error estimates for each predictor will provide this infor-
mation.
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