Abadhan Saumya Sabyasachi
email: abadhan.ss@gmail.com

H M Dipu Kabir

Subrota K Mondal
email: skmondal@must.edu.mo

Dynamic Spot Pricing and Instance Acquisition in Public Clouds

Keywords: Amazon EC2 Spot market, checkpointing and migration, deadline-constrained jobs

Cloud service providers such as Amazon Web Services (AWS) offer excess compute capacity as spot instances at a much lower cost compared to regular On-demand instances. The spot instance prices changes dynamically as per long-term trend in supply and demand. The cloud user can submit its request for a spot instance with a maximum price, and if it exceeds the current spot price and also the spot instance is available then the user will be assigned the spot instance to run its jobs. While executing a job, the spot instance can be revoked abruptly at any time when the current spot price rises above user's maximum price or there is an increase in the demand for fixed price On-demand instances. In such a scenario, the cloud provider does not assure any SLA guarantee for the user's job execution. Therefore, in order to complete job execution reliably in such uncertain and dynamic priced cloud spot instances, we are proposing methods from both the perspectives of the cloud provider and user. Therefore, the users are suggested to choose different maximum prices based on the nature and urgency of their job so that they can both negotiate and finish their job in time. To evaluate our dynamic pricing and spot instance acquisition strategies, we have analyzed real-world cloud traces derived from Amazon EC2 spot price history. Finally, we also discussed the advantages from both the users and provider point of view for achieving job resiliency in the dynamic cloud spot market environment.

I. INTRODUCTION

Cloud service providers offer their excess computing capacity at much cheaper rate such as, Amazon EC2 Spot instances [START_REF] Aws | Ec2 spot instances -amazon web services[END_REF], Microsoft Azure Batch VMs [START_REF] Azure | Pricing -Batch for Linux VMs -Microsoft Azure[END_REF], and Google Cloud Preemptible VMs [START_REF] Gcp | Preemptible vms -compute instances -google cloud platform[END_REF] that can be acquired and delivered over the Internet. The cloud provider's resource allocation considers both the available capacity in the cloud datacenter as well as individual user's requirements specified in the SLA agreement. When cloud provider receives large varieties of user requests, the problem of cloud resource allocation becomes further complicated. Thereby the stochastic nature of users job submission and completion times create a dynamic environment for the cloud service provider [START_REF] Wang | An empirical analysis of Amazon EC2 spot instance features affecting cost-effective resource procurement[END_REF], [START_REF] Wu | A framework for allocating server time to spot and on-demand services in cloud computing[END_REF].

Recently, the cloud provider problem of scheduling jobs within a datacenter by taking user demand have mostly been considered. However, the provider's resource pricing plan can control the user demand pattern [START_REF] Irwin | The price is (not) right: reflections on pricing for transient cloud servers[END_REF]. The most commonly adopted pricing plans are useage based On-demand pricing, i.e. allocating resources on short-term basis, and subscriptionbased Reserved pricing, i.e. allocating resources on long-term basis. At present the major pricing plans focused on usagebased On-demand pricing, which allows the users to pay static per-unit price (per hour or per job) for accessing cloud resources on demand [START_REF] Song | Pricing (and Bidding) Strategies for Delay Differentiated Cloud Services[END_REF]. The usage-based cloud pricing can largely affect the overall user demand for cloud resources, but it does not take care of the short-term fluctuations in user demand . To tackle these demand fluctuations, cloud providers with fixed available datacenter capacity could introduce robust and flexible pricing plans for renting cloud resources based on real-time market demand [START_REF] Dierks | Cloud Pricing: The Spot Market Strikes Back[END_REF].

The Amazon EC2 spot pricing is a user demand oriented dynamic pricing strategy [START_REF] Aws | Amazon EC2 Spot introduces new pricing model[END_REF], [START_REF] Baughman | Deconstructing the 2017 changes to AWS spot market pricing[END_REF]. The spot pricing creates an auction like market for allocating the available computing resources that includes both idle and running spot instances but not from the On-demand or Reserved instances. Users generally submit their job requests or bids to acquire spot instance through the EC2 spot market with the help of spot price history. The cloud provider sets dynamically the price of each spot instance at regular time slot, which depends on the available resources (supply) and number of received user requests (demand) [START_REF] Alzhouri | Maximizing Cloud Revenue using Dynamic Pricing of Multiple Class Virtual Machines[END_REF]. The cloud providers e.g., Amazon Web Services, Microsoft Azure and so on could offer the user a higher rate for shorter e.g. 2-minute billing cycles. The user is free to choose whether he/she accepts the new short-term price e.g. pay that price during the time his/her application state are being saved) [START_REF] Cardellini | Game-Theoretic Resource Pricing and Provisioning Strategies in Cloud Systems[END_REF]. For this purpose, we propose to implement a social-welfare scheme based on game-theory to enforce a Nash equilibrium price. The Amazon EC2 instance prices are shown in Table I.

The existing work, have mostly considered the approaches to the problem of cloud resource allocation and pricing in the spot instance marketplace for serving dynamic user demand as discussed above with different view points [START_REF] Iorgulescu | PerfIso: Performance isolation for commercial latency-sensitive services[END_REF]. We would like to apply the above general models for cloud spot pricing to a more accurate model, that is not only based on provider's revenue maximization and efficient network utilization, but also considers [START_REF] Aws | Ec2 spot instances -amazon web services[END_REF] providing failure resiliency of user jobs running in the spot instances with minimum execution overhead and (2) incorporating soft deadlines for those user's whose goal is to complete a job within a predefined time with some probability as per Service Level Agreement (SLA) [START_REF] Liu | Dynamically negotiating capacity between on-demand and batch clusters[END_REF].

In this paper, we have addressed the two most frequently arising problems in the IaaS cloud computing marketplace. First, cloud instances or virtual machine (VMs) allocation is proportionate to the users dynamic demand with heterogeneous resource requirements that varying over time. While meeting these challenges, cloud provider's objectives are to maximize its revenue and overall datacenter capacity utilization while minimizing its operational expenditures such as energy costs [START_REF] Portella | Statistical analysis of Amazon EC2 cloud pricing models[END_REF]. To solve the first challenge we have investigated the literature and found that the cloud provider's objective is how to model the dynamic user demand with heterogeneous job requirements. Second, how the cloud users' maximize their aggregate utility through ensuring users' total gain per dollar invested also called social welfare maximization [START_REF] Gianniti | A Game-Theoretic Approach for Runtime Capacity Allocation in MapReduce[END_REF]. Our objective is to develop dynamic scheduling algorithms for cost effective, and reliable execution of faulttolerant applications such as batch jobs and scientific applications in the IaaS cloud platforms. For computing the price of a spot instance in each time slot t in such a way which achieves cloud provider's revenue maximization and the users' utility maximization, in turn maximizing total social welfare of the overall system.

We have modeled the dynamic spot pricing set by the cloud provider and presented a resilient spot instance acquisition strategies for the cloud users. We have discussed various dynamic cloud resource pricing and instance acquisition strategies in Section 2. The Amazon EC2 spot instance market behavior and its functioning are presented with the cloud spot market system model in Section III. We investigated the impact of dynamic spot price variations on users jobs executing in the EC2 spot instances in Section IV. The cloud spot market updations with their possible ramifications are proposed in the literature to provide users with the informed decisions to help execution of jobs without much delay in the EC2 spot instance marketplace in Section V. Finally, we have discussed the advantage of both the provider and user through our proposed mechanisms with simulation and evaluations carried out on historical spot price traces in Section VI. We have also shown the advantages of our proposed spot price prediction interval method from both cloud provider and users perspectives.

II. RELATED WORK

Infrastructure-as-a-Service (IaaS) cloud providers provide abundant amount of elastic computing resources on demand with pay-as-you-go pricing options. Amazon EC2 offers IaaS cloud resources to its pay-as-you-go users with two kinds purchasing options namely, On-Demand instances and Spot instance [START_REF]How AWS Pricing Works[END_REF]. In the cloud spot market the prices of spot instances changes over time to capture dynamic user demand of cloud computing resources. Cloud computing provider such as Amazon EC2 offers over 2400 cloud spot markets (virtual machines or instances) across the World that consists of 48 spot instance types with two operating systems distributed across 25 Availability Zones in 10 AWS Regions (US-East, US-West (2 regions), EU (2 regions), Asia Pacific (4 regions) and South America). A user can submit its job request or bid for a spot instance in EC2. The spot instance will be assigned to the user only if the user's bid is higher than the dynamically changing spot price. When the spot price rises above the user bid, then the users job request will be terminated including those currently running [START_REF] Sabyasachi | A Resilient Auction Framework for Deadline-Aware Jobs in Cloud Spot Market[END_REF], [START_REF] Dipu Kabir | A Cloud Bidding Framework for Deadline Constrained Jobs[END_REF].

A. Cloud Resource Pricing Models

Many works have highlighted to address the spot pricing problem with maximizing provider's revenue and total capacity utilization, and also the users's optimal bidding strategy. The conditional Lyapunov drift used for handling resubmission of too many user bids, where the queuing system remains stable ensuring the time-averaged queue size at any given time t which is uniformly bounded and the number of user requests will eventually reach an equilibrium. Online primal-dual optimal framework are another set of methods proposed and double-quality-Guaranteed renting scheme has been proposed to achieve more profit for service providers by combining short-term and long-term renting to allocate cloud instances. The authors adopted a multi-server system which is modeled as an M/M/m+D queue operating with FCFS scheduling [START_REF] Mei | A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing[END_REF], [START_REF] Psychas | Randomized algorithms for scheduling multi-resource jobs in the cloud[END_REF].

For Risk-averse users to model the cloud user bidding strategies that determine the optimal bid price for a given time slot based on the historical spot prices set by the cloud provider in the cloud spot market [START_REF] Varshney | AutoBoT: Resilient and Cost-Effective Scheduling of a Bag of Tasks on Spot VMs[END_REF]. To model the cloud computing spot market as a multi-server queuing system, where the cloud provider set the spot prices of instances based on the currently received user bids at time t and the number of pending jobs that are waiting in the cloud provider's job queue. Nearoptimal scheduling mechanisms for deadline-sensitive jobs. An Efficient Online Scheduling mechanism for Deadline-Sensitive Jobs. To ensure resiliency of the jobs running in the cloud spot instances in the case of out-of-bid events when the spot price is higher than the running user bid [START_REF] Mondal | On Boosting Cloud Service Dependability through Optimized Checkpointing[END_REF], [START_REF]On Dependability, Cost and Security Trade-Off in Cloud Data Centers[END_REF]. To redesign the cloud spot market keeping the users perspective in mind, that is to ensure smooth execution of jobs without much interruption with optimum valuation of bid prices for acquiring spot instances [START_REF] Jalaparti | Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter Transfers[END_REF].

Amazon launched their very first publicly accessible EC2 Spot instances with limited number servers on December 2009.

Recently there has been changes on the configuration and pricing of EC2 spot instances. Here we present the characteristics of the spot instances to help the readers understanding of the current situation of EC2 Spot market.

B. Cloud Spot Instance Characteristics

Key features of spot instances related to the bidding are mentioned here as follows. Readers can visit the website of Amazon [START_REF] Aws | Ec2 spot instances -amazon web services[END_REF] for more information. Users bid for spare Amazon EC2 Instances known as spot instance (SI) and he gets access to SI when his bid is higher than the price of the SI. As bids of the same price are ranked in random order, there is a probability of getting the SI when the bid is equal to the current spot price. The price of SI varies over time; based on the number of several probable factors; such as-the number of users, the number and the value of bids, available spare servers and so on. The cloud provider's probable pricing algorithm is mentioned in the second subsection. When the price of SI becomes higher than the bid, the user is notified with a twominute warning. The user can increase the price within two minutes, after receiving the warning. Also, he can save the progress of the instance within two minutes and stay idle after that and the instance terminates after two minutes [START_REF]How AWS Pricing Works[END_REF].

The cloud user can also stay idle without saving the progress and the instance terminates after two minutes. When the user loses the instance due to the price increment hour is not charged. When the user releases the instance, the partial hour is charged. The user is charged with the price of closing time as a full hour when he is releasing the instance. The user is charged with the price of the hour-end time for running instances [START_REF] Yi | Monetary Cost-Aware Checkpointing and Migration on Amazon Cloud Spot Instances[END_REF]. Amazon has recently included Hibernation feature to several SIs on November 28, 2017. During the price increase, the SI goes to the hibernation state instead of the termination. The user is not charged for the partial hour prior to the hibernation. The user needs to pay for the backup storage at standard Amazon Elastic Block Store (EBS) storage rates. The user may also terminate the hibernated job and cancel the bid during hibernation [START_REF] Aws | Amazon EC2 Spot introduces new pricing model[END_REF].

In order to manage spot instances reliability with the limited resources, Amazon has imposed some limits on the bidding of each user. The limitations are: 1) Some SI types are not available in all regions. 2) Each user account can bid for roughly 20 Spot instances per region. The limit is initially lower and the user can increase the limit by requesting. 3) The highest limit of the bid price is ten times the on-demand price.

III. DYNAMIC CLOUD SPOT PRICING MODEL

In the cloud spot marketplace, the cloud users submit job requests or bids for acquiring spot instances in each time slot t to the cloud service datacenter. The received user requests are placed in the cloud provider's job queue until the requested spot instances are available for allocation. Cloud provider first determines the price of spot instances based on the user demand for that instance. over the determined for the time slot t. The submitted job requests are allocated with In this Fig. 1: Cloud spot instances job queuing system. scenario a natural question arise that is, how the cloud provider set the price of a spot instance for a time slot t? The cloud provider allocates the user requests followed by the scheduling policy for spot market is based on the number of user requests or bids for spot instances received by the clod provider. If the number of user bids waiting in the job queue is high then the demand for the spot instances for the next time slot is thus increases. To handle this rising level of job arrivals in the queue the cloud provider adopts a dynamic pricing policy for allocating spot instances. The provider rises the spot price for the next time slot in such a way that only those jobs whose bid is higher than the spot price are provided with a spot instance. The number of requests arriving and size of the queue at the cloud datacenter is limited by the Lyapunov drift as shown in Figure 1 A. Provider's Spot Pricing Model Let us consider a time series with discrete intervals {1, 2, ...} where each time slot t ∈ {1, 2, ...} is denoted by the spot price of an instance as ψ(t), and the on-demand price of same instance type as ψ and the provider's minimum cost for spot instance as ψ. Let us assume that the spot instance price doesn't exceed the on-demand price of the same instance type by imposing the condition 0 ≤ ψ ≤ ψ(t) ≤ ψ. At time t, let us denote D(t) as the total received bids (the demand of spot instance), A(t) denote the accepted bids (that are higher than current spot price ψ(t)), and R(t) denote number of rejected bids (that are below the current spot price ψ(t)). Each successful user request is charged only current spot instance price ψ(t) irrespective of her/his actual opted maximum price ψ(t). While the unsuccessful user requests may either wait in the provider's job queue for reconsider in the next time slot (Persistent requests), or simply quit without waiting (called One-time requests).

The stochastic nature of user requests or bids to acquire spot instances handled by the cloud provider, have to go through different states such as: new, running, terminated (checkpoint/restart), pending, and finished state. After the cloud provider sets the price of a spot instance ψ(t) for the time slot t, the user requests or bids are processed in the following way. At each time slot t, the cloud system processes D(t) number of submitted user requests or demand that consists of: N (t) newly arrived bids entering into the new state, along with the P(t) pending bids remaining from previous time slots.

At the beginning of each time slot t, based on the cloud provider's determined spot price ψ(t) for time t, the A(t) successful user bids with prices higher than ψ(t) are lunched by assigning the spot instances entering into the running state. While the unsuccessful user bids R(t) with bid prices lower than ψ(t) enter into the pending state. The unsuccessful user requests R(t) residing in the pending state are from the following: both failed newly arrived bids and failed previously pending requests due to their lower bid prices, and terminated running instances with persistent requests. After the completion of time slot t, out of A(t) user requests, ∆A(t) number of requests with running instances enter into the finished state, where some complete their job execution while others are terminated with one-time bids (due to their lower bid prices). Therefore the remaining (1 -∆)A(t) of the running instances will be considered for the text time slot (t+1) along with the pending user requests as in Figure 2.

The number of submitted user bids or total demand D(t) may diverge to infinity, if too many persistent user bids are pending in the queue and continually re-submitted for executing in the spot instance in time slot t. However in practice such a scenario never occur where the queue size becomes almost infinity, to show this we will use the conditional Lyapunov drift in the following. Where the Lyapunov function change over one time slot. Thus by taking the conditional expectation of the above expression we are able to give an upper bound on the Lyapunov drift (1). Waiting time based demand modeling of the spot requests for consecutive time slots.

L(D(t)) = 1 2 D 2 (t + 1) - 1 2 D 2 (t) (1)

B. Spot Pricing with Revenue Maximization

The cloud provider wishes to achieve some essential objectives while setting the spot price ψ(t) of an instance in each time slot t. The objectives of the cloud provider are 1) revenue maximization: aggregate spot price of the accepted bids for time slot t, expressed as ψ(t)A(t). We can verify the spot price dynamics evaluating historical spot prices collected from Amazon over three months with their price distributions as shown in Figure 3.

A(t) = (ψ -ψ(t))f b (x)D(t) = ψ-ψ(t)
ψ-ψ D(t). At time slot t+1, based on the spot price at time t, the number of jobs in the queue may vary which help derive the spot price.

In order o maximize capacity utilization of the datacenter resources [START_REF] Toosi | Revenue Maximization with Optimal Capacity Control in Infrastructure as a Service Cloud Markets[END_REF] expressed as α log(A(t) + 1) with clearing the market by selling residual cloud computing capacity at cheaper rates. Cloud provider's net profit after selling the above spot instances A(t) with the datacenter utilization of α log(A(t) + 1) for the time slot t, can be expressed in the following way. maximize

ψ(t) ψ(t)D(t) ψ -ψ(t) ψ -ψ +β log 1 + D(t) ψ-ψ(t) ψ-ψ subject to ψ ≤ ψ(t) ≤ ψ. (2)

C. Spot Pricing with Social Welfare Maximization

In order to achieve another essential objective that is to optimize the social welfare [START_REF] Sun | Colocation Demand Response: Joint Online Mechanisms for Individual Utility and Social Welfare Maximization[END_REF] with the spot pricing can be expressed as: tenants' aggregate utility or valuation of winning bids β -provider's aggregate service cost (α ψ(t) -ψ)A(t). The social welfare objective will help the cloud provider to maintain its market reputation; and QoS improvements by guaranteeing the cloud users for timely completion of deadline-sensitive jobs. Then the cloud provider sets the spot instance price for time slot t ψ(t) so as to achieve all the essential objectives described above that can be combined into a single optimization problem as per the following.

maximize ψ(t) ψ(t)D(t) ψ-ψ(t) ψ-ψ +(α ψ(t) -ψ)A(t) ψ-ψ(t) ψ-ψ +β log 1 + D(t) ψ-ψ(t) ψ-ψ subject to ψ ≤ ψ(t) ≤ ψ. (3)
The above optimization function includes 1) provider's total revenue maximization, 2) provider social welfare maximiza-tion to improve the user utility, and also 3) Maximizing provider's datacenter capacity utilization to improve energy and cost of usage. We have validated the spot pricing distributions from Amazon EC2 spot price history traces collected over a period of three months as shown in Figure 3.

IV. SPOT INSTANCE ACQUISITION STRATEGY

In the earlier discussion, the spot markets are typically perceived as a platform for running back-end non-critical jobs (i.e., flexible and not deadline sensitive jobs). This assumption makes the provider lose a large portion of possible user base and hence its overall revenue. This is because of bad reputation of dynamic spot market instances as an unreliable cloud service. Here, we discuss the trade-offs and obstacles that are present against the adoption of spot market as the basis for most time-critical applications. As we know the provider's strategy and probable optimization formulas. An individual user can't change those formulas but he can bargain with the provider by setting bids intelligently [START_REF] Marathe | Exploiting Redundancy and Application Scalability for Cost-Effective, Time-Constrained Execution of HPC Applications on Amazon EC2[END_REF]. This section will discuss on the efficient bidding of the user. The users who don't have any permanent server or a low configuration computing machine such as mobile/portable devices that access computing services through connecting to the public cloud [START_REF] Sabyasachi | On the Notion of Decoupling in Mobile Cloud Computing[END_REF]. In this unreliable scenario for monitoring bids can't move towards a risky bidding. A user bidding with the on-demand value may also lose the access during the execution. Jobs with switching masters will eventually terminate and will require relaunching because it can also potentially happen that servers of all configurations are claiming more than on-demand value. When there is no computing machine left for re-bidding and re-launching the job, a human involvement will be required for re-launching. As humans can't work for 24-hours like a machine, there will be a delay for re-launching the cloud service and users will suffer during this time [START_REF] Ahmed | Mobile Cloud Service Selection using Back Propagation Neural Network[END_REF]. The base server or the low configuration bidding and path forwarding machine is the master or the master of masters. That machine can be a physical computing machine, owned by the user or it can be a long time reservation server. After having a permanent computing machine, the user can bid for spot instances (SI).

Based on the nature of jobs, biddable users can be classified into two categories [START_REF] Zheng | How to Bid the Cloud[END_REF]. A) User's job that can be performed in parallel. in such scenario, the user's task needs to be large enough to place multiple bids. The user will distribute bidding prices so that the provider's optimization occurs at a slightly lower price. The intelligent distribution of prices is discussed in the later subsections. B) User's job that can be performed sequentially. or single SI for 1 hour is enough to finish the job. Although the user can't set a number of bids in order to play with the provider's optimization function, she can still bid intelligently with a longer deadline to finish the job [START_REF] Martinez | Planning workflow executions when using spot instances in the cloud[END_REF].

A. User's Parallel Spot Instance Acquisition

Our proposed spot Instance acquisition strategy is most effective for the users can save their progress within 2 minutes after receiving the termination notice. Otherwise, they need to take a backup of their works periodically and any unsaved progress will be lost. For example, one user is taking backup with 20 minutes interval and the termination occurs at the 25th minute, the progress of last five minutes will be lost. When the user is getting enough number of instances with the first bid, he needs to keep bids of lower prices so that there is a high possibility of the further reduction of price. When there is a significant progress of task with the running SI's, the user doesn't need all of those instances for the next hour and he will delete instances not required. When the user is not getting enough number of bids, he needs to close some of the open (pending) bids and re-bid maintaining the same distribution. While bidding by following the curve, some of those bids will be successful even when the price is higher than the mean value of the probability distribution. As a result, the user is expected to win a few bids even when the price is much higher than expected.

In order to complete jobs reliably, the user needs to think about the worst case situations too. When the deadline is close to the minimum time required for completing the job, the user needs to buy on-demand instances for the reliable completion of the job. However, that probability is quite slim. Suppose the user have 4 hours for completing the job but he is bidding for the jobs during the first hour and half of the bids are accepted. He is also continuously closing open instances and re-bidding with 5-minutes interval. Through the process, a few amount of task or no task will be left for the final hours.

B. User's Sequential Spot Instance Acquisition

The type-1 users have a number of instances to call but type-2 users can call only one instance. If they are calling two instances and getting both of them, one will be a waste. Also, if they have no guideline, they will bid at a slightly higher price to ensure the spot instance. When there is a large number of type-2 users, bidding at a higher rate will increase the cost according to the provider's optimization equations. In order to bargain with the spot instance providers through the bidding of one instance, the user can follow the following formula for bidding.

P rice bid = C P P (min{ T R + T I + T IN T D + ∆, 100%}) (4)
Here, P rice bid is the bidding price. C P P (x) means price at x percent cumulative prediction probability. T R is the time required to complete the remaining job; T I is the initialization time; T IN is the interval at which the progress is saved; T D is the time until the deadline. Finally a margin ∆ is kept in order to ensure that there is a sufficient gap between T R + T I + T IN and T D . In our experiment, we kept ∆ = 10%. Keeping a large ∆ (∆ > 5%) reduce the probability of calling an ondemand server. However, keeping too large ∆ can potentially destroy the bargaining. When (∆ > 50%), the user will always bid at a higher price compared to the point prediction.

User's going for spot instance usually don't have any sharp and close deadline. Thus the time until the deadline (T D) is much longer than the sum of T R and T I . To show the situation numerically, we are assuming that T D is 10 times higher than the sum of T IN , T R and T I . With ∆ of 10% first bidding value will be 20th percentile value of the probability distribution. That bidding value is much smaller than the point prediction (50th percentile). Bidding at 20th percentile cumulative probability value means the chance of getting the bid accepted is also 20%. When the bid is not successful at the first attempt, the user will close the spot after 5 minutes and re-bid with a new value. During the second time, the percentile value will be slightly higher than 20%. When a user is continuously re-bidding there is a high probability that he will be able to finish the job before bidding with the 51th percentile value and the overall bidding curve will be similar to the green curve.

V. EVALUATION WITH TRACE-DRIVEN SIMULATIONS

When the value one instance is much higher than other instances, the user needs to bid for servers of different configuration. For example, when the cost of one 'p2.16xlarge' instances is much higher than two 'p2.8xlarge' instances, the user may consider for two 'p2.8xlarge' instances. However, the user needs to evaluate a relation between choosing servers based on his application. When using multiple low configuration servers instead of one high configuration server, the master needs to control two slaves. Also when the task requires a minimum RAM size, low configuration servers with smaller RAMs needs to store some data in the permanent memory and that will cause a significantly longer execution time. Based on these factors, the user needs to evaluate a ratio. Suppose a high-end 'p2.16xlarge' server is equivalent to 5 low-end 'p2.8xlarge' servers. When the price of one 'p2.16xlarge' server is more than 5 'p2.8xlarge' servers, the user will place a portion of bids for the 'p2.8xlarge' server.

A. Probability Distribution of EC2 Spot Prices

We computed the cumulative distribution of the next sample using the correlation prediction method. Previously we used that correlation technique for the prediction intervals. Individual cloud users can choose that particular method or any other method for determining the cumulative distribution. Before applying the theorem, we need to convert spot price chart to uniform sample of the 5-minutes interval. Figure 4 presents the schematic view of correlating recent samples with past samples. The following equation represents the computation of normalized correlations.

Corr index = n i=1 Segment 1 (i) × Segment index (i) rms(Segment 1) × rms(Segment index) (5)
Here, the sign index conveys the same meaning as of figure 5, n is the leagth of each segment and rms means Root Mean Square. We tried with n= 20. A higher value of usually n provides a slightly more accurate PI with a higher execution time. The value of normalized correlation stays between -1 to +1 inclusive; +1 means the exact match, 0 means no match and -1 means the exact inverse match. After the search of similarities, indexes corresponds to the best matches are saved for the formation of cumulative probability distribution.

The normalized correlation equation compares only the wave-shapes. When two segments have the same wave-shape with different amplitude, the value of correlation is +1. The prediction from that match needs to be normalized by dividing it by the RMS value of the corresponding segment and by multiplying it with the value of the recent segment. following equation presents the normalizing ratio (R n). After the calculation of the ratio, the following equation is used for ratio-adjustment. Here, P rediction index is the next sample of the correlated segment (Segment index) and P rediction index is the normalized value. Each prediction is given a weigt or relevence score based on the value of correlation and ratio. The empirical equation of the weight of prediction is as following.

R n = rms(Segment 1) rms(Segment index) (6)
P rediction index = P rediction index × R n (7)

Relevance index = Corr 5 index × 2 R n + 1/R n (8)
As the shape is more important compared to the ratio, the fifth order of correlation is taken. If the value of the correlation is slightly lower than one, the value will be reduced wih a high order. Fifth order is empirically taken with the adjustment of ratio-factor, combinedly defining the relevance. That relevence is used to plot the bar chart of probability distribution. A bar chart is drawn in figure 6

B. Predictability of the EC2 Spot Prices

The predictability of cloud spot price depends on the success rate of prediction interval. When the spot price is predictable, discarding 5% lower relevant regions will provide more than 95% success. Whereas In the most unpredictable scenarios, the Prediction Interval coverage will be less than 80% while discarding 5% lower relevant regions. With the current samples, we received a PI coverage of 94.07%. So the price is quite predictable on that region. However, the predictability changes from one region to the other. Figure 7 presents the signal with point prediction and the prediction interval. From point prediction and prediction interval, a cloud user can understand distribution of probability with its skewness. Also, that curve represents the daily trend in the change of spot price. That can also help users to make efficient decisions.

Our proposed systems can help both users and providers in taking their decision. Users are actively bargaining and providers are getting a higher user satisfaction. In section III, we discussed about the social welfare formulations for the provider. When the provider is following those formulations, number of abrupt terminations will be reduced. In fact, as the number of user increases the optimization value, the majority of the users will not suffer frequent termination. Only a few users bidding at a lower rate compared to the majority will be terminated. The failure tolerant mechanism at the section IV ensures that there will be a little damage to the users facing termination. The bidding guideline, presented at the section V will help users to bargain efficiently based on the nature and urgency of their tasks.

VI. CONCLUSION

In this paper, we have shown that the pricing of EC2 spot instances are based on the cloud provider's objective in setting Fig. 7: EC2 spot price of C3.large instance for one week predicted interval. of the spot prices, which clearly indicate there is a correlation between the provider's profit maximization and user's utility maximization. In this paper, we have discussed about job completion within a given soft deadline and achieving resiliency of the job execution through unreliable cloud spot market system. We have proposed improvements for the cloud provider's and user's perspectives. In our cloud spot pricing model, the objectives of the cloud provider is not restricted only the revenue maximization and capacity utilization but also extended to the overall social welfare maximization thereby improving user's utility gain. While the users are suggested to opt at different prices based on job's their nature and urgency so that they can efficiently negotiate and complete their job execution in spot instances in time. By employing real-world cloud computing traces derived from EC2 spot instance price history we have evaluated our service resiliency strategies for cloud spot market with appropriate trace-driven simulation results as shown in the above section. Finally, we have also discussed the mutual advantages from the perspective of the users and cloud provider.

Fig. 2 :

 2 Fig. 2: Cloud spot instance job life-cycle with interruptions.

Fig. 3 :

 3 Fig. 3: EC2 spot prices; normalized and log distributions.

Fig. 4 :

 4 Fig. 4: Correlation with samples for similar occurrences.

Fig. 5 :

 5 Fig. 5: Correlation distribution with long-term prediction.

 (a). Number of bar is kept large (200) in order to obtain a smooth cumulative distribution function in figure 6(b).

Fig. 6 :

 6 Fig. 6: (a) Probability distribution of EC2 spot prices after five minutes, (b) Cumulative probability distribution.

TABLE I :

 I Amazon EC2 instances pricing.

	Types of	Configuration of	Reserved	On-Demand Spot
	Instances	Instances	Up-front Cost/hr Cost/hr Cost/hr
	Nano	2vCPU, 0.5 GB, EBS	$38 $0.0065 $0.0065 $0.0016
	Micro	2vCPU, 1 GiB, EBS	$75 $0.013	$0.013 $0.0031
	Small	2vCPU, 2 GiB, EBS	$151 $0.026	$0.026 $0.0062
	Medium 2vCPU, 4 GiB, EBS	$302 $0.052	$0.052 $0.0125
	Large	2vCPU, 8 GiB, EBS	$604 $0.104	$0.104 $0.0250
	xLarge 4vCPU, 16 GiB, EBS $1207 $0.239	$0.239 $0.0499
	2xLarge 8vCPU, 32 GiB, EBS $2190 $0.335	$0.432 $0.0998
	4xLarge 16vCPU, 64 GiB, EBS $3420 $0.639	$0.839 $0.1731
	8xLarge 32vCPU, 128 GiB, EBS $4,037 $0.922	$1.536 $0.3193
	12xLarge 48vCPU, 192 GiB, EBS $6,055 $1.382	$2.304 $0.4789
	16xLarge 64vCPU, 256 GiB, EBS $8,073 $1.844	$3.072 $0.6385
	24xLarge 96vCPU, 384 GiB, EBS $12,110 $2.764	$4.608 $0.9578