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Preface

The increasing complexity of the current world can be observed each day. Sustainable development
for example consists of economical and social systems management within natural environment.
The understanding of the whole leads to what we call territorial intelligence. The way of modelling
these complex systems is often based on interactive networks, dealing with the interconnection
between all of the system components. Decision making on this complex world, need tools able to
detect and manage emergent organizations through these networks. Distributed Artificial Intelli-
gence (DAI) is the adapted conceptual trend which allows the proposal of some relevant solutions by
relying on social and physical sciences models exhibited and observed in nature (e.g. ant colonies,
molecular crystallisation, etc.). In this search and management of emerging organization, swarm
intelligence algorithms proved to be popular and effective methods to use. On the technological
front, the increasing number of robotic systems, advances in nano technology, and the sheer com-
plexity of modern enterprise systems, especially those boosting high degree of autonomy, makes the
development of swarm intelligence timely and needed.

Le Havre, Paris & Amman
March 15th 2010

Cyrille Bertelle
Gérard H.E. Duchamp

Rawan Ghnemat
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Exactly Solved Models for Collective Behaviour and
Complex Systems

Gérard H.E. Duchamp 1

Abstract

Complex systems is a set of theories which serves to model emergent behaviours or emergent phenomena in systems which are not
reducible to the sum of their parts. Among these theories is the modelisation of collective phenomena. As miracles of regularity
in nature appears the exceptional family of ”exactly solved model” as the Ohm formula U = RI which is sol simple but after all
is a relation between statistics of electrons.

This talk begins by recalling the ”triple birth of quantum mechanics” and the history of ideas leading to the fundamental commu-
tation relation AB − BA = 1. We show how these operators can be found in the macroscopic word as simple statistical ”death
and birth” processes and gain avery natural and easy description of the traditional Fock space then explaining the necessity of the
normal form by simple spectral arguments.

Then comes the evolution groups and two aspects of the product formula applied to combinatorial field theories. Firstly, we remark
that the case when the functions involved in the product formula have a constant term is of special interest as often these functions
give rise to substitutional groups. The groups arising from the normal ordering problem of boson strings are naturally associated
with explicit vector fields, or their conjugates, in the case when there is only one annihilation operator. We also consider one-
parameter groups of operators when several annihilators are present. Secondly, we discuss the Feynman-type graph representation
resulting from the product formula and show that there is a correspondence between the packed integer matrices of the theory of
noncommutative symmetric functions and these Feynman-type graphs.

1 LIPN, University of Paris XIII, France, email: ghed@lipn.univ-paris13.fr
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From Ants To Robots: A Decentralised Task Allocation 

Model For A Swarm of Robots

Sifat Momen
*
 and Amanda J.C. Sharkey

*
 

Abstract.  This paper presents a task allocation and task 

switching model for a decentralised group of mobile robots. The 

model is strongly inspired by the behaviour of social insects, 

typically ants, which exhibit remarkable techniques for 

allocating tasks and adapting to the changing environment. The 

agents in the model allocate tasks based on the local cues they 

perceive and without the need of any centralised controller. The 

paper compares two communication techniques inspired by the 

ant colony behaviour. The objective of this paper is fourfold: (1) 

to design and (2) implement a task allocation model for a swarm 

of mobile agents, (3) to develop two communication techniques 

(one in which agents communicate directly along with indirect 

communication and in the other they only communicate 

indirectly), and (4) empirically investigate the impact of the two 

techniques on the performance of the system. The agents are 

assumed to have limited perception and to only be able to 

interact locally. Experimental results reveal that the model is 

highly adaptive and efficient whichever communication 

technique is used. Furthermore, the results also show that the 

incorporation of explicit communication improves the 

performance of the system significantly over that of indirect 

communication. The model offers benefits to heterogeneous 

mobile robot systems to dynamically allocate tasks among 

themselves without the need of any centralised controller in such 

a way so as to improve the performance of the overall system. 

1 INTRODUCTION 

Flocks of birds meandering in the evening light, armies of ants 

marching for foraging, herds of buffalos congregating to avoid 

predators, synchronised flashes from male fireflies attempting to 

attract the female ones or even the pods of dolphins dancing up 

and down in unison are some of the spectacular examples of 

collective behaviours [1,2] that animals display. Their 

behaviours are not only enthralling to watch (figure 1) but are 

also some of the finest examples of how individuals form groups 

which enable the group as a whole to carry out tasks that could 

not be accomplished by a single individual with the same 

efficiency. It is now well established that animals self organise 

[2] by repeatedly interacting with the neighbouring individuals 

and the environment in the vicinity resulting in the emergence of 

such collective behaviours. Individual agents neither have any 

global templates of the environment nor follow any particular 

leader. Instead, they behave as purely reactive individuals trying 

to synchronise with the immediate neighbours through some 

simple local interactions. Such local cohesion among the agents 

                                                 
*
 Neurocomputing and Robotics Group, Dept. of Computer Science, 

Univ. of Sheffield, Regent Court, Portobello, Sheffield S1 4DP, UK. 

Email: {s.momen, amanda}@dcs.shef.ac.uk 

facilitate the tendency to become a part of a group which 

consequently benefits them in numerous ways including the 

possibility of minimizing danger of an individual from a 

potential predator [3], accomplishing tasks that are otherwise 

difficult to carry out and also in transferring vital information 

within the group quickly [4]. Each individual does not have 

enough intelligence to carry out its job optimally rather as a 

group such intelligence emerges (through local interactions) 

which is often referred to as swarm intelligence (SI). 

Intriguingly, such group behaviour and self organised systems 

are not  limited to nature, but are also extremely prevalent within 

the very society we live in: pedestrians travelling [5] like that of 

the flocking of birds, spreading of rumour [6], rhythmic applause 

after a good concert [7, 8], traffic flow [9] in a busy road and 

even the evolution of a new sign language that emerged from 

mere interactions between the school children in Nicaragua [10] 

are just some of the examples of such self organized systems 

within our society. 

Recent time has witnessed huge interest in the field of swarm 

intelligence and swarm robotics (SR) [14; for a brief history, see 

11 – 13] among researchers in areas as different as biology and 

engineering. The concept of swarm robotics is strongly inspired 

from biology and especially from the behaviour of eusocial 

insects [15] like that of ants, bees, termites and wasps that show 

some remarkable examples of how a large number of simple 

individuals can use extremely simple rules and local 

communication to result in a collectively intelligent system. For 

engineers and roboticists, the field provides a number of key 

advantages (including robustness, flexibility and scalability) over 

the traditional deliberative based system for a wide number of 

practical applications whereas for the biologists, it provides a 

novel platform to analyse the mechanism underlying the 

principles of collective behaviour within animal groups.  

Our work is strongly inspired by the behaviour of eusocial 

insects especially from that of the ants which provide us with a 

number of keen techniques for dividing tasks among the 

individuals. The individuals not only carry out a single task but 

also have the ability to switch between tasks in response to the 

changing demand or any other external perturbation. The 

decision to switch task does not arise from any global knowledge 

of the environment whatsoever but is rather taken autonomously 

based on the local interactions between the individuals and the 

stimuli received. 

This paper addresses the issue of division of labour (DOL), 

inspired from the ant colony behaviour, within the realms of 

heterogeneous groups of robots (agents).  The aim of this paper 

is to present an agent based model (ABM) (an extended version 

of that presented in [16, 17]) that would enable us to explore the 

dynamics of making decisions within groups of agents/robots. 

The model embraces threshold based approach [34] and presents 

two techniques (one in which agents use explicit and another 

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 3
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Figure 1: Examples of self-organised collective behaviour. a) a team of ducks (provided by Nafi Ahmed), b) a flock of birds in 

Milan, c) a crowd of people in front of Notre Dame Cathedral, Paris, d) traffic flow in busy Beijing. Photos (b) – (d) are provided by 

Lei Ye. All Photos used with permission. 

 

in which agents use indirect communication), inspired by the 

ant colony behaviour for autonomous division of labour based on 

the environmental and social cues they receive. Furthermore, we 

show that such techniques give rise to an extremely adaptive and 

efficient system. The system is inherently scalable owing to its 

decentralised nature. Here we pose and empirically investigate 

two relevant questions: (1) whether the behavioural rules 

incorporated in this model are sufficient to produce an adaptive 

system and (2) whether the additional use of explicit 

communication has any advantage over the indirect 

communication for the performance of the system? Answers to 

these questions would provide us with a better understanding of 

the impact of different types of interactions between the agents 

on the performance on the system. The rest of the paper is 

organised as follows: Section 2 discusses the mechanisms of 

DOL in social insects such as ants. Our model is proposed and 

described in Section 3 followed by the experiments and results in 

Section 4. Finally, Section 5 concludes the paper with a remark 

on our future work.  

2 DIVISION OF LABOUR IN EUSOCIAL 

INSECTS 

Ants are referred to as eusocial insects (insects exhibiting social 

behaviours including that of cooperative brood care, overlapping 

between generations and division of labour), a term first coined 

by E.O. Wilson in 1971 [15; also see 18] while classifying 

insects in terms of the social behaviours they exhibit, belonging 

to the family of Formicidae of the order Hymenoptera. There are 

currently over 12,000 known species of ants having colony size 

ranging from a few individuals to over millions. Ants are known 

to use simple yet extremely sophisticated communication 

mechanisms ranging from recruitment techniques via 

pheromones, tandem learning, antennal contact, and even 

stridulation [19]. They are extremely small in size (individuals 

weigh as little as 5 mg); however their social behaviours allow 

them to live at large.  

So, what makes these tiny creatures so successful in 

effectively running and maintaining colonies some of which are 

as big as that of London city (by population)? What strategies 

have they embraced that led them to be socially so successful? 

Recent researchers [20, 21, 22, 23, 24] have pointed out that it is 

their embracement of effective DOL that has allowed them to be 

socially so successful.  

 

A. Division of Labour in Ants 
Ants are perhaps best known for their ability to effectively 

divide a wide range of tasks among the workers. This 

phenomenon of dividing tasks among workers is what is termed 

as division of labour; a term first introduced by Adam Smith, the 

father of modern economics, in his influential book “The Wealth 

of Nations” [25]. However, ants are known to have been using 

more effective mechanisms of dividing labour for millions of 

years.  Not only can they divide tasks among groups, they can 

rearrange the distribution of workers depending on the need of 

the colony or any perturbation caused. 

Ants exhibit a wide range of techniques for dividing labour. 

These mechanisms can be broadly categorised in three groups 

[26]: worker polymorphism, age polyethism and individual 

variability. 

Worker polymorphism (also called physical castes) arises in 

ant colonies (e.g. Atta colombica) that have distinguishable 

subcastes within the worker ants [27]. One subcaste differs from 

the other one in terms of the size/morphology of the worker ants, 

which in turn influence the type of task chosen. For instance in 

many ant species major workers, with large head and sharp 

mandibles, specialise in tasks that require physical strengths like 

guarding nests and transporting food items whereas minor 
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workers tend to specialise in lighter tasks such as cleaning the 

nest and brood caring.   

Some ant species such as Pogonomyrmex barbatus, 

Cataglyphis bicolour and Oecophylla smaragdina [24, 28, 29] 

tend to carry out tasks depending on their age (age polyethism). 

They tend to follow some kind of centrifugal tendency in 

selecting the task they carry out with the younger ones working 

closer to the centre of the nest and the older ones working more 

distant from the nest. 

However most of the ant genera carry out tasks depending on 

the local cues they receive. Local communications between the 

ants influence individuals of which task to be selected. 

 

B. Models of Division of Labour in Ants and 

Robots 
 

The last two decades have witnessed the development of a 

number of models trying to establish the mechanism of the 

selection of tasks in social insects such as ants. These models 

differ from each other in many aspects including worker-worker 

interactions, genetic basis of task selection, motivational state of 

the worker, spatial arrangement of the workers in the nest and 

also the learning parameters [30].  

Out of these models, one of the most important is the 

response threshold model, where agents have different threshold 

for different tasks. The agents can also update the values of the 

threshold/stimulus to respond to changing demand. Various 

versions of response threshold model has been embraced and 

developed by the researchers [for further details see 31, 32, 33, 

34, 35]. 

Other promising models in DOL include that of the foraging 

for work model (FFW) [36, 37] and that of the learning models 

[38, 39, 40] in deciding what task to execute. Recently there has 

been enormous interest in using swarms of robots to model and 

carry out different tasks. Using SR for such purposes not only 

facilitates solving various practical solutions for engineering 

problems, it also provides a novel platform for the biologists to 

understand animal behaviour better. Biologist Robert Full, 

professor at UC Berkeley, describes this association between 

biology and another discipline as biomutualism [41].  

One of the earliest works in this field was carried out by 

Krieger and Billeter in 2000 [42]. They used up to twelve mobile 

robots to make autonomous decisions of whether to forage 

(collect items from the environment) or rest depending on the 

nest energy level which was periodically echoed to the robots. 

Wenguo Liu and his colleagues [43, 44] used a threshold based 

approach in simulated robots to develop an adaptive threshold 

based mechanism to divide the number of foragers and resters so 

as to optimise the net energy level of the system. Momen and 

Sharkey [17] used ABM to simulate ant colony behaviour within 

the realms of heterogeneous groups of robots. They further 

investigated the advantages of task switching mechanisms, 

exhibited in various colonies of ants, in terms of the net energy 

gained by the swarm. 

3 Proposed Model 

The model proposed in this paper places three types of agents 

(mobile foragers, mobile brood carers, and static brood 

members) within a 71 × 51 grid in a 2D environment. The model 

contains a nest consisting of four separate chambers with brood 

surrounded by brood carers whereas foragers mostly reside 

outside in the environment (figure 2). Each of the chambers has 

its own odour that is spread over the environment. 

The nest chamber odours are modelled as falling linearly 

from its respective centre of the chamber; thus each of the four 

types of smells creates a potential gradient uphill towards the 

centre of the chamber. The use of such artificial potential field 

technique for navigation has been an extremely popular 

approach [45 – 47] in mobile robotics typically in the case of 

avoiding obstacles or moving towards a target. 

 
Figure 2. Snapshot of the simulation 

 

 In this model, brood reside at the lowest chamber of the nest. 

There is a dump area (DA) located at the entrance of the nest for 

the foragers to drop off food and leave it for the brood carers to 

pick them up for feeding the hungry brood. Similar spatial 

distribution is observed in various ant species [48, 24].  

3.1 Behavioural Rules 

Different types of agents follow different rules to accomplish 

their tasks. There are principally three types of tasks present in 

this scenario; foraging, resting and brood caring. Foraging 

involves foragers exploring the environment in order to find a 

food source, followed by picking up a piece of food, finding its 

path back to the dump area of the nest and finally dropping the 

food item there. Brood caring involves brood carers  picking up 

a piece of food from the dump area, locating a hungry brood 

member, and feeding it.  The resting task  involves the agents 

(foragers and brood carers) resting within their respective 

chambers.  

The behavioural rules of the agents are described below: 

 

A. Brood 
 

Each brood member can be in one of the two states: hungry or 

non-hungry. Initially all the brood are in the non-hungry state 

having a randomised hunger level. At every simulation time step, 

the hunger level of each brood member increases by its hunger 

Food 

Dump 

area 

Food in the 

dump area 
Brood 

carer 

chamber 

Brood 

chamber Foragers 

resting 

area 
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rate (eq. 1) which is selected randomly (Fig. 3). When the 

hunger level of a brood member exceeds some threshold (thh), it 

switches its state to hungry, and seeks the attention of the brood 

carers by emitting a chemical signal (called shouting chemical 

here). The strength of the shouting chemical is modelled to fall 

linearly with the distance from the hungry brood member in such 

a way that it is at maximum at the location of the hungry brood 

member and minimum at the shouting-radius. The strength of the 

chemical is zero if the distance from the hungry brood member is 

more than the shouting-radius (eq. 3).  However, if a hungry 

brood member is fed by a brood carer, the hunger level of the 

brood decreases by some constant value. If the hunger level at 

any time, t, is below the threshold parameter, the brood member 

switches its state back to the non-hungry state (eq. 2) (Fig. 4). 

Hunger rate distribution

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Brood

H
u
n
g
e
r-

ra
te

   
Figure 3. Hunger rate distribution across brood members of the 

brood in one of the runs 
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Where, 

newHL is the new hunger level of the brood member, 

oldHL is the previous hunger level of the brood, 

HR  is the hunger rate of the brood, 

HS is the hunger state of the brood; 1 = hungry state and 0 = 

non-hungry state, 

tHL is the hunger level of the brood at time step t, and 

hth is the threshold parameter of the hunger level. 
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>

≤−

,0

,
                    (3) 

 

where,  

SCC  is the concentration level of the shouting chemical, 

x  is the distance from the centre of the hungry brood, and  

sr is the shouting radius. 
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Figure 4. Hunger level of a brood member as a function of time 

(the reduction of the hunger level is due to being fed by brood 

carers) 

B. Brood Carers 
 

Brood carers respond to the need of the brood by adjusting their 

threshold values depending on stimuli (in this case, the shouting 

chemical) they receive (See section 3.2 for detailed description). 

Once a brood carer makes the decision to feed a hungry brood 

member, it goes to the dump area (DA) of the nest in search of 

food. It uses its local sensing to smell the scent of the dump area 

at its immediate patch ahead, patch left and ahead and patch 

right and ahead. Then the brood carer compares the relative 

strength of the scents in the three directions and moves in the 

direction of the strongest scent. This simple local interaction 

with the environment allows the brood carer to easily locate the 

DA. Once it reaches the dump area, it moves randomly within 

the DA to find a piece of food and as it finds a piece of food, it 

picks up the food item and travels towards the brood chamber in 

search of a hungry brood member.  

The brood carer finds the brood chamber using the same 

technique as that of finding the dump area of the nest. Once a 

brood carer reaches the brood chamber, it uses the potential 

gradient of the shouting chemical to go uphill in order to locate a 

hungry brood member. Once the brood carer successfully locates 

a hungry brood member, it feeds it which causes the brood 

member’s hunger level to be reduced by the energy provided by 

the food item (the simulations presented in this paper assumes 

that all the food items provide the same energy). 

 

C. Foragers 
 

Foragers can either forage or rest depending on what is required. 

A forager starts its journey by exiting the nest and travelling in a 

random direction in search of food. If it finds a food item in the 

environment, the forager picks the piece of food up, becomes 

laden and goes back to the DA of the nest by following the 

potential gradient of the scent of the DA. As it travels back to the 

nest, the forager leaves a simulated trail of chemical markers 

called pheromones in the environment. Once the forager reaches 

the DA, it leaves the food item there, decides if it needs to forage 

further or not and if so turns 1800 and starts foraging again.  The 

decision of whether to further forage or switch to a different task 

is explained in Section 3.2. 

The simulated pheromone both diffuses and evaporates at 

constant rates. When unladen foragers looking for food 

encounter pheromones, they use the pheromone trails to go 

uphill towards the food source (See figure 2).  The concentration 

level of pheromone at any of the patches of the environment can 

be modelled as in equation 4. 
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dt

dC
L φεβα +−+= /

8

1
               (4) 

where, 

C is the concentration level of the pheromone at the patch 

concerned, 

Ln is the number of laden ants passing the patch concerned, 

/
C is the cumulative concentration level of the pheromones 

of the nearby eight patches, 

C is the concentration of the chemical at the patch 

concerned, 

ε is the evaporation rate of the chemical, 

φ is the diffusion rate of the chemical, and 

α and β are some constants such that 0,0 >> βα . 

 

Each of the foragers also maintains two types of clocks: a 

searching-clock and a resting-clock to track how long it has been 

searching for food and resting within its chamber. Every time a 

forager switches its task it resets all these clock values so that the 

clock values in the previous state do not affect the present state.  

 

D. Obstacle Avoidance by Foragers 
 

Foragers when foraging also actively prevent collision between 

each other by turning away from their nearest neighbour when 

required. The dynamic obstacle avoidance algorithm is inspired 

from the Craig Reynold’s model of the flocking of birds [49; 

also see 50]. When an agent gets too close to another agent, it 

uses the headings of its nearest neighbour and its own heading to 

calculate the angle and the direction to turn in order to prevent 

any collision.  

 

3.2 Task Allocation and Task Switching 

Algorithm 
 

In this model, the brood create a task demand by emitting the 

shouting chemical whereas brood carers and foragers carry out 

their tasks, or sometimes switch task, in response to the changing 

demand. The environment is extremely dynamic and therefore 

the agents need to be flexible enough to meet the changing 

demand. For instance if there is no food available in the 

environment, the foragers would need to abandon their foraging 

task and rest in their designated area to save their energy [17]. 

Similarly, if the amount of hungry brood increases, some 

foragers might need to switch their task and become brood carers 

to meet the changing demand. The need for switching in the 

other direction might also arise if there is not enough food in the 

DA when the brood carers need to feed the brood. In that case, 

some brood carers might decide to change their task to foraging 

to assist the existing foragers. However, it is also important that 

the agents are not too flexible. Otherwise a slight change in the 

demand might cause all the agents to switch to the same task 

which would not be a desirable outcome. In order to prevent this, 

there is a need for some sort of “natural queue” that would allow 

appropriate task switching, and avoid the problem of all the 

foragers and brood carers switching to the same task. A 

threshold based mechanism [34] facilitates such a “natural 

queue”, and provides the key motivation for embracing this 

technique.  

Foragers and brood carers between them carry out three tasks 

namely (1) foraging, (2) brood caring and (3) resting as well as 

deciding which task to carry out next (Figure 5). 

 

 

Figure 5. Schematic Diagram of the task allocation model of an 

agent 

Every mobile agent maintains three types of thresholds: 

threshold for foraging (tf), threshold for resting (tr) and threshold 

for brood caring (tbc) and updates them on the basis of events 

encountered. In a threshold based mechanism, the threshold 

value for a particular task of an agent is decreased when the 

agent encounters a stimulus for the task. Thus, over the course of 

time the threshold value for a task decreases significantly if 

exposed to greater stimuli for the task. The probability of an 

agent carrying out a particular task is modelled to vary inversely 

with the threshold value of the task and the threshold values are 

updated based on the events encountered; thus enabling agents to 

adapt to the changing demand. 

We use a simple but effective principle for updating the 

thresholds. The threshold value for a particular task is decreased 

if the agent has either successfully completed the task or has 

received a stimulus for that task. On the other hand, the threshold 

value for the task is increased if either it has been unsuccessful 

in carrying out the task or hasn’t experienced a stimulus for a 

long time (equation 5). This allows an agent to adapt to the 

dynamic system and react accordingly. Table 1 illustrates the 

adaptation rules for the agents. 

                    ∆±= bcrfbcrf tt ,,,,                                       (5) 
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  where ∆ is the adaptation rate i.e. the rate at which the 

agents update their threshold values. 

The threshold values are bound between two threshold 

bounds: an upper threshold bound and a lower threshold bound. 

If the threshold value becomes more than the upper threshold 

bound, it resets the threshold value of the task equal to the upper 

threshold bound. 

 

Event Which 

Agent? 

Action Remarks 

Shouting 

chemical 

perceived 

ALL except 

brood  

tbc decreases There is a 

demand for 

feeding the 

brood 

Food at DA < 

lower 

threshold  of  

food in DA 

ALL except 

brood 

tf decreases, tr 

increases 

There is less  

food in DA. 

Therefore 

more food is 

Required 

Food at DA > 

upper 

threshold of 

food in DA 

ALL except 

brood 

tf increases, tr 

decreases, tbc 

decreases 

There is  

sufficient 

food in DA.  

Brood carers 

looking for  

food in DA 

too long 

Brood carers tf decreases, 

tbc increases 

There is 

insufficient 

food in DA 

Foragers 

searching too 

long for food 

Foragers tf increases, tr 

decreases 

There might 

not be  

enough food  

in the 

environment 

Resting too 

long inside  

The chamber 

Foragers tf decreases, tr 

increases 

There might  

be a need for 

foraging 

instead 

Resting too 

long inside 

the chamber 

Brood Carers tr increases Should look 

out for other 

tasks  

Successful 

retrieval of 

food  

Foragers tf decreases There might  

be some more 

food out in 

the 

environment 

Table 1. Adaptation Rules for the agents 

 
Similarly, if the threshold value falls below the lower 

threshold bound, the threshold for the task is reset to be equal to 

the lower threshold bound. The task with lowest threshold is 

selected with some probability. 

 

3.3 Indirect versus Explicit 

 Communication 

 
The effect of two different forms of communication, (i) indirect, 

and (ii) explicit, are compared here. In the indirect case, the 

agents carry out tasks and update their thresholds as outlined in 

Table 1. They do not explicitly communicate among themselves. 

Such communication techniques are what we call indirect 

communication. In explicit communication, ants briefly 

communicate about their status when they are close (either the 

distance between the agents is less than one body length or they 

are present at the DA to sense how much food is available there). 

This is inspired by the observation that in many ant species (e.g. 

the red harvester ants Pogonomyrmex barbatus) where when two 

ants are extremely close, they communicate with each other 

using their antennae to determine what task the other ant is 

carrying out by accessing their cuticular hydrocarbon profile 

[51].  

In our model, if agents are communicating explicitly, not only 

do they follow the rules outlined in Table 1., they also follow 

two further rules: (1) If agents perceive the shouting chemical, 

then for a brief period of time, they explicitly pass on 

information about the shouting chemical to other agents they 

encounter with, causing those agents to reduce their tbc., (2) 

Similarly, if the amount of food in the dump area becomes less 

than the lower threshold of food in DA (the agents perceive the 

amount of food in DA by the chemical strength of the food in 

DA), the agents who perceive this would pass on information  

(for a brief period of time) to other agents they encounter about 

this incident which causes the agents to reduce their tf.  

4 Experiments and Results  

Each simulation runs 20 times using the behavioural rules 

discussed in section 3 for 5000 simulation time steps. For every 

run, the following readings are recorded after the 5000th 

simulation time step: the number of agents (1) foraging, (2) 

brood caring and (3) resting, (4) the number of food items left at 

the DA, (5) the initial hunger level i.e. the hunger level at 

0=t and (6) the final hunger level i.e. the hunger level at 

5000=t  and their mean is evaluated after the 20 runs. The 

hunger level, here, is the cumulative hunger level per unit brood 

member, which is used to measure the performance of the 

system and is calculated using the equation 6. 

                       

b

brood

nA

HL

levelhunger
×

=
∑

∀
                    (6) 

Where, HL is the hunger level of each brood member (as 

mentioned in Section 3), A is some constant (for experimental 

purposes 500== hthA [also refer to equation (2)]) and bn is 

the number of brood. Figure 6 shows a typical curve for 

HL with respect to time. 
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Figure 6. A typical HL curve as a function of time 
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The following analyses the two questions posed earlier i.e. (1) 

whether the behavioural rules of the agents mentioned here result 

in a system that can adapt to the changing demand?, and (2) 

whether the employment of explicit communication results in an  

improvement over the indirect communication with respect to 

the performance of the system?   

 

A. Is the system adaptive? 

 
One of the key motivations for taking inspiration from living 

swarm systems is that these systems are highly adaptive and 

flexible. In SR and other engineering applications of swarm 

intelligence, the design of such adaptive system is extremely 

crucial.  

In this situation, it is necessary that foragers and brood carers 

continuously change their tasks in order to meet the changing 

demand[17,18]. This can be best investigated by analysing how 

the ratio of the two types of workers varies with the change in 

the demand. Figure 7 shows three curves plotted over the 

simulation time steps; red line at the top indicating the amount of 

food present in the dump area, violet line the number of hungry 

brood while the black line draws the ratio of the number of 

foragers to that of the brood carers. Initially there was no hungry 

brood and the amount of food in the DA was adequate; hence no 

demand was there. As a result, the ratio of the two types of 

workers did not need to be adjusted and hence remained 

constant. However, a demand for food by the brood instigates 

some foragers to switch their tasks to brood carers and assist 

other brood carers in feeding the brood. As the number of 

hungry brood members continues to increase and the amount of 

food in the DA continues falling it triggers more mobile agents 

to take up the foraging task in order to meet the demand.  

 

  
Figure 7: Switching of tasks between foragers and brood carers 

 

B. Explicit Communication versus Indirect 

Communication 

 

To compare and investigate the impact of using explicit 

communication and that of the indirect communication on the 

performance of the system and also to investigate whether 

explicit communication has any significant improvement in 

terms of the performance of the system over that of the indirect 

communication, the number of brood members is varied between 

5 and 20 and for each of these cases, the experiment is repeated 

20 times. The mean hunger level is then calculated. The 

experiment is repeated for both the conditions (i.e. with explicit 

and indirect communication). Table 2 and figure 8 depict the 

results obtained. 

 

Number of brood Mean Hunger 

Level (with  

Explicit comm.) 

Mean Hunger 

Level (with  

Indirect comm.) 

5 1.031596 1.155916 

10 1.245766 1.680475 

15 1.470009 2.128418 

20 1.796184 2.305359 

Table 2. Mean Hunger level 
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Figure 8. Variation of mean hunger level with the number of 

brood 

 

Figure 8 shows that as the size of the brood increases, the 

mean hunger level also increases. More intriguingly, the mean 

hunger level in the explicit communication in general tends to be 

lower than the one where indirect communication has been used 

indicating that the system performance is improved by the 

inclusion of explicit communication. Regression analysis reveals 

that the slope of the graph (i.e. the rate of the mean hunger level 

with respect to the size of the brood) in indirect communication 

is 1.4 times greater than that in the explicit communication 

indicating that the performance keeps on improving with explicit 

communication with the size of the brood. Furthermore, a 

statistical t test with 95% confidence reveals that the dataset with 

explicit communication is significantly different from that with 

indirect communication except when the number of brood = 5 

where the mean hunger levels for the two sets of experiment are  

not significantly different. 

 

C. Performance of the System 
 

Performance is measured in terms of the mean hunger level of 

the brood members. The higher the mean hunger level is, the 

lower is the performance of the system and vice versa. If the 

simulation is run for considerable time, the mean hunger level 

stays greater than 1. The performance of the system in 

percentage (%) is calculated using equation (7) [Also see 

equation (6)]. 

 

                           

∑
−∀

××
==

membersbrood

b

HL

nA

levelhunger
P

100100
       (7) 

 

Figure 9 shows the performance of the system for both 

explicit and indirect communication and indicates that the 

performance of the system is always better with the explicit 

communication than that of indirect communication. 

 

 

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 9



 

 

 

 

 

 

 

 
 

 
Figure 9: Performance of the system 

 

5. Conclusions and Future Work 

 

We have presented a task allocation and task switching model 

for a simulated swarm of autonomous mobile robots. The model 

employs a threshold based approach for adapting to changing 

demands and is strongly inspired by the behaviour of eusocial 

insects. Simple local rules have been developed for the agents 

that allow them to self organise and adapt to the changing 

environment as needed by the colony. Furthermore two 

communication techniques (indirect and explicit 

communications) have been presented and compared. Both the 

techniques work well in terms of responding to the changing 

demand; however empirical investigation shows that agents 

engaged in explicit communication work better than that of the 

ones engaged with indirect communication. Future work will be  

based on carrying out experiments to see the impact of the food 

availability and the swarm size on the performance as well as the 

robustness of the system. We also plan to develop a hybrid 

system of specialised and generalised agents to see if such 

system has any advantage(s) over the ones presented here.     

REFERENCES 

[1] D.J.T. Sumpter. The principles of collective animal behaviour. Phil. 

Trans. R. Soc. 361:5-22 (2006). 

[2] S.Camazine, J.L.Deneubourg, N.R.Franks, J.Sneyd, G.Theraulaz, 

E.Bonabeau. Self-organization in biological systems. Princeton 

University Press (2001). 

[3] W.Hamilton. Geometry of the selfish herd. Journal of theoretical 

biology. 31:295-311 (1971). 

[4] J. Krause and G.D. Ruxton. Living in groups. Oxford University 

Press (2002) 

[5] D.Helbing, P.Molnár, I.J.Farkas, K.Bolay. Self-organizing pedestrian 

movement. Environment and Planning B: Planning and Design. 

28:361-383 (2001).  

[6] D.J. Daley and D.G. Kendal. Stochastic Rumours. 

J.Inst.Maths.Applics. 1:42-55 (1965).  

[7] Z.Neda, E.Ravasz, Y.Brechet, T.Vicsek, A.L.Barabasi. The sound of 

many hands clapping. Nature. 403:849 (2000). 

 [8] Z.Neda, E.Ravasz, T.Vicsek, Y.Brechet, A.L.Barabasi. Physics of 

the rhythmic applause. Phys. Rev. E 61:6987-6992 (2000). 

[9] M.Resnick. Turtles, termites and traffic jams: exploration in 

massively parallel microworlds. MIT Press Paperback edition (1997). 

[10] A.Senghas and M.Coppola. Children creating language: How 

Nicaraguan sign language acquired a spatial grammar. Psychological 

Science. 12:323-328 (2001). 

[11] A.J.C. Sharkey. Swarm Robotics and Minimalism. Connection 

Science. 19(3):245-260 (2007) 

 [12] A.J.C. Sharkey. Robots, Insects and Swarm Intelligence. Artificial 

Intelligence Review. 26:255-268 (2006). 

[13] G.Beni. From Swarm Intelligence to Swarm Robotics. In Swarm 

Robotics (Eds) Erol  Şahin and W.M. Spears. LNCS 3342. 10-20 

(2005) 

[14] G.Beni and J.Wang. Swarm intelligence in cellular robotic systems. 

Proceeding of NATO Advanced, Workshops on Robots and 

Biological Systems (1989). 

[15] E.O. Wilson. The Insect Societies. Belknap Press of Harvard 

University Press. Cambridge, Massachusetts London, England 

(1971). 

[16] S. Momen and A.J.C. Sharkey. An ant-like task allocation model for 

heterogeneous groups of robots. IUSSI 2008: 4th European Meeting 

of the International Union for the Study of Social Insects. La Roche-

en-Ardenne, Belgium 117 (2008). 

[17] S.Momen and A.J.C. Sharkey. An ant-like task allocation model for 

a swarm of heterogeneous robots. SIAAS 2009, AISB convention. 

Edinburgh, Scotland 31-38 (2009). 

[18] S.Momen and A.J.C. Sharkey. Strategies of division of labour for 

improving task efficiency in multi-robot systems. IEEE World 

Congress on Nature and Biologically Inspired Computing 

(NABIC’09), Coimbatore, India 672 – 677 (2009).  

[19] D.E. Jackson and F.L.W. Ratnieks. Communication in ants. Current 

Biology. 16:570-574 (2006). 

[20] R.Jeanson, J.F.Fewell, R.Gorelick, S.M.Bertam. Emergence of 

increased division of labour as a function of group size. Behav. Ecol. 

Sociobiol. 62:289-298 (2007) 

[21] C.Anderson and D.W. McShea. Individual versus social complexity, 

with particular reference to ant colonies. Biol. Rev. 76:211-237 

(2001). 

[22] B. Hölldobler and E.O.Wilson.  the ANTS. Belknap Press of 

Harvard University Press. Cambridge, Massachusetts London, 

England (1990). 

[23] B. Hölldobler and E.O.Wilson. The Super-organism: The Beauty, 

Elegance and Strangeness of Insect Societies. W.W. Norton (2008). 

[24] A.F.G. Bourke and N.R. Franks. Social Evolution in Ants. 

Princeton University Press. (1995). 

[25] A. Smith. The Wealth of Nations. Books I-III. Reprinted: 1986. 

Penguin, Harmondsworth, UK (1776) 

[26] E. Bonabeau, M.Dorigo, G.Theraulaz. Swarm Intelligence: From 

Natural to Artificial Systems. Oxford University Press. (1999). 

[27] G.F. Oster and E.O.Wilson. Castes and ecology in social insects. 

Princeton University Press, Princeton. (1978). 

[28] D.M. Gordon and B. Hölldobler. Worker longevity in harvester 

ants. Psyche. 94:341-346 (1987). 

[29] K.K. Ingram, P.Oefner, D.M. Gordon. Task-specific expression of 

the foraging gene in harvester ants. Molecular Biology. 14:813-818 

(2005). 

[30] S.N. Beshers. Models of division of labour in social insects. Annu. 

Rev. Entomol. 46:413-440 (2001). 

[31] R.E. Page and S.D. Mitchell. Self organization and adaptation in 

insect societies. In PSA vol. 2 (Eds) A. Fine, M.Forbes, L.Wessels. 

East Lansing MI: Philos. Sci. Assoc. 289-298 (1991). 

[32] R.E. Page and S.D. Mitchell. Self organization and the evolution of 

division of labour. Apidologie. 29: 171-190 (1998). 

[33] G.E. Robinson and R.E. Page. Genetic basis for division of labour  

in an insect society. In The Genetics of Social Evolution (Eds) M.E. 

Breed and R.E. Page. 61-80 (1989). 

[34]  E. Bonabeau, G. Theraulaz, J.L. Deneubourg, Quantitative study of 

fixed threshold model for the regulation of division of labour in 

insect societies. Proceedings of the Royal Society of London B. 

263:1565-1569 (1996). 

[35] E.Bonabeau, G.Theraulaz, J.L.Deneubourg. Fixed response 

threshold and regulation of division of labour in insect societies. Bull. 

Math. Biol. 60:753-807 (1998). 

[36] C.Tofts. Algorithms for task allocation in ants (a study of temporal 

polyethism: theory). Bull Math. Biol. 55:891-918 (1992). 

[37] C.Tofts and N.R. Franks. Doing the right thing – ants, honeybees 

and naked mole-rats. Trends Ecol. Evol. 7:346-349 (1993). 

[38]  T.H. Labella. Division of labour in groups of robots. PhD thesis. 

Universite Libre de Bruxelles (2007). 

Performance

0

20
40

60

80
100

120

5 10 15 20

Size of Brood

P

Explicit

Indirect

10 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK



[39] T.H. Labella, M.Dorigo, J.L. Deneubourg. Efficiency and task 

allocation in prey retrieval. BioADIT 2004 (Eds) A.J. Ijspeert et.al. 

LNCS 3141 274-289 (2004). 

[40] J.L.Deneubourg, S.Goss, J.M.Pasteels, D.Fresneau, J.P. Lachaud. 

Self-organization in ant societies (III): Learning in foraging and 

division of labour. In From individual to collective behaviour in 

social insects (Eds) J.M. Pasteels and J.L. Deneubourg. Experentia 

Supplementum. 54: 177-196 (1987). 

[41] R. Full. Learning from the Gecko’s tail. TED talk. 

http://www.youtube.com/watch?v=d3syTrElgcg&feature=channel. 

(2009). 

[42] M.J.B. Kreiger and J.B. Billeter. The call of duty: Self organised 

task allocation in a population of up to twelve mobile robots. 

Robotics and Autonomous Systems. 30:65-84 (2000). 

[43] W. Liu, A.F.T. Winfield, J.Sa, J.Chen, L.Dou. Towards energy 

optimisation: Emergent task allocation in a swarm of foraging robots. 

Adaptive Behaviour. 15(3):289-305 (2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[44]  W. Liu, A.F.T. Winfield, J.Sa, J.Chen, L.Dou. Strategies for energy 

optimisation in a swarm of foraging robots. (Eds) E. Şahin, W. 

Spears and A.F.T. Winfield. Swarm Robotics 2006. LNCS 4433. 14-

26 (2007). 

[45] J.H. Chuang. Potential based modelling of three-dimensional 

workspace for obstacle avoidance. IEEE Transactions on Robotics 

and Automation. 14(5): 778-785 (1998). 

[46] O. Khatib. Real-time obstacle avoidance for manipulators and 

mobile robots. Proc. IEEE ICRA. 500-505 (1985). 

[47] I.Mir, B.P. Amavasai and S. Meikle. Incremental perception in 

robotic swarms. IEEE INMIC ’06. 427-432 (2006). 

[48] D.M. Gordon. Ants at work: how an insect society is organized. The 

Free Press (1999). 

[49] C.W.Reynolds. Flocks, herds and schools: a distributed behavioural 

model. Computer Graphics. 21:25-33 (1987). 

[50] S.Momen, B.P. Amavasai, N.H.Siddique. Mixed species flocking 

for heterogeneous robotic swarms. IEEE Eurocon 2007: The 

International Conference on Computer as a tool. 2329-2336 (2007). 

[51] M.J. Greeene and D.M. Gordon. Social Insects: Cuticular 

hydrocarbons inform task decisions. Nature. 423:32 (2003). 

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 11





Application of CACS approach for distributed logistic 

systems 
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Abstract.  The article offers original approach which is called 

Controller Agent for Constraints Satisfaction (CACS). That 

approach combines multi-agent architecture with constraint 

solvers in the unified framework which expresses major features 

of Swarm Intelligence approach and replaces traditional 

stochastic adaptation of the swarm of the autonomous agents by 

constraint-driven adaptation. We describe major theoretic, 

methodological and software engineering principles of 

composition of constraints and agents in the framework of one 

multi-agent system, as well as application of our approach for 

modelling of particular logistic problem. 12 

1. INTRODUCTION 

Simultaneous rapid grow of logistics market in different regions 

of the world [1, 2], and its important role in modern economy 

require wide application of logistics information and 

management systems for coordinated planning and control. 

Distributed organizational structure and application of holonic 

management principles in modern organizations inevitably 

determine distributed and autonomous features of information 

systems supporting logistic operations [5]. In such kinds of the 

systems it is very difficult to apply usual centralized approaches 

and algorithms for decision support and optimization. 

Swarm Intelligence [3, 4] represents one of the interesting 

paradigm for maintaining self-organization and control in the 

distributed systems. One of the principal aspect of the swarm-

oriented distributed intelligent systems is presence of multiple 

intellectual and autonomous particles which interact with each 

other in some way. As it is started in [4]: ‖Swarm is a population 

of interacting elements that is able to optimize some global 

objectives thought collaborative search in space‖.  

Different projects offered approaches for practical application 

of Swarm Intelligence paradigm in the form of multi-agent 

systems [6, 28, 30]. Although some of them (i.e. [28]) offer a 

formal framework for declarative expression and analysis, 

researchers and practitioners still lack proper generic methods 

for engineering of the multi-agent systems which have such 

properties of Swarm Intelligence as emergent behavior, peer-to-

peer communication,  etc. 

Analysis of known logistic problems and algorithms shows 

that in the domain of applied logistics and optimization general 

principles of swarm-oriented organization may be realized using 

proper combination of multi-agent systems (MAS) and 

constraints satisfaction approach (CSP). So, in this research we 

                                                 
1
 LITIS Laboratory, INSA Rouen, France. Email: {almaqtari, 

abdulrab}@insa-rouen.fr.  
2
 TAPRADESS Laboraotry, State University – Higher School of 

Economics, Nizhny Novgorod, Russia. Email: eababkin@hse.ru. 

pursue the goal to offer a new mechanism of emergent multi-

agent behaviour for collaborative search of some feasible 

solution in accordance with certain inter-agent constraints. In 

terms of Swarm Intelligence research we replace stochastic 

adaptation of the swarm of the autonomous agents by constraint-

driven adaptation.  

In our research we try to satisfy such important requirements 

of Swarm Intelligence as self-organization and dynamic 

adaptation to evolving internal or external conditions. Existing 

approaches to combination of MAS and CSP like [16, 17, 32] do 

not provide much flexibility and support of dynamic 

modification of the combined structure of  agents and 

constraints. That’s why in this article we propose an original 

approach which offers a solution for dynamic modification of the 

combined structure of  agents and constraints. Our approach, 

which was called CACS (Controller Agent for Constraints 

Satisfaction), allows for joint exploitation of attractive features 

of the paradigm of multi-agent systems (MAS) and the paradigm 

of distributed constraint satisfaction (DCSP). 

This paper extends and combines our earlier work on joint 

application of MAS and DCSP paradigms [33, 34]. We describe 

major theoretic, methodological and software engineering 

principles of composition of constraints and agents in the 

framework of one multi-agent system, as well as application of 

our approach for modelling of particular logistic problem.  

The paper is organized as follows. In Section 2 we give 

background information about MAS and DCSP for better 

understanding of scientific and technological foundations of our 

research. In Section 3 we describe main principles of CACS 

approach. Section 4 contains description of software architecture 

and implementation principles for software prototype which 

supports proposed CACS approach. The same section contains 

overview of used 3d party software platforms. Section 5 

describes proposed methodology of practical application of 

CACS during design and development of DSS. In Section 6 we 

give overview of the application in ship loading logistics based 

on CACS prototype. We discuss the achieved results and provide 

directions for future work in Section 7.  

2. FOUNDATIONS OF MAS AND DCSP  

Paradigm of swarm intelligence is very often and naturally 

implemented on the basis of multi-agent systems. These systems 

express major features of collective intelligence [7, 8, 9] and 

represent the model of problem in terms of autonomous entities 

that live in a common environment and who share certain 

resources. The interactions between these individual entities 

induce cognitive abilities of the whole. Despite multiple-domain-

oriented peculiarities majority of multi-agent systems has several 

significant common features:    
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• A limited and local view: every entity has a partial and local 

knowledge of its environment. 

• A set of simple rules: each entity follows a set of simple rules. 

•  The interactions are manifold: each individual entity has a 

relationship with one or more other individuals in the group. 

•The emerging structure is useful to the community: different 

entities are a benefit to work (sometimes instinctively) and their 

performance is better than if they had been alone. 

From these points of view, the paradigm of multi-agent 

systems seek to simulate the coordination of autonomous entities 

called agents that represent individuals in their community.  An 

agent is an entity that can be viewed as perceiving and acting 

independently in its environment.  According to J. Ferber [10] 

"One agent called a physical or virtual: 

1) which can act in an environment, 

2) that can communicate directly with other agents, 

3) which is driven by a set of trends (in the form of individual 

objectives or function of satisfaction and even survival, it 

seeks to optimize),  

4) which has its own resources, 

5) which is able to collect (but limited) its environment,  

6) which has only a partial representation of this environment 

(and possibly none),  

7) has expertise and provides services, 

8) which may be repeated, 

9) whose behavior tends to meet its objectives, taking into 

account the resources and skills available to it and according 

to its perception, its representations and the communications 

it receives. " 

Given such definition of the agent, we can define a multi-

agent system as a set of agents located in a certain environment. 

They share some common resources, and they interact with each 

other either directly or indirectly (via their effects on the 

environment). They seek to achieve the goals of individual 

agents in the interest of all. The multi-agent systems have 

applications in the field of artificial intelligence, where they 

reduce the complexity of solving a problem by dividing the 

necessary knowledge into sub-units, involving an intelligent 

agent independent at each of these sub - sets and coordinating 

the activity of these agents [10]. 

Because general definitions of inter-agent interaction are too 

vague we need to apply more strict and formal conventions to 

express allowable methods of communication between agents. 

Paradigm of constraints satisfaction, particularly distributed 

constraints satisfactions, offers flexible and convenient 

foundations to do this. 

  The paradigm of constraints satisfaction provides a generic 

method for declarative description of complex constrained or 

optimization problems in terms of variables and constraints [12, 

13]. Formally, a Constraint Satisfaction Problem (CSP) is a triple 

(V, D, C) where:  

There is V = {v1, …, vn} is a set of n variables, 

a corresponding set D = {D(v1), …, D(vn)} of n domains from 

which each variable can take its values from, 

and C = {c1, …, cm} is a set of m constraints over the values of 

the variables in V. Each constraint ci = C(Vi) is a logical 

predicate over subset of variables Vi ⊆ V with an arbitrary arity 

k : ci (va, …, vk) that maps the Cartesian product 

D(va) × … × D(vk) to {0, 1}. As usual the value 1 means that the 

value combination for va, …, vk is allowed, and 0 otherwise. 

Constraints involving only two variables are called binary 

constraints [14]. A binary constraint between xi and xj can be 

denoted as cij. Although most of real world problems are 

represented by non-binary constraints, most of them can be 

transformed into binary ones using some techniques such as the 

dual graph method and hidden variable method [15]. Translating 

non-binary constraints into binary ones allows processing the 

CSP using efficient techniques adapted only for binary 

constraints. However, this translation implies normally an 

increase in number of constraints. 

A solution for a CSP is an assignment of values for each 

variable in V such that all the constraints in C are satisfied. A 

single solver supports the tasks of collecting all data of the 

problem: variables, domains and constraints. It treats all such 

information in a centralized manner.  

A Distributed Constraint Satisfaction Problem (DCSP) is a 

CSP where the variables are distributed among agents in a Multi-

Agent System and the agents are connected by relationships that 

represent constraints. DCSP is a suitable abstraction to solve 

constrained problems without global control during per—to-peer 

agent communication and cooperation [16]. A DCSP can be 

formalized as a combination of (V, D, C, A, ∂) described as 

follows: 

V, D, C are the same as explained for an original CSP, 

A = {a1, …, ap} is a set of p agents, 

and ∂ : V → A is a function used to map each variable vj to its 

owner agent ai. 

Each variable belongs to only one agent, i.e. 

∀ v1, …, vk ∈ Vi ⇔ ∂ (v1) = … = ∂ (vk) where Vi ⊂ V represents 

the subset of variables that belong to agent ai. These subsets are 

distinct, i.e. V1 ∩ … ∩ Vp = ∅ and the union of all subsets 

represents the set of all variables, i.e. V1 ∪ … ∪ Vp = V. The 

distribution of variables among agents divides the set of 

constraints C into two subsets according to the variables 

involved within the constraint. The first set is the one of intra-

agent constraints Cintra that represent the constraints over the 

variables owned by the same agent 

Cintra = {C(Vi) | ∂ (v1) = … = ∂ (vk), v1, …, vk ∈ Vi}. 

The second set is the one of inter-agent constraints Cinter that 

represents the constraints over the variables owned by two or 

more agents. Obviously, these two subsets are distinct 

Cintra ∩ Cinter = ∅ and complementary Cintra ∪ Cinter = C. 

The variables involved within inter-agent constraints Cinter are 

denoted as interface variables Vinterface. Assigning values to a 

variable in a constraint that belongs to Cinter has a direct effect on 

all the agents which have variables involved in the same 

constraint. The interface variables should take values before the 

rest of the variables in the system in order to satisfy the 

constraints inside Cinter firstly. Then, the satisfaction of internal 

constraints in Cintra becomes an internal problem that can be 

treated separately inside each agent independently of other 

agents. If the agent cannot find a solution for its intra-agent 

constraints, it fails and requests another value proposition for its 

interface variables. To simplify things, we will assume that there 

are no intra-agent constraints, i.e. Cintra = ∅. Therefore, all 

variables in V are interface variables V = Vinterface. 

Many techniques are used to solve DCSPs. In general the 

technique proposes a distributed algorithm which is executed by 
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agents that communicate by sending and receiving messages. In 

general, the messages contain information about assignments of 

values to variables and rebuttals trust by employees who have no 

purpose compatible with their own variables. Mainly we mention 

the Asynchronous Backtracking (ABT) algorithm that was 

proposed by М. Yokoo [17] and some of its alternatives [18, 19, 

20]. These approaches are designed mainly for the treatment of 

non-binary constraints, however most systems of real constraints 

are non-binary. Only a few modifications, like [21], were 

proposed to handle non-binary constraints in the dynamic 

organization of agents. 

3. FUSION OF MAS AND DCSP IN CACS 

APPROACH  

In order to avoid shortcomings of known DSCP methods and 

propose new principles of combination between MAS and DCSP 

we developed several software engineering methods and 

algorithms which comprise a new approach for developing DSS. 

This approach was called Controller Agent for Constraints 

Satisfaction (CACS). Based on the ABT Algorithm of M. Yokoo 

[17] CACS approach introduces two types of agents in MAS: 

Variables’ Agent and Controller Agent. 

In one hand, a Variables’ Agent holds one variable or more. It 

chooses its values and proposes these values to Controller 

Agents. On the other hand, Controller Agent encapsulates inter-

agents constraints over these variables. Each Controller Agent 

holds one constraint or more and validates the propositions 

received from Variables’ Agents. 

 

Constraints

Agents

X1, X2

 X3

X7

X6X4, X5

X2 + X7 < X1 

a)  
 

Variables’ Agents

b)

Controller 

Agents

 
 

Figure 1. A constraint network example: a) without or b) with 

Controller Agent 

We can see in Figure 1 (a) an example of constraint network 

where Variables’ Agent are inter-connected by arcs which 

represent constraints. These inter-agent constraints are 

encapsulated in Figure 1 (b) by Controller Agents. The same 

network can be modified as in Figure 2 by grouping some inter-

agent constraints inside a controller agent. With this ability, we 

can change the scale of constraints grouping from total 

distribution to total centralization. The problem can vary from 

designating a controller agent for each constraint to total 

centralizing by gathering all constraints inside one central 

controller agents. 

 

Variables’ Agents

Controller 

Agents

 
 

Figure 2. Grouping constraints inside Controller Agents. 

 
For abbreviation purposes we will use the term VAgent to 

refer to Variables’ Agents and CAgent to refer to Controller 

Agents. In fact, these terms are used as the name of classes used 

in the implementation of the prototype. The complete DCSP is 

formulated in terms of VAgents and CAgents. The solution of 

the problem is seeking during communication between these 

types of agents. The proposed algorithm of communication is 

divided into two stages: (1) domain reducing stage and (2) value 

proposing and validating stage. These stages are explained as 

follows: 

A. Domain reducing stage 
This stage assures constraints consistence by preprocessing 

variables’ domains. The results are reduced domains by 

eliminating values that would be surly refused by them. This is 

done as follows: 

1. A VAgent sends information concerning the domain of its 

variable to all linked CAgents. The message takes the form 

of (variable, domain). 

2. After receiving the domains of all variables involved in its 

constraint, the CAgent uses consistency algorithms [22] in 

order to reduce these domains to new ones according to its 

local constraint(s). Then, the controller sends these domains 

back to their VAgents. 

3. Every VAgent receives the new domains sent by CAgents 

and combines them (by the intersection of received 

domains) in order to construct a new version of its variable 

domain. 

4. If any new version of a variable domain was empty then we 

can say that this DCSP is an over-constrained problem [23] 

where no solution can be found. In this case, the system 

signals that no solution was found (failure). As a 

prospective, another solution can be investigated by using 

constraints relaxation [23, 24],  in which a VAgent returns 
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to an older version of the domain and reconstruct a new 

version after neglecting the domains sent by the CAgent 

that represents the soft constraints that the system may 

violate according to certain constraint hierarchy [23]. On 

the other hand, if all variables end with single-value 

domains then one solution is found. Otherwise, the domain 

reducing stage is repeated as long as we obtain a different 

new version of a variable domain. When domain reducing 

is no longer possible (no more change in variables’ 

domains), we can proceed to the next stage. 

The result of the domain reducing stage may be one of the 

three following kinds: 1) The domain of a variable is reduced to 

an empty field. Having at least one empty domain for a variable 

means the problem is over-constrained. If there is no solution 

that satisfies all the constraints and which contains a value for 

this variable. 2) The former is reduced to a new domain. This 

reduction may be the result of responses to a controller or more. 

This change must be propagated to other controllers. For this, the 

final stages must be repeated. 3) No change in the domain for 

this particular variable. In this case, we are faced with two 

situations: a) there are no changed domains at all. This means 

that the stage is over and we can proceed with the next stage. b) 

a change to succeed because of the spread of change in the 

domain of other variables. These variables can be linked directly 

or indirectly to the variable concerned. 

A. Value proposing and validating stage 
In this stage VAgents make their propositions of values to 

related CAgents to be tested. Value proposing can be considered 

as a domain information message in test mode. A test mode 

means that when a ―no-solution‖ situation occurs because of a 

proposition the system backtracks to the last state before that 

proposition. This proceeds as follows: 

1. From now on, every VAgent starts instantiating values for 

its variable according to the new domains. It sends this 

proposition to the related CAgents. 

2. The CAgent chooses the value received from the VAgent 

with the highest priorities. This value is considered as a 

domain with a single value. CAgent uses consistency 

algorithms as in the previous stage to reduce other 

variables’ domains. These new domains are sent to their 

VAgents to propagate domains change. This step may be 

viewed as a distributed form of forward checking in an 

enhanced backtracking algorithm. 

3. Like in the previous stage, if all variables end with single-

value domains then one solution is found. Unlikely, if the 

result of this propagation was an empty domain for any 

variable then the proposed value is rejected and another 

value is requested. If no more value can be proposed then 

system signals a no-solution situation to user. 

4. If the result of the domain propagation was some new 

reduced domains with more than one value then steps 1-3 

are repeated recursively with the value proposed by the 

VAgent that have the next priority. 

 

The second stage involves one of three situations: 1) The 

proposed value is rejected if the spread of this value gives an 

empty domain for one variable at least. The refusal of a value 

involves retraction of the former domain and demand for another 

value. 2) Otherwise, the proposed value is accepted and 

distributed among the agents. The proposal and validation of 

values for the other variables continue recursively. 3) If there are 

more values to be proposed for a variable, the value proposed by 

the agent who has a higher priority is denied. The algorithm ends 

in failure when the agent has more priority over proposals valid. 

Let’s consider an example of MAS where three variables x, y, 

z with original permitted domain {0, 1, 2} are distributed on 

three VAgents A1, A2 and A3, and two constraints exist: x ≠ y 

and x + y < z. These constraints are placed into two CAgents C1 

and C2. 

domain 

(x,{0, 1, 2})

x
{0, 1, 2}

A1

z
{0, 1, 2}

A3

y
{0, 1, 2}

A2

x ≠ y

C1

x + y < z

C2

domain 

(y,{0, 1, 2})
domain 

(z,{0, 1, 2})

 
 

x
{0, 1, 2}

A1

z
{0, 1, 2}

A3

y
{0, 1, 2}

A2

x ≠ y

C1

x + y < z

C2

domain 

(z,{1, 2})

domain 

(x,{0, 1})

domain 

(y,{0, 1})

domain 

(x,{0, 1})

domain 

(y,{0, 1})

 
 

Figure 3. Illustration of domain reducing stage of CACS. 

 

During the first stage of CACS (fig.3) three agents A1, A2 and 

A3 are sending the domain { 0, 1, 2} for the three variables x, y 

and z respectively agents C1 and C2. C1 tries to reduce the 

domains of x and y. Obviously, no change is possible. On the 

contrary, the agent C2 changes the domains of variables x and y 

in {0, 1} and the domain of z in {1, 2}. This change will be 

propagated to the agent C1 which returns the same domains for 

variables x and y (i.e. {0, 1}). The domain reducing stage 

finishes with the domain {0, 1} for the variables x and y and the 

{1, 2} for the variable z.  
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Figure 4. Illustration of value proposing and validating stage of 

CACS. 

 

 

During the second stage (fig.4), algorithm will assign 

priorities to the agents A1, A2 and A3 according to their index. 

So the agent A1 will have the highest priority, and the agent A3 

will have the lowest priority. Suppose that the agent A1 proposes 

value 0 for the variable x to the agents C1 and C2. C1 treats this 

value as the domain {0} and reduces the domain of the variable 

y to {1}. The spread of this new domain reduces the domain of 

the variable z to {2}. A2 tries to offer as the value 0 for variable 

y. His proposal will be of lower priority than the agent A1 and 

will be refused because they are inconsistent. The same result is 

obtained for any other value. 

According to the results of the first and second stages, we can 

say that the CACS algorithm solves DCSP: 1) When the DCSP 

is over-constrained, we are faced with two different situations:  

Either the initial domains of the variables are inconsistent. This 

means that at the end of the first stage there is at least one empty 

domain of a variable. This involves termination of the algorithm 

and the declaration of a state of non-solution. Either the initial 

domains of the variables are consistent. 2) Where there is a 

unique solution of DCSP, we face two situations: The domains 

are consistent as long as there is a solution to the DCSP. If the 

first stage ends with single-vale domains, it means that the 

solution is found and the algorithm stops. Otherwise, in the 

second stage, the value proposed by a variable if it is not 

inconsistent with a value proposed by another agent with higher 

priority. The proposals of the agent with the highest priority are 

a priori accepted by all CAgents (it is necessary that this value is 

part of the final solution to be finally accepted). 3) When the 

DCSP is under-constrained, many solutions exist. The order of 

each proposed agent determines convergence towards any 

particular solution. In other words, the agents start the proposals 

by the most suitable for their purposes. For example, if an agent 

tries to minimize the value of its variable, it must begin 

proposing values from the minimum to the highest values. 

4.  SOFTWARE IMPLEMENTATION OF CACS  

To prove the proposed methods of constraints satisfaction based 

on two types of the agents we developed an object-oriented 

CACS software prototype which can be considered as a generic 

framework for distributed information syste4ms in logistics. As 

we can see from Figure 5, the developed CACS prototype uses 

hierarchical multiple-layer architecture.  

 

Application

Variables’ Agent Controller Agent

Generic MAS  

interface 

CSP ImplementationMAS  Implementation

Real CSP Platform

(Choco)

Real MAS Platform

(JADE)

Generic CSP interface 

Variable Constraint

 
Figure 5. Software architecture of CACS prototype. 

 

This architecture allows developing applications more 

flexibly by separating it into specialized layers. The very top 

layer is the application layer which is the implementation of a 

DCSP problem using the proposed system underneath it. From 

the application view point, the system is composed directly from 

the two principal types of agents: the CAgent and the VAgent. 

Both agents are inherited from CommonAgent class that defines 

some shared functionalities between both types of agents. The 

user can create the necessary VAgents according to its problem 

definition. He also creates the constraints and associates them to 

CAgents. 

The second layer is the intended system (CACS) where our 

two-stage interaction algorithm is implemented in accordance 

with previous definition. Figure 7 shows the interaction between 

agents during the domain reducing stage. The interaction 

protocol is a loop of repeated domain informing from the 

VAgents side to CAgents side and new domain proposing as 

response. This loop is repeated until no further domain reduction 

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 17



is possible (or an empty reduced domain is found which signify 

that there is no solution). 

Variabes' Agent(s) Controller Agent(s)

Inform Domain

new Domain

Loop

 
Figure 6. Implementation of interaction during domain reducing 

stage 

 

The interaction between agents during value proposing stage 

is shown in Figure 6. as nest loops: the internal loop is similar to 

the domain reducing loop in Figure 6. Variables’ domains are 

reduced according to the proposed value in the external loop. In 

the external loop, values are proposed and evaluated after the 

domain reduction to be either accepted or rejected. The external 

loop continues until we obtain single value domains for all 

variables. 

Variabes' Agent(s) Controller Agent(s)

Inform Domain

new Domain

Loop

Propose value

Loop

Reject Proposal

{empty domain

found or not}

Accept proposal

{OR}

 
Figure 7. Implementation of interaction during value proposing 

stage 

 

The system layer uses generic interfaces for both MAS and 

CSP platforms. This allows the system to use any existing MAS 

and CSP platforms by implementing these interfaces. At the 

same time this isolates the internal structure from the changes of 

choice of platforms. An intermediate layer between the system 

and the real MAS or CSP platform is necessary in order to 

separate the structure of the system from that of the real MAS 

and CSP platforms. This layer works as an adapter; it 

implements the generic platforms in the system layer using the 

real platforms. This implementation difficulty varies according 

to the MAS and CSP platforms used for the realization of the 

final system. 

The whole CACS prototype was developed in Java language. 

Due to the object oriented nature of Java language agents and the 

messages are represented by objects (Figure 8, 9). 

 

AgentRefInterface CommonAgentInterface

VAgentInterface CAgentInterfaceAgentRefVAgentRefInterface CAgentRefInterface
CommonAgent

VAgent CAgentVAgentRefCAgentRef

 
 

Figure 8. The hierarchy of the main components of agents 

(agents and reference to the agents). Rectangles with rounded 

corners represent interfaces; rectangles with sharp corners 

represent classes 
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Figure 9. The hierarchy of agent messages. Rectangles with 

rounded corners represent interfaces; rectangles with sharp 

corners represent classes 

 

However, from the point of view of Multi-Agent System 

design, agents should not be referenced by a simple public 

reference that is accessible by any other object in the system. 

The reason for that is to prevent any direct access to the agent 

internal functionality. Normally, references to agents should be 

kept hidden by the MAS platform and communicating with an 

agent is made by messages that would be delivered by the 

system using the agent address. Mapping from agent address to 

its real reference is an internal functionality of the MAS 

platform. 

In order to be more generic, we distinguish in the prototype 

implementation between the agent and its reference. For this 

purpose, VAgentRef and CAgentRef classes have been designed. 

Both classes are inherited from the abstract AgentRef class. 

They are used as references to either variables’ agents or 

controller agents. When an instance of the class DCSP is used to 

create an instance of VAgent or a CAgent, it returns an instance 

of either VAgentRef or CAagentRef classes respectively 

according to created agent. In the same manner, a variable inside 
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variables’ agents cannot be referred directly. In fact, a controller 

agent keeps a copy of that variable inside it and propagates any 

change on that variable to the owner agent. Instead of dealing 

with variables directly between agents, they deal with variables 

identifiers. A variables identifier is an instance of VID class. It is 

simply the name of the variables and the identifier of its owner 

agent. An instance of VAgentRef is used to create variables 

inside the corresponding VAgent. A variable creation process 

returns an instance of VID class identifying the created variable. 

Among additional features we added to our prototype a 

possibility to declaratively define a simple DCSP via the use of 

XML notation. The XML file that describes a DCSP problem 

should be built according to the following model (fig.10): 
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«interface»
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NotEqual LessThan

GreaterThan
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Figure 10. The hierarchy of the main components of agents 

(agents and reference to the agents) 

 

The choice of multi-agent platforms and multi-solver 

constraints required a study and testing of several platforms. We 

reviewed our work over multiple platforms including JADE and 

Madkit and several constraints solvers as CHOCO, Cream and 

JCK. Finally we chose for the role of MAS JADE (Java Agent 

DEvelopment Framework)  multi-agent framework [25], and for 

CSP platform, we have chosen Choco [26, 28].  

JADE is a multi-agent framework compliant with the FIPA 

specifications [27] and is fully implemented in Java language. 

JADE was established by the laboratory TILAB Telecom Italia. 

JADE has three main modules (fig.11): DF (Directory 

Facilitator): provides a service of "yellow pages" to the platform; 

ACC (Agent Communication Channel) handles communication 

between agents; AMS (Agent Management System) oversees the 

registration of agents, authentication, access and use of the 

system. Each JADE agent is composed of a single thread of 

execution (thread). Each task agent is represented by an instance 

of class Behavior. Jade offers the possibility of agents' multi-

threaded, although the user leaves the responsibility for 

managing competition (except the timing of the messages file 

ACLs). 

 
Figure 11. Architecture II software platform JADE 

 

In order to implement a behavior, the developer must define 

one or more objects of class Behavior, the instantiate and add 

them to the thread of execution of the agent. Every object type 

has a Behavior method action () (which is the treatment to be 

performed by it) and a method done () (which checks if the 

treatment is completed). In detail, the scheduler executes the 

method action () of each object in the queue of the tasks of the 

agent. Once this is completed, the method done () is invoked. If 

the task has been completed then the Behavior object is removed 

from the queue. The scheduler is non-preemptive and does only 

one behavior at a time, one can consider the method action () as 

atomic. It is then necessary to take certain precautions during the 

implementation of the latter, to avoid endless loops or operations 

too long. The most classic program behavior is to describe it as a 

finite state machine. The current status of the agent is stored in 

local variables.  

Also JADE simplifies the implementation of multi-agent 

systems through a set of graphical tools that supports the 

debugging and deployment phases. 

Choco is a library for constraint satisfaction problems (CSP), 

constraint programming (CP) and explanation-based constraint 

solving (e-CP) [28]. It is built on an event-based propagation 

mechanism with backtrackable structures. Choco is implemented 

in Java and takes advantage of the principle of inheritance to 

allow the programmer to define its own types and constraints. 

This is achieved by using abstract classes (fig. 12): 

 

 

AbstractVar AbstractDomain 

CompositeConstraint 

BoolConstraint 

AbstractConstraint 

IntConstraint IntVar IntDomain 

object 

 
Figure 12. Hierarchy of constraints in Choco 

 

It permits the use of multiple solvers for different problems 

separately. This allows each CAgent to have its own solver. A 

distributed constraint problem is created as an instance of the 

class DCSP. This instance represents the problem to be solved 

and is used to create the different needed agents. 

Our prototype in its current state is composed of three main 

packages containing more than 80 classes and Java interfaces 

and approximately 4300 lines of code. 
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5.  DESIGN METHODOLOGY IN CACS  

A specific methodology was designed to allow the user to 

develop distributed multi-agenty systems using Swarm 

Intelligence paradigm and CACS approach. In general this 

methodology consists of the following steps: 

1. Identify the key actors of the problem (VAgents). 

These actors are the entities of the system modeled. 

2. Determine the properties (variables) of these actors 

that are restricted by constraints with properties of 

other actors. 

3. Determine all the constraints of the problem. 

4. Classify constraints logically in separate groups. 

5. Specify a set of Controller Agents to monitor each 

group of constraints. 

To provide a developer with flexible practical methods of the 

design we offer two refinements of the general methodology: 

simple and complex. 

To prove the proposed methods of constraints satisfaction 

based on two types of the agents we developed an object-

oriented CACS software prototype which can be considered as a 

generic framework for distributed model-driven DSSs. As we 

can see from Figure 5, the developed CACS prototype uses 

hierarchical multiple-layer architecture. The following steps 

correspond to a given DCSP:  

6. Creation of the problem P. This is done by creating an 

instance of the class DCSP from the package dcsp.  

7. Creation of agents to control variables (specifically, 

their references) via the prolem P. using the method 

makeVAgent () to create a variable and method 

makeCAgent () to create a controller. 3) Creating 

variables distributed via agents which own variables. 

This is done through the method 

makeBoundedIntVar () which creates a variable with 

two upper and lower limits.  

8. Creation of constraints on variables.  

9. Addition of constraints to CAgents.  

10. Start the algorithm of resolution through the DCSP P. 

The use of the prototype can be demonstrated via the 

following simple example: 

V = {x, y, z} is the set of variables from the domain {1, …, 100} 

for all of them, C = {c1, c2, c3} is the set of constraints: 

c1 : x ≠ y, y ≠ z, x ≠ z (or alldifferent (x, y, z)) 

c2 : x ≥ y 

c3 : z ≥ y 

In order to model this problem using the proposed prototype 

the user should proceed as follows. We start by assigning 

variables to VAgents. In this example, agents v1, v2, and v3 own 

variables x, y, and z respectively. Note that the distribution of 

variables may be a problem dependant issue which means that 

the user chooses the owner agent of each variable according to 

the problem specifications. In the same manner, constraints also 

should be assigned to CAgents. In this example, we assign each 

constraint to a CAgent. 

1. Create a distributed problem p (an instance of DCSP class). 

This class will be used in order to create VAgents and 

CAgents and to start our CACS algorithm. 
DCSP p = new DCSP("example"); 

This creates a distributed problem with which agents, variables 

and constraints will be created. 

2. Use this instance to create both types of agents. This is done 

by calling makeVAgent() and makeCAgent() methods from 

the DCSP instance created in step 1 as follows: 
VAgentRef v1 = p.makeVAgent (“v1”); 

VAgentRef v2 = p.makeVAgent (“v2”); 

VAgentRef v3 = p.makeVAgent (“v3”); 

CAgentRef c1 = p.makeCAgent (“c1”); 

CAgentRef c2 = p.makeCAgent (“c2”); 

CAgentRef c3 = p.makeCAgent (“c3”); 

 

3. Create variables inside VAgents. In other word, assign 

variables to variables agents. The method 

makeBoundedIntVar() is used to achieve this as follows: 
VID x = v1.makeBoundedIntVar (“x”, 1, 100); 

VID y = v2.makeBoundedIntVar (“y”, 1, 100); 

VID z = v3.makeBoundedIntVar (“z”, 1, 100); 

 

4. Create the constraints and post them to CAgents. The 

constraints are created separately and posted to their owner 

agents using the method post(): 
c1.post(new AllDifferent(new VID[]{x,y,z})); 

c2.post(new GreaterOrEqual(x, y)); 

c3.post(new GreaterOrEqual (y, z)); 

 

5. Start the CACS algorithm  by calling solve() method from 

the DCSP instance: 
p.solve(); 

This last instruction initiates communication between the 

different agents in the system in accordance the algorithm 

described previously in Section 3. If an agent finds a value for its 

variable that corresponds to a solution then it will notify to this 

value. The solution will be the combination of all values from all 

agents. Otherwise, no-solution state is declared. 

Also the developer can express the structure of DCSP in 

declarative manner using XML. For instance, the problem 

described in previous sub-section can be written in XML as 

follows: 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE dcsp SYSTEM "dcsp.dtd"> 

<dcsp> 

<name>example</name> 

<vagent><name>v1</name><var><name>x</name> 

  <inf>1</inf><sup>100</sup></var></vagent> 

v2 and v3 by the same manner 

<cagent> 

  <name>c1</name> 

  <constraint><alldiff> 

  

<vid><name>x</name><owner>v1</owner></vid> 

  

<vid><name>y</name><owner>v2</owner></vid> 

  

<vid><name>z</name><owner>v3</owner></vid> 

  </alldiff></constraint></cagent> 

c2 and c3 by the same manner 

</dcsp> 
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6. CACS APPROACH IN TRANSPORT 

LOGISTICS  

We consider modern transportation problems as a natural 

candidate domain for evaluation of the proposed CACS 

approach. Although there is a lot of different centralized 

algorithms in this area we believe that multi-agent techniques 

can radically improve efficiency and fairness of negotiation 

between participants in the course of problem solving as well as 

improve reactivity of the logistics systems. Among different 

benefits of logistics management within the CACS framework 

we can point out such positive features as: better consideration 

of individual preferences and ability of their dynamical changes 

in the course of solving, early availability of partial solutions and 

inherently distributed structure of the system. 

In order to create solid foundations for application of Swarm 

Intelligence and CACS approach in transportation logistics we 

developed a distributed multi-agent application which mimics 

major features of modern ship loading problems, and evaluated 

its feasibility and performance.  Our  CACS application is based 

on a simplified ship loading scenario which was originally 

presented in studied in Chips constraint solver by Kay Chips 

(Kay 1997) and later was expressed in terms of Java-based 

Choco constraint solver by prof. A. Aggoun. 

 

Figure 13. Graphical representation of the original Kay’s ship 

loading problem (Kay 1997) 

 

In the discussed problem  a specific precedence function pred in 

defined over the loading items. For each of the items the number 

of workers needed for loading is specified. 

 

Figure 14. The feasible order of loading tasks (the loading plan) 

in accordance with the constraints given (Kay 1997) 

 

According to CACS methodology each loading task is 

realized as a separate Variable Agent in our CACS application. 

Variable Agent holds three specific variables. These variables 

determine start time of loading (ti
start), finish time of loading 

(ti
end) and predetermined loading duration (di) accordingly. 

All constraints of the considered problem are grouped inside 

Controller Agents. We recognize three different groups of 

Controller Agents according to the semantics of the constraints. 

The first group contains Controller Agents which hold duration 

constraints. The agent of that group  is responsible for verifying 

that the loading tasks are scheduled within the time frame. It 

means that for each task i the following constraint should be 

satisfied: ti
start + di  ti

end.  

The second group contains Controller Agents which are 

responsible for verifying that the loading plan satisfies 

precedence constraints given (like one on the fig. 13). Finally the 

third group contains Controller Agents which are responsible for 

verifying availability of the resources for the loading plan. 

Controller Agent of that kind holds cumulative constraint over 

the number of workers available for finishing the ship loading 

within the total time. 

That cumulative constraint may be expressed using current 

values of ti
start, and ti

end variables, as well predetermined 

workforce effort needed for each task wi. Given these values we 

can define the scheduling  matrix SC. 

 

SC = 

NN ww

ww

www

...0000000

0...00000

0...0000

22

111

 

The element SCij is equal to wi iff at the time moment j the 

loading task i is performed, and it is equal to 0 in the opposite 

case. 

Using that matrix we may define the maximum number of 

workers needed at each moment of the time and the needed 

cumulative constraint: PersonsSC
N

i

ij
j

maxmax
1

. 

With such problem interpretation we may completely 

describe it in terms of our CACS approach. The original 

structure of the agents is presented on Figure 15. 

 

tN
start,t

N
end , d

N

{0,1,..,maxT}

t1
start ,t

1
end , d

1

{0,1,..,maxT}

t2
start ,t

2
end , d

2

{0,1,..,maxT}

ti
start ,ti

end , d
i

{0,1,..,maxT}

cumulativeController

startEndController

∀i: ti
end  ≤ maxT

∀i: ti
end – ti

start  ≥ di

precedenceController

∀i: ti
end  ≤ TMax

 ti
start  ≥ t pred(i)

start 

i=2,3,..,N

 
Figure 15. Connected structure of Variable Agents (circle) and 

Constraint Agents (rectangle) for the ship loading problem 
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Using the proposed methodology we designed the Java-based 

application that solves the ship loading problem. In that program 

at the first moment the ControllerAgents are created: 
  

CAgentRef startEndController = 

  dpb.makeCAgent("startEndController"); 

CAgentRef precendenceController = 

  dpb.makeCAgent("precendenceController"); 

CAgentRef cumulativeController = 

  dpb.makeCAgent("cumulativeController"); 

 

Then auxiliary VariableAgent is created which stores the total 

time of loading operations: 
VAgentRef general = dpb.makeVAgent("General"); 

VID generalEnd = general.createVar("General_End", 

  0, timeHorizon); 

 

After that in the cycle thirty-four VariableAgents are created 

which correspond to the loading tasks and store needed variables 

ti
start, ti

end and duration di. In the same cycle the duration 

constraints are created and attached to the corresponding 

ControllerAgent. 

 
for (int j = 0; j < nbTasks; j++) { 

taskAgents[j] = dpb.makeVAgent("task_agent_" + 

  (j + 1)); 

taskStarts[j] = taskAgents[j]. 

  createVar("Start", 0, timeHorizon); 

taskEnds[j] = taskAgents[j].createVar("End", 

  0, timeHorizon); 

taskDurations[j] = taskAgents[j]. 

  createVar("Duration", durations[j], 

  durations[j]); 

 

DOperation startEndOperation = new 

  Subtract(taskStarts[j], taskEnds[j]); 

DConstraint startEndConstraint = new 

  Equal(startEndOperation, taskDurations[j]); 

startEndController.post(startEndConstraint); 

 

DConstraint endConstraint = 

  new LessOrEqual(taskEnds[j], generalEnd); 

startEndController.post(endConstraint); 

} 

 

Finally the precedence constraint and cumulative constraint 

are determed and the process of solution search is started.  

 

With the given conditions in the result of application run the 

values of variables ti
start, t

i
end will constitute a feasible solution ot 

the ship loading problem.  

7. CONCLUSIONS & FUTURE WORK   

In this article we proposed a new approach for combination of 

MAS and DCSP in multi-agent swarm systems. This approach 

called CACS (Controller-Agent for Solving Constraints) based 

on the use of a specific type of agents called Agent Controller 

and Variables’ Agent. We believe that proposed process of 

constraint satisfaction in the multi-agent system fits well the 

general principles of Swarm Intelligence. In particular, the stage 

of domain reduction in our algorithm  may be seen exchange of 

―rules, tips and believes about how to process the 

information [4]‖. 

Also in our approach we implemented a principal feature of 

Swarm systems, which is principal ability to modify multi-agent 

structure in response of various influencing factors. First of all, 

declarative manner of constraints based formalization of the 

problem allows for changing inter- and intra-agent behavior.  

Secondly, the composition of inter-agent constraints inside 

ControllerAgent may be changed during evolution of the system 

(as it shown on fig.1 and fig .2). 

In the proposed CACS architecture we see good opportunities 

for further moving towards to implementation of advanced 

swarm intelligence capabilities. Modern MAS platforms like 

JADE implement different peer-to-peer communication 

mechanisms for which direct correspondence may be found in 

computational biology. Given such mechanisms as foundation 

for reliable distributed inter-agent communication we will extend 

discussed algorithms of interaction between Controllers Agents 

and Variables Agents by adaptation framework. In such 

framework agents will be able to discover critical changes in 

MAS configuration (faults of agents, misbehavior, etc), negotiate 

responsibilities and change the roles accordingly in order to 

continue proper collective operations.    

   The model of distributed constraints satisfaction proposed 

in SACS also offers two main contributions in DCSP research. 

First, it is the possibility of a direct and easier dealing with non-

binary constraints without having to use methods of 

transformation of non-binary constraints to binary constraints. 

Second, CACS offers us the possibility to organize the 

constraints logically related groups. This grouping of constraints 

allows us to form sub-problems, each group is monitored and 

processed by a single controller. This also helps reduce the total 

number of Controller Agents needed.  

Non-binary constraints are more common in real problems 

than binary ones. Some methods are used in order to allow using 

binary constraint solving techniques on non-binary ones. 

Methods like hidden and dual transformation [14, 15] convert 

non-binary constraints into equivalent binary ones. Other 

methods are proposed in the DCSP domain in order to deal with 

non-binary constraints. I. Brito [21, 33,34] has proposed 

organizing agents involved in a non-binary dynamically in order 

to form a proper propose-validate sequence. Agents then follow 

that sequence to find a solution for that constraint. 

Our algorithm proposes another direct alternative. Any 

constraint is encapsulated inside a controller agent regardless 

this constraint is binary or non-binary. Agents involved in any 

constraint are not forced to follow any order in proposing values 

for their variables. 

The increase in number of agents is an inconvenience of our 

model. We can investigate the possibility of using a hybrid 

system of both, our model and a standard ABT model, in order 

to model a DCSP. In such hybrid system, binary constraints 

relate variables’ agents directly while non-binary constraints are 

encapsulated inside controller agents. The possibility of 

gathering constraints gives also the possibility of decreasing the 

number of agents. The user can group some constraints 

according to the modeled problem logic. 

To prove the feasibility of the proposed theoretical principles 

we implemented software prototype of CACS. It uses generic 

interfaces for integration with different third-party MAS-
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platforms and CSP-solvers. In the final implementation we used 

the MAS platform JADE and the Choco CSP solver. Apart from 

direct Java programming of DCSP problems our prototype also 

provides an opportunity to describe the problem using XML 

facilitating the modeling of simple problems without the need to 

write and compile a Java program.  

Demonstrated applicability of CACS for solution of logistics 

problems opens opportunity for further progress in developing 

Swarm Intelligence applications. Following that direction we 

plan to continue in design of meta-communication protocol 

between ControllerAgents, which will permit define formal 

methods of re-composition of constraints inside different 

ControllerAgents during evolution of the system.  

Another interesting problem for CACS application comes 

from the domain of modern transportation systems. Here we 

wish to apply CACS approach for the ―transport on demand‖ 

challenge and solution of complex logistics problems in real 

conditions of modern warehouses. Also we are going to 

investigate ways to add optimization mechanism to the system 

similar to DPOP algorithm [34]. This will allow the user to 

adjust the Variables’ Agent value choosing according to a given 

optimizing mechanism. 

This work was partially supported by HSE grant # T3-61.1. 
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Swarm Intelligence to Distribute Simulations in
Computational Ecosystems

Antoine Dutot∗ and Damien Olivier∗ and Guilhelm Savin∗ †

Abstract. This paper deals with distribution of complex system
simulation. A first reflexion is conducted about the distributed envi-
ronment and we show that it can be considered as a complex system
i.e an artificial ecosystem, in other words a computational ecosys-
tem. In a second time we propose to manage the complexity of the
simulation and its environment by an algorithm based on swarm in-
telligence. Once again, this proposition is based on interactions and
the mechanisms of cooperation and competition that help us to detect
the self-organizations which evolve during the simulation in the dis-
tributed environment. In a last time, we outline a middleware allow-
ing to distribute dynamically the simulation. This middleware allows
mobile code and offers advices to the simulation to reduce the cost of
communications. To do that we detect the self-organizations during
the simulation and we facilitate their placement on a same node of
the distributed system.

1 Introduction
In this paper, we are concerned by complex systems simulation dis-
tribution using swarm intelligence. We consider that the simulation
evolves in an open distributed environment. We will demonstrate in
the following that this environment is a ”computational ecosystem”.
According to this characteristic, we can try to control the trajectory
of the system using/encouraging the self-organizations.

This paper is organized as follows. Section 2 defines what is a
complex system and our perception of an environment in which com-
plex system simulations can be distributed. Section 3 describes the
structure we used to model complex systems. Sections 4 and 5 de-
scribes the swarm intelligence algorithm and the platform used to
distribute simulations. Finally, section 6 concludes this paper.

2 Computational Ecosystem used to distribute
2.1 What is a complex system ?
A complex system is composed of a massive set of entities with in-
teractions between these entities. A global behavior of the system,
which is non-trivial according to entities behaviors, emerges from
these interactions. In such system, set of entities is not static: some
entities can appear and other disappear: these systems are opened.

Interactions between entities feed an informations flow which
structure our system. Furthermore as the system is open, flows cross
it bringing the necessary energy to avoid the natural evolution to dis-
order. We are in front of a kind of dissipative system.

∗L.I.T.I.S., University of Le Havre, France
∗Authors are sorted alphabetically
†Corresponding author: guilhelm.savin@litislab.fr

—

Figure 1. This picture represents one zoom in part of a boids-based
simulation (on the top) and its representation with a dynamic graph (on the

bottom). On the top part, a snapshot of the simulation is proposed. The boids
(interacting entities) can only perceive and interact with fellow creatures

located in a limited area. During the process, some groups appear
corresponding to global structures obtained from local interactions. On the

bottom part of the figure, the graph represents at a given moment the
interaction graph corresponding to the state of the system made of boids.

Entity could have preferential interactions between a restricted set
of other entities. Entities having such interactions composed a group
called organization. There will have some organizations in the sys-
tem, with a large amount of interactions between organization mem-
bers, and a few interactions between different organizations.

As organizations are the result of the system dynamic and not
a pre-established entry, the mechanism of organizations appear-
ing/disappearing is a mechanism of self-organization. So if it is il-

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 25



lusory to try to control each entities to conduct the system, we can
plan to affect the system by means of self-organizations.

2.2 Simulation in a computational ecosystem

The environment where the simulations evolve is composed by a set
of machines which can connect or disconnect themselves at anytime.
On theses machines eventually a lot of executing units (processes,
threads, objects, . . . process will be used in the following) are run-
ning.

There are interactions between these processes which can be direct
or not. Direct interactions can be, for example, a communication be-
tween two processes or can be done through a shared file or memory
zone. Indirect interactions can be a trace drop in the environment like
a file. The processes population need resources to live: some comput-
ing power and some memory at least. Information flow crosses the
system as an input data which is consumed by the processes and dis-
sipated as output data. This stream structures the environment.

In the previous description we recognize the definition of a com-
plex system. Furthermore the processes belong to classes as demon,
scheduler .... and they are in competition to access to memory for
example and collaborate to compute a result for example. There are
strong analogies between natural ecosystems and the system that we
consider, thus classes can be describe as species. Due to this parallel
we define the environment where simulations take place as a compu-
tational ecosystem.

The kind of simulation we are interested in is complex system
simulations. As we seen above, such simulations are composed of
a massive set of entities, needing a large amount of computing re-
sources which can not be provided by a single machine. A way to
solve this resources limitation is to distribute the simulation, expand-
ing our computational ecosystem by using a set of machines rather
than a single one. The question is now, how to distribute such simu-
lations ?

The elements of answer are in the nature of the simulations and
the environment. Finally, environment becomes a complex system
that we used to distribute complex systems.

A major raised problem is how to distribute entities in the environ-
ment. Load of machines has to be balanced but interactions between
remote entities (entities which are located on different machines,
these interactions are called remote interactions) have to be mini-
mized to reduce network-load. This can be done by trying to control
self-organizations. There are a lot of interactions between members
of a same organization, if members are located on different machines,
amount of remote interactions increases. So, detecting organizations
allows to put all members of a same organization on a same machine,
reducing remote interactions.

As organizations may change through time, entities location may
change too. Problem is that entities are being executed , so they have
to stop their execution, store their state and migrate to a new des-
tination. A tool allowing this migration is needed. An interesting
concept find in literature is the active object pattern[7] which sees
the object as an actor receiving requests and executing them one by
one. This provides two advantages. First, calls to object methods are
seen as requests which allows to model call as an object exportable
through the network. A second advantage is that migration becomes
trivial: when active object has to migrate, it stops executing its re-
quests, sends them to its next location and starts to execute then on
this new location.

Figure 2. Coloring of a graph representation of the Moebius strip with
AntCo2

3 Model
Complex system is composed of a set of entities and there are in-
teractions between these entities. Difficulty of modeling a complex
system is that system components may change : entities may appear
or disappear and interactions are not static.

The emergence of global properties or behaviors come from this
dynamic. Therefore, the study of complex systems leads to three im-
portant things to model: entities, interactions and dynamic of the sys-
tem.

Since interactions can be seen as a couple of entities, a graph can
model the system frozen at a time t. A graph G is a peer (V, E)
where V is a set of elements called nodes and E is a set of node peer
called edges.

To model the dynamic of complex systems, we have to used an
other research field which is the one of dynamic graphs. A dynamic
graph allows to introduce dynamic in the set of nodes and the set of
edges of a graph. A definition of such graphs can be found in [4].
Therefore, a dynamic graph G(t) is a peer (V (t), E(t)) where t is
a discrete (in this paper) representation of the time. V (t) and E(t)
may change with t: V (t + 1) (respectively E(t + 1)) is V (t) (resp.
E(t)) with eventually some elements added or removed. Each node
v and each edge e have a set of properties Pv(t) (resp. Pe(t)) which
may change with t too.

Figure 1 shows a boids simulation with its corresponding dynamic
graph modeling interactions between boids. Boids are a kind of par-
ticule introduced by Craig REYNOLDS in [10] to simulate collective
animal behavior like birds flocks. If distance between a boid a and
a boid b is under a given threshold, then direction of a is influenced
by b and inversely: there is an interaction between these two boids
modeled in the graph by an edge between nodes representing a and
b.

4 Swarm Intelligence - AntCo2
AntCo2 is a distributed algorithm dedicated to load balancing and
communication minimisation. It considers only the dynamic graph of
the application to compute the distribution. As communications and
entities appear and disappear, as the importance of communication
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Figure 3. AntCo2 applied to a 400-nodes graph generated using
preferential attachment rules.

evolve, the graph changes. Therefore the load balancer should also
handle this dynamic process and be able to provide a distribution as
the graph evolve.

Each computing resource is associated with a color, then by as-
signing a color to a node, the algorithm specifies the distribution.

One can see the distribution as a weighted partitioning of the
graph. In this partitioning we try to distribute evenly the load (num-
ber of entities weighted by their computing demand) and to minimize
communications between computing resources to avoid saturating
the network. These two criteria are conflicting, therefore a trade-off
must be found.

4.1 Detection of organizations
We see the partitioning as a dynamic community detection algorithm.
We call such dynamic communities ”organizations”. Communities
are often seen as group of vertices that are more densely connected
one with another than with the rest of the graph. An algorithm able
to detect organizations is able to follow communities as they evolve
when nodes and edges appear, evolve and disappear in the commu-
nities.

There exists several graph partitioning algorithms ([8, 6, 5])
and community detection algorithms ([9]), but few handle evolving
graphs. It is always possible to restart such algorithms each time the
graph changes, but this would be computationally intensive. AntCo2
is an incremental algorithm that starts from the previous partitioning
to compute a new partitioning when the graph changes.

Having a load balancer running on a single machine, to distribute
applications that are often very large could be inefficient. Another
goal of AntCo2 is to be able to be distributed with the application.

4.2 Swarm Intelligence
AntCo2 uses an approach based on swarm intelligence, namely
colonies of ants. This algorithm provides several advantages: ants
can act with only local knowledge of the graph representing the ap-
plication to distribute. AntCo2 tries to avoid any global computation,
therefore allowing it to be distributed with few communications and
no global control.

In AntCo2, each colony represents a computing resource and has
its own color. Inside colonies, ants collaborate to colonize organi-

zations inside the graph and assign their color to nodes. Inversely,
colonies compete to keep and conquer organizations. Figure 3 and 4
show graphs colored by ants.

Ants color nodes using numerical colored pheromones corre-
sponding to their colony color. Such pheromones ”evaporate” and
therefore must be maintained constantly by ants. This allows to han-
dle graph dynamics by forgetting old partitioning solutions and dis-
covering new solutions by the constant exploration of ants inside the
graph. The details of the algorithm are given in ([2]). Figure 2 shows
four ants colonies coloring a graph with pheromones rates on each
edge.

The change of a color for a node indicates a ”migration advice”,
meaning that the corresponding entity should migrate on the com-
puting resource associated to the new color. An inertia mechanism
allows to avoid oscillatory advices.

4.3 Distribution
Ants of the AntCo2 algorithm use only local informations from the
dynamic graph. This offers three ways of distribution as described in
[3].

A first solution is to have on a single machine a dynamic graph
modeling the overall application and to run AntCo2 on this graph.
Migration advices are sent to machines. This solution has some dis-
advantage. If there is a fault on the machine hosting AntCo2, dis-
tribution looses its load-balancer: the solution is not fault-tolerant.
Moreover, it leads to increase network communications: informa-
tions about interactions have to be sent to load-balancer, and migra-
tion advices have to be sent to other machines. This is a problem for
an algorithm which aims to reduce network-load.

The next solution is similar to the first. Instead of running on a
single machine, AntCo2 runs on a set of machines, each machine
hosting a part of the graph. This solution becomes more tolerant to
fault but still leads to increase network-load.

The last solution is to have one instance of AntCo2 running on
each machine. Each instance considers only local entities and in-
teractions: the system becomes decentralized. If there is a fault on
a machine, this does not affect the system : this solution is fault-
tolerant. As instances using only local informations, there is no
need to communicate interactions informations to another machine:
network-load not increases. Moreover, computing-load needed by an
instance of AntCo2 depends of the amount of entities hosted on the
machine, thus distribute entities leads to the distribution AntCo2 it-
self : AntCo2 is self-distributed.

5 Dagda
Dagda is a middleware dedicated to the distribution of Complex Sys-
tems simulations. It uses an existing middleware as a base which is
extended with new features. The final aim is to provide a simple way
to create distributed complex system simulation.

The main words of Dagda are decentralized, portable, load-
balanced. Decentralized means that there is no restricted set of
machines on which depend all machines. Dagda aims to be as
portable as possible, ie any machines (computer,pda,phone,super-
calculator. . . ) can participate to the distribution.

Dagda can be divided in three components. The first is a local rep-
resentation of the part of the application running on the machine.
This is model by a dynamic graph. This graph is maintained by the
second component of Dagda, called agency which is a middleware
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Figure 4. AntCo2 applied to the Zachary Karate Club[11] graph.

with Dagda features. A final aim is to provided a standard connec-
tion to middlewares able to manage active object and migration, but
actually Dagda allows the use on its internal middleware or the use
of ProActive[1], a middleware developed by INRIA. The last com-
ponent of Dagda is a load-balancing algorithm used to colorize the
graph. When node color changes, migration advices are sent to the
middleware which proceed to the migration.

Agency

Network

AgencyAgency

Node

Entities
components of the
application

Dynamic graph
local representation
of the application

Load-Balancer
spreads entities

Figure 5. Dagda overview

5.1 Interactions Graph

Dagda is based on the concept that the distributed application is com-
posed of a massive set of objects. These objects are called entities and
are hosted on a machine by an agency. The active object pattern is
used to model these entities.

Each machine models its hosted entities in a dynamic graph. En-
tities are nodes of this graph. When an entity communicates with an
other, this is modeled in the graph with an edge between nodes as-
sociating to the implicated entities. Greater is the number of interac-
tions between two entities, greater is the weight of the corresponding
edge. There is a mechanism which decreases edge’s weight through
the time.

Entities can migrate from one agency to an other. This raises a
problem: how to identify each entity through the network and how
to get a remote entity ? The second part of this problem, how to get
entity, is treated on section 5.2. Entities are identified by an id which
is unique through time and network. Uniqueness is assumed by the
fact that id depends on the agency’s address (agency who creates the
entity) and on a time-stamp.

Dagda profiles method calls between entities. For example, if an
entity A calls a method m() of an entity B, this call will be detected
and registered. Then this detection of interactions between entities is
used to maintain the dynamic graph which models these interactions
through the time.

The GRAPHSTREAM[4]1 API is used to create the graph.

5.2 Agency

The part of Dagda managing remote objects and remote operations
is called Agency. This agency is the base of interactions between
machines. It allows implementation of the active object pattern by
entities and uses a middleware to allow remote method calls and mi-
gration of entities. A basic middleware is provided but the aim is to
allow the use of any middleware ables to manage active objects.

Dagda aims to have a decentralized architecture so there is no mas-
ter server to reference informations as for example entities location.
Therefore, another aim of agencies is to provide global features with-
out global control.

One is these features is to maintaine a shared context. Overall, en-
vironment, composed of all machines, has two kinds of properties:
local properties which are specific to a single machine, and global
properties which are shared by all machines. Managing local proper-
ties is trivial, but managing shared properties without global control
raises some problems: if a property is changed on a machine, how
spreads this change before other machines look for this property ?
Agency aims to solve this problem and provides a valid access to
environment properties.

5.3 Load-balancing

The last component of Dagda is a load-balancing algorithm. This
algorithm uses the interactions graph and attributes colors to node.
Dagda uses the AntCo2 algorithm. This choice allows to :

- balance the work-load of machines;
- reduce the network-load;
- distribute the load-balancer.

Distribution of the load-balancer is an important thing to have a
decentralized platform. As describes in 4.3, there are three solutions
to run the AntCo2 algorithm. First and second solution use a cen-
tralized approach which is not the aim of Dagda. Therefore, the last
solution, having one instance of AntCo2 on each machine, has been
retained for this middleware.

1http://www.graphstream-project.org
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6 Conclusion
In this paper, an approach of complex system simulation distribution
has been presented. This approach considers the execution environ-
ment as a computational ecosystem. We have seen that this environ-
ment becomes a complex system used to compute complex system
simulations.

A major problem raised in this paper is how to distribute entities
composing complex system. A swarm intelligence algorithm of or-
ganizations detection has been presented and used as load-balancing
algorithm. Then a platform dedicated to complex system simula-
tions distribution and using the previous load-balancing algorithm
has been presented.

Next steps of this work can be divided in two parts. The first is
about the platform, Dagda, which still needs some development and
a phase test. Second part is about AntCo2 results and the adaptivity of
load-balancing. Some mechanisms need to be added to avoid oscil-
latory migration advices. Adaptivity means that organizations have
to adapt to environment, taking account for example of machine re-
sources, other processes running on the machine. . .
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