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Abstract  

Although endosseous implants are widely used in the clinic, failures still occur and their clinical 

performance depends on the quality of osseointegration phenomena at the bone-implant interface 

(BII), which are given by bone ingrowth around the BII. The difficulties to ensure clinical 

reliability come from the complex nature of this interphase related to the implant surface roughness 20 

and the presence of a soft tissue layer (non-mineralized bone tissue) at the BII. The aim of the 

present study is to develop a method to assess the soft tissue thickness at the BII based on the 

analysis of its ultrasonic response using simulation based-convolution neural network (CNN). A 

large-annotated dataset was constructed using a 2-D finite element model in the frequency domain 

considering a sinusoidal description of the BII. The proposed network was trained by the 25 

synthesized ultrasound responses and was validated by a separate dataset from the training process. 

The linear correlation between actual and estimated soft tissue thickness shows excellent R2 values 

equal to 99.52% and 99.65%, and narrow limit of agreement corresponded to [-2.56, 4.32 µm] and 

[-15.75, 30.35 µm] for the microscopic and macroscopic roughness respectively, supporting the 

reliability of the proposed assessment for the osseointegration phenomena. 30 

 

Keywords: Bone-implant interface, osseointegration, quantitative ultrasound, Finite element 

method, Convolutional neural network. 
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I. Introduction 

Although implants are now widely used in dental and orthopedic surgery, there remain risks 

of failure which may have dramatic consequences and are difficult to anticipate. The surgical 

success depends on the quality of osseointegration phenomena, which corresponds to the formation 40 

of bone tissue in contact with the implant (Haiat et al., 2014). During osseointegration phenomena, 

collagen-rich tissue forms around the implant and is then mineralized, which corresponds to a 

transformation from soft tissue into a solid material(Moerman et al., 2016). Aseptic loosening, 

which depends on osseointegration phenomena, is the most common cause of surgical failure of 

endosseous implant surgery (Pilliar et al., 1986). Therefore, the non-invasive assessment of 45 

osseointegration phenomena is important in order to maximize the clinical success of such 

intervention (Khan et al., 2012). However, it remains difficult to assess the evolution of the implant 

stability, which is given by the biomechanical properties of the bone-implant interface (BII) 

(Mathieu et al., 2014).  

 50 

Different biomechanical techniques have been proposed to investigate the BII properties 

because techniques using X-rays and Magnetic Resonance Imaging have strong limitations due to 

the presence of metal (Shalabi et al., 2007; Gill and Shellock, 2012). To investigate the BII 

properties, impact methods (Van and Wilson, 1991; Schulte and Lukas, 1992; Michel et al., 2016; 

Goossens et al., 2017; Dubory et al., 2020) and resonance frequency analysis (Meredith et al., 55 

1996; Georgiou and Cunningham, 2001; Pastrav et al., 2009) have been employed but remain 

limited in terms of resolution and of sensitivity to investigate the biomechanical properties of the 

BII (Aparicio et al., 2006; Seong et al., 2009). Approaches using quantitative ultrasound (QUS) 

seem promising to retrieve information on the BII because it is non-invasive, easy to use and non-

ionizing. Preliminary studies using coin-shaped implant models have evidenced a significant 60 

decrease of the reflection coefficient of the BII as a function of healing time (Mathieu et al., 2012; 

Fraulob et al., 2020), which can be explained by increases of the bone-implant contact (BIC) ratio, 

of the bone Young’s modulus (Vayron et al., 2012) and of bone mass density (Mathieu et al., 2011; 

Vayron et al., 2014b) as a function of healing time. The sensitivity of the reflection coefficient of 

the BII to compressive stresses was also investigated (Hériveaux et al., 2019b). Moreover, in vitro 65 

(Vayron et al., 2018b) and in vivo (Vayron et al., 2014c; Vayron et al., 2018a) studies have proven 

the potentiality of QUS techniques to evaluate dental implant stability and have evidenced a better 
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resolution compared to the resonance frequency analysis technique, which is currently employed 

in the clinics. Despite the interesting performances of QUS techniques to retrieve information on 

the BII properties, experimental approaches are limited when it comes to understand the 70 

determinant of the QUS response of the BII because of the various parameters such as surface 

roughness, bone quality and bone quantity that are impossible to control and that evolve in parallel.  

 

Acoustical modeling is the only way to gain a further understanding of the interaction 

between ultrasonic waves and the BII. Therefore, numerical studies considering 2-D and 3-D finite 75 

element modeling (Vayron et al., 2015; Vayron et al., 2016; Dorogoy et al., 2020; Kwak et al., 

2020) have been used to understand wave propagation in a dental implant but considered the BII 

as fully bonded, neglecting the effect of partial contact and of surface roughness. More recently, a 

finite element model was developed in the time domain to investigate the sensitivity of the 

ultrasonic response to surface roughness properties of the BII and to osseointegration processes 80 

(Hériveaux et al., 2018; Hériveaux et al., 2019a; Hériveaux et al., 2020). The implant roughness 

was first modeled with an idealized sinusoidal profile (Hériveaux et al., 2018) and actual implant 

roughness profiles (Hériveaux et al., 2019a), and the 3D case was eventually considered 

(Hériveaux et al., 2020). However, it still remains difficult to perform the inversion of the 

ultrasound signal in order to determine the biomechanical properties of the BII. Moreover, the 85 

computation cost of the time-domain finite element simulation is still high, thus preventing 

constructing a sufficiently large database to run data-driven approaches. 

 

Data-driven methods are powerful approaches to solve the inverse problem and have 

significant advantages because they can be adapted to various conditions by using annotated large-90 

scale dataset, which requires detailed understanding of the parametric sensitivity. Artificial neural 

networks with supervised learning have been used successfully in many engineering domains 

(Khan et al., 2001; Silver et al., 2016). In particular, the convolutional neural network (CNN) 

method showed an excellent performance in terms of image recognition and classification 

(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). Moreover, various applications of the 95 

CNN method have been presented including structural health monitoring and source localization 

(Kwak, 2018; Toh and Park, 2020). However, collecting large-scale dataset in the implant research 

field is not straightforward unlike measuring visual data such as images. CNNs with artificial 
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imaging processes such as coloring, distorting and noising were presented to augmented training 

dataset numerically (Antoniou et al., 2017; Perez and Wang, 2017; Salamon and Bello, 2017; 100 

Kwak et al., 2021). Inspired by researches for the image recognitions, the spectrogram and space-

time matrices were employed to convert input acoustic data into relevant two dimensional color 

figures (Costa et al., 2017; Vesperini et al., 2018). 

 

The aim of this numerical study is to assess osseointegration phenomena by inverting 105 

ultrasonic signals using a 2-D convolutional neural network (CNN). Osseointegration phenomena 

are determined based on the estimation of the soft tissue thickness present at the BII that is obtained 

by analyzing the interaction of the ultrasonic waves with the BII. To do so, the forward model was 

modified compared to (Hériveaux et al., 2018; Hériveaux et al., 2019a; Hériveaux et al., 2020) 

since it was derived in the frequency domain and then translated into the time domain, which has 110 

the advantage of significantly reducing the computation cost, allowing to construct an annotated 

large dataset. The CNN based-assessment method was then applied to the aforementioned dataset 

to assess the osseointegration at the microscopic and macroscopic roughness scales. Our algorithm 

was verified by separating the validation dataset from the training dataset.  

 115 

 

II. Material and methods 

A. Description of the problem 

We consider a two-dimensional model which consists of three domains, corresponding to 

the implant (Titanium alloy, Ti-6Al-4V), cortical bone tissue and soft tissue (see Fig. 1a). The 120 

incident wave is assumed to be as a pulsed plane wave propagating from up-to-down vertical 

direction. Following the in vitro experiment setup described in (Mathieu et al., 2012), the objective 

is to determine the radiofrequency signal corresponding to the wave reflected by the BII.  

After the implant insertion, collagen-rich tissues form around the implant and are then 

mineralized, which corresponds to a transformation from soft tissue into a solid material during 125 

osseointegration phenomena (Moerman et al., 2016).  Based on this transformation, we assumed 

that the soft tissue thickness decreases when osseointegration phenomena progress, which is a 

similar model than that used in (Raffa et al., 2019; Raffa et al., 2020) to model osseointegration 

phenomena in the static regime. Moreover, we have shown experimentally that the ultrasound 
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reflection coefficient of the BII is very sensitive to the properties of bone tissue located around the 130 

BII (Mathieu et al., 2012; Hériveaux et al., 2019; Fraulob et al., 2020). 

Due to the symmetry of the problem, the streamlined model described in Fig. 1 was 

introduced similarly as in our previous studies (Hériveaux et al., 2018; Hériveaux et al., 2019a; 

Hériveaux et al., 2020). Only a single half-sine period of the interface was considered (Figure 1b), 

which is sufficient to simulate the propagation of the acoustic wave using symmetrical boundary 135 

conditions in the interfaces perpendicular to the direction x. The implant surface roughness was 

modeled by a sinusoidal function of amplitude h and half-period L.  

 

The interface roughness was analyzed by considering two different scales: denoted 

microscopic and macroscopic roughness in what follows. The microscopic roughness corresponds 140 

to the situation obtained by sandblasting and acid etching (Strnad and Chirila, 2015) of the implant 

surface, while the implant geometries such as threading of dental implant and pedicle screws 

correspond to the macroscopic roughness. For the microscopic case, the reference values of the 

surface roughness amplitude h and half-period L are 5 µm and 50 µm, respectively (Hériveaux et 

al., 2018). For the macroscopic case, the reference values of the surface roughness amplitude h 145 

and half-period L are 360 µm and 900 µm, respectively (Hériveaux et al., 2018).  

 

Soft tissue was considered between the bone and the implant (see Figure 1a) in order to 

model non-mineralized fibrous tissue that may be present at the BII in the case of non-

osseointegrated implants or just after surgery. The soft tissues thickness W was defined as the 150 

distance between the highest point of the implant profile and the bone layer (see Figure 1b). The 

progression of the osseointegration phenomena leads to a decrease of the soft tissue thickness W.  

 



 6 

     

FIG 1. (a) Schematic illustration of the geometrical configuration of the BII considered in 155 

the numerical simulation. (b) Description of the streamlined model. 

 

The size of the implant and bone domains (Hb and HTi, respectively) were much larger than 

the characteristic lengths of the interface roughness so that they may be considered as semi-infinite 

domains. Lengths of the implant HTi and cortical bone Hb domains in vertical direction are 1 mm 160 

in the macroscopic case and 50 µm in the microscopic case, which corresponds to two times the 

wavelength in the y direction. In this study, we assumed that all materials have linear isotropic 

elastic behavior. The material properties of all media considered in the numerical simulation were 

taken from (Njeh et al., 1999; Pattijn et al., 2006; Pattijn et al., 2007; Haïat et al., 2009) (Table 

I).  165 

 

Table I. Material properties used in the numerical simulations. Values taken from (Njeh et al., 

1999; Pattijn et al., 2006; Pattijn et al., 2007; Haïat et al., 2009). 

 Cp (m·s-1) Cs (m·s-1) ρ(kg·m-3) 

Soft tissue (liquid) 1500 10 1000 

Titanium 5810 3115 4420 

Cortical bone tissue 4000 1800 1850 
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B. Time-domain computation of the reflection coefficient of the bone-implant interface 

In this study, we are interested in the determination of the reflection coefficient of the BII 

that is evaluated based on the amplitudes of the incident and reflected waves in the time-domain. 
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As it has been done experimentally, the average amplitude of the reflected waves was evaluated 

over a horizontal surface located at a given distance from the BII.  175 

 

To solve the aforementioned problem, the approach developed in our previous studies 

(Hériveaux et al., 2018; Hériveaux et al., 2019a; Hériveaux et al., 2020) consisted of i) considering 

a finite element discretization used to derive the system of dynamic equations and ii) using direct 

time integration schemes. The finite element simulation was performed by using the Comsol 180 

Multiphysics software (COMSOL AB, Stockholm, Sweden) using the  𝛼-generalized scheme. 

However, such an approach involving a direct time-integration is computationally expensive, 

hampering their implementation into deep learning-based analyses because of the significant 

number of realizations required. To reduce computation time, another computational procedure is 

proposed in what follows. The dynamic problem is firstly solved in the frequency domain, and the 185 

solution of reflected wave is then reconstructed in the time domain using the inverse Fourier 

transform.  

 

C. Resolution in the frequency domain  

For each subdomain #i (i = 1,2,3 correspond to titanium implant, soft tissues and cortical 190 

bone respectively) defined in the previous subsection, the dynamic equations in the frequency 

domain read: 

−𝜔2𝜌(i)𝒖(𝑖) −  𝑑𝑖𝑣 𝝈(i) = 𝟎 ( 1 ) 

where 𝜌  is the mass density, 𝒖  is the displacement vector and 𝝈 is the stress tensor in the 

subdomain #i. The constitutive relation using Hooke’s laws is given by: 195 

𝝈(i) =  λ(i) tr(𝛆(i)) 𝑰 + 2 μ(i) 𝛆(i), ( 2 ) 

where 𝜺 = 𝟏

𝟐
(grad𝒖 + grad𝒖𝑇) is the strain tensor in the subdomain #i. 

 

The continuity of displacement and stress fields lead to the following boundary conditions at 

the interface between subdomain #i and #k:  200 

{
𝒖(i) = 𝒖(k)

𝝈(i)𝒏 = 𝝈(k)𝒏       at interface (𝑖 − 𝑘) ( 3) 

where {i, k} = {1,2}, {1,3} or {2,3} and  𝒏 is the unitary vector normal to the interface. 
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Here, we considered an incident wave propagating in the y-direction, perpendicularly to 

the BII (see Figure 1). The displacement field 𝒖(1) in the subdomain #1 can be decomposed into 205 

two parts representing the incident and reflected wave fields as follows: 

𝒖(1) = 𝒖𝐼 + 𝒖𝑅 , ( 4 ) 

where 𝒖𝐼 = {0, 𝑈𝐼𝑒𝑗𝑘𝑝
(1)

𝑦} in which  𝑘𝑝
(1)

 and 𝑈𝐼  are the wavenumber and the amplitude of the 

incident P-wave, respectively; 𝑘𝑝
(1)

= 𝜔/𝑐𝑝
(1)

.  As 𝒖𝐼 is supposed to be known, we substituted Eq. 

(4) into Eqs. (1-2) to formulate a system of equations with respect to  𝒖𝑅 as:  210 

  −𝜔2𝜌(1)𝒖𝑅 −  𝑑𝑖𝑣 𝝈R = 𝟎, ( 5 )                              

𝝈R =  λ(1) tr(𝛆R) 𝑰 + 2 μ(1) 𝛆R ( 6 ) 

 

In Eqs. (5-6), all the terms related to 𝒖𝐼 did not appear because 𝒖𝐼 is also a solution of the 

dynamic equation (1). However, 𝒖𝐼 cannot be neglected in the continuity conditions which are 215 

now expressed by:  

𝒖𝑅 +  𝒖I = 𝒖(k)

(𝝈R + 𝝈I )𝒏 = 𝝈(k)𝒏
   at intefaces (1 − 𝑘) 𝑤𝑖𝑡ℎ 𝑘 = {2,3} 

where:  

𝝈I = [
2𝑗𝑘𝑝

(1)
𝜇(1)𝑈𝐼𝑒𝑗𝑘𝑝

(1)
𝑦 0

0 𝑗𝑘𝑝
(1)

(𝜆(1) + 𝜇(1))𝑈𝐼𝑒𝑗𝑘𝑝
(1)

𝑦
] ( 7 ) 

 220 

The radiation conditions at the infinity read 

 

𝒖R → 𝟎  when  𝑦 → +∞ , ( 8 ) 

𝒖(3) → 𝟎  when  𝑦  →  −∞ , ( 9 ) 

 225 

The system of equations ((Eqs. (5-9)) was implemented using the finite element software 

COMSOL Multiphysics (Stockholm, Sweden). As the domain’s size should be finite, to prevent 

the non-physical reflected waves from the upper and lower boundaries (Eqs. 8&9), two absorbing 

layers are introduced at 𝑦 =  𝐻Ti and at 𝑦 =  −𝐻b. By introducing absorbing layers, the radiation 

conditions can be represented artificially, resulting in smoothly attenuated radiative waves. With 230 
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the presence of absorbing layers, at the upper boundary of the implant domain (Ω(1)) and at the 

lower boundary of bone domain (Ω(3)), fixed boundaries are imposed:  

𝒖R = 𝟎   at 𝑦 =  𝐻Ti , ( 10 ) 

𝒖(3) = 𝟎   at 𝑦 =  −𝐻b , ( 11 ) 

In addition, the symmetry conditions also impose that 𝑢𝑥  =  0 at the lateral boundaries 𝑥 = 0 and 235 

𝑥 = 𝐿. 

In each subdomain, the element size was chosen to be equal to 𝜆𝑚𝑖𝑛 20⁄ , where 𝜆𝑚𝑖𝑛 

denotes the shortest wavelength in the considered domain (i.e. the wavelength of shear wave). The 

implant and bone subdomains were meshed by structured quadrangular quadratic elements, and 

the soft tissue subdomain was meshed with triangular quadratic elements. Solving the system (Eqs. 240 

5-9) leads to the solutions of 𝒖R, 𝒖(2) , 𝒖(3)  as a function of 𝒖I  and 𝜔 . The evaluation of the 

reflection coefficient requires calculating the average displacement over a horizontal section of the 

implant domain which is located at an ordinate  𝑦𝑚  from the bone-implant interface. In the 

frequency domain, this average displacement is given by:     

Φ𝑅(𝜔) =  
1

𝐿
 ∫ 𝑈2

𝑅(𝑥, 𝑦𝑚, 𝜔)𝑑𝑥 = 𝐻(𝜔)𝑈𝐼
𝐿

0

(𝜔) ( 12 ) 245 

where 𝐻(𝜔) denotes the transfer function and 𝑈𝐼 is the amplitude of the incident wave.  

 

D. Determination of the solution in the time-domain   

The incident plane wave was given by a uniform vertical stress 𝜎22
𝐼  which has a broadband 

ultrasonic pulse form defined by: 250 

𝜎22
𝐼 (𝑡) = 𝐴𝑒−4(𝑓𝑐𝑡−1)2

sin(2𝜋𝑓𝑐𝑡) , ( 13 ) 

where A indicates an arbitrary constant and fc = 10 MHz indicates its central frequency chosen 

based on the QUS device developed by our group to assess dental implant stability (Mathieu et al., 

2011; Vayron et al., 2013; Vayron et al., 2014a; Vayron et al., 2014c; Vayron et al., 2018a; Vayron 

et al., 2018b). The frequency response corresponding to the average displacement Φ𝑅(𝜔) of the 255 

reflected wave at the surface located at 𝑦𝑚 can be expressed as: 

Φ𝑅(𝜔) = 𝐻(𝜔)𝑆(𝜔)/(𝑗𝜔 𝜌(1)𝐶𝑝
(1)

) ( 14 ) 

where 𝐶𝑝
(1)

denotes the compressional velocity in the subdomain #1 and 𝑆(𝜔) denotes the Fourier 

transform of 𝜎22
𝐼 (𝑡)  given by 𝑆(𝜔) = ∫ 𝜎22

𝐼 (𝑡) . 𝑒−𝑗𝜔𝑡𝑑𝑡.  
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 260 

Zero-padding was performed in the frequency domain to obtain a high-resolution time 

response as follow: 

Φ∗(𝑛∆𝜔) = {

ΦR(𝑛∆𝜔)
0

Φ
𝑅

((𝑁∗ − 𝑛)∆𝜔)

         0 < 𝑛 < 𝑁 − 1
         𝑁 < 𝑛 < 𝑁∗ − 𝑁 + 1

        𝑁∗ − 𝑁 + 2 < 𝑛 < 𝑁∗ − 1
, ( 15 ) 

where ∆𝜔 is the frequency step of the simulation, N is the number of discrete data obtained by the 

simulation, N* is the extended number of data by the zero-padding. The time-domain response 265 

with higher resolution 𝑠(𝑡) can be calculated by the inverse Fourier transform of Φ∗. Notably, the 

frequency bandwidth analyzed herein was limited to 30 MHz and the frequency step of the 

numerical model was set to 0.5 MHz (N = 60), resulting in 2 µs for the time duration and 33.3 ns 

for the time step. Considering that a tight time step is necessary for a satisfactory numerical 

analysis for the BII (Hériveaux et al., 2018), the extended number N* was set to 840 to increase 270 

time resolution of the response by 14 times, resulting in 28 µs for the time duration and 2.4 ns of 

the adjusted time step. Accordingly, we obtained the high-resolution time response efficiently from 

only 60 simulated data in the frequency domain, while the simulation based on the direct time-

integration would be computationally more expensive. 

 275 

The reflection coefficient 𝑅 was determined based on the ratio of the amplitudes of the 

reflected and incident waves in the time domain. The first signal corresponds to the uniform 

incident vertical displacement, noted 𝑠𝑖(𝑡). The second signal corresponds to 𝑠𝑟(𝑡). The maximum 

amplitude of the modulus of the Hilbert’s transform (corresponding to the envelope) of 𝑠𝑖(𝑡) and 

𝑠𝑟(𝑡) were noted 𝐴𝑖 and 𝐴𝑟, respectively. The reflection coefficient R in amplitude then writes: 280 

𝑅 =  
𝐴𝑟

𝐴𝑖
  ( 16 ) 

 

E. Composition of the training dataset 

To synthesize the training dataset, the ultrasound simulations were performed with the 

range of variation of the BII roughness parameters, considering the results obtained from our 285 

previous studies (Hériveaux et al., 2018; Hériveaux et al., 2019a; Hériveaux et al., 2020). In the 

case of the microscopic roughness, the training data set was constructed with various values of h 

comprised between 0 and 10 µm with a step of 1 µm and of W comprised between 0 and 100 µm 
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with a step of 0.5 µm. In the case of the macroscopic roughness, the training data set was 

constructed with various values of h comprised between 310 and 410 µm with a step of 10 µm and 290 

of W comprised between 0 and 1.5h with a step of 0.01h. To employ separate training and 

validation dataset, all reference cases for both roughness scales (h = 5 µm for the microscopic scale 

and h = 360 µm for the macroscopic scale) were excluded from the training dataset. The excluded 

dataset was then employed only to validate our method, resulting in a ratio of the validation data 

to the training data equal to 0.1. 295 

 

The ultrasound radiofrequency signals obtained using the numerical model for each set of 

parameters (h, W) corresponding to a given roughness and state of osseointegration were 

transformed into time-frequency spectrograms using short-time Fourier transform (STFT). In this 

study, the spectrograms were used as the input data of the 2-D CNN. We employed the rectangular 300 

window function for calculation of the spectrograms, which are not post-processed to reflect the 

magnitude of the radio frequency signals as they are. Considering the resolution of the spectrogram 

in time and frequency domains, we chose the window size and overlap ratio to be 27 and 7/8, 

respectively, resulting in 0.04 µs time step and 3.125 MHz frequency step. Moreover, since the 

emitted signal is a pulse wave with a center frequency of 10 MHz (see Figure 3), the spectrogram 305 

above 1 µs and 37.5 MHz in time and frequency domain respectively were excluded from the 

analysis. 

 

F. Layer configuration of the 2-D convolution neural network 

The layer structure of the 2-D CNN employed herein is illustrated in Figure 2. The structure 310 

consists of two convolution layers. We used the Adam optimization algorithm for training our 

network because it requires little hyperparameter tuning effort for achieving adequate results 

(Kingma and Ba, 2014). A mini-batch size was 120, and 100 epochs were conducted. 32 

convolution filters were used in the first and the second convolution layer. The size of the 

convolution kernel was 4 by 4 with strides of two. To prevent change of the size of images, zeros 315 

were added at edges(Chetlur et al., 2014). The batch normalization was performed with each 

convolution layer(Ioffe and Szegedy, 2015). The rectified linear unit (ReLU) was used as the 

activation function(Nair and Hinton, 2010). The max pooling layer was performed with a 4 by 4 

matrix and strides of two. After the second max pooling layer, 10 % of neurons were dropped out 
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to prevent over-fitting(Hinton et al., 2012). The flatten-layer was used before the first fully 320 

connected layer. The layer structure ends with two fully connected layers, which have 32 neurons 

and 1 neuron, to obtain the estimated soft tissue thickness We.  

     

  

FIG 2. Layer structure of the proposed CNN to assess the soft tissue thickness W. We 325 

corresponds to the estimated soft tissue thickness. 

 

G. Examination of the proposed assessment network  

The convolution network learns salient features to classify the input data during the training 

process. Each pixel of input images into the network is transformed based on the weights of 330 

neurons in the network layers determined by training of the large-annotated dataset. As implied by 

the “hidden” layer on neural networks, it may be difficult to know what features are trained exactly 

or how well the network will work. The feature map for a specific input can provide visualized 

information to understand what features in the input play a key role through the network (Yosinski 

et al., 2015). In other words, we can examine the reliability of networks from the visualized 335 

information. To examine the training process with the dataset built by the BII forward model, the 

feature map of each convolution layer was analyzed for the reference roughness cases of both 

scales and compared between different soft tissue thickness cases. 

 

The bias of the estimation and the 95% limits of agreement (LOA), which has been widely 340 

used for evaluating regression results (Park et al., 2020), were computed to examine the estimated 

soft tissue thickness by the proposed assessment network. The bias �̅� corresponds to the averaged 

value of the differences between the estimated and actual soft tissue thicknesses. The 95% LOA 

is defined as: 
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LOA = �̅� ± 1.96√∑ (𝑑𝑖 − �̅�)2
𝑛

𝑖=1
(𝑛 − 1)⁄  345 

where 𝑑 is the difference between the estimated and actual soft tissue thicknesses, and n is the total 

number of validation dataset. The linear correlation R between two thicknesses are evaluated such 

that: 

𝑅 = 𝐸[( 𝑊𝑎 − 𝐸(𝑊𝑎))(𝑊𝑒 − 𝐸(𝑊𝑒)) ] √ 𝐸 [(𝑊𝑎 − 𝐸(𝑊𝑎))
2

] ∙ 𝐸 [(𝑊𝑒 − 𝐸(𝑊𝑒))
2

]  ⁄  

where E(…) indicates an averaged value, 𝑊𝑎 and 𝑊𝑒 are the actual and estimated values of the soft 350 

tissue thickness, respectively. 

 

 

 

 355 

III. Results 

A. Validation of the forward model 

Figure 3 shows the comparison between the radiofrequency signals corresponding to the 

ultrasound responses of the bone-implant interface for h = 360 µm and L = 900 µm (macroscopic 

case) and obtained using the proposed model (in the frequency domain) and using the method 360 

described in (Hériveaux et al., 2018) (in the time domain). A good agreement is obtained between 

the two models, which constitutes a validation of the forward model.  

 

  

FIG. 3. Radiofrequency signals corresponding to the ultrasound responses of the bone-implant 365 

interface for h = 360 µm, L = 900 µm (macroscopic case) and W/h = (a) 0, (b) 0.5, (c) 1. The solid 
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grey lines indicate the results obtained using the proposed model (in the frequency domain) and 

the dashed black lines indicate the results obtained in (Hériveaux et al., 2018) (in the time domain). 

 

Figure 4 shows the variation of the reflection coefficient R for different values of the 370 

roughness amplitude h as function of the soft tissue thickness W in the microscopic case (L = 50 

µm) and as a function of W/h in the macroscopic case (L = 900 µm). The dashed lines correspond 

to the results obtained in (Hériveaux et al., 2018) (in the time domain) and the symbols indicate 

the results obtained using the proposed model in the frequency domain. As shown in Figure 4, a 

good agreement is obtained between the two models. The average relative error is equal to 1.8 % 375 

in the microscopic case and to 1.4 % in the macroscopic case, which may be explained by 

numerical errors. Again, Figures 3&4 clearly support the validity of the numerical model 

developed herein.  

 

 380 

FIG. 4. Variation of the reflection coefficient R for different values of the roughness amplitude h 

as function of (a) the soft tissue thickness W in the microscopic case (L = 50 µm) and (b) the ratio 

of the soft tissue thickness W and of the roughness amplitude h in the macroscopic case (L = 900 

µm). The symbols indicate the result obtained by the proposed model in the frequency domain for 

the different values of h, and the dashed lines indicate the corresponding result obtained using the 385 

time-domain model in (Hériveaux et al., 2018). 
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B. Spectrogram of the rf signals 

Figure 5 shows the spectrograms of the signal corresponding to the reflection of the 

ultrasonic wave on the BII when the soft tissue thickness varies in the microscopic case (Figures 390 

5a-d) and in the macroscopic case (Figures 5e-h). Each spectrogram exhibits a different pattern 

according to the value of the soft tissue thickness, which demonstrates that the spectrograms are 

sensitive to W. The sensitivity of the spectrogram pattern indicates that CNN is likely to learn 

features in the time and frequency domains simultaneously from the ultrasound reflections.  

 395 

       

FIG. 5. Spectrograms of the ultrasonic signals as a function of the soft tissue thickness. (a)-(d) For 

the microscopic case, h = 5 µm, L = 50 µm and (a): W = 0 µm, (b): 25 µm, (c): 50 µm, (d): 100 

µm. (e)-(h) For the macroscopic case, h = 360 µm, L = 900 µm and (e): W/h = 0, (f): 0.5, (g): 1.0, 

(h): 1.5. 400 

 

C. Feature map of the proposed network 

We looked over the feature map of the convolutional layer for the reference cases of the 

microscopic and macroscopic roughness cases, which was excluded from the training dataset. For 

the microscopic roughness, the two representative cases corresponding to W = 50, 100 µm were 405 
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employed as the input data to derive the corresponding feature maps. Since the two convolutional 

layers have 32 filters, Figures 6a-h show the 32 output channels for each convolutional layer and 

each configuration arranged sequentially from left to right. The first convolutional layers 

corresponding to the microscopic case and to a change of the osseointegration phenomena (W=50 

and 100 µm, Figures 6a&b) look similar, suggesting that the first layer is insufficient to classify 410 

the target in a satisfactory manner. However, based on the analysis of the second convolutional 

layers corresponding to the microscopic case (Figures 6c&d), although the outputs became more 

abstract, the feature maps between the two representative cases can be clearly distinguished, 

indicating that the proposed network successfully capture the inherent features from the BII 

reflections to classify osseointegration phenomena.  415 
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FIG. 6.  Representative feature maps of the convolution layers for the reference BII roughness 

cases, separated from the training dataset. (a)-(d) For h = 5 µm, L = 50 µm for the microscopic 

roughness, the results from the first and the second convolution layers for the case of W = 50 µm 

((a)&(c), respectively) and 100 µm ((b)&(d), respectively). (e)-(h) For h = 360 µm, L = 900 µm 420 

for the macroscopic roughness, the results from the first and the second convolution layers for the 

case of W/h = 0.5 ((e)&(g), respectively) and 1.0 ((f)&(h), respectively). 

 

Likewise, two representative cases of the macroscopic roughness (W/h = 0.5 and 1.0) were 

considered. As expected, the feature maps from the first convolutional layer provide relatively 425 

similar results to the inputs (Figures 6e&f), whereas clear differences are found between the two 

maps from the second convolutional layer (Figures 6g&h). The representative feature maps 

clearly demonstrate the reliability of our network for the microscopic and macroscopic roughness, 

trained with the signals from the proposed forward model.    

 430 

D. Assessment of osseointegration phenomena status 

Figure 7a (respectively 7b) shows the comparison between the actual value and the 

estimation of the soft tissue thickness for the microscopic (respectively macroscopic) roughness 

case. The linear correlation between actual and estimated values of the soft tissue thickness shows 

excellent R2 values equal to 99.53% for the microscopic roughness and 99.65% for the 435 

macroscopic roughness. For the case of the microscopic roughness, the bias computed with the 

estimated values was equal to 0.88 µm, and the LOA corresponded to [-2.56, 4.32 µm]. For the 

case of the macroscopic roughness, the bias computed with the estimated values was equal to 7.30 

µm, and the LOA corresponded to [-15.75, 30.35 µm]. These results show the reliability of the 

proposed assessment of osseointegration phenomena. 440 
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FIG. 7. Comparison between the actual and estimated values of the soft tissue thickness using the 

proposed convolutional neural network applied to the ultrasound reflections on the BII for (a) h = 

5 µm, L = 50 µm (the microscopic roughness), (b) and h = 360 µm, L = 900 µm (the macroscopic 

roughness). 445 

IV. Discussion 

A large-scale annotated dataset with diverse conditions should be considered to employ 

deep learning methods. However, accumulating a large-scale dataset in biomechanical engineering 

may be difficult because i) of the difficulty to obtain an important number of samples due to ethical 

requirements and ii) it is impossible to control all parameters affecting the ultrasound response of 450 

the BII since they vary simultaneously (Fraulob et al., 2020) as a function of healing time. Here, 

we present a method based on the deep convolutional neural network to assess osseointegration 

phenomena. The method is trained with a synthesized dataset corresponding to numerical results. 

The originality of the proposed approach lies on hybridizing CNN and numerical simulation in 

order to assess osseointegration phenomena. Our method relies on the estimation of soft tissue 455 

thickness in the microscopic and macroscopic roughness cases based on the analysis of the signal 

corresponding to the reflection of an ultrasonic wave on the BII. To do so, a numerical model of 

the interaction between an ultrasonic wave and the BII has been validated by comparison with a 

model developed previously in the time domain (Hériveaux et al., 2018; Hériveaux et al., 2019a; 

Hériveaux et al., 2020). The advantage of the present numerical model is that i) only 60 simulated 460 
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data in the frequency domain are needed to obtain the signal in the time domain and ii) a single 

transfer function of the BII can be used to obtain simulated reflections for different acoustical 

sources by a simple convolution calculation instead of simulations for all cases. The computation 

time necessary to simulate the ultrasonic response of the BII in the microscopic (respectively 

macroscopic) case using the model developed herein is equal to 40 sec (respectively 3 min), which 465 

allows us to form the large-annotated training dataset with affordable time cost, whereas 12 min 

(respectively 52 min) were needed with our previous model (Hériveaux et al., 2018) in the time 

domain. 

     

Although the training dataset employed for the proposed data-driven approach is relatively 470 

small (3600 computations), the reliability of the method was examined by employing an 

independent validation dataset. The estimations (Figure 7) were implemented with the dataset of 

the reference surface roughness cases, which was excluded from the training process. Moreover, 

the results obtained for both scales exhibit excellent R2 values (99.53 and 99.65%) and narrow 

LOAs ([-2.56, 4.32 µm] and [-15.75, 30.35 µm]) supports the reliability of the proposed CNN 475 

method for assessing the effects of osseointegration phenomena. More importantly, the numerical 

approach under consideration can be used as a complementary tool to compose the data-driven 

approach for implant clinical studies, which remains difficult to access using experimental 

approaches only. 

 480 

Experimental approaches have already shown that the reflection coefficient of the BII is 

sensitive to healing time (Mathieu et al., 2012), to the implant surface roughness (Fraulob et al., 

2020) as well as to the mechanical loading applied to the BII (Hériveaux et al., 2019b). Based on 

the aforementioned experimental results, an experimental set-up was developed to assess dental 

implant primary and secondary stability (Vayron et al., 2014a; Vayron et al., 2014c; Vayron et al., 485 

2018a; Vayron et al., 2018b). However, although ultrasound techniques show great potentiality to 

evaluate dental implant stability, it remains difficult to control the parameters varying 

simultaneously during osseointegration phenomena, hampering its practical applications. 

Furthermore, no inversion approach had been carried out and the present study shows the 

feasibility of applying a model-based inversion technique by using CNN to retrieve quantitative 490 

information on the BII. Such an approach should be applied to experimental data in the future.  
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Bone (and newly formed bone) tissues are complex materials which may be modeled as 

heterogeneous, anisotropic viscoelastic and poroelastic media. In the present work, which is the 

first tentative use of CNNs method in the context of BII characterization using ultrasound, we 495 

chose to use the simplest model to describe the bone mechanical behavior because we aim at 

focusing on the BIC ratio, which is the main parameter of interest. A more detailed description of 

bone behavior (and in particular taking into account bone anisotropy) would require a much larger 

set of parameters in the model, and consequently, will increase significantly computational cost.  

Moreover, it is expected that bone anisotropy has a relatively weak effect of the ultrasound 500 

response of the BII because ultrasound at 10 MHz is highly attenuated in bone (Sasso et al., 2007; 

2008) and should not propagate over a large distance. 

 

This study has several limitations. First, a 2-D sinusoidal function is used to describe the 

implant surface roughness, similarly to what was done in (Hériveaux et al., 2018), which 505 

constitutes an important approximation allowing to reduce the number of parameters affecting the 

ultrasonic response of the BII. However, this sinusoidal description may be considered as realistic 

in the macroscopic case because it models implant threading present in dental implants specifically. 

For the microscopic case, it has been shown that an actual implant surface profile may be replaced 

by a sinusoidal profile without modifying significantly the dependence of its ultrasonic response 510 

as a function of the soft tissue thickness (Hériveaux et al., 2019a). Although considering 3-D 

surface function would be more relevant to describe the ultrasound response of the BII, the 

computational cost required to perform the direct simulations using the 3-D model is significantly 

higher than for 2-D simulation. Moreover, we have shown that the 2-D approximation may also 

be considered as realistic compared to the 3-D case(Hériveaux et al., 2020). The two 515 

aforementioned studies justify the use of a 2-D sinusoidal description of the implant surface 

roughness. Second, only normal incidence of the ultrasonic wave is reported, because it 

corresponds to the experimental situation of interest (Mathieu et al., 2012; Fraulob et al., 2020) 

and future studies should also consider the normal incidence. Third, this study only considered a 

center frequency of 10 MHz for the incident wave because it corresponds to the frequency used in 520 

the QUS device developed by our group (Vayron et al., 2018a). Fourth, we only considered the 



 21 

first reflection of the ultrasound waves on the BII. Analyzing the entire reflection signals (i.e. the 

coda) would require heavy computation cost and this aspect is left to future studies.  

 

V. Conclusion 525 

A simulation-based convolutional neural network method was derived in order to assess 

osseointegration phenomena at the BII. The large-annotated dataset was formed by taking 

advantage of an efficient ultrasound simulation of the BII. The proposed numerical model in the 

frequency domain allowed employing numerous simulations efficiently and was validated by a 

comparison with another model developed in the time domain. The synthesized ultrasound 530 

responses were converted into spectrograms and trained to the proposed network structure. The 

feature maps clearly demonstrated evident differences according to the soft tissue thickness, 

supporting the reliability of the training process on the proposed network. The reported assessment 

network for the osseointegration phenomena supports the feasibility of ultrasound analysis to be 

transformed to noninvasive applications for the bone-implant domain. Moreover, the present 535 

approach opens new paths in the development of model-based inversion methods to retrieve the 

properties of the BII. 
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Table 
 730 

Table I. Material properties used in the numerical simulations. Values taken from (Njeh et al., 

1999; Pattijn et al., 2006; Pattijn et al., 2007; Haïat et al., 2009). 
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 Cp (m·s-1) Cs (m·s-1) ρ(kg·m-3) 

Soft tissue (liquid) 1500 10 1000 

Titanium 5810 3115 4420 

Cortical bone tissue 4000 1800 1850 
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Figure Legends 

     

FIG 1. (a) Schematic illustration of the geometrical configuration of the BII considered in the 740 

numerical simulation. (b) Description of the streamlined model. 

 

  

FIG 2. Layer structure of the proposed CNN to assess the soft tissue thickness W. We corresponds 

to the estimated soft tissue thickness. 745 

   

FIG. 3. Radiofrequency signals corresponding to the ultrasound responses of the bone-implant 

interface for h = 360 µm, L = 900 µm (macroscopic case) and W/h = (a) 0, (b) 0.5, (c) 1. The solid 

grey lines indicate the results obtained using the proposed model (in the frequency domain) and 

the dashed black lines indicate the results obtained in (Hériveaux et al., 2018) (in the time domain). 750 

 

FIG. 4. Variation of the reflection coefficient R for different values of the roughness amplitude h 

as function of (a) the soft tissue thickness W in the microscopic case (L = 50 µm) and (b) the ratio 

of the soft tissue thickness W and of the roughness amplitude h in the macroscopic case (L = 900 

µm). The symbols indicate the result obtained by the proposed model in the frequency domain for 755 

the different values of h, and the dashed lines indicate the corresponding result obtained using the 

time-domain model in (Hériveaux et al., 2018). 
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FIG. 5. Spectrograms of the ultrasonic signals as a function of the soft tissue thickness. (a)-(d) For 

the microscopic case, h = 5 µm, L = 50 µm and (a): W = 0 µm, (b): 25 µm, (c): 50 µm, (d): 100 760 

µm. (e)-(h) For the macroscopic case, h = 360 µm, L = 900 µm and (e): W/h = 0, (f): 0.5, (g): 1.0, 

(h): 1.5. 

 

FIG. 6.  Representative feature maps of the convolution layers for the reference BII roughness 

cases, separated from the training dataset. (a)-(d) For h = 5 µm, L = 50 µm for the microscopic 765 

roughness, the results from the first and the second convolution layers for the case of W = 50 µm 

((a)&(c), respectively) and 100 µm ((b)&(d), respectively). (e)-(h) For h = 360 µm, L = 900 µm 

for the macroscopic roughness, the results from the first and the second convolution layers for the 

case of W/h = 0.5 ((e)&(g), respectively) and 1.0 ((f)&(h), respectively). 

 770 

 

FIG. 7. Comparison between the actual and estimated values of the soft tissue thickness using the 

proposed convolutional neural network applied to the ultrasound reflections on the BII for (a) h = 

5 µm, L = 50 µm (the microscopic roughness), (b) and h = 360 µm, L = 900 µm (the macroscopic 

roughness). 775 


