
HAL Id: hal-03317896
https://hal.science/hal-03317896

Submitted on 8 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the Third International Symposium on
Swarm Intelligence Algorithms and Applications

Symposium, A symposium at the AISB 2010 Convention
Cyrille Bertelle, Gérard H.E. Duchamp, Rawan Ghnemat

To cite this version:
Cyrille Bertelle, Gérard H.E. Duchamp, Rawan Ghnemat (Dir.). Proceedings of the Third Interna-
tional Symposium on Swarm Intelligence Algorithms and Applications Symposium, A symposium at
the AISB 2010 Convention. SSAISB: The Society for the Study of Artificial Intelligence and the
Simulation of Behaviour. 2010. �hal-03317896�

https://hal.science/hal-03317896
https://hal.archives-ouvertes.fr

Proceedings of the Third International Symposium on

Swarm Intelligence Algorithms and
Applications Symposium

A symposium at the AISB 2010 Convention
29 March – 1 April 2010

De Montfort University, Leicester, UK

Editors
Cyrille Bertelle, Gérard H.E. Duchamp and Rawan Ghnemat

Published by SSAISB: The Society for the Study of Artificial Intelligence

and the Simulation of Behaviour
http://www.aisb.org.uk/

ISBN: 1902956966

SIAAS 2010

Swarm Intelligence Algorithms and
Applications Symposium

within

AISB 2010 Convention

March 29 – April 01 2010

De Montfort University, Leicester, UK

Cyrille Bertelle, Gérard H.E. Duchamp and Rawan Ghnemat (eds)

Program Committee:

• Aladdin Ayesh, De Montfort University, Leceister, UK
• Habib Abdulrab, INSA Rouen University, France
• Eduard Babkin, Higher School of Economics, Russia
• Cyrille Bertelle, University of Le Havre, France
• Gérard H.E. Duchamp, University of Paris XIII, France
• Rawan Ghnemat, German-Jordanian University, Amman, Jordan
• Laszlo Gulyas, Eotvos University, Budapest, Hungary
• Colin G. Johnson, University of Kent, UK
• Alaa Sheta, Taif University, KSA
• Eric Alfaro, IPN-UPIICSA-SEPI, Mexico
• Tim Blackwell, Goldsmith, University of London, UK
• Frank Guerin, Department of Computing Science, University of Aberdeen, UK

General Chairs:

• Cyrille Bertelle, University of Le Havre, France
• Gérard H.E. Duchamp, University of Paris XIII, France
• Rawan Ghnemat, German-Jordanian University, Amman, Jordan

Preface

The increasing complexity of the current world can be observed each day. Sustainable development
for example consists of economical and social systems management within natural environment.
The understanding of the whole leads to what we call territorial intelligence. The way of modelling
these complex systems is often based on interactive networks, dealing with the interconnection
between all of the system components. Decision making on this complex world, need tools able to
detect and manage emergent organizations through these networks. Distributed Artificial Intelli-
gence (DAI) is the adapted conceptual trend which allows the proposal of some relevant solutions by
relying on social and physical sciences models exhibited and observed in nature (e.g. ant colonies,
molecular crystallisation, etc.). In this search and management of emerging organization, swarm
intelligence algorithms proved to be popular and effective methods to use. On the technological
front, the increasing number of robotic systems, advances in nano technology, and the sheer com-
plexity of modern enterprise systems, especially those boosting high degree of autonomy, makes the
development of swarm intelligence timely and needed.

Le Havre, Paris & Amman
March 15th 2010

Cyrille Bertelle
Gérard H.E. Duchamp

Rawan Ghnemat

Contents

Preface v

Contents vii

Exactly Solved Models for Collective Behaviour and Complex Systems
Gérard H.E. Duchamp 1

From Ants To Robots: A Decentralised Task Allocation Model For A Swarm of
Robots
Sifat Momen and Amanda J.C. Sharkey 3

Application of CACS Approach for Distributed Logistic Systems
Sami Al-Maqtari, Habib Abdulrab and Eduard Babkin 13

Swarm Intelligence to Distribute Simulations in Computational Ecosystems
Antoine Dutot, Damien Olivier and Guilhelm Savin 25

Exactly Solved Models for Collective Behaviour and
Complex Systems

Gérard H.E. Duchamp 1

Abstract

Complex systems is a set of theories which serves to model emergent behaviours or emergent phenomena in systems which are not
reducible to the sum of their parts. Among these theories is the modelisation of collective phenomena. As miracles of regularity
in nature appears the exceptional family of ”exactly solved model” as the Ohm formula U = RI which is sol simple but after all
is a relation between statistics of electrons.

This talk begins by recalling the ”triple birth of quantum mechanics” and the history of ideas leading to the fundamental commu-
tation relation AB − BA = 1. We show how these operators can be found in the macroscopic word as simple statistical ”death
and birth” processes and gain avery natural and easy description of the traditional Fock space then explaining the necessity of the
normal form by simple spectral arguments.

Then comes the evolution groups and two aspects of the product formula applied to combinatorial field theories. Firstly, we remark
that the case when the functions involved in the product formula have a constant term is of special interest as often these functions
give rise to substitutional groups. The groups arising from the normal ordering problem of boson strings are naturally associated
with explicit vector fields, or their conjugates, in the case when there is only one annihilation operator. We also consider one-
parameter groups of operators when several annihilators are present. Secondly, we discuss the Feynman-type graph representation
resulting from the product formula and show that there is a correspondence between the packed integer matrices of the theory of
noncommutative symmetric functions and these Feynman-type graphs.

1 LIPN, University of Paris XIII, France, email: ghed@lipn.univ-paris13.fr

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 1

From Ants To Robots: A Decentralised Task Allocation

Model For A Swarm of Robots

Sifat Momen
*
 and Amanda J.C. Sharkey

*

Abstract. This paper presents a task allocation and task

switching model for a decentralised group of mobile robots. The

model is strongly inspired by the behaviour of social insects,

typically ants, which exhibit remarkable techniques for

allocating tasks and adapting to the changing environment. The

agents in the model allocate tasks based on the local cues they

perceive and without the need of any centralised controller. The

paper compares two communication techniques inspired by the

ant colony behaviour. The objective of this paper is fourfold: (1)

to design and (2) implement a task allocation model for a swarm

of mobile agents, (3) to develop two communication techniques

(one in which agents communicate directly along with indirect

communication and in the other they only communicate

indirectly), and (4) empirically investigate the impact of the two

techniques on the performance of the system. The agents are

assumed to have limited perception and to only be able to

interact locally. Experimental results reveal that the model is

highly adaptive and efficient whichever communication

technique is used. Furthermore, the results also show that the

incorporation of explicit communication improves the

performance of the system significantly over that of indirect

communication. The model offers benefits to heterogeneous

mobile robot systems to dynamically allocate tasks among

themselves without the need of any centralised controller in such

a way so as to improve the performance of the overall system.

1 INTRODUCTION

Flocks of birds meandering in the evening light, armies of ants

marching for foraging, herds of buffalos congregating to avoid

predators, synchronised flashes from male fireflies attempting to

attract the female ones or even the pods of dolphins dancing up

and down in unison are some of the spectacular examples of

collective behaviours [1,2] that animals display. Their

behaviours are not only enthralling to watch (figure 1) but are

also some of the finest examples of how individuals form groups

which enable the group as a whole to carry out tasks that could

not be accomplished by a single individual with the same

efficiency. It is now well established that animals self organise

[2] by repeatedly interacting with the neighbouring individuals

and the environment in the vicinity resulting in the emergence of

such collective behaviours. Individual agents neither have any

global templates of the environment nor follow any particular

leader. Instead, they behave as purely reactive individuals trying

to synchronise with the immediate neighbours through some

simple local interactions. Such local cohesion among the agents

*
 Neurocomputing and Robotics Group, Dept. of Computer Science,

Univ. of Sheffield, Regent Court, Portobello, Sheffield S1 4DP, UK.

Email: {s.momen, amanda}@dcs.shef.ac.uk

facilitate the tendency to become a part of a group which

consequently benefits them in numerous ways including the

possibility of minimizing danger of an individual from a

potential predator [3], accomplishing tasks that are otherwise

difficult to carry out and also in transferring vital information

within the group quickly [4]. Each individual does not have

enough intelligence to carry out its job optimally rather as a

group such intelligence emerges (through local interactions)

which is often referred to as swarm intelligence (SI).

Intriguingly, such group behaviour and self organised systems

are not limited to nature, but are also extremely prevalent within

the very society we live in: pedestrians travelling [5] like that of

the flocking of birds, spreading of rumour [6], rhythmic applause

after a good concert [7, 8], traffic flow [9] in a busy road and

even the evolution of a new sign language that emerged from

mere interactions between the school children in Nicaragua [10]

are just some of the examples of such self organized systems

within our society.

Recent time has witnessed huge interest in the field of swarm

intelligence and swarm robotics (SR) [14; for a brief history, see

11 – 13] among researchers in areas as different as biology and

engineering. The concept of swarm robotics is strongly inspired

from biology and especially from the behaviour of eusocial

insects [15] like that of ants, bees, termites and wasps that show

some remarkable examples of how a large number of simple

individuals can use extremely simple rules and local

communication to result in a collectively intelligent system. For

engineers and roboticists, the field provides a number of key

advantages (including robustness, flexibility and scalability) over

the traditional deliberative based system for a wide number of

practical applications whereas for the biologists, it provides a

novel platform to analyse the mechanism underlying the

principles of collective behaviour within animal groups.

Our work is strongly inspired by the behaviour of eusocial

insects especially from that of the ants which provide us with a

number of keen techniques for dividing tasks among the

individuals. The individuals not only carry out a single task but

also have the ability to switch between tasks in response to the

changing demand or any other external perturbation. The

decision to switch task does not arise from any global knowledge

of the environment whatsoever but is rather taken autonomously

based on the local interactions between the individuals and the

stimuli received.

This paper addresses the issue of division of labour (DOL),

inspired from the ant colony behaviour, within the realms of

heterogeneous groups of robots (agents). The aim of this paper

is to present an agent based model (ABM) (an extended version

of that presented in [16, 17]) that would enable us to explore the

dynamics of making decisions within groups of agents/robots.

The model embraces threshold based approach [34] and presents

two techniques (one in which agents use explicit and another

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 3

a

B

c

d

Figure 1: Examples of self-organised collective behaviour. a) a team of ducks (provided by Nafi Ahmed), b) a flock of birds in

Milan, c) a crowd of people in front of Notre Dame Cathedral, Paris, d) traffic flow in busy Beijing. Photos (b) – (d) are provided by

Lei Ye. All Photos used with permission.

in which agents use indirect communication), inspired by the

ant colony behaviour for autonomous division of labour based on

the environmental and social cues they receive. Furthermore, we

show that such techniques give rise to an extremely adaptive and

efficient system. The system is inherently scalable owing to its

decentralised nature. Here we pose and empirically investigate

two relevant questions: (1) whether the behavioural rules

incorporated in this model are sufficient to produce an adaptive

system and (2) whether the additional use of explicit

communication has any advantage over the indirect

communication for the performance of the system? Answers to

these questions would provide us with a better understanding of

the impact of different types of interactions between the agents

on the performance on the system. The rest of the paper is

organised as follows: Section 2 discusses the mechanisms of

DOL in social insects such as ants. Our model is proposed and

described in Section 3 followed by the experiments and results in

Section 4. Finally, Section 5 concludes the paper with a remark

on our future work.

2 DIVISION OF LABOUR IN EUSOCIAL

INSECTS

Ants are referred to as eusocial insects (insects exhibiting social

behaviours including that of cooperative brood care, overlapping

between generations and division of labour), a term first coined

by E.O. Wilson in 1971 [15; also see 18] while classifying

insects in terms of the social behaviours they exhibit, belonging

to the family of Formicidae of the order Hymenoptera. There are

currently over 12,000 known species of ants having colony size

ranging from a few individuals to over millions. Ants are known

to use simple yet extremely sophisticated communication

mechanisms ranging from recruitment techniques via

pheromones, tandem learning, antennal contact, and even

stridulation [19]. They are extremely small in size (individuals

weigh as little as 5 mg); however their social behaviours allow

them to live at large.

So, what makes these tiny creatures so successful in

effectively running and maintaining colonies some of which are

as big as that of London city (by population)? What strategies

have they embraced that led them to be socially so successful?

Recent researchers [20, 21, 22, 23, 24] have pointed out that it is

their embracement of effective DOL that has allowed them to be

socially so successful.

A. Division of Labour in Ants
Ants are perhaps best known for their ability to effectively

divide a wide range of tasks among the workers. This

phenomenon of dividing tasks among workers is what is termed

as division of labour; a term first introduced by Adam Smith, the

father of modern economics, in his influential book “The Wealth

of Nations” [25]. However, ants are known to have been using

more effective mechanisms of dividing labour for millions of

years. Not only can they divide tasks among groups, they can

rearrange the distribution of workers depending on the need of

the colony or any perturbation caused.

Ants exhibit a wide range of techniques for dividing labour.

These mechanisms can be broadly categorised in three groups

[26]: worker polymorphism, age polyethism and individual

variability.

Worker polymorphism (also called physical castes) arises in

ant colonies (e.g. Atta colombica) that have distinguishable

subcastes within the worker ants [27]. One subcaste differs from

the other one in terms of the size/morphology of the worker ants,

which in turn influence the type of task chosen. For instance in

many ant species major workers, with large head and sharp

mandibles, specialise in tasks that require physical strengths like

guarding nests and transporting food items whereas minor

4 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

workers tend to specialise in lighter tasks such as cleaning the

nest and brood caring.

Some ant species such as Pogonomyrmex barbatus,

Cataglyphis bicolour and Oecophylla smaragdina [24, 28, 29]

tend to carry out tasks depending on their age (age polyethism).

They tend to follow some kind of centrifugal tendency in

selecting the task they carry out with the younger ones working

closer to the centre of the nest and the older ones working more

distant from the nest.

However most of the ant genera carry out tasks depending on

the local cues they receive. Local communications between the

ants influence individuals of which task to be selected.

B. Models of Division of Labour in Ants and

Robots

The last two decades have witnessed the development of a

number of models trying to establish the mechanism of the

selection of tasks in social insects such as ants. These models

differ from each other in many aspects including worker-worker

interactions, genetic basis of task selection, motivational state of

the worker, spatial arrangement of the workers in the nest and

also the learning parameters [30].

Out of these models, one of the most important is the

response threshold model, where agents have different threshold

for different tasks. The agents can also update the values of the

threshold/stimulus to respond to changing demand. Various

versions of response threshold model has been embraced and

developed by the researchers [for further details see 31, 32, 33,

34, 35].

Other promising models in DOL include that of the foraging

for work model (FFW) [36, 37] and that of the learning models

[38, 39, 40] in deciding what task to execute. Recently there has

been enormous interest in using swarms of robots to model and

carry out different tasks. Using SR for such purposes not only

facilitates solving various practical solutions for engineering

problems, it also provides a novel platform for the biologists to

understand animal behaviour better. Biologist Robert Full,

professor at UC Berkeley, describes this association between

biology and another discipline as biomutualism [41].

One of the earliest works in this field was carried out by

Krieger and Billeter in 2000 [42]. They used up to twelve mobile

robots to make autonomous decisions of whether to forage

(collect items from the environment) or rest depending on the

nest energy level which was periodically echoed to the robots.

Wenguo Liu and his colleagues [43, 44] used a threshold based

approach in simulated robots to develop an adaptive threshold

based mechanism to divide the number of foragers and resters so

as to optimise the net energy level of the system. Momen and

Sharkey [17] used ABM to simulate ant colony behaviour within

the realms of heterogeneous groups of robots. They further

investigated the advantages of task switching mechanisms,

exhibited in various colonies of ants, in terms of the net energy

gained by the swarm.

3 Proposed Model

The model proposed in this paper places three types of agents

(mobile foragers, mobile brood carers, and static brood

members) within a 71 × 51 grid in a 2D environment. The model

contains a nest consisting of four separate chambers with brood

surrounded by brood carers whereas foragers mostly reside

outside in the environment (figure 2). Each of the chambers has

its own odour that is spread over the environment.

The nest chamber odours are modelled as falling linearly

from its respective centre of the chamber; thus each of the four

types of smells creates a potential gradient uphill towards the

centre of the chamber. The use of such artificial potential field

technique for navigation has been an extremely popular

approach [45 – 47] in mobile robotics typically in the case of

avoiding obstacles or moving towards a target.

Figure 2. Snapshot of the simulation

 In this model, brood reside at the lowest chamber of the nest.

There is a dump area (DA) located at the entrance of the nest for

the foragers to drop off food and leave it for the brood carers to

pick them up for feeding the hungry brood. Similar spatial

distribution is observed in various ant species [48, 24].

3.1 Behavioural Rules

Different types of agents follow different rules to accomplish

their tasks. There are principally three types of tasks present in

this scenario; foraging, resting and brood caring. Foraging

involves foragers exploring the environment in order to find a

food source, followed by picking up a piece of food, finding its

path back to the dump area of the nest and finally dropping the

food item there. Brood caring involves brood carers picking up

a piece of food from the dump area, locating a hungry brood

member, and feeding it. The resting task involves the agents

(foragers and brood carers) resting within their respective

chambers.

The behavioural rules of the agents are described below:

A. Brood

Each brood member can be in one of the two states: hungry or

non-hungry. Initially all the brood are in the non-hungry state

having a randomised hunger level. At every simulation time step,

the hunger level of each brood member increases by its hunger

Food

Dump

area

Food in the

dump area
Brood

carer

chamber

Brood

chamber Foragers

resting

area

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 5

rate (eq. 1) which is selected randomly (Fig. 3). When the

hunger level of a brood member exceeds some threshold (thh), it

switches its state to hungry, and seeks the attention of the brood

carers by emitting a chemical signal (called shouting chemical

here). The strength of the shouting chemical is modelled to fall

linearly with the distance from the hungry brood member in such

a way that it is at maximum at the location of the hungry brood

member and minimum at the shouting-radius. The strength of the

chemical is zero if the distance from the hungry brood member is

more than the shouting-radius (eq. 3). However, if a hungry

brood member is fed by a brood carer, the hunger level of the

brood decreases by some constant value. If the hunger level at

any time, t, is below the threshold parameter, the brood member

switches its state back to the non-hungry state (eq. 2) (Fig. 4).

Hunger rate distribution

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Brood

H
u
n
g
e
r-

ra
te

Figure 3. Hunger rate distribution across brood members of the

brood in one of the runs

 HRHLHL oldnew += (1)

where 10 ≤≤ HR

 =HS {
ht

ht

thHL

thHL

<

≥

,0

,1
 (2)

Where,

newHL is the new hunger level of the brood member,

oldHL is the previous hunger level of the brood,

HR is the hunger rate of the brood,

HS is the hunger state of the brood; 1 = hungry state and 0 =

non-hungry state,

tHL is the hunger level of the brood at time step t, and

hth is the threshold parameter of the hunger level.

 =SCC {
srx

srxBxA

>

≤−

,0

,
 (3)

where,

SCC is the concentration level of the shouting chemical,

x is the distance from the centre of the hungry brood, and

sr is the shouting radius.

Hunger Level of an individual larva

0

100

200

300

400

500

600

700

800

1 183 365 547 729 911 1093 1275 1457 1639 1821 2003 2185 2367 2549 2731 2913 3095

Simulation step

H
u

n
g

e
r

L
e

v
e

l

Figure 4. Hunger level of a brood member as a function of time

(the reduction of the hunger level is due to being fed by brood

carers)

B. Brood Carers

Brood carers respond to the need of the brood by adjusting their

threshold values depending on stimuli (in this case, the shouting

chemical) they receive (See section 3.2 for detailed description).

Once a brood carer makes the decision to feed a hungry brood

member, it goes to the dump area (DA) of the nest in search of

food. It uses its local sensing to smell the scent of the dump area

at its immediate patch ahead, patch left and ahead and patch

right and ahead. Then the brood carer compares the relative

strength of the scents in the three directions and moves in the

direction of the strongest scent. This simple local interaction

with the environment allows the brood carer to easily locate the

DA. Once it reaches the dump area, it moves randomly within

the DA to find a piece of food and as it finds a piece of food, it

picks up the food item and travels towards the brood chamber in

search of a hungry brood member.

The brood carer finds the brood chamber using the same

technique as that of finding the dump area of the nest. Once a

brood carer reaches the brood chamber, it uses the potential

gradient of the shouting chemical to go uphill in order to locate a

hungry brood member. Once the brood carer successfully locates

a hungry brood member, it feeds it which causes the brood

member’s hunger level to be reduced by the energy provided by

the food item (the simulations presented in this paper assumes

that all the food items provide the same energy).

C. Foragers

Foragers can either forage or rest depending on what is required.

A forager starts its journey by exiting the nest and travelling in a

random direction in search of food. If it finds a food item in the

environment, the forager picks the piece of food up, becomes

laden and goes back to the DA of the nest by following the

potential gradient of the scent of the DA. As it travels back to the

nest, the forager leaves a simulated trail of chemical markers

called pheromones in the environment. Once the forager reaches

the DA, it leaves the food item there, decides if it needs to forage

further or not and if so turns 1800 and starts foraging again. The

decision of whether to further forage or switch to a different task

is explained in Section 3.2.

The simulated pheromone both diffuses and evaporates at

constant rates. When unladen foragers looking for food

encounter pheromones, they use the pheromone trails to go

uphill towards the food source (See figure 2). The concentration

level of pheromone at any of the patches of the environment can

be modelled as in equation 4.

6 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

 ()CCn
dt

dC
L φεβα +−+= /

8

1
 (4)

where,

C is the concentration level of the pheromone at the patch

concerned,

Ln is the number of laden ants passing the patch concerned,

/
C is the cumulative concentration level of the pheromones

of the nearby eight patches,

C is the concentration of the chemical at the patch

concerned,

ε is the evaporation rate of the chemical,

φ is the diffusion rate of the chemical, and

α and β are some constants such that 0,0 >> βα .

Each of the foragers also maintains two types of clocks: a

searching-clock and a resting-clock to track how long it has been

searching for food and resting within its chamber. Every time a

forager switches its task it resets all these clock values so that the

clock values in the previous state do not affect the present state.

D. Obstacle Avoidance by Foragers

Foragers when foraging also actively prevent collision between

each other by turning away from their nearest neighbour when

required. The dynamic obstacle avoidance algorithm is inspired

from the Craig Reynold’s model of the flocking of birds [49;

also see 50]. When an agent gets too close to another agent, it

uses the headings of its nearest neighbour and its own heading to

calculate the angle and the direction to turn in order to prevent

any collision.

3.2 Task Allocation and Task Switching

Algorithm

In this model, the brood create a task demand by emitting the

shouting chemical whereas brood carers and foragers carry out

their tasks, or sometimes switch task, in response to the changing

demand. The environment is extremely dynamic and therefore

the agents need to be flexible enough to meet the changing

demand. For instance if there is no food available in the

environment, the foragers would need to abandon their foraging

task and rest in their designated area to save their energy [17].

Similarly, if the amount of hungry brood increases, some

foragers might need to switch their task and become brood carers

to meet the changing demand. The need for switching in the

other direction might also arise if there is not enough food in the

DA when the brood carers need to feed the brood. In that case,

some brood carers might decide to change their task to foraging

to assist the existing foragers. However, it is also important that

the agents are not too flexible. Otherwise a slight change in the

demand might cause all the agents to switch to the same task

which would not be a desirable outcome. In order to prevent this,

there is a need for some sort of “natural queue” that would allow

appropriate task switching, and avoid the problem of all the

foragers and brood carers switching to the same task. A

threshold based mechanism [34] facilitates such a “natural

queue”, and provides the key motivation for embracing this

technique.

Foragers and brood carers between them carry out three tasks

namely (1) foraging, (2) brood caring and (3) resting as well as

deciding which task to carry out next (Figure 5).

Figure 5. Schematic Diagram of the task allocation model of an

agent

Every mobile agent maintains three types of thresholds:

threshold for foraging (tf), threshold for resting (tr) and threshold

for brood caring (tbc) and updates them on the basis of events

encountered. In a threshold based mechanism, the threshold

value for a particular task of an agent is decreased when the

agent encounters a stimulus for the task. Thus, over the course of

time the threshold value for a task decreases significantly if

exposed to greater stimuli for the task. The probability of an

agent carrying out a particular task is modelled to vary inversely

with the threshold value of the task and the threshold values are

updated based on the events encountered; thus enabling agents to

adapt to the changing demand.

We use a simple but effective principle for updating the

thresholds. The threshold value for a particular task is decreased

if the agent has either successfully completed the task or has

received a stimulus for that task. On the other hand, the threshold

value for the task is increased if either it has been unsuccessful

in carrying out the task or hasn’t experienced a stimulus for a

long time (equation 5). This allows an agent to adapt to the

dynamic system and react accordingly. Table 1 illustrates the

adaptation rules for the agents.

 ∆±= bcrfbcrf tt ,,,, (5)

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 7

 where ∆ is the adaptation rate i.e. the rate at which the

agents update their threshold values.

The threshold values are bound between two threshold

bounds: an upper threshold bound and a lower threshold bound.

If the threshold value becomes more than the upper threshold

bound, it resets the threshold value of the task equal to the upper

threshold bound.

Event Which

Agent?

Action Remarks

Shouting

chemical

perceived

ALL except

brood

tbc decreases There is a

demand for

feeding the

brood

Food at DA <

lower

threshold of

food in DA

ALL except

brood

tf decreases, tr

increases

There is less

food in DA.

Therefore

more food is

Required

Food at DA >

upper

threshold of

food in DA

ALL except

brood

tf increases, tr

decreases, tbc

decreases

There is

sufficient

food in DA.

Brood carers

looking for

food in DA

too long

Brood carers tf decreases,

tbc increases

There is

insufficient

food in DA

Foragers

searching too

long for food

Foragers tf increases, tr

decreases

There might

not be

enough food

in the

environment

Resting too

long inside

The chamber

Foragers tf decreases, tr

increases

There might

be a need for

foraging

instead

Resting too

long inside

the chamber

Brood Carers tr increases Should look

out for other

tasks

Successful

retrieval of

food

Foragers tf decreases There might

be some more

food out in

the

environment

Table 1. Adaptation Rules for the agents

Similarly, if the threshold value falls below the lower

threshold bound, the threshold for the task is reset to be equal to

the lower threshold bound. The task with lowest threshold is

selected with some probability.

3.3 Indirect versus Explicit

 Communication

The effect of two different forms of communication, (i) indirect,

and (ii) explicit, are compared here. In the indirect case, the

agents carry out tasks and update their thresholds as outlined in

Table 1. They do not explicitly communicate among themselves.

Such communication techniques are what we call indirect

communication. In explicit communication, ants briefly

communicate about their status when they are close (either the

distance between the agents is less than one body length or they

are present at the DA to sense how much food is available there).

This is inspired by the observation that in many ant species (e.g.

the red harvester ants Pogonomyrmex barbatus) where when two

ants are extremely close, they communicate with each other

using their antennae to determine what task the other ant is

carrying out by accessing their cuticular hydrocarbon profile

[51].

In our model, if agents are communicating explicitly, not only

do they follow the rules outlined in Table 1., they also follow

two further rules: (1) If agents perceive the shouting chemical,

then for a brief period of time, they explicitly pass on

information about the shouting chemical to other agents they

encounter with, causing those agents to reduce their tbc., (2)

Similarly, if the amount of food in the dump area becomes less

than the lower threshold of food in DA (the agents perceive the

amount of food in DA by the chemical strength of the food in

DA), the agents who perceive this would pass on information

(for a brief period of time) to other agents they encounter about

this incident which causes the agents to reduce their tf.

4 Experiments and Results

Each simulation runs 20 times using the behavioural rules

discussed in section 3 for 5000 simulation time steps. For every

run, the following readings are recorded after the 5000th

simulation time step: the number of agents (1) foraging, (2)

brood caring and (3) resting, (4) the number of food items left at

the DA, (5) the initial hunger level i.e. the hunger level at

0=t and (6) the final hunger level i.e. the hunger level at

5000=t and their mean is evaluated after the 20 runs. The

hunger level, here, is the cumulative hunger level per unit brood

member, which is used to measure the performance of the

system and is calculated using the equation 6.

b

brood

nA

HL

levelhunger
×

=
∑

∀
 (6)

Where, HL is the hunger level of each brood member (as

mentioned in Section 3), A is some constant (for experimental

purposes 500== hthA [also refer to equation (2)]) and bn is

the number of brood. Figure 6 shows a typical curve for

HL with respect to time.

Cumulative Hunger Level per unit brood

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

1
4
0

2
7
9

4
1
9

5
5
8

6
9
8

8
3
7

9
7
7

1
1
1
6

1
2
5
6

1
3
9
5

1
5
3
5

1
6
7
4

1
8
1
4

1
9
5
3

2
0
9
3

2
2
3
2

2
3
7
2

2
5
1
1

2
6
5
1

2
7
9
0

2
9
3
0

3
0
6
9

3
2
0
9

3
3
4
8

Simulation Steps

H
L

Figure 6. A typical HL curve as a function of time

8 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

The following analyses the two questions posed earlier i.e. (1)

whether the behavioural rules of the agents mentioned here result

in a system that can adapt to the changing demand?, and (2)

whether the employment of explicit communication results in an

improvement over the indirect communication with respect to

the performance of the system?

A. Is the system adaptive?

One of the key motivations for taking inspiration from living

swarm systems is that these systems are highly adaptive and

flexible. In SR and other engineering applications of swarm

intelligence, the design of such adaptive system is extremely

crucial.

In this situation, it is necessary that foragers and brood carers

continuously change their tasks in order to meet the changing

demand[17,18]. This can be best investigated by analysing how

the ratio of the two types of workers varies with the change in

the demand. Figure 7 shows three curves plotted over the

simulation time steps; red line at the top indicating the amount of

food present in the dump area, violet line the number of hungry

brood while the black line draws the ratio of the number of

foragers to that of the brood carers. Initially there was no hungry

brood and the amount of food in the DA was adequate; hence no

demand was there. As a result, the ratio of the two types of

workers did not need to be adjusted and hence remained

constant. However, a demand for food by the brood instigates

some foragers to switch their tasks to brood carers and assist

other brood carers in feeding the brood. As the number of

hungry brood members continues to increase and the amount of

food in the DA continues falling it triggers more mobile agents

to take up the foraging task in order to meet the demand.

Figure 7: Switching of tasks between foragers and brood carers

B. Explicit Communication versus Indirect

Communication

To compare and investigate the impact of using explicit

communication and that of the indirect communication on the

performance of the system and also to investigate whether

explicit communication has any significant improvement in

terms of the performance of the system over that of the indirect

communication, the number of brood members is varied between

5 and 20 and for each of these cases, the experiment is repeated

20 times. The mean hunger level is then calculated. The

experiment is repeated for both the conditions (i.e. with explicit

and indirect communication). Table 2 and figure 8 depict the

results obtained.

Number of brood Mean Hunger

Level (with

Explicit comm.)

Mean Hunger

Level (with

Indirect comm.)

5 1.031596 1.155916

10 1.245766 1.680475

15 1.470009 2.128418

20 1.796184 2.305359

Table 2. Mean Hunger level

Mean Hunger Level

0

0.5

1

1.5

2

2.5

5 10 15 20

Number of Brood

M
e
a
n

 H
u

n
g

e
r

L
e
v
e
l

w/o direct communication

with direc communication

Figure 8. Variation of mean hunger level with the number of

brood

Figure 8 shows that as the size of the brood increases, the

mean hunger level also increases. More intriguingly, the mean

hunger level in the explicit communication in general tends to be

lower than the one where indirect communication has been used

indicating that the system performance is improved by the

inclusion of explicit communication. Regression analysis reveals

that the slope of the graph (i.e. the rate of the mean hunger level

with respect to the size of the brood) in indirect communication

is 1.4 times greater than that in the explicit communication

indicating that the performance keeps on improving with explicit

communication with the size of the brood. Furthermore, a

statistical t test with 95% confidence reveals that the dataset with

explicit communication is significantly different from that with

indirect communication except when the number of brood = 5

where the mean hunger levels for the two sets of experiment are

not significantly different.

C. Performance of the System

Performance is measured in terms of the mean hunger level of

the brood members. The higher the mean hunger level is, the

lower is the performance of the system and vice versa. If the

simulation is run for considerable time, the mean hunger level

stays greater than 1. The performance of the system in

percentage (%) is calculated using equation (7) [Also see

equation (6)].

∑
−∀

××
==

membersbrood

b

HL

nA

levelhunger
P

100100
 (7)

Figure 9 shows the performance of the system for both

explicit and indirect communication and indicates that the

performance of the system is always better with the explicit

communication than that of indirect communication.

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 9

Figure 9: Performance of the system

5. Conclusions and Future Work

We have presented a task allocation and task switching model

for a simulated swarm of autonomous mobile robots. The model

employs a threshold based approach for adapting to changing

demands and is strongly inspired by the behaviour of eusocial

insects. Simple local rules have been developed for the agents

that allow them to self organise and adapt to the changing

environment as needed by the colony. Furthermore two

communication techniques (indirect and explicit

communications) have been presented and compared. Both the

techniques work well in terms of responding to the changing

demand; however empirical investigation shows that agents

engaged in explicit communication work better than that of the

ones engaged with indirect communication. Future work will be

based on carrying out experiments to see the impact of the food

availability and the swarm size on the performance as well as the

robustness of the system. We also plan to develop a hybrid

system of specialised and generalised agents to see if such

system has any advantage(s) over the ones presented here.

REFERENCES

[1] D.J.T. Sumpter. The principles of collective animal behaviour. Phil.

Trans. R. Soc. 361:5-22 (2006).

[2] S.Camazine, J.L.Deneubourg, N.R.Franks, J.Sneyd, G.Theraulaz,

E.Bonabeau. Self-organization in biological systems. Princeton

University Press (2001).

[3] W.Hamilton. Geometry of the selfish herd. Journal of theoretical

biology. 31:295-311 (1971).

[4] J. Krause and G.D. Ruxton. Living in groups. Oxford University

Press (2002)

[5] D.Helbing, P.Molnár, I.J.Farkas, K.Bolay. Self-organizing pedestrian

movement. Environment and Planning B: Planning and Design.

28:361-383 (2001).

[6] D.J. Daley and D.G. Kendal. Stochastic Rumours.

J.Inst.Maths.Applics. 1:42-55 (1965).

[7] Z.Neda, E.Ravasz, Y.Brechet, T.Vicsek, A.L.Barabasi. The sound of

many hands clapping. Nature. 403:849 (2000).

 [8] Z.Neda, E.Ravasz, T.Vicsek, Y.Brechet, A.L.Barabasi. Physics of

the rhythmic applause. Phys. Rev. E 61:6987-6992 (2000).

[9] M.Resnick. Turtles, termites and traffic jams: exploration in

massively parallel microworlds. MIT Press Paperback edition (1997).

[10] A.Senghas and M.Coppola. Children creating language: How

Nicaraguan sign language acquired a spatial grammar. Psychological

Science. 12:323-328 (2001).

[11] A.J.C. Sharkey. Swarm Robotics and Minimalism. Connection

Science. 19(3):245-260 (2007)

 [12] A.J.C. Sharkey. Robots, Insects and Swarm Intelligence. Artificial

Intelligence Review. 26:255-268 (2006).

[13] G.Beni. From Swarm Intelligence to Swarm Robotics. In Swarm

Robotics (Eds) Erol Şahin and W.M. Spears. LNCS 3342. 10-20

(2005)

[14] G.Beni and J.Wang. Swarm intelligence in cellular robotic systems.

Proceeding of NATO Advanced, Workshops on Robots and

Biological Systems (1989).

[15] E.O. Wilson. The Insect Societies. Belknap Press of Harvard

University Press. Cambridge, Massachusetts London, England

(1971).

[16] S. Momen and A.J.C. Sharkey. An ant-like task allocation model for

heterogeneous groups of robots. IUSSI 2008: 4th European Meeting

of the International Union for the Study of Social Insects. La Roche-

en-Ardenne, Belgium 117 (2008).

[17] S.Momen and A.J.C. Sharkey. An ant-like task allocation model for

a swarm of heterogeneous robots. SIAAS 2009, AISB convention.

Edinburgh, Scotland 31-38 (2009).

[18] S.Momen and A.J.C. Sharkey. Strategies of division of labour for

improving task efficiency in multi-robot systems. IEEE World

Congress on Nature and Biologically Inspired Computing

(NABIC’09), Coimbatore, India 672 – 677 (2009).

[19] D.E. Jackson and F.L.W. Ratnieks. Communication in ants. Current

Biology. 16:570-574 (2006).

[20] R.Jeanson, J.F.Fewell, R.Gorelick, S.M.Bertam. Emergence of

increased division of labour as a function of group size. Behav. Ecol.

Sociobiol. 62:289-298 (2007)

[21] C.Anderson and D.W. McShea. Individual versus social complexity,

with particular reference to ant colonies. Biol. Rev. 76:211-237

(2001).

[22] B. Hölldobler and E.O.Wilson. the ANTS. Belknap Press of

Harvard University Press. Cambridge, Massachusetts London,

England (1990).

[23] B. Hölldobler and E.O.Wilson. The Super-organism: The Beauty,

Elegance and Strangeness of Insect Societies. W.W. Norton (2008).

[24] A.F.G. Bourke and N.R. Franks. Social Evolution in Ants.

Princeton University Press. (1995).

[25] A. Smith. The Wealth of Nations. Books I-III. Reprinted: 1986.

Penguin, Harmondsworth, UK (1776)

[26] E. Bonabeau, M.Dorigo, G.Theraulaz. Swarm Intelligence: From

Natural to Artificial Systems. Oxford University Press. (1999).

[27] G.F. Oster and E.O.Wilson. Castes and ecology in social insects.

Princeton University Press, Princeton. (1978).

[28] D.M. Gordon and B. Hölldobler. Worker longevity in harvester

ants. Psyche. 94:341-346 (1987).

[29] K.K. Ingram, P.Oefner, D.M. Gordon. Task-specific expression of

the foraging gene in harvester ants. Molecular Biology. 14:813-818

(2005).

[30] S.N. Beshers. Models of division of labour in social insects. Annu.

Rev. Entomol. 46:413-440 (2001).

[31] R.E. Page and S.D. Mitchell. Self organization and adaptation in

insect societies. In PSA vol. 2 (Eds) A. Fine, M.Forbes, L.Wessels.

East Lansing MI: Philos. Sci. Assoc. 289-298 (1991).

[32] R.E. Page and S.D. Mitchell. Self organization and the evolution of

division of labour. Apidologie. 29: 171-190 (1998).

[33] G.E. Robinson and R.E. Page. Genetic basis for division of labour

in an insect society. In The Genetics of Social Evolution (Eds) M.E.

Breed and R.E. Page. 61-80 (1989).

[34] E. Bonabeau, G. Theraulaz, J.L. Deneubourg, Quantitative study of

fixed threshold model for the regulation of division of labour in

insect societies. Proceedings of the Royal Society of London B.

263:1565-1569 (1996).

[35] E.Bonabeau, G.Theraulaz, J.L.Deneubourg. Fixed response

threshold and regulation of division of labour in insect societies. Bull.

Math. Biol. 60:753-807 (1998).

[36] C.Tofts. Algorithms for task allocation in ants (a study of temporal

polyethism: theory). Bull Math. Biol. 55:891-918 (1992).

[37] C.Tofts and N.R. Franks. Doing the right thing – ants, honeybees

and naked mole-rats. Trends Ecol. Evol. 7:346-349 (1993).

[38] T.H. Labella. Division of labour in groups of robots. PhD thesis.

Universite Libre de Bruxelles (2007).

Performance

0

20
40

60

80
100

120

5 10 15 20

Size of Brood

P

Explicit

Indirect

10 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

[39] T.H. Labella, M.Dorigo, J.L. Deneubourg. Efficiency and task

allocation in prey retrieval. BioADIT 2004 (Eds) A.J. Ijspeert et.al.

LNCS 3141 274-289 (2004).

[40] J.L.Deneubourg, S.Goss, J.M.Pasteels, D.Fresneau, J.P. Lachaud.

Self-organization in ant societies (III): Learning in foraging and

division of labour. In From individual to collective behaviour in

social insects (Eds) J.M. Pasteels and J.L. Deneubourg. Experentia

Supplementum. 54: 177-196 (1987).

[41] R. Full. Learning from the Gecko’s tail. TED talk.

http://www.youtube.com/watch?v=d3syTrElgcg&feature=channel.

(2009).

[42] M.J.B. Kreiger and J.B. Billeter. The call of duty: Self organised

task allocation in a population of up to twelve mobile robots.

Robotics and Autonomous Systems. 30:65-84 (2000).

[43] W. Liu, A.F.T. Winfield, J.Sa, J.Chen, L.Dou. Towards energy

optimisation: Emergent task allocation in a swarm of foraging robots.

Adaptive Behaviour. 15(3):289-305 (2007).

[44] W. Liu, A.F.T. Winfield, J.Sa, J.Chen, L.Dou. Strategies for energy

optimisation in a swarm of foraging robots. (Eds) E. Şahin, W.

Spears and A.F.T. Winfield. Swarm Robotics 2006. LNCS 4433. 14-

26 (2007).

[45] J.H. Chuang. Potential based modelling of three-dimensional

workspace for obstacle avoidance. IEEE Transactions on Robotics

and Automation. 14(5): 778-785 (1998).

[46] O. Khatib. Real-time obstacle avoidance for manipulators and

mobile robots. Proc. IEEE ICRA. 500-505 (1985).

[47] I.Mir, B.P. Amavasai and S. Meikle. Incremental perception in

robotic swarms. IEEE INMIC ’06. 427-432 (2006).

[48] D.M. Gordon. Ants at work: how an insect society is organized. The

Free Press (1999).

[49] C.W.Reynolds. Flocks, herds and schools: a distributed behavioural

model. Computer Graphics. 21:25-33 (1987).

[50] S.Momen, B.P. Amavasai, N.H.Siddique. Mixed species flocking

for heterogeneous robotic swarms. IEEE Eurocon 2007: The

International Conference on Computer as a tool. 2329-2336 (2007).

[51] M.J. Greeene and D.M. Gordon. Social Insects: Cuticular

hydrocarbons inform task decisions. Nature. 423:32 (2003).

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 11

Application of CACS approach for distributed logistic

systems

Sami AL-MAQTARI
1
, Habib ABDULRAB

1
, Eduard BABKIN

1

2

Abstract. The article offers original approach which is called

Controller Agent for Constraints Satisfaction (CACS). That

approach combines multi-agent architecture with constraint

solvers in the unified framework which expresses major features

of Swarm Intelligence approach and replaces traditional

stochastic adaptation of the swarm of the autonomous agents by

constraint-driven adaptation. We describe major theoretic,

methodological and software engineering principles of

composition of constraints and agents in the framework of one

multi-agent system, as well as application of our approach for

modelling of particular logistic problem. 12

1. INTRODUCTION

Simultaneous rapid grow of logistics market in different regions

of the world [1, 2], and its important role in modern economy

require wide application of logistics information and

management systems for coordinated planning and control.

Distributed organizational structure and application of holonic

management principles in modern organizations inevitably

determine distributed and autonomous features of information

systems supporting logistic operations [5]. In such kinds of the

systems it is very difficult to apply usual centralized approaches

and algorithms for decision support and optimization.

Swarm Intelligence [3, 4] represents one of the interesting

paradigm for maintaining self-organization and control in the

distributed systems. One of the principal aspect of the swarm-

oriented distributed intelligent systems is presence of multiple

intellectual and autonomous particles which interact with each

other in some way. As it is started in [4]: ‖Swarm is a population

of interacting elements that is able to optimize some global

objectives thought collaborative search in space‖.

Different projects offered approaches for practical application

of Swarm Intelligence paradigm in the form of multi-agent

systems [6, 28, 30]. Although some of them (i.e. [28]) offer a

formal framework for declarative expression and analysis,

researchers and practitioners still lack proper generic methods

for engineering of the multi-agent systems which have such

properties of Swarm Intelligence as emergent behavior, peer-to-

peer communication, etc.

Analysis of known logistic problems and algorithms shows

that in the domain of applied logistics and optimization general

principles of swarm-oriented organization may be realized using

proper combination of multi-agent systems (MAS) and

constraints satisfaction approach (CSP). So, in this research we

1
 LITIS Laboratory, INSA Rouen, France. Email: {almaqtari,

abdulrab}@insa-rouen.fr.
2
 TAPRADESS Laboraotry, State University – Higher School of

Economics, Nizhny Novgorod, Russia. Email: eababkin@hse.ru.

pursue the goal to offer a new mechanism of emergent multi-

agent behaviour for collaborative search of some feasible

solution in accordance with certain inter-agent constraints. In

terms of Swarm Intelligence research we replace stochastic

adaptation of the swarm of the autonomous agents by constraint-

driven adaptation.

In our research we try to satisfy such important requirements

of Swarm Intelligence as self-organization and dynamic

adaptation to evolving internal or external conditions. Existing

approaches to combination of MAS and CSP like [16, 17, 32] do

not provide much flexibility and support of dynamic

modification of the combined structure of agents and

constraints. That’s why in this article we propose an original

approach which offers a solution for dynamic modification of the

combined structure of agents and constraints. Our approach,

which was called CACS (Controller Agent for Constraints

Satisfaction), allows for joint exploitation of attractive features

of the paradigm of multi-agent systems (MAS) and the paradigm

of distributed constraint satisfaction (DCSP).

This paper extends and combines our earlier work on joint

application of MAS and DCSP paradigms [33, 34]. We describe

major theoretic, methodological and software engineering

principles of composition of constraints and agents in the

framework of one multi-agent system, as well as application of

our approach for modelling of particular logistic problem.

The paper is organized as follows. In Section 2 we give

background information about MAS and DCSP for better

understanding of scientific and technological foundations of our

research. In Section 3 we describe main principles of CACS

approach. Section 4 contains description of software architecture

and implementation principles for software prototype which

supports proposed CACS approach. The same section contains

overview of used 3d party software platforms. Section 5

describes proposed methodology of practical application of

CACS during design and development of DSS. In Section 6 we

give overview of the application in ship loading logistics based

on CACS prototype. We discuss the achieved results and provide

directions for future work in Section 7.

2. FOUNDATIONS OF MAS AND DCSP

Paradigm of swarm intelligence is very often and naturally

implemented on the basis of multi-agent systems. These systems

express major features of collective intelligence [7, 8, 9] and

represent the model of problem in terms of autonomous entities

that live in a common environment and who share certain

resources. The interactions between these individual entities

induce cognitive abilities of the whole. Despite multiple-domain-

oriented peculiarities majority of multi-agent systems has several

significant common features:

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 13

• A limited and local view: every entity has a partial and local

knowledge of its environment.

• A set of simple rules: each entity follows a set of simple rules.

• The interactions are manifold: each individual entity has a

relationship with one or more other individuals in the group.

•The emerging structure is useful to the community: different

entities are a benefit to work (sometimes instinctively) and their

performance is better than if they had been alone.

From these points of view, the paradigm of multi-agent

systems seek to simulate the coordination of autonomous entities

called agents that represent individuals in their community. An

agent is an entity that can be viewed as perceiving and acting

independently in its environment. According to J. Ferber [10]

"One agent called a physical or virtual:

1) which can act in an environment,

2) that can communicate directly with other agents,

3) which is driven by a set of trends (in the form of individual

objectives or function of satisfaction and even survival, it

seeks to optimize),

4) which has its own resources,

5) which is able to collect (but limited) its environment,

6) which has only a partial representation of this environment

(and possibly none),

7) has expertise and provides services,

8) which may be repeated,

9) whose behavior tends to meet its objectives, taking into

account the resources and skills available to it and according

to its perception, its representations and the communications

it receives. "

Given such definition of the agent, we can define a multi-

agent system as a set of agents located in a certain environment.

They share some common resources, and they interact with each

other either directly or indirectly (via their effects on the

environment). They seek to achieve the goals of individual

agents in the interest of all. The multi-agent systems have

applications in the field of artificial intelligence, where they

reduce the complexity of solving a problem by dividing the

necessary knowledge into sub-units, involving an intelligent

agent independent at each of these sub - sets and coordinating

the activity of these agents [10].

Because general definitions of inter-agent interaction are too

vague we need to apply more strict and formal conventions to

express allowable methods of communication between agents.

Paradigm of constraints satisfaction, particularly distributed

constraints satisfactions, offers flexible and convenient

foundations to do this.

 The paradigm of constraints satisfaction provides a generic

method for declarative description of complex constrained or

optimization problems in terms of variables and constraints [12,

13]. Formally, a Constraint Satisfaction Problem (CSP) is a triple

(V, D, C) where:

There is V = {v1, …, vn} is a set of n variables,

a corresponding set D = {D(v1), …, D(vn)} of n domains from

which each variable can take its values from,

and C = {c1, …, cm} is a set of m constraints over the values of

the variables in V. Each constraint ci = C(Vi) is a logical

predicate over subset of variables Vi ⊆ V with an arbitrary arity

k : ci (va, …, vk) that maps the Cartesian product

D(va) × … × D(vk) to {0, 1}. As usual the value 1 means that the

value combination for va, …, vk is allowed, and 0 otherwise.

Constraints involving only two variables are called binary

constraints [14]. A binary constraint between xi and xj can be

denoted as cij. Although most of real world problems are

represented by non-binary constraints, most of them can be

transformed into binary ones using some techniques such as the

dual graph method and hidden variable method [15]. Translating

non-binary constraints into binary ones allows processing the

CSP using efficient techniques adapted only for binary

constraints. However, this translation implies normally an

increase in number of constraints.

A solution for a CSP is an assignment of values for each

variable in V such that all the constraints in C are satisfied. A

single solver supports the tasks of collecting all data of the

problem: variables, domains and constraints. It treats all such

information in a centralized manner.

A Distributed Constraint Satisfaction Problem (DCSP) is a

CSP where the variables are distributed among agents in a Multi-

Agent System and the agents are connected by relationships that

represent constraints. DCSP is a suitable abstraction to solve

constrained problems without global control during per—to-peer

agent communication and cooperation [16]. A DCSP can be

formalized as a combination of (V, D, C, A, ∂) described as

follows:

V, D, C are the same as explained for an original CSP,

A = {a1, …, ap} is a set of p agents,

and ∂ : V → A is a function used to map each variable vj to its

owner agent ai.

Each variable belongs to only one agent, i.e.

∀ v1, …, vk ∈ Vi ⇔ ∂ (v1) = … = ∂ (vk) where Vi ⊂ V represents

the subset of variables that belong to agent ai. These subsets are

distinct, i.e. V1 ∩ … ∩ Vp = ∅ and the union of all subsets

represents the set of all variables, i.e. V1 ∪ … ∪ Vp = V. The

distribution of variables among agents divides the set of

constraints C into two subsets according to the variables

involved within the constraint. The first set is the one of intra-

agent constraints Cintra that represent the constraints over the

variables owned by the same agent

Cintra = {C(Vi) | ∂ (v1) = … = ∂ (vk), v1, …, vk ∈ Vi}.

The second set is the one of inter-agent constraints Cinter that

represents the constraints over the variables owned by two or

more agents. Obviously, these two subsets are distinct

Cintra ∩ Cinter = ∅ and complementary Cintra ∪ Cinter = C.

The variables involved within inter-agent constraints Cinter are

denoted as interface variables Vinterface. Assigning values to a

variable in a constraint that belongs to Cinter has a direct effect on

all the agents which have variables involved in the same

constraint. The interface variables should take values before the

rest of the variables in the system in order to satisfy the

constraints inside Cinter firstly. Then, the satisfaction of internal

constraints in Cintra becomes an internal problem that can be

treated separately inside each agent independently of other

agents. If the agent cannot find a solution for its intra-agent

constraints, it fails and requests another value proposition for its

interface variables. To simplify things, we will assume that there

are no intra-agent constraints, i.e. Cintra = ∅. Therefore, all

variables in V are interface variables V = Vinterface.

Many techniques are used to solve DCSPs. In general the

technique proposes a distributed algorithm which is executed by

14 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

agents that communicate by sending and receiving messages. In

general, the messages contain information about assignments of

values to variables and rebuttals trust by employees who have no

purpose compatible with their own variables. Mainly we mention

the Asynchronous Backtracking (ABT) algorithm that was

proposed by М. Yokoo [17] and some of its alternatives [18, 19,

20]. These approaches are designed mainly for the treatment of

non-binary constraints, however most systems of real constraints

are non-binary. Only a few modifications, like [21], were

proposed to handle non-binary constraints in the dynamic

organization of agents.

3. FUSION OF MAS AND DCSP IN CACS

APPROACH

In order to avoid shortcomings of known DSCP methods and

propose new principles of combination between MAS and DCSP

we developed several software engineering methods and

algorithms which comprise a new approach for developing DSS.

This approach was called Controller Agent for Constraints

Satisfaction (CACS). Based on the ABT Algorithm of M. Yokoo

[17] CACS approach introduces two types of agents in MAS:

Variables’ Agent and Controller Agent.

In one hand, a Variables’ Agent holds one variable or more. It

chooses its values and proposes these values to Controller

Agents. On the other hand, Controller Agent encapsulates inter-

agents constraints over these variables. Each Controller Agent

holds one constraint or more and validates the propositions

received from Variables’ Agents.

Constraints

Agents

X1, X2

 X3

X7

X6X4, X5

X2 + X7 < X1

a)

Variables’ Agents

b)

Controller

Agents

Figure 1. A constraint network example: a) without or b) with

Controller Agent

We can see in Figure 1 (a) an example of constraint network

where Variables’ Agent are inter-connected by arcs which

represent constraints. These inter-agent constraints are

encapsulated in Figure 1 (b) by Controller Agents. The same

network can be modified as in Figure 2 by grouping some inter-

agent constraints inside a controller agent. With this ability, we

can change the scale of constraints grouping from total

distribution to total centralization. The problem can vary from

designating a controller agent for each constraint to total

centralizing by gathering all constraints inside one central

controller agents.

Variables’ Agents

Controller

Agents

Figure 2. Grouping constraints inside Controller Agents.

For abbreviation purposes we will use the term VAgent to

refer to Variables’ Agents and CAgent to refer to Controller

Agents. In fact, these terms are used as the name of classes used

in the implementation of the prototype. The complete DCSP is

formulated in terms of VAgents and CAgents. The solution of

the problem is seeking during communication between these

types of agents. The proposed algorithm of communication is

divided into two stages: (1) domain reducing stage and (2) value

proposing and validating stage. These stages are explained as

follows:

A. Domain reducing stage
This stage assures constraints consistence by preprocessing

variables’ domains. The results are reduced domains by

eliminating values that would be surly refused by them. This is

done as follows:

1. A VAgent sends information concerning the domain of its

variable to all linked CAgents. The message takes the form

of (variable, domain).

2. After receiving the domains of all variables involved in its

constraint, the CAgent uses consistency algorithms [22] in

order to reduce these domains to new ones according to its

local constraint(s). Then, the controller sends these domains

back to their VAgents.

3. Every VAgent receives the new domains sent by CAgents

and combines them (by the intersection of received

domains) in order to construct a new version of its variable

domain.

4. If any new version of a variable domain was empty then we

can say that this DCSP is an over-constrained problem [23]

where no solution can be found. In this case, the system

signals that no solution was found (failure). As a

prospective, another solution can be investigated by using

constraints relaxation [23, 24], in which a VAgent returns

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 15

to an older version of the domain and reconstruct a new

version after neglecting the domains sent by the CAgent

that represents the soft constraints that the system may

violate according to certain constraint hierarchy [23]. On

the other hand, if all variables end with single-value

domains then one solution is found. Otherwise, the domain

reducing stage is repeated as long as we obtain a different

new version of a variable domain. When domain reducing

is no longer possible (no more change in variables’

domains), we can proceed to the next stage.

The result of the domain reducing stage may be one of the

three following kinds: 1) The domain of a variable is reduced to

an empty field. Having at least one empty domain for a variable

means the problem is over-constrained. If there is no solution

that satisfies all the constraints and which contains a value for

this variable. 2) The former is reduced to a new domain. This

reduction may be the result of responses to a controller or more.

This change must be propagated to other controllers. For this, the

final stages must be repeated. 3) No change in the domain for

this particular variable. In this case, we are faced with two

situations: a) there are no changed domains at all. This means

that the stage is over and we can proceed with the next stage. b)

a change to succeed because of the spread of change in the

domain of other variables. These variables can be linked directly

or indirectly to the variable concerned.

A. Value proposing and validating stage
In this stage VAgents make their propositions of values to

related CAgents to be tested. Value proposing can be considered

as a domain information message in test mode. A test mode

means that when a ―no-solution‖ situation occurs because of a

proposition the system backtracks to the last state before that

proposition. This proceeds as follows:

1. From now on, every VAgent starts instantiating values for

its variable according to the new domains. It sends this

proposition to the related CAgents.

2. The CAgent chooses the value received from the VAgent

with the highest priorities. This value is considered as a

domain with a single value. CAgent uses consistency

algorithms as in the previous stage to reduce other

variables’ domains. These new domains are sent to their

VAgents to propagate domains change. This step may be

viewed as a distributed form of forward checking in an

enhanced backtracking algorithm.

3. Like in the previous stage, if all variables end with single-

value domains then one solution is found. Unlikely, if the

result of this propagation was an empty domain for any

variable then the proposed value is rejected and another

value is requested. If no more value can be proposed then

system signals a no-solution situation to user.

4. If the result of the domain propagation was some new

reduced domains with more than one value then steps 1-3

are repeated recursively with the value proposed by the

VAgent that have the next priority.

The second stage involves one of three situations: 1) The

proposed value is rejected if the spread of this value gives an

empty domain for one variable at least. The refusal of a value

involves retraction of the former domain and demand for another

value. 2) Otherwise, the proposed value is accepted and

distributed among the agents. The proposal and validation of

values for the other variables continue recursively. 3) If there are

more values to be proposed for a variable, the value proposed by

the agent who has a higher priority is denied. The algorithm ends

in failure when the agent has more priority over proposals valid.

Let’s consider an example of MAS where three variables x, y,

z with original permitted domain {0, 1, 2} are distributed on

three VAgents A1, A2 and A3, and two constraints exist: x ≠ y

and x + y < z. These constraints are placed into two CAgents C1

and C2.

domain

(x,{0, 1, 2})

x
{0, 1, 2}

A1

z
{0, 1, 2}

A3

y
{0, 1, 2}

A2

x ≠ y

C1

x + y < z

C2

domain

(y,{0, 1, 2})
domain

(z,{0, 1, 2})

x
{0, 1, 2}

A1

z
{0, 1, 2}

A3

y
{0, 1, 2}

A2

x ≠ y

C1

x + y < z

C2

domain

(z,{1, 2})

domain

(x,{0, 1})

domain

(y,{0, 1})

domain

(x,{0, 1})

domain

(y,{0, 1})

Figure 3. Illustration of domain reducing stage of CACS.

During the first stage of CACS (fig.3) three agents A1, A2 and

A3 are sending the domain { 0, 1, 2} for the three variables x, y

and z respectively agents C1 and C2. C1 tries to reduce the

domains of x and y. Obviously, no change is possible. On the

contrary, the agent C2 changes the domains of variables x and y

in {0, 1} and the domain of z in {1, 2}. This change will be

propagated to the agent C1 which returns the same domains for

variables x and y (i.e. {0, 1}). The domain reducing stage

finishes with the domain {0, 1} for the variables x and y and the

{1, 2} for the variable z.

16 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

ok? (x, 1)

ok? (y, 0) ok? (z, 1)

x
{0, 1}

A1

z
{1, 2}

A3

y
{0, 1}

A2

x ≠ y

C1

x + y < z

C2

x
{0, 1}

A1

z
{1, 2}

{2}

A3

y
{0, 1}

{0} A2

x ≠ y

C1

x + y < z

C2

domain

(y,{0})

domain

(z,{2})

Figure 4. Illustration of value proposing and validating stage of

CACS.

During the second stage (fig.4), algorithm will assign

priorities to the agents A1, A2 and A3 according to their index.

So the agent A1 will have the highest priority, and the agent A3

will have the lowest priority. Suppose that the agent A1 proposes

value 0 for the variable x to the agents C1 and C2. C1 treats this

value as the domain {0} and reduces the domain of the variable

y to {1}. The spread of this new domain reduces the domain of

the variable z to {2}. A2 tries to offer as the value 0 for variable

y. His proposal will be of lower priority than the agent A1 and

will be refused because they are inconsistent. The same result is

obtained for any other value.

According to the results of the first and second stages, we can

say that the CACS algorithm solves DCSP: 1) When the DCSP

is over-constrained, we are faced with two different situations:

Either the initial domains of the variables are inconsistent. This

means that at the end of the first stage there is at least one empty

domain of a variable. This involves termination of the algorithm

and the declaration of a state of non-solution. Either the initial

domains of the variables are consistent. 2) Where there is a

unique solution of DCSP, we face two situations: The domains

are consistent as long as there is a solution to the DCSP. If the

first stage ends with single-vale domains, it means that the

solution is found and the algorithm stops. Otherwise, in the

second stage, the value proposed by a variable if it is not

inconsistent with a value proposed by another agent with higher

priority. The proposals of the agent with the highest priority are

a priori accepted by all CAgents (it is necessary that this value is

part of the final solution to be finally accepted). 3) When the

DCSP is under-constrained, many solutions exist. The order of

each proposed agent determines convergence towards any

particular solution. In other words, the agents start the proposals

by the most suitable for their purposes. For example, if an agent

tries to minimize the value of its variable, it must begin

proposing values from the minimum to the highest values.

4. SOFTWARE IMPLEMENTATION OF CACS

To prove the proposed methods of constraints satisfaction based

on two types of the agents we developed an object-oriented

CACS software prototype which can be considered as a generic

framework for distributed information syste4ms in logistics. As

we can see from Figure 5, the developed CACS prototype uses

hierarchical multiple-layer architecture.

Application

Variables’ Agent Controller Agent

Generic MAS

interface

CSP ImplementationMAS Implementation

Real CSP Platform

(Choco)

Real MAS Platform

(JADE)

Generic CSP interface

Variable Constraint

Figure 5. Software architecture of CACS prototype.

This architecture allows developing applications more

flexibly by separating it into specialized layers. The very top

layer is the application layer which is the implementation of a

DCSP problem using the proposed system underneath it. From

the application view point, the system is composed directly from

the two principal types of agents: the CAgent and the VAgent.

Both agents are inherited from CommonAgent class that defines

some shared functionalities between both types of agents. The

user can create the necessary VAgents according to its problem

definition. He also creates the constraints and associates them to

CAgents.

The second layer is the intended system (CACS) where our

two-stage interaction algorithm is implemented in accordance

with previous definition. Figure 7 shows the interaction between

agents during the domain reducing stage. The interaction

protocol is a loop of repeated domain informing from the

VAgents side to CAgents side and new domain proposing as

response. This loop is repeated until no further domain reduction

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 17

is possible (or an empty reduced domain is found which signify

that there is no solution).

Variabes' Agent(s) Controller Agent(s)

Inform Domain

new Domain

Loop

Figure 6. Implementation of interaction during domain reducing

stage

The interaction between agents during value proposing stage

is shown in Figure 6. as nest loops: the internal loop is similar to

the domain reducing loop in Figure 6. Variables’ domains are

reduced according to the proposed value in the external loop. In

the external loop, values are proposed and evaluated after the

domain reduction to be either accepted or rejected. The external

loop continues until we obtain single value domains for all

variables.

Variabes' Agent(s) Controller Agent(s)

Inform Domain

new Domain

Loop

Propose value

Loop

Reject Proposal

{empty domain

found or not}

Accept proposal

{OR}

Figure 7. Implementation of interaction during value proposing

stage

The system layer uses generic interfaces for both MAS and

CSP platforms. This allows the system to use any existing MAS

and CSP platforms by implementing these interfaces. At the

same time this isolates the internal structure from the changes of

choice of platforms. An intermediate layer between the system

and the real MAS or CSP platform is necessary in order to

separate the structure of the system from that of the real MAS

and CSP platforms. This layer works as an adapter; it

implements the generic platforms in the system layer using the

real platforms. This implementation difficulty varies according

to the MAS and CSP platforms used for the realization of the

final system.

The whole CACS prototype was developed in Java language.

Due to the object oriented nature of Java language agents and the

messages are represented by objects (Figure 8, 9).

AgentRefInterface CommonAgentInterface

VAgentInterface CAgentInterfaceAgentRefVAgentRefInterface CAgentRefInterface
CommonAgent

VAgent CAgentVAgentRefCAgentRef

Figure 8. The hierarchy of the main components of agents

(agents and reference to the agents). Rectangles with rounded

corners represent interfaces; rectangles with sharp corners

represent classes

MathEntity

Info

VarValueInfo

DomainInfo

IntVarValueInfo

IntDomainInfo

RealDomainInfo

AcceptProposalInfo

VarValuePair IntVarValuePair

StartInfo

VarInCAgentInfo

VarInfo

IntVarInfo

RealVarInfo

Figure 9. The hierarchy of agent messages. Rectangles with

rounded corners represent interfaces; rectangles with sharp

corners represent classes

However, from the point of view of Multi-Agent System

design, agents should not be referenced by a simple public

reference that is accessible by any other object in the system.

The reason for that is to prevent any direct access to the agent

internal functionality. Normally, references to agents should be

kept hidden by the MAS platform and communicating with an

agent is made by messages that would be delivered by the

system using the agent address. Mapping from agent address to

its real reference is an internal functionality of the MAS

platform.

In order to be more generic, we distinguish in the prototype

implementation between the agent and its reference. For this

purpose, VAgentRef and CAgentRef classes have been designed.

Both classes are inherited from the abstract AgentRef class.

They are used as references to either variables’ agents or

controller agents. When an instance of the class DCSP is used to

create an instance of VAgent or a CAgent, it returns an instance

of either VAgentRef or CAagentRef classes respectively

according to created agent. In the same manner, a variable inside

18 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

variables’ agents cannot be referred directly. In fact, a controller

agent keeps a copy of that variable inside it and propagates any

change on that variable to the owner agent. Instead of dealing

with variables directly between agents, they deal with variables

identifiers. A variables identifier is an instance of VID class. It is

simply the name of the variables and the identifier of its owner

agent. An instance of VAgentRef is used to create variables

inside the corresponding VAgent. A variable creation process

returns an instance of VID class identifying the created variable.

Among additional features we added to our prototype a

possibility to declaratively define a simple DCSP via the use of

XML notation. The XML file that describes a DCSP problem

should be built according to the following model (fig.10):

«interface»

XMLAble

«interface»

DConstraint

Equal

NotEqual LessThan

GreaterThan

Cumulative

AllDifferent LessOrEqual

GreaterOrEqual

«interface»

Operand

Val

«interface»

DOperation

Add

Subtract
Sum Product

Scalar

VID

VAgentXML CAgentXML

Figure 10. The hierarchy of the main components of agents

(agents and reference to the agents)

The choice of multi-agent platforms and multi-solver

constraints required a study and testing of several platforms. We

reviewed our work over multiple platforms including JADE and

Madkit and several constraints solvers as CHOCO, Cream and

JCK. Finally we chose for the role of MAS JADE (Java Agent

DEvelopment Framework) multi-agent framework [25], and for

CSP platform, we have chosen Choco [26, 28].

JADE is a multi-agent framework compliant with the FIPA

specifications [27] and is fully implemented in Java language.

JADE was established by the laboratory TILAB Telecom Italia.

JADE has three main modules (fig.11): DF (Directory

Facilitator): provides a service of "yellow pages" to the platform;

ACC (Agent Communication Channel) handles communication

between agents; AMS (Agent Management System) oversees the

registration of agents, authentication, access and use of the

system. Each JADE agent is composed of a single thread of

execution (thread). Each task agent is represented by an instance

of class Behavior. Jade offers the possibility of agents' multi-

threaded, although the user leaves the responsibility for

managing competition (except the timing of the messages file

ACLs).

Figure 11. Architecture II software platform JADE

In order to implement a behavior, the developer must define

one or more objects of class Behavior, the instantiate and add

them to the thread of execution of the agent. Every object type

has a Behavior method action () (which is the treatment to be

performed by it) and a method done () (which checks if the

treatment is completed). In detail, the scheduler executes the

method action () of each object in the queue of the tasks of the

agent. Once this is completed, the method done () is invoked. If

the task has been completed then the Behavior object is removed

from the queue. The scheduler is non-preemptive and does only

one behavior at a time, one can consider the method action () as

atomic. It is then necessary to take certain precautions during the

implementation of the latter, to avoid endless loops or operations

too long. The most classic program behavior is to describe it as a

finite state machine. The current status of the agent is stored in

local variables.

Also JADE simplifies the implementation of multi-agent

systems through a set of graphical tools that supports the

debugging and deployment phases.

Choco is a library for constraint satisfaction problems (CSP),

constraint programming (CP) and explanation-based constraint

solving (e-CP) [28]. It is built on an event-based propagation

mechanism with backtrackable structures. Choco is implemented

in Java and takes advantage of the principle of inheritance to

allow the programmer to define its own types and constraints.

This is achieved by using abstract classes (fig. 12):

AbstractVar AbstractDomain

CompositeConstraint

BoolConstraint

AbstractConstraint

IntConstraint IntVar IntDomain

object

Figure 12. Hierarchy of constraints in Choco

It permits the use of multiple solvers for different problems

separately. This allows each CAgent to have its own solver. A

distributed constraint problem is created as an instance of the

class DCSP. This instance represents the problem to be solved

and is used to create the different needed agents.

Our prototype in its current state is composed of three main

packages containing more than 80 classes and Java interfaces

and approximately 4300 lines of code.

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 19

5. DESIGN METHODOLOGY IN CACS

A specific methodology was designed to allow the user to

develop distributed multi-agenty systems using Swarm

Intelligence paradigm and CACS approach. In general this

methodology consists of the following steps:

1. Identify the key actors of the problem (VAgents).

These actors are the entities of the system modeled.

2. Determine the properties (variables) of these actors

that are restricted by constraints with properties of

other actors.

3. Determine all the constraints of the problem.

4. Classify constraints logically in separate groups.

5. Specify a set of Controller Agents to monitor each

group of constraints.

To provide a developer with flexible practical methods of the

design we offer two refinements of the general methodology:

simple and complex.

To prove the proposed methods of constraints satisfaction

based on two types of the agents we developed an object-

oriented CACS software prototype which can be considered as a

generic framework for distributed model-driven DSSs. As we

can see from Figure 5, the developed CACS prototype uses

hierarchical multiple-layer architecture. The following steps

correspond to a given DCSP:

6. Creation of the problem P. This is done by creating an

instance of the class DCSP from the package dcsp.

7. Creation of agents to control variables (specifically,

their references) via the prolem P. using the method

makeVAgent () to create a variable and method

makeCAgent () to create a controller. 3) Creating

variables distributed via agents which own variables.

This is done through the method

makeBoundedIntVar () which creates a variable with

two upper and lower limits.

8. Creation of constraints on variables.

9. Addition of constraints to CAgents.

10. Start the algorithm of resolution through the DCSP P.

The use of the prototype can be demonstrated via the

following simple example:

V = {x, y, z} is the set of variables from the domain {1, …, 100}

for all of them, C = {c1, c2, c3} is the set of constraints:

c1 : x ≠ y, y ≠ z, x ≠ z (or alldifferent (x, y, z))

c2 : x ≥ y

c3 : z ≥ y

In order to model this problem using the proposed prototype

the user should proceed as follows. We start by assigning

variables to VAgents. In this example, agents v1, v2, and v3 own

variables x, y, and z respectively. Note that the distribution of

variables may be a problem dependant issue which means that

the user chooses the owner agent of each variable according to

the problem specifications. In the same manner, constraints also

should be assigned to CAgents. In this example, we assign each

constraint to a CAgent.

1. Create a distributed problem p (an instance of DCSP class).

This class will be used in order to create VAgents and

CAgents and to start our CACS algorithm.
DCSP p = new DCSP("example");

This creates a distributed problem with which agents, variables

and constraints will be created.

2. Use this instance to create both types of agents. This is done

by calling makeVAgent() and makeCAgent() methods from

the DCSP instance created in step 1 as follows:
VAgentRef v1 = p.makeVAgent (“v1”);

VAgentRef v2 = p.makeVAgent (“v2”);

VAgentRef v3 = p.makeVAgent (“v3”);

CAgentRef c1 = p.makeCAgent (“c1”);

CAgentRef c2 = p.makeCAgent (“c2”);

CAgentRef c3 = p.makeCAgent (“c3”);

3. Create variables inside VAgents. In other word, assign

variables to variables agents. The method

makeBoundedIntVar() is used to achieve this as follows:
VID x = v1.makeBoundedIntVar (“x”, 1, 100);

VID y = v2.makeBoundedIntVar (“y”, 1, 100);

VID z = v3.makeBoundedIntVar (“z”, 1, 100);

4. Create the constraints and post them to CAgents. The

constraints are created separately and posted to their owner

agents using the method post():
c1.post(new AllDifferent(new VID[]{x,y,z}));

c2.post(new GreaterOrEqual(x, y));

c3.post(new GreaterOrEqual (y, z));

5. Start the CACS algorithm by calling solve() method from

the DCSP instance:
p.solve();

This last instruction initiates communication between the

different agents in the system in accordance the algorithm

described previously in Section 3. If an agent finds a value for its

variable that corresponds to a solution then it will notify to this

value. The solution will be the combination of all values from all

agents. Otherwise, no-solution state is declared.

Also the developer can express the structure of DCSP in

declarative manner using XML. For instance, the problem

described in previous sub-section can be written in XML as

follows:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dcsp SYSTEM "dcsp.dtd">

<dcsp>

<name>example</name>

<vagent><name>v1</name><var><name>x</name>

 <inf>1</inf>¹⁰⁰</var></vagent>

v2 and v3 by the same manner

<cagent>

 <name>c1</name>

 <constraint><alldiff>

<vid><name>x</name><owner>v1</owner></vid>

<vid><name>y</name><owner>v2</owner></vid>

<vid><name>z</name><owner>v3</owner></vid>

 </alldiff></constraint></cagent>

c2 and c3 by the same manner

</dcsp>

20 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

6. CACS APPROACH IN TRANSPORT

LOGISTICS

We consider modern transportation problems as a natural

candidate domain for evaluation of the proposed CACS

approach. Although there is a lot of different centralized

algorithms in this area we believe that multi-agent techniques

can radically improve efficiency and fairness of negotiation

between participants in the course of problem solving as well as

improve reactivity of the logistics systems. Among different

benefits of logistics management within the CACS framework

we can point out such positive features as: better consideration

of individual preferences and ability of their dynamical changes

in the course of solving, early availability of partial solutions and

inherently distributed structure of the system.

In order to create solid foundations for application of Swarm

Intelligence and CACS approach in transportation logistics we

developed a distributed multi-agent application which mimics

major features of modern ship loading problems, and evaluated

its feasibility and performance. Our CACS application is based

on a simplified ship loading scenario which was originally

presented in studied in Chips constraint solver by Kay Chips

(Kay 1997) and later was expressed in terms of Java-based

Choco constraint solver by prof. A. Aggoun.

Figure 13. Graphical representation of the original Kay’s ship

loading problem (Kay 1997)

In the discussed problem a specific precedence function pred in

defined over the loading items. For each of the items the number

of workers needed for loading is specified.

Figure 14. The feasible order of loading tasks (the loading plan)

in accordance with the constraints given (Kay 1997)

According to CACS methodology each loading task is

realized as a separate Variable Agent in our CACS application.

Variable Agent holds three specific variables. These variables

determine start time of loading (ti
start), finish time of loading

(ti
end) and predetermined loading duration (di) accordingly.

All constraints of the considered problem are grouped inside

Controller Agents. We recognize three different groups of

Controller Agents according to the semantics of the constraints.

The first group contains Controller Agents which hold duration

constraints. The agent of that group is responsible for verifying

that the loading tasks are scheduled within the time frame. It

means that for each task i the following constraint should be

satisfied: ti
start + di ti

end.

The second group contains Controller Agents which are

responsible for verifying that the loading plan satisfies

precedence constraints given (like one on the fig. 13). Finally the

third group contains Controller Agents which are responsible for

verifying availability of the resources for the loading plan.

Controller Agent of that kind holds cumulative constraint over

the number of workers available for finishing the ship loading

within the total time.

That cumulative constraint may be expressed using current

values of ti
start, and ti

end variables, as well predetermined

workforce effort needed for each task wi. Given these values we

can define the scheduling matrix SC.

SC =

NN ww

ww

www

...0000000

0...00000

0...0000

22

111

The element SCij is equal to wi iff at the time moment j the

loading task i is performed, and it is equal to 0 in the opposite

case.

Using that matrix we may define the maximum number of

workers needed at each moment of the time and the needed

cumulative constraint: PersonsSC
N

i

ij
j

maxmax
1

.

With such problem interpretation we may completely

describe it in terms of our CACS approach. The original

structure of the agents is presented on Figure 15.

tN
start,t

N
end , d

N

{0,1,..,maxT}

t1
start ,t

1
end , d

1

{0,1,..,maxT}

t2
start ,t

2
end , d

2

{0,1,..,maxT}

ti
start ,ti

end , d
i

{0,1,..,maxT}

cumulativeController

startEndController

∀i: ti
end ≤ maxT

∀i: ti
end – ti

start ≥ di

precedenceController

∀i: ti
end ≤ TMax

 ti
start ≥ t pred(i)

start

i=2,3,..,N

Figure 15. Connected structure of Variable Agents (circle) and

Constraint Agents (rectangle) for the ship loading problem

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 21

Using the proposed methodology we designed the Java-based

application that solves the ship loading problem. In that program

at the first moment the ControllerAgents are created:

CAgentRef startEndController =

 dpb.makeCAgent("startEndController");

CAgentRef precendenceController =

 dpb.makeCAgent("precendenceController");

CAgentRef cumulativeController =

 dpb.makeCAgent("cumulativeController");

Then auxiliary VariableAgent is created which stores the total

time of loading operations:
VAgentRef general = dpb.makeVAgent("General");

VID generalEnd = general.createVar("General_End",

 0, timeHorizon);

After that in the cycle thirty-four VariableAgents are created

which correspond to the loading tasks and store needed variables

ti
start, ti

end and duration di. In the same cycle the duration

constraints are created and attached to the corresponding

ControllerAgent.

for (int j = 0; j < nbTasks; j++) {

taskAgents[j] = dpb.makeVAgent("task_agent_" +

 (j + 1));

taskStarts[j] = taskAgents[j].

 createVar("Start", 0, timeHorizon);

taskEnds[j] = taskAgents[j].createVar("End",

 0, timeHorizon);

taskDurations[j] = taskAgents[j].

 createVar("Duration", durations[j],

 durations[j]);

DOperation startEndOperation = new

 Subtract(taskStarts[j], taskEnds[j]);

DConstraint startEndConstraint = new

 Equal(startEndOperation, taskDurations[j]);

startEndController.post(startEndConstraint);

DConstraint endConstraint =

 new LessOrEqual(taskEnds[j], generalEnd);

startEndController.post(endConstraint);

}

Finally the precedence constraint and cumulative constraint

are determed and the process of solution search is started.

With the given conditions in the result of application run the

values of variables ti
start, t

i
end will constitute a feasible solution ot

the ship loading problem.

7. CONCLUSIONS & FUTURE WORK

In this article we proposed a new approach for combination of

MAS and DCSP in multi-agent swarm systems. This approach

called CACS (Controller-Agent for Solving Constraints) based

on the use of a specific type of agents called Agent Controller

and Variables’ Agent. We believe that proposed process of

constraint satisfaction in the multi-agent system fits well the

general principles of Swarm Intelligence. In particular, the stage

of domain reduction in our algorithm may be seen exchange of

―rules, tips and believes about how to process the

information [4]‖.

Also in our approach we implemented a principal feature of

Swarm systems, which is principal ability to modify multi-agent

structure in response of various influencing factors. First of all,

declarative manner of constraints based formalization of the

problem allows for changing inter- and intra-agent behavior.

Secondly, the composition of inter-agent constraints inside

ControllerAgent may be changed during evolution of the system

(as it shown on fig.1 and fig .2).

In the proposed CACS architecture we see good opportunities

for further moving towards to implementation of advanced

swarm intelligence capabilities. Modern MAS platforms like

JADE implement different peer-to-peer communication

mechanisms for which direct correspondence may be found in

computational biology. Given such mechanisms as foundation

for reliable distributed inter-agent communication we will extend

discussed algorithms of interaction between Controllers Agents

and Variables Agents by adaptation framework. In such

framework agents will be able to discover critical changes in

MAS configuration (faults of agents, misbehavior, etc), negotiate

responsibilities and change the roles accordingly in order to

continue proper collective operations.

 The model of distributed constraints satisfaction proposed

in SACS also offers two main contributions in DCSP research.

First, it is the possibility of a direct and easier dealing with non-

binary constraints without having to use methods of

transformation of non-binary constraints to binary constraints.

Second, CACS offers us the possibility to organize the

constraints logically related groups. This grouping of constraints

allows us to form sub-problems, each group is monitored and

processed by a single controller. This also helps reduce the total

number of Controller Agents needed.

Non-binary constraints are more common in real problems

than binary ones. Some methods are used in order to allow using

binary constraint solving techniques on non-binary ones.

Methods like hidden and dual transformation [14, 15] convert

non-binary constraints into equivalent binary ones. Other

methods are proposed in the DCSP domain in order to deal with

non-binary constraints. I. Brito [21, 33,34] has proposed

organizing agents involved in a non-binary dynamically in order

to form a proper propose-validate sequence. Agents then follow

that sequence to find a solution for that constraint.

Our algorithm proposes another direct alternative. Any

constraint is encapsulated inside a controller agent regardless

this constraint is binary or non-binary. Agents involved in any

constraint are not forced to follow any order in proposing values

for their variables.

The increase in number of agents is an inconvenience of our

model. We can investigate the possibility of using a hybrid

system of both, our model and a standard ABT model, in order

to model a DCSP. In such hybrid system, binary constraints

relate variables’ agents directly while non-binary constraints are

encapsulated inside controller agents. The possibility of

gathering constraints gives also the possibility of decreasing the

number of agents. The user can group some constraints

according to the modeled problem logic.

To prove the feasibility of the proposed theoretical principles

we implemented software prototype of CACS. It uses generic

interfaces for integration with different third-party MAS-

22 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

platforms and CSP-solvers. In the final implementation we used

the MAS platform JADE and the Choco CSP solver. Apart from

direct Java programming of DCSP problems our prototype also

provides an opportunity to describe the problem using XML

facilitating the modeling of simple problems without the need to

write and compile a Java program.

Demonstrated applicability of CACS for solution of logistics

problems opens opportunity for further progress in developing

Swarm Intelligence applications. Following that direction we

plan to continue in design of meta-communication protocol

between ControllerAgents, which will permit define formal

methods of re-composition of constraints inside different

ControllerAgents during evolution of the system.

Another interesting problem for CACS application comes

from the domain of modern transportation systems. Here we

wish to apply CACS approach for the ―transport on demand‖

challenge and solution of complex logistics problems in real

conditions of modern warehouses. Also we are going to

investigate ways to add optimization mechanism to the system

similar to DPOP algorithm [34]. This will allow the user to

adjust the Variables’ Agent value choosing according to a given

optimizing mechanism.

This work was partially supported by HSE grant # T3-61.1.

REFERENCES

[1] Feng, G., Yu, G., and Jiang, W. Logistics Management in China.
Building Supply Chain Excellence in Emerging Economies. (Hau L.

Lee, M. Eric Johnson eds.). pp.177-199. Springer US. (2007).

[2] Simonova. L. Growth Prospects of Russian Transportation and
Logistics Market. Das Beste der Logistik:Innovationen, Strategien,

Umsetzungen. pp.369-379. Springer Berlin Heidelberg. (2008).

[3] Bonabeau, E., Dorigo , M., and Theraulaz G. Swarm Intelligence:
From Natural to Artifical Systems. New York, Oxford University

press. (1999).

[4] Eberhart, R. C., Shi, Y., and Kennedy, J. Swarm Intelligence.
Morgan Kaufmann. (2001).

[5] Hülsmann, M., Windt, K. Approaches to Methods of Autonomous

Cooperation and Control for the Management-, Information- and
Communication-Layer of Logistics. Understanding Autonomous

Cooperation and Control in Logistics (Katja Windt and Michael

Hülsmann eds.). pp. 163-167. Springer Berlin Heidelberg. (2007).
[6] Davidsson, P. Henesey, L., Ramstedt, L., Törnquist, J., and

Wernstedt, F. Agent-Based Approaches to Transport Logistics.

Applications of Agent Technology in Traffic and Transportation.
pp.1-15. Birkhäuser Basel. (2005).

 [7] Izquierdo-Torres, E. Collective Intelligence in Multi-Agent

Robotics: Stigmergy, Self-Organization and Evolution. (2004).
[8] Atlee, T., Benkler, Y., Homer-Dixon, T., Levy, P., Malone, T.,

Martin, R. H. P., Masum, H., Steele, R. and Tovey, M.

COLLECTIVE INTELLIGENCE: Creating a Prosperous World at
Peace, Earth Intelligence Network. (2008).

[9] Bousquet, F. Modélisation d’accompagnement Simulations multi-

agents et gestion des ressources naturelles et renouvelables. (2001).
[10] Ferber, J. Multi-agent Systems-An Introduction to Distributed

Artificial Intelligence. Addison-Wesley, Boston, (1999).

[11] Charrier, R.; Bourjot, C.; Charpillet, F. A Nonlinear Multi-agent
System designed for Swarm Intelligence: the Logistic MAS. SASO

'07. First International Conference on Self-Adaptive and Self-

Organizing Systems, 9-11 July. pp.32 – 44. (2007).
[12] Barták, R. Constraint Programming: In Pursuit of the Holy Grail, in

Proceedings of WDS99 (invited lecture), pp. 555-564. (1999).

[13] Eisenberg, C. Distributed Constraint Satisfaction for Coordinating
and Integrating a Large-Scale, Heterogeneous Enterprise, University

of London. (2003).

[14] Bacchus, F., Chen, X., Beek, P. v., and Walsh, T. Binary vs. Non-

Binary Constraints, pp. 1-37. (2002).

[15] Bacchus, F., Beek, P. v. On the Conversion between Non-Binary

and Binary Constraint Satisfaction Problems. in Proceedings of the
15th National Conference on Artificial Intelligence (AAAI-98) and

of the 10th Conference on Innovative Applications of Artificial

Intelligence (IAAI-98), pp. 311-318. (1998).
[16] Havens, W. S. NoGood Caching for MultiAgent Backtrack Search.

in Proceedings of American Association for Artificial Intelligence

1997 Constraints and Agents Workshop, (1997).
[17] Yokoo, M., Hirayama, K. Algorithms for Distributed Constraint

Satisfaction: A Review. in Autonomous Agents and Multi-Agent

Systems, pp. 198-212. (2000).
[18]Bessiere, C., Brito I., Maestre, A., and Meseguer, P. The

Asynchronous Backtracking Family, LIRMM-CNRS, , Montpellier,

France March 2003, (2003).
[19] Bessiere, C., Brito, I. Asynchronous Backtracking without Adding

Links: A New Member in the ABT Family. pp. 7-24. (2005).

[20] Muscalagiu, I., Horia-Emil, P. and Panoiu, M. Asynchronous
Backtracking with temporary and fixed links: A New Hybrid

Member in the ABT Family. INFOCOMP - Journal of Computer

Science vol.5: 29-37.
[21] Brito, I. and Meseguer, P. Distributed Stable Matching Problems

with Ties and Incomplete Lists. In Proceedings of the Twelfth

International Conference on Principles and Practice of Constraint
Programming (CP-2006), Nantes, pp. 675-680, (2006).

[22] Zhang Y., Wu, H. Bound Consistency on Linear Constraints in

Finite Domain Constraint Programming. In 13th European
Conference on Artificial Intelligence Young Researcher Paper,

(1998).

[23] Rudova, H. Constraint Satisfaction with Preferences. In Faculty of
Informatics Brno - Czech Republic: Masaryk University, (2001).

[24] Mailler, R. and V. Lesser, V., A Cooperative Mediation-Based

Protocol for Dynamic, Distributed Resource Allocation. In IEEE
Transaction on Systems, Man, and Cybernetics, Part C, Special Issue

on Game-theoretic Analysis and Stochastic Simulation of Negotiation

Agents, New York, pp. 438-445, (2004).
[25] Bellifemine, F. L., Caire G. and Greenwood, D. Developing Multi-

Agent Systems with JADE, Wiley. (2007).
[26] "CHOCO" : http://choco.sourceforge.net/. (2010).

[27] FIPA: http://www.fipa.org/specifications. (2010).

[28] Stamatopoulou, I., Kefalas, P., and Gheorghe., M. OPERAS: A

Framework for the Formal Modelling of Multi-Agent Systems and Its

Application to Swarm-Based Systems. LNCS 4995/2008.

Engineering Societies in the Agents World VIII.pp.158-174, 2008.
Springer Berlin / Heidelberg. (2008).

[30] Charrier, R., Bourjot, C., and Charpillet, F. Study of Self-adaptation

Mechanisms in a Swarm of Logistic Agents. SASO '09. Third IEEE
International Conference on Self-Adaptive and Self-Organizing

Systems, 14-18 Sept. 2009.pp. 82 - 91. (2009).

[31] Brito, I. and Meseguer, P. Asynchronous Backtracking Algorithms
for Non-binary DisCSP. In Workshop on Distributed Constraint

Satisfaction Problems at the 17th European Conference on Artificial

Intelligence (ECAI-2006), Riva del Garda, (2006).
[32] Petcu, A. Dynamic distributed optimization for planning and

scheduling. AAAI-05 Workshop; Pittsburgh, PA. pp.52-53. (2005).

[33] Al-Maqtari, S., Abdulrab, H., and Nosary, A. Constraint
Programming and Multi-Agent System mixing approach for

agricultural Decision Support System. Emergent Properties in

Natural and Artificial Dynamical Systems in ECCS'O5 International
Conference, pp. 113-119.(2005).

[34] Al-Maqtari, S., Abdulrab, H., and Babkin, E. Towards a robust

software framework for DCSP solving in multi-agent systems. The
Second AIS SIGSAND - European Symposium on Systems Analysis

and Design, 2007. (2007).

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 23

Swarm Intelligence to Distribute Simulations in
Computational Ecosystems

Antoine Dutot∗ and Damien Olivier∗ and Guilhelm Savin∗ †

Abstract. This paper deals with distribution of complex system
simulation. A first reflexion is conducted about the distributed envi-
ronment and we show that it can be considered as a complex system
i.e an artificial ecosystem, in other words a computational ecosys-
tem. In a second time we propose to manage the complexity of the
simulation and its environment by an algorithm based on swarm in-
telligence. Once again, this proposition is based on interactions and
the mechanisms of cooperation and competition that help us to detect
the self-organizations which evolve during the simulation in the dis-
tributed environment. In a last time, we outline a middleware allow-
ing to distribute dynamically the simulation. This middleware allows
mobile code and offers advices to the simulation to reduce the cost of
communications. To do that we detect the self-organizations during
the simulation and we facilitate their placement on a same node of
the distributed system.

1 Introduction
In this paper, we are concerned by complex systems simulation dis-
tribution using swarm intelligence. We consider that the simulation
evolves in an open distributed environment. We will demonstrate in
the following that this environment is a ”computational ecosystem”.
According to this characteristic, we can try to control the trajectory
of the system using/encouraging the self-organizations.

This paper is organized as follows. Section 2 defines what is a
complex system and our perception of an environment in which com-
plex system simulations can be distributed. Section 3 describes the
structure we used to model complex systems. Sections 4 and 5 de-
scribes the swarm intelligence algorithm and the platform used to
distribute simulations. Finally, section 6 concludes this paper.

2 Computational Ecosystem used to distribute
2.1 What is a complex system ?
A complex system is composed of a massive set of entities with in-
teractions between these entities. A global behavior of the system,
which is non-trivial according to entities behaviors, emerges from
these interactions. In such system, set of entities is not static: some
entities can appear and other disappear: these systems are opened.

Interactions between entities feed an informations flow which
structure our system. Furthermore as the system is open, flows cross
it bringing the necessary energy to avoid the natural evolution to dis-
order. We are in front of a kind of dissipative system.

∗L.I.T.I.S., University of Le Havre, France
∗Authors are sorted alphabetically
†Corresponding author: guilhelm.savin@litislab.fr

—

Figure 1. This picture represents one zoom in part of a boids-based
simulation (on the top) and its representation with a dynamic graph (on the

bottom). On the top part, a snapshot of the simulation is proposed. The boids
(interacting entities) can only perceive and interact with fellow creatures

located in a limited area. During the process, some groups appear
corresponding to global structures obtained from local interactions. On the

bottom part of the figure, the graph represents at a given moment the
interaction graph corresponding to the state of the system made of boids.

Entity could have preferential interactions between a restricted set
of other entities. Entities having such interactions composed a group
called organization. There will have some organizations in the sys-
tem, with a large amount of interactions between organization mem-
bers, and a few interactions between different organizations.

As organizations are the result of the system dynamic and not
a pre-established entry, the mechanism of organizations appear-
ing/disappearing is a mechanism of self-organization. So if it is il-

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 25

lusory to try to control each entities to conduct the system, we can
plan to affect the system by means of self-organizations.

2.2 Simulation in a computational ecosystem

The environment where the simulations evolve is composed by a set
of machines which can connect or disconnect themselves at anytime.
On theses machines eventually a lot of executing units (processes,
threads, objects, . . . process will be used in the following) are run-
ning.

There are interactions between these processes which can be direct
or not. Direct interactions can be, for example, a communication be-
tween two processes or can be done through a shared file or memory
zone. Indirect interactions can be a trace drop in the environment like
a file. The processes population need resources to live: some comput-
ing power and some memory at least. Information flow crosses the
system as an input data which is consumed by the processes and dis-
sipated as output data. This stream structures the environment.

In the previous description we recognize the definition of a com-
plex system. Furthermore the processes belong to classes as demon,
scheduler and they are in competition to access to memory for
example and collaborate to compute a result for example. There are
strong analogies between natural ecosystems and the system that we
consider, thus classes can be describe as species. Due to this parallel
we define the environment where simulations take place as a compu-
tational ecosystem.

The kind of simulation we are interested in is complex system
simulations. As we seen above, such simulations are composed of
a massive set of entities, needing a large amount of computing re-
sources which can not be provided by a single machine. A way to
solve this resources limitation is to distribute the simulation, expand-
ing our computational ecosystem by using a set of machines rather
than a single one. The question is now, how to distribute such simu-
lations ?

The elements of answer are in the nature of the simulations and
the environment. Finally, environment becomes a complex system
that we used to distribute complex systems.

A major raised problem is how to distribute entities in the environ-
ment. Load of machines has to be balanced but interactions between
remote entities (entities which are located on different machines,
these interactions are called remote interactions) have to be mini-
mized to reduce network-load. This can be done by trying to control
self-organizations. There are a lot of interactions between members
of a same organization, if members are located on different machines,
amount of remote interactions increases. So, detecting organizations
allows to put all members of a same organization on a same machine,
reducing remote interactions.

As organizations may change through time, entities location may
change too. Problem is that entities are being executed , so they have
to stop their execution, store their state and migrate to a new des-
tination. A tool allowing this migration is needed. An interesting
concept find in literature is the active object pattern[7] which sees
the object as an actor receiving requests and executing them one by
one. This provides two advantages. First, calls to object methods are
seen as requests which allows to model call as an object exportable
through the network. A second advantage is that migration becomes
trivial: when active object has to migrate, it stops executing its re-
quests, sends them to its next location and starts to execute then on
this new location.

Figure 2. Coloring of a graph representation of the Moebius strip with
AntCo2

3 Model
Complex system is composed of a set of entities and there are in-
teractions between these entities. Difficulty of modeling a complex
system is that system components may change : entities may appear
or disappear and interactions are not static.

The emergence of global properties or behaviors come from this
dynamic. Therefore, the study of complex systems leads to three im-
portant things to model: entities, interactions and dynamic of the sys-
tem.

Since interactions can be seen as a couple of entities, a graph can
model the system frozen at a time t. A graph G is a peer (V, E)
where V is a set of elements called nodes and E is a set of node peer
called edges.

To model the dynamic of complex systems, we have to used an
other research field which is the one of dynamic graphs. A dynamic
graph allows to introduce dynamic in the set of nodes and the set of
edges of a graph. A definition of such graphs can be found in [4].
Therefore, a dynamic graph G(t) is a peer (V (t), E(t)) where t is
a discrete (in this paper) representation of the time. V (t) and E(t)
may change with t: V (t + 1) (respectively E(t + 1)) is V (t) (resp.
E(t)) with eventually some elements added or removed. Each node
v and each edge e have a set of properties Pv(t) (resp. Pe(t)) which
may change with t too.

Figure 1 shows a boids simulation with its corresponding dynamic
graph modeling interactions between boids. Boids are a kind of par-
ticule introduced by Craig REYNOLDS in [10] to simulate collective
animal behavior like birds flocks. If distance between a boid a and
a boid b is under a given threshold, then direction of a is influenced
by b and inversely: there is an interaction between these two boids
modeled in the graph by an edge between nodes representing a and
b.

4 Swarm Intelligence - AntCo2
AntCo2 is a distributed algorithm dedicated to load balancing and
communication minimisation. It considers only the dynamic graph of
the application to compute the distribution. As communications and
entities appear and disappear, as the importance of communication

26 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

Figure 3. AntCo2 applied to a 400-nodes graph generated using
preferential attachment rules.

evolve, the graph changes. Therefore the load balancer should also
handle this dynamic process and be able to provide a distribution as
the graph evolve.

Each computing resource is associated with a color, then by as-
signing a color to a node, the algorithm specifies the distribution.

One can see the distribution as a weighted partitioning of the
graph. In this partitioning we try to distribute evenly the load (num-
ber of entities weighted by their computing demand) and to minimize
communications between computing resources to avoid saturating
the network. These two criteria are conflicting, therefore a trade-off
must be found.

4.1 Detection of organizations
We see the partitioning as a dynamic community detection algorithm.
We call such dynamic communities ”organizations”. Communities
are often seen as group of vertices that are more densely connected
one with another than with the rest of the graph. An algorithm able
to detect organizations is able to follow communities as they evolve
when nodes and edges appear, evolve and disappear in the commu-
nities.

There exists several graph partitioning algorithms ([8, 6, 5])
and community detection algorithms ([9]), but few handle evolving
graphs. It is always possible to restart such algorithms each time the
graph changes, but this would be computationally intensive. AntCo2
is an incremental algorithm that starts from the previous partitioning
to compute a new partitioning when the graph changes.

Having a load balancer running on a single machine, to distribute
applications that are often very large could be inefficient. Another
goal of AntCo2 is to be able to be distributed with the application.

4.2 Swarm Intelligence
AntCo2 uses an approach based on swarm intelligence, namely
colonies of ants. This algorithm provides several advantages: ants
can act with only local knowledge of the graph representing the ap-
plication to distribute. AntCo2 tries to avoid any global computation,
therefore allowing it to be distributed with few communications and
no global control.

In AntCo2, each colony represents a computing resource and has
its own color. Inside colonies, ants collaborate to colonize organi-

zations inside the graph and assign their color to nodes. Inversely,
colonies compete to keep and conquer organizations. Figure 3 and 4
show graphs colored by ants.

Ants color nodes using numerical colored pheromones corre-
sponding to their colony color. Such pheromones ”evaporate” and
therefore must be maintained constantly by ants. This allows to han-
dle graph dynamics by forgetting old partitioning solutions and dis-
covering new solutions by the constant exploration of ants inside the
graph. The details of the algorithm are given in ([2]). Figure 2 shows
four ants colonies coloring a graph with pheromones rates on each
edge.

The change of a color for a node indicates a ”migration advice”,
meaning that the corresponding entity should migrate on the com-
puting resource associated to the new color. An inertia mechanism
allows to avoid oscillatory advices.

4.3 Distribution
Ants of the AntCo2 algorithm use only local informations from the
dynamic graph. This offers three ways of distribution as described in
[3].

A first solution is to have on a single machine a dynamic graph
modeling the overall application and to run AntCo2 on this graph.
Migration advices are sent to machines. This solution has some dis-
advantage. If there is a fault on the machine hosting AntCo2, dis-
tribution looses its load-balancer: the solution is not fault-tolerant.
Moreover, it leads to increase network communications: informa-
tions about interactions have to be sent to load-balancer, and migra-
tion advices have to be sent to other machines. This is a problem for
an algorithm which aims to reduce network-load.

The next solution is similar to the first. Instead of running on a
single machine, AntCo2 runs on a set of machines, each machine
hosting a part of the graph. This solution becomes more tolerant to
fault but still leads to increase network-load.

The last solution is to have one instance of AntCo2 running on
each machine. Each instance considers only local entities and in-
teractions: the system becomes decentralized. If there is a fault on
a machine, this does not affect the system : this solution is fault-
tolerant. As instances using only local informations, there is no
need to communicate interactions informations to another machine:
network-load not increases. Moreover, computing-load needed by an
instance of AntCo2 depends of the amount of entities hosted on the
machine, thus distribute entities leads to the distribution AntCo2 it-
self : AntCo2 is self-distributed.

5 Dagda
Dagda is a middleware dedicated to the distribution of Complex Sys-
tems simulations. It uses an existing middleware as a base which is
extended with new features. The final aim is to provide a simple way
to create distributed complex system simulation.

The main words of Dagda are decentralized, portable, load-
balanced. Decentralized means that there is no restricted set of
machines on which depend all machines. Dagda aims to be as
portable as possible, ie any machines (computer,pda,phone,super-
calculator. . .) can participate to the distribution.

Dagda can be divided in three components. The first is a local rep-
resentation of the part of the application running on the machine.
This is model by a dynamic graph. This graph is maintained by the
second component of Dagda, called agency which is a middleware

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 27

Figure 4. AntCo2 applied to the Zachary Karate Club[11] graph.

with Dagda features. A final aim is to provided a standard connec-
tion to middlewares able to manage active object and migration, but
actually Dagda allows the use on its internal middleware or the use
of ProActive[1], a middleware developed by INRIA. The last com-
ponent of Dagda is a load-balancing algorithm used to colorize the
graph. When node color changes, migration advices are sent to the
middleware which proceed to the migration.

Agency

Network

AgencyAgency

Node

Entities
components of the
application

Dynamic graph
local representation
of the application

Load-Balancer
spreads entities

Figure 5. Dagda overview

5.1 Interactions Graph

Dagda is based on the concept that the distributed application is com-
posed of a massive set of objects. These objects are called entities and
are hosted on a machine by an agency. The active object pattern is
used to model these entities.

Each machine models its hosted entities in a dynamic graph. En-
tities are nodes of this graph. When an entity communicates with an
other, this is modeled in the graph with an edge between nodes as-
sociating to the implicated entities. Greater is the number of interac-
tions between two entities, greater is the weight of the corresponding
edge. There is a mechanism which decreases edge’s weight through
the time.

Entities can migrate from one agency to an other. This raises a
problem: how to identify each entity through the network and how
to get a remote entity ? The second part of this problem, how to get
entity, is treated on section 5.2. Entities are identified by an id which
is unique through time and network. Uniqueness is assumed by the
fact that id depends on the agency’s address (agency who creates the
entity) and on a time-stamp.

Dagda profiles method calls between entities. For example, if an
entity A calls a method m() of an entity B, this call will be detected
and registered. Then this detection of interactions between entities is
used to maintain the dynamic graph which models these interactions
through the time.

The GRAPHSTREAM[4]1 API is used to create the graph.

5.2 Agency

The part of Dagda managing remote objects and remote operations
is called Agency. This agency is the base of interactions between
machines. It allows implementation of the active object pattern by
entities and uses a middleware to allow remote method calls and mi-
gration of entities. A basic middleware is provided but the aim is to
allow the use of any middleware ables to manage active objects.

Dagda aims to have a decentralized architecture so there is no mas-
ter server to reference informations as for example entities location.
Therefore, another aim of agencies is to provide global features with-
out global control.

One is these features is to maintaine a shared context. Overall, en-
vironment, composed of all machines, has two kinds of properties:
local properties which are specific to a single machine, and global
properties which are shared by all machines. Managing local proper-
ties is trivial, but managing shared properties without global control
raises some problems: if a property is changed on a machine, how
spreads this change before other machines look for this property ?
Agency aims to solve this problem and provides a valid access to
environment properties.

5.3 Load-balancing

The last component of Dagda is a load-balancing algorithm. This
algorithm uses the interactions graph and attributes colors to node.
Dagda uses the AntCo2 algorithm. This choice allows to :

- balance the work-load of machines;
- reduce the network-load;
- distribute the load-balancer.

Distribution of the load-balancer is an important thing to have a
decentralized platform. As describes in 4.3, there are three solutions
to run the AntCo2 algorithm. First and second solution use a cen-
tralized approach which is not the aim of Dagda. Therefore, the last
solution, having one instance of AntCo2 on each machine, has been
retained for this middleware.

1http://www.graphstream-project.org

28 SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK

6 Conclusion
In this paper, an approach of complex system simulation distribution
has been presented. This approach considers the execution environ-
ment as a computational ecosystem. We have seen that this environ-
ment becomes a complex system used to compute complex system
simulations.

A major problem raised in this paper is how to distribute entities
composing complex system. A swarm intelligence algorithm of or-
ganizations detection has been presented and used as load-balancing
algorithm. Then a platform dedicated to complex system simula-
tions distribution and using the previous load-balancing algorithm
has been presented.

Next steps of this work can be divided in two parts. The first is
about the platform, Dagda, which still needs some development and
a phase test. Second part is about AntCo2 results and the adaptivity of
load-balancing. Some mechanisms need to be added to avoid oscil-
latory migration advices. Adaptivity means that organizations have
to adapt to environment, taking account for example of machine re-
sources, other processes running on the machine. . .

REFERENCES
[1] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fab-

rice Huet, Matthieu Morel, and Romain Quilici, Grid Computing: Soft-
ware Environments and Tools, chapter Programming, Deploying, Com-
posing, for the Grid, Springer-Verlag, January 2006.

[2] Cyrille Bertelle, Antoine Dutot, Frédéric Guinand, and Damien Olivier,
‘Organization detection for dynamic load balancing in individual-based
simulations’, Multi-Agent and Grid Systems, 3(1), 42, (2007).

[3] Antoine Dutot, Distribution Dynamique Adaptative à l’aide de
mécanismes d’intelligence collective, Ph.D. dissertation, Université du
Havre - LIH, 2005.

[4] Antoine Dutot, Frédéric Guinand, Damien Olivier, and Yoann Pigné,
‘Graphstream: A tool for bridging the gap between complex systems
and dynamic graphs’, in EPNACS: Emergent Properties in Natural and
Artificial Complex Systems, (2007).

[5] C. M. Fiduccia and R. M. Mattheyses, ‘A linear time heuristic for im-
proving network partitions’, in ACM IEEE Design Automation Confer-
ence, pp. 175–181, (1982).

[6] B. Hendrickson and R. Leland, ‘An improved spectral graph partition-
ing algorithm for mapping parallel computations’, SIAM J. Scien. Com-
put., 16(2), 452–469, (1995).

[7] Carl Hewitt, Peter Bishop, and Richard Steiger, ‘A universal modular
actor formalism for artificial intelligence’, in t, pp. 235–245, (1973).

[8] B.W. Kernighan and S. Lin, ‘An efficient heuristic procedure for par-
titioning graph’, The Bell System Technical Journal, 49(2), 192–307,
(1970).

[9] M. E. J. Newman and M. Girvan, ‘Finding and evaluating community
structure in networks’, Phys. Rev, 69, (2004).

[10] Craig W. Reynolds, ‘Flocks, herds and schools: A distributed behav-
ioral model’, in SIGGRAPH ’87: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques, pp. 25–34,
New York, NY, USA, (1987). ACM.

[11] W. W. Zachary, ‘An information flow model for conflict and fission
in small groups’, Journal of Anthropological Research, 33, 452–473,
(1977).

SIAAS 2010, March 29 – April 1st, De Montfort University, Leicester, UK 29

	Preface
	Contents
	Exactly Solved Models for Collective Behaviour and Complex Systems Gérard H.E. Duchamp
	From Ants To Robots: A Decentralised Task Allocation Model For A Swarm of Robots Sifat Momen and Amanda J.C. Sharkey
	Application of CACS Approach for Distributed Logistic Systems Sami Al-Maqtari, Habib Abdulrab and Eduard Babkin
	Swarm Intelligence to Distribute Simulations in Computational Ecosystems Antoine Dutot, Damien Olivier and Guilhelm Savin

