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ABSTRACT

Decisionsupportsystemfor roadtraffic managementcan
be usedfor freight transport,peopletransportbut alsofor
site evacuation.We dealwith two aspectsof the decision
supportsystemin a sameglobalarchitecture:onefor traf-
fic regulationto avoid jam andthe otherfor roadusersto
choosetheshortestpathin timebetweentwo points.These
two aspectsinteract. The cartographyis representedby
a weighteddigraph. The weightsevolve accordingto the
traffic andthe graphis thereforedynamic. The regulation
systemis basedon a neuralnetwork. Theshortestpathis
basedonanantalgorithmwell suitedfor dynamicenviron-
ments.

GLOBAL ARCHITECTURE FOR ROAD TRAFFIC
MANAGEMENT

The transportdevelopmentmust face up to many con-
straints like: substructuresrealization and expansion
limitation dueto the availablespaceandthe costs,reduc-
tion of the loud and atmosphericpollution, deregulation
and concurrency betweenthe mode of transportand so
on. So, it is necessaryto find solutionsto manageroad
traffic. Two aspectscan be considered.The first one is
aboutDecisionSupportSystem(DSS)to helpandinform
users. The secondone is aboutregulation systembased
on control amenagement(Virtual MessageSigns(VMS),
traffic lights, ...).

We proposea globalarchitecturebasedon two mainparts
(seefigure1):� Therealworld which is split in threeelements:

– the traffic which contains,in onehand,all mo-
bile elements(cars,pedestrians,...) described
with different levels of autonomousbehaviour
and, in the otherhand,spatio-temporalorgani-
zationswhich are predictable(schoolouts, ...)
or not (jam,accident,...) ;

– the environmentwhich containsall the roadin-
frastructureandlogisticplanning;

– the control system which contains sensors
(webcams,datatraffic magneticsensors,...) and
effectors(VMS, traffic lights, ...).

� Themodelwhich is split in thefollowing elements:

– informationcollectionandprocessingin orderto
usethemon thesolvinglevel;

– a dynamicweighteddigraphrepresentingthese
informationsandthetraffic flow;

– a regulation systembasedon this graph and
managingthecontrolsystem;

– aDSSwhichusethedynamicgraphandthereg-
ulationcontrol. A multimodalinterfaceinforms
and helps different userswith respectto their
profiles.

Theinformationupdateandits adaptive treatmentgive the
dynamicaspectof the global architectureasdescribedin
figure1. So,it is typically acomplex systemmodelinclud-
ing retro-actionphenomena.In this paperwe developtwo
pointsof this architecture:the regulationsystembasedon
multi-layerperceptronwith backpropagationalgorithmand
thedecisionsupportsystemwhich suggestsshortestpaths
obtainedfrom adynamicgraph.

REGULATION MODELLING

The model for roadtraffic regulationusesan agent-based
representationfor road traffic and a neuronalmodel for
the regulation. This study(Foote,2002)presentedin the
following will look at traffic flow on a Manhattan-style
roadgrid. At eachcrossroad,thereis a traffic lights sys-
tem decidingwhich carsare going to cross. Carsenter
the grid from the outsideanddecidewhich directionthey
wish to useat eachcrossroad.We usetheMadkit package
(GutknechtandFerber, 1997)to managethe agentworld.
Theneuralnetwork is amulti-layerperceptronimplement-
ing abackpropagationalgorithm.



Dynamic graph

Information treatment

Regulation

Decision Support 

S
ys

te
m

Multimodality

Traffic road

Control

S
ys

te
mEnvironment

Multimodality

Multimodality

User

User

Figure1: Globalarchitecture

Controlling Multi-Agent System

The genericagentorganizationusedin this work is based
on a theoreticalstudyof A. Cardon(Lesageet al., 1999).
Hedescribeshow amulti-agentsystemcanbedividedinto
threetypesof agents:� AspectualAgentsare the basicagentsthat represent

thetargetpopulation.In our case,they representcars
andtraffic lights in a town;� Morphological Agents deal with aspectualagents
measurements.They collect only someinformations
which leadto describeevolutive andadaptive organi-
zationalaspects.It is a kind of projectionof all agent
characteristicsonto a smallerdimensionalspace. In
our case,a morphologicalagentplaysa statisticcol-
lectionservice,taking into accountfor example,cars
positionandinformationabouttheir displacements.� Analytical Agentsaresomerulersof our agentpop-
ulation, looking at thestatisticsprovidedby themor-
phologyagents,andthenactingonthemto controlthe
globalbehaviour of thesystem.Theanalyticalagents
donot directlymodify thebehaviour of any particular
agent,but rather, indirectly shapetheevolution of the
aspectualagentsasa whole.

Here,we presentan applicationof this theoreticalmodel,
basedonaneuralnetwork. Ourproblemis asfollows: how
can we maximisethe flow of traffic througha road net-
work? The input layerof our neuralnetwork will process
informationfrom themorphologicalspaceof theaspectual
agentsandthengive anoutputfigurewhich representsthe
globalstateof thenetwork. This figurecanthenbeusedto
decideon theactionto betakento increasetraffic flow.

Neuronal ApproachesBasedModels
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Figure2: Neuralnetwork basedregulation

The regulation model uses an agent-baseddescription
whichis analysedby aneuralnetwork basedonmulti-layer
perceptron.

Agent-BasedDescription

Thesimulatoris decomposedin threemainparts:� Theenvironmentis abidimensionalgrid composedof
set of roadswhich have their own length and width
andwherecarsevolve;� The traffic lights managethe carscirculationat each
crossroad. Each one finds out the identities of its
neighbours,it looksfor carswhich arrive at its cross-
roadandknowsthedirectionthateachcarwantsto go.
A cooperativelight modeis definedandproceedsort-
ing car queues. The longestqueueis first managed
andthe associatedlight lets carsgo to their choosen
directionif spaceis available,elsethesecond-longest
queueactsandsoon ...� Thecarscanbein onethethreefollowingstates.They
are in the statemoving whenthey have to go to one
crossroad(graphnode)to anotherif thereis no car in
front of it. Whena car reachesits choosencrossroad



Figure3: Regulationexperimentation

without having othercarsin front of it, it changesits
stateto atLightone.In thisstate,it sendsamessageto
thelight telling whichwayit wantsto go. It thenwaits
until thelight givesit permissionto move. If acarhas
otheronesin front of it, duringits move,it changesits
stateto thewaiting one.

Moreover, the simulationmanageinput andoutputfluxes
betweenthesimulatedtown (asManhattan-styleroadgrid)
andtheexterior.

Multi-Lay er Perceptron Regulation

Theneuralnetwork usedfor theregulationis a multi-layer
perceptron. It is the analysislayer of the genericagent
organisationdescribedpreviously (seefigure2).

The network computesglobal variablesto reducetraffic
jams.Thethreestatesof its outputare:clear, busyandget-
ting blockedcorrespondingto nodangerof gridlock,slight
dangeranddangerof gridlock. So the retro-actionof this
analysislayerontheaspectuallayerconsistsin alteringthe
following variables:� waitTime correspondsto the delay betweensending

batchesof carsthroughthelights;� carDispersion correspondsto the authorized cars
numberableto comeinto thetown from theexterior.

Experimentations

We show in figure 3, two windows of the visual interface
desktopof the simulator which representrespectively a

schematicview of the traffic anda traffic observer curve.
This last informationgivesthe numberof carswhich are
moving at eachstepof the simulation. In this example,
the regulationleadsto the preservationof the fluidity, the
global numberof moving carsis preserved between100
and150units.

CONSTRAINED PATHS COMPUTATION BASED
ON ANT ALGORITHM

Ant algorithms are a class of meta-heuristicsthat can
yieldnear-optimalsolutionsto hardoptimizationproblems.
They maintaina populationof agentsthat exhibit a coop-
erative behaviour (Langton,1987). For example,antsde-
positpheromonesin theenvironmentthat influenceothers
which tend to follow it. Suchan approachis robust and
well supportsparameterchangesin the problem. Ant al-
gorithmshasbeenappliedsuccessfullyto variouscombi-
natorial optimizationproblemslike the Travelling Sales-
man Problem(Dorigo and Gambardella,1997), routing
in networks (CaroandDorigo, 1997), (White, 1997), for
distributed simulation(Bertelle et al., 2002b)but also to
DNA sequencing(Bertelleet al., 2002a),graphpartition-
ing (Kuntzet al., 1997)andclustering(FaietaandLumer,
1994).

Dynamic Graph and Regulation Feed-back

The cartographyis representedby a weighted digraph�������	��
�
where

�
is a set of vertices representing

crossroadsor any other significant information (school,
town hall . . . ) and


��������
is a setof directededges� ���������������

. Thuseachsegmentof a streetthatis between



two adjacentverticesasdefinedpreviously is represented
by eitheroneor two directededges.Two directededges,
onein eitherdirection,areusedif thestreetis two-way, and
a singledirectededgeis usedif it is a one-way segment.
The edgeweight � ��� betweenthe vertices

���
and

���
is

a dynamic factor which representsthe time to crossthe
edge

�������������
andthe traffic load which is computeby the

regulationsystem,asdescribedin thefollowing.

Theregulationsystemwhich actson waitTimevariable,is
ableto give � ��� thecarsnumberoneachedgeof thegraph
modellingtheroadtraffic. Takinginto accountsomephys-
ical characteristicsof eachroadmodeledwith edge,achar-
acteristicfludity-basedtime,expressedas: ���!�#"%$ ���� �&�('*),+
This characteristictime contributesto the regulationfeed-
backof the regulationsystemon thedynamicgraphmod-
elling theroadtraffic. In fact,eachedgeweight is thesum
of anobservedtimefor crossingtheroad,noted- ��� andthe
characteristicfluidity-basedtimedefinedabove:� �&�%� - �&�/.  �&�
Weightsevolve accordingto the traffic and the graph is
thereforedynamicandwe have to find pathsin this graph.
Thesechangesareoneof the major motivation for using
ant algorithmsAnt algorithmswhich are well suited for
that kind of dynamic task. This approachis implicitly
distributed. This would not createmany communications
sincethealgorithmonly useslocal informationsandstores
resultsdirectly in thegraph(thatis, directly in thecomput-
ing resourceslocalmemory).

Algorithm

Wesearchin thegraphsomepathsbetweentwo vertices
�10

and
��2

. Theresolutionmethodis distributedandbasedon
auto-organizationmechanisms.We continuallyreleasenu-
mericalantson thedynamicgraph,andallow themto find
routesbetweenpairsof vertices.Theantsdepositnumeri-
cal pheromoneson edges.Theamountsof pheromonede-
positedis a functionof thelengthandcongestionof paths.
Ants are attractedby weightsof edgesand pheromones.
Theevaporationallows to forgetbadpaths.Theantstend
to convergeon pathswhich arethefastest.
To be ableto distribute the computation,we have divided
thealgorithmin two partsandfor eachwe have a specific
time.� The environment. It is representedby the dynamic

graph.Its majorrole is to managetheantpopulation,
evaporationphenomenonand simulationof weights
on theedges.We storealsoin thevertex

� 2
theshort-

estpathwhichcomesfrom
� 0

, theminimalglobalcost3 042
of the pathfrom

� 0
to
� 2

. Due to the dynamic

changeof weights the durationof the shortestpath
maychangewhenanotherantcoversthepathcrossing
the sameverticesandwe note 5 042 the instantwhere
theanthasfoundthesamepath.For a givenstep,we
have:68789;:

= discrete time of the environment

BEGIN
birth of ants on the vertex <�=
pheromone evaporation (see (2))

weights update

IF
6 = 9?>@687�9A: THEN B?= 9DCFEG ENDIF

// No ants on the path since a long time6 7�9A:
=
6 7�9A:

+ 1

END

� The ants. Ants try to go from the vertex
�10

to the
anothervertex

��2
. Ants managetheir displacements

accordingto timesandpheromones.They alsodrop
pheromonesonedges.Threestatesarepossiblefor an
ant loking for food, reachingthefinal vertex

� 2
, and

comingbackto the source.For oneant locatedon H
wehave :68I 9;J

= discrete time for the ant

vertex =
�

ant_state K?L�MONOPRQ�SUTWVXPYQ�Q � <RNOZ;V�[Y\ _ ]^PRSU_A`
BEGIN

IF ant_state == M�NOPYQ4SUT
THEN
//The ant must choose an adjacent vertex to

�aWb
= set of the adjacent vertices of

�
which

have not been traversed yet by the ant

FORALL
� K a b DO

Compute the probability c b&d (see (1))

that the ant chooses to hop from

the vertex
�
to
�

ENDFOR
Select the next vertex <�e
according to the probability c b&d

Wait during the time f b e )*+vertex = <�e // Move to _
IF <�e == < 9

THEN ant_state = PYQ�Q � <RNOZ
ENDIF

ENDIF
IF ant_state == PRQ�Q � <RN�Z

THEN
update if necessary shortest path

and times
6 = 9

ant_state = [R\ _ ]^PRSU_
ENDIF
IF ant_state == [R\ _ ]^PRSU_

THEN
pheromone deposit on path

used by the ant (see (4))

death of the ant

ENDIF68I 9AJ
=
68I 9AJ

+ 1

END

Let g ��� betheamountof pheromonetrail depositedon the
edgeconnectingi andj, � �&� theweightof theedgeswhich



dependson thetime of thetraffic flow to connecttheloca-
tion H and h , it is a dynamicvariable.Theprobability that
anantwhenit is locatedon H chooseh is:

i � H � h �j� � g ��� ��kl�nm +f bodWprqs_�K atb � g � _ � k "vu� � _ ' q
(1)

Where
� �

is thesetof adjacentverticesof H whichhavenot
beentraversedyetby theant.Theamountof pheromoneg ���
ontheedge

� H � h � is modifiedby theenvironmentandby the
ants. The environmentregularly updatesthis pheromone
quantityusinganevaporationrate,noted

� u	w�x � :
g 2 NUf�&� � x g \�yzZ�&� (2)

where {}| x | u and g \�yzZ�&� and g 2 NOf�&� arerespectively the
pheromonequantity beforeand after the update. An ant
whichhasfoundapathbetweenthetwo vertices

�10
and

��2
andso comeback to start vertex, modify the pheromone
quantityby reinforcementrate,noted ~�g :

~�g � �3 �&� (3)

where � is a constantand
3 ���

theglobalcostof thepath
betweenH andh .

g 2 NUf��� � g \�yzZ�&� . ~�g (4)

Results

We show anexampleof thealgorithmexecution,basedon
a simpleurbanrepresentationwith a ring road(seefigure
4). Thefirst graphshows theinitial situation,thering road
is thefastestway thenwe jam it, soa new pathis detected
by theants.Thesecondgraphshows theshortestpathob-
tainedwhichtakesthering road,thelastoneis thesolution
whenthe ring roadis jamed. In this example,at eachen-
vironmenttime step10 antsarereleased,� ���

, � � u ,x � {(� � and � �n�
.

CONCLUSION

Wearedevelopinganarchitectureof botharegulationsys-
tem and a decisionsupportsystembasedon a dynamic
graph.Ant algorithmsareusedandwell suitedfor adaptive
aspectsand anytime approachesof dynamic traffic flow.
Neuralnetworks areusedandwell suitedfor traffic flow
regulation. We actuallywork on future developmentcon-
cerningmanagementof heterogeneousinformationsflows
from any kind of sources(satellites,webcams,sensors)
andmultimodal interfacesfor the differentusers. We are
searchingto extract the most important and urgent in-
formationsusingorganizationsof cooperatives/antagonists
agents.Multi-agentsystemsareadaptedto find emergent
evolutionarysolutionsin dynamicproblems.
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