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Alexandre Allauzen4, Yannick Estève2, Benjamin Lecouteux1, François Portet1, Solange Rossato1,
Fabien Ringeval1, Didier Schwab1 and Laurent Besacier1,5

1Univ. Grenoble Alpes, CNRS, Inria, G-INP, LIG, France
2LIA, Avignon Université, France
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Abstract
Self-Supervised Learning (SSL) using huge unlabeled data has
been successfully explored for image and natural language pro-
cessing. Recent works also investigated SSL from speech.
They were notably successful to improve performance on down-
stream tasks such as automatic speech recognition (ASR).
While these works suggest it is possible to reduce dependence
on labeled data for building efficient speech systems, their eval-
uation was mostly made on ASR and using multiple and hetero-
geneous experimental settings (most of them for English). This
questions the objective comparison of SSL approaches and the
evaluation of their impact on building speech systems. In this
paper, we propose LeBenchmark: a reproducible framework for
assessing SSL from speech. It not only includes ASR (high
and low resource) tasks but also spoken language understand-
ing, speech translation and emotion recognition. We also focus
on speech technologies in a language different than English:
French. SSL models of different sizes are trained from care-
fully sourced and documented datasets. Experiments show that
SSL is beneficial for most but not all tasks which confirms the
need for exhaustive and reliable benchmarks to evaluate its real
impact. LeBenchmark is shared with the scientific community
for reproducible research in SSL from speech.
Index Terms: Self-Supervised Representation Learning, ASR,
SLU, Speech Translation, Automatic Emotion Recognition.

1. Introduction
Self-Supervised Learning (SSL) based on huge unlabeled data
has been explored successfuly for image processing [1, 2] and
Natural Language Processing (NLP) [3]. Recently, pioneering
work investigated SSL from speech, and successfully improved
performance on downstream tasks such as speech recognition in
low-resource scenarios [4, 5]. One observation that can be made
about those recent studies on SSL for speech is that, as common
benchmarks are not experimented, comparison of different SSL
approaches are difficult to make. In addition, contributions have
mostly been done on English, with a few recent studies related
to multilingual SSL [6, 7]. We propose to remedy these short-
comings by providing a reproducible benchmark1 that includes:

1https://github.com/LeBenchmark/

• a large and heterogeneous collection of French speech
utterances (read, prepared, and spontaneous);

• pre-trained SSL models learnt on collections of 1k and
3k hours of French speech;

• assessments on Speech Recognition (ASR), Spoken Lan-
guage Understanding (SLU), Speech Translation (AST)
and Emotion Recognition (AER) in French.

2. Background
Most deep learning methods highly rely on large quantities of
labeled training data. Particularly, current acoustic models re-
quire thousands of hours of transcribed speech to achieve state-
of-the-art performance. However, this requirement cannot be
fullfiled by the majority of the nearly 7,000 languages spoken
worldwide. To overcome this, SSL has been recently proposed
as an interesting alternative for data representation learning, as
it requires less or no annotated data. Such learnt representations
have been very successful in vision [1, 2] and NLP [3, 22]. Self-
supervised learning from speech consists of resolving pseudo-
tasks, which do not require human annotation, as a pre-training
for the real tasks to solve. These pseudo-tasks target predict-
ing the next samples, or solving ordering problems. For in-
stance, Autoregressive Predictive Coding (APC) considers the
sequential structure of speech and predicts information about
a future frame [23, 24], whereas Contrastive Predictive Cod-
ing (CPC) distinguishes a future speech frame from distractor
samples [4, 25], which is an easier learning objective compared
to APC. Such representations have been shown to improve per-
formance in several speech tasks [26], while being less sensi-
tive to domain and/or language mismatch [5]. It has also been
shown that features extracted through a CPC pre-training can be
transfered to other languages, with performance being on par or
superior to a supervised pre-training [27].

3. Gathering a Large and Heterogeneous
Speech Collection in French

Recently, large multilingual corpora that include French have
been made available, such as MLS [17] (1,096 h), or vox-
populi [7] (+4,500 h). However, these are restricted to either
read or well-prepared speech, failing to provide diversity in

https://github.com/LeBenchmark/


Table 1: Statistics for the speech corpora used to train SSL models according to gender information (male / female / unknown). The
small dataset (1k hours) is from MLS only, and the medium dataset (2.9k hours) is from all of them; duration: hour(s):minute(s).

Corpus # Utterances Duration # Speakers Mean Utt. Duration Speech type

African Accented
French [8]

16,402
373 / 102 / 15,927

18:56
– / – / 18:56

232
48 / 36 / 148

4 s
– / – / – Read

Att-Hack [9] 36,339
16,564 / 19,775 / 0

27:02
12:07 / 14:54 / 0:00

20
9 / 11 / 0

2.7 s
2.6 s / 2.7 s / –

Acted
Emotional

CaFE [10] 936
468 / 468 / 0

1:09
0:32 / 0:36 / 0:00

12
6 / 6 / 0

4.4 s
4.2 s / 4.7 s / –

Acted
Emotional

CFPP2000* [11] [12] 9853
166 / 1,184 / 8,503

16:26
0:14 / 1:56 / 14:16

49
2 / 4 / 43

6.0 s
5.0 s / 5.0 s / 6.0 s Spontaneous

ESLO2 [13], [14] 62,918
30,440 / 32,147 / 331

34:12
17:06 / 16:57 / 0:09

190
68 / 120 / 2

1.9 s
2.0 s / 1.9 s / 1.7 s Spontaneous

EPAC** [15] 623,250
465,859 / 157,391 / 0

1,626:02
1,240:10 / 385:52 / 0:00

1,935
– / – / –

9 s
– / – / –

Radio
Broadcasts

GEMEP [16] 1,236
616 / 620 / 0

0:50
0:24 / 0:26 / 0:00

10
5 / 5 / 0

2.5 s
2.4 s / 2.5 s / –

Acted
Emotional

MLS French [17] 263055
124,590 / 138,465 / 0

1,096:43
520:13 / 576:29 / 0:00

178
80 / 98 / 0

15.0 s
15.0 s / 15.0 s / – Read

MPF [18], [19] 19,527
5,326 / 4,649 / 9,552

19:06
5:26 / 4:36 / 9:03

114
36 / 29 / 49

3.5 s
3.7 s / 3.6 s / 3.4 s Spontaneous

PORTMEDIA (French) [20] 19,627
9,294 / 10,333 / 0

38:59
19:08 / 19:50 / 0:00

193
84 / 109 / 0

7.1 s
7.4 s / 6.9 s / –

Acted telephone
dialogue

TCOF (Adult s) [21] 58,722
10,377 / 14,763 / 33,582

53:59
9:33 / 12:39 / 31:46

749
119 / 162 / 468

3.3 s
3.3 s / 3.1 s / 3.4 s Spontaneous

ALL 1,111,865
664,073 / 379,897 / 67,895

2,933:18
1,824:53 / 1034:15 / 74:10 - - -

*version without the CEFC corpus v2.1, 02/2021; **speakers are not uniquely identified.

the speech samples, such as accented, spontaneous and/or af-
fective speech. As a consequence, SSL models trained only
on these corpora may present poor generalisation abilities on
spontaneous or affective speech. In this work, we gathered a
large variety of speech corpora in French that cover different
accents (MLS, African Accented Speech, CaFE), acted emo-
tions (GEMEP, CaFE, Att-Hack), telephone dialogues (PORT-
MEDIA), read (MLS, African Accented French) and sponta-
neous sentences (CFPP2000, ESLO2, MPF, TCOF), as well as
broadcast speech (EPAC). Compared to MLS and Voxpopuli,
our dataset is more diverse, carefully sourced and contains de-
tailed metadata (speech type, and speaker gender), which would
facilitate future fine-grained analysis of SSL such as training
gender/style specific models. Moreover, our dataset has a more
realistic representation of speech turns in real life, compared to
MLS (see average utterance duration per speaker in Table 1).
We detail below the necessary steps for producing the dataset
whose statistics are reported in Table 1.
Pre-processing for SSL training Audio recordings were seg-
mented using time stamps from speech transcriptions. We also
retrieved, when available, speaker labels and gender informa-
tion. Following [28], we removed utterances shorter than 1 s,
and longer than 30 s. Finally, when necessary, audio segments
were converted to mono PCM files using 16 bits and a sampling
frequency of 16 kHz.
Final dataset To the best of our knowledge, this is the very first
study that explores such a diverse and large ensemble of datasets
for SSL training. It includes 2,933 h of speech, from which
1,115 h is read speech, 1,626 h broadcast speech, 124 h spon-
taneous speech, 38 h acted telephone dialogues, and 29 h acted
emotional speech. Regarding gender, we collected 1,824 h of
speech from male speakers, 1,034 h from female speakers, and
74 h from unknown gender. This full corpus is refered as
medium, and the subset made of MLS only is refered as small.

4. Training SSL Models
LeBenchmark provides four Wav2Vec2.0 models [28] pre-
trained on the gathered French data described in Section 3.
Following [28], two different Wav2Vec2.0 architectures (large

and base) are coupled with our small (S) and medium (M) cor-
pus to form our set of Wav2Vec2.0 models: W2V2-Fr-S-base,
W2V2-Fr-S-large, W2V2-Fr-M-base, W2V2-Fr-M-large. Hy-
perparameters and architectures for base and large are identi-
cal to the ones first introduced in [28]. All models are trained
on four Nvidia Tesla V100 (32GB) until the loss observed on
the validation set of the MLS corpus (Section 3) reaches a
stable point. Pretrained Wav2Vec2.0 models are shared with
the community via HuggingFace2 for further integration with
well-known toolkits such as Fairseq [29], SpeechBrain [30] or
Kaldi [31]. In some downstream experiments mentioned below,
we also use two Wav2Vec2.0 (base / large, no finetuning) En-
glish models pre-trained on the full LibriSpeech (960 h) corpus
by Fairseq,3 and refer to them as W2V2-En base and W2V2-En
large. The XLSR-53-large [6] multilingual model is also used.

5. Benchmarking our SSL Models
5.1. Automatic Speech Recognition

We evaluate the contribution of SSL for ASR using a hybrid
DNN-HMM and an end-to-end approach.
Datasets The ASR tasks target two different types of corpora:
Common Voice [32] and ETAPE [33]. Common Voice is a very
large crowdsourced corpus (477 h) of read speech in French
with transcripts – training: 428 h, development: 24 h, and test:
25 h, while ETAPE is a smaller (36 h) but more challenging cor-
pus composed of diverse French TV broadcast programs – train-
ing: 22 h, development: 7 h, and test: 7 h.
Hybrid DNN-HMM The baseline acoustic models (AM) have
been trained on 40-dimensional high-resolution (hires) MFCC
features using the Kaldi [31] toolkit with a state-of-the-art fac-
torized time delay neural network (TDNN-F) [34, 35] on the
ETAPE training corpus [33] only. The model has 12 TDNN-F
layers (1,024-dimensional, with projection dimension of 128)
and a 3,432-dimensional output layer. It was trained using
lattice-free maximum mutual information (LF-MMI) [36] and

2https://huggingface.co/LeBenchmark
3https://github.com/pytorch/fairseq/tree/

master/examples/wav2vec

https://huggingface.co/LeBenchmark
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec


Table 2: ASR results (WER,%) on the ETAPE corpus for hybrid
DNN-HMM acoustic models with TDNN-F topology.

Language Model ETAPE ESTER-1.2 + EPAC

Features Dev Test Dev Test

hires MFCC 39.28 40.89 35.60 37.73
W2V2-Fr-M-large 32.19 33.87 28.53 30.77
W2V2-En-large 39.93 42.30 36.18 38.75
XLSR-53-large 36.36 38.19 32.81 35.17

cross-entropy criteria. Speed and volume perturbations have
been applied for data augmentation. We used a similar topol-
ogy to train three other systems with different types of input
features extracted by W2V2-Fr-M-large, W2V2-En-large [28],
and XLSR-53-large models. 100-dimensional speaker i-vectors
were appended to the input features for all the models. Two tri-
gram LMs were used in evaluation: (1) a larger one with a 82k
vocabulary and (2) a smaller one trained on ETAPE training
data only with a 17.5k vocabulary.
End-to-End Our end-to-end system is defined with the Speech-
Brain toolkit [30] using an encoder/decoder architecture with
attention: the encoder is a Convolutionnal Recurrent Deep Neu-
ral Network CRDNN (VGG + RNN + DNN), and the decoder is
a joint CTC/Attention LSTM neural network. When used with
the Wav2Vec2.0 features (same from hybrid DNN-HMM ASR
experiments), the CNN blocks are removed from the CDRNN
encoder. For end-to-end ASR experiments, the neural network
output corresponds to 500 byte pair encoding (BPE) units [37]
computed on the manual transcriptions of the respective training
datasets. No additional language model is used in these exper-
iments, neither data augmentation. For comparison purposes,
we also use 80-dimension log Mel filterbank (MFB) features.
Results The WER results on the ETAPE development and test
data sets for the hybrid DNN-HMM models are given in Table 2.
Among the models trained on SSL features, two models provide
improvement over the baseline AM trained on MFCC features:
the model trained on XLSR-53 features (7–8% of relative WER
reduction) and the model trained on W2V2-Fr-M-large features
(17–20% of relative WER reduction). To our knowledge, this
is the first time SSL features are used for hybrid DNN-HMM
ASR. Actually, the hybrid DNN-HMM ASR system is much
better than its end-to-end counterpart on ETAPE (see next para-
graph). This is partly due to the use of speaker adaptation (i-
vectors) and hand-crafted pronunciation dictionary which might
be particularly beneficial to the hybrid DNN-HMM system,
compared to end-to-end ASR, for the low resource ETAPE task.

Table 3 presents the results achieved with end-to-end ASR
on Common Voice 6.1 and on ETAPE datasets. On the ETAPE,
filterbank parameters (MFB) got significanly the best results,
while on Common Voice, W2V2-Fr-M-large is very close.
In all (hybrid and end-to-end) ASR experiments, among the
wav2vec models, W2V2-Fr-M-large got the best results.

5.2. Spoken Language Understanding

Dataset The MEDIA corpus [38, 39] is used for the French
SLU benchmark. The corpus is made up of 12,908 utterances
(41.5 h) for training, 1,259 utterances (3.5 h) for development
and 3,005 utterances (11.3 h) for test.
Model Our end-to-end model has a pyramidal LSTM encoder
similar to [40]. The decoder integrates, in addition to the usual
attention mechanism for attending the encoder hidden states, an
attention mechanism for attending all previous decoder predic-
tion’s embeddings, instead of just the previous one [41]. We use

Table 3: End-to-end ASR results (WER,%) on Common Voice
and ETAPE corpora. (∗) means the training algorithm did not
converge to a WER smaller than 100%.

Corpus CommonVoice ETAPE

Features Dev Test Dev Test

MFB 20.19 23.40 54.55 56.17
W2V2-Fr-M-large 20.23 24.06 55.56 57.04
W2V2-En-large 34.07 37.29 98.79 99.10
XLSR-53-large 30.07 32.72 (∗) (∗)

an incremental training strategy similar to [39], by first training
an ASR model from scratch which is used to initialize parame-
ters of a SLU model using a simple linear layer as decoder; and
then using this simple SLU to initialize parameters of our final
SLU model, which uses a LSTM decoder. The model, which is
implemented using Fairseq [29], has the same settings as [39]
to allow direct and fair comparison.
Results for ASR and SLU obtained with different speech repre-
sentations are shown in Table 4, and they are given in terms of
Word Error Rate (WER) and Concept Error Rate (CER) respec-
tively, which is computed the same way as WER but on concept
sequences. The ASR results are included because we use token-
level models (ASR) to pre-initialize SLU models. The ⊕ sym-
bol is used for separating Encoder and Decoder names: Kheops
is the pyramidal encoder inspired from [40], Basic is the lin-
ear decoder, and LSTM is the more advanced LSTM decoder.
For ASR, using SSL features as input resulted in an impressive
drop in WER, even when using English SSL models. At best,
we achieve a WER of 11.77% on the development data with the
W2V2-Fr-M-large features. SLU results (SLU decoding in Ta-
ble 4) follow the same trend. The best performance is obtained
again with W2V2-Fr-M-large features, with a CER of 18.54 on
the development data. This result improves previous work by
almost 5 points (23.39 vs. 18.54), and stands as the new state-
of-the-art result using only MEDIA training data for learning
SLU models. Better results have been obtained in [42, 43] by
using more transcribed and annotated data, in addition to the
MEDIA corpus, via transfer learning.

5.3. Speech-to-text Translation

Automatic speech-to-text translation (AST) consists in trans-
lating a speech utterance in a source language to a text in a
target language. In this work, we are interested in translating
from French to another language. Datasets We selected subsets
having French as the source language in two large multilingual
speech corpora: CoVoST-2 [44] and multilingual TEDx [45].
Our benchmark covers translation directions from French to
three target languages, English (en), Portugese (pt), and
Spanish (es), with following training sizes: 50 h (TEDx/en),
38 h (TEDx/es), 25 h (TEDx/pt), and 180 h (CoVoST2/en).
Features We compared models using 80-dimensional MFB fea-
tures and SSL representations. In addition to the four French
Wav2Vec2.0 models trained in Section 4, we also consid-
ered the following off-the-shelf models: English [28] (W2V2-
En-base/large), French [7] (W2V2-Fr-VP-base/large), and the
multilingual model XLSR-53 [6] (XLSR-53-large). For a fair
comparison, we did not use additional data augmentation tech-
nique nor ASR encoder pre-training in the experiments.
Models We trained Transformer [46] models using the FAIRSEQ
S2T toolkit [47], and using a small architecture with 12-layers
encoder, 6-layers decoder, and hidden dimension D = 256. For
models using SSL features, we inserted a block of Linear-ReLU



Table 4: End-to-end SLU results on the MEDIA corpus.

Model Features Dev Test

Token decoding (Word Error Rate %)
[39] Seq spectrogram 29.42 28.71
Kheops⊕Basic spectrogram 36.25 37.12
Kheops⊕LSTM spectrogram 35.37 35.98
Kheops⊕Basic W2V2-En-base 19.80 21.78
Kheops⊕Basic W2V2-En-large 24.44 26.96
Kheops⊕Basic W2V2-Fr-S-base 23.11 25.22
Kheops⊕Basic W2V2-Fr-S large 18.48 19.92
Kheops⊕Basic W2V2-Fr-M-base 14.97 16.37
Kheops⊕Basic W2V2-Fr-M large 11.77 12.85
Kheops⊕Basic XLSR-53-large 14.98 15.74

SLU decoding (Concept Error Rate %)

[39] Seq spectrogram 28.11 27.52
[39] XT spectrogram 23.39 24.02
Kheops⊕Basic spectrogram 39.66 40.76
Kheops⊕Basic +token spectrogram 34.38 34.74
Kheops⊕LSTM +SLU spectrogram 33.63 34.76
Kheops⊕LSTM W2V2-En-base 26.31 26.11
Kheops⊕LSTM W2V2-En-large 28.38 28.57
Kheops⊕LSTM W2V2-Fr-S-base 26.16 26.69
Kheops⊕LSTM W2V2-Fr-S large 22.53 23.03
Kheops⊕LSTM W2V2-Fr-M-base 22.56 22.24
Kheops⊕LSTM W2V2-Fr-M-large 18.54 18.62
Kheops⊕LSTM XLSR-53-large 20.34 19.73

Table 5: AST results (BLEU) on dev/valid and test sets of
CoVoST-2 (CV2) and multilingual TEDx (mTEDx).

Input features
Dev/Valid data Test data

CV2 mTEDx CV2 mTEDx
en en es pt en en es pt

MFB 23.37 1.14 0.84 0.49 22.66 1.33 0.98 0.68

W2V2-En-base 19.24 0.90 0.65 0.43 18.19 0.88 0.34 0.27
W2V2-En-large 17.07 0.75 0.61 0.45 16.45 0.85 0.67 0.32

W2V2-Fr-S-base 19.86 2.64 0.49 0.50 19.04 1.66 0.67 0.61
W2V2-Fr-S-large 19.62 5.12 4.62 2.06 18.61 2.97 3.19 2.25

W2V2-Fr-M-base 19.47 6.98 1.87 0.63 18.32 6.37 1.99 0.54
W2V2-Fr-M-large 20.17 9.35 7.72 1.58 19.35 6.76 6.63 1.63

W2V2-Fr-VP-base 18.44 0.81 0.45 0.56 17.40 0.89 0.58 0.75
W2V2-Fr-VP-large 20.72 7.43 4.66 0.43 19.88 5.39 3.62 0.49

XLSR-53-large 20.54 0.59 0.41 0.49 19.93 0.44 0.62 0.29

before convolutional layers not only to reduce the number of
parameters [48], but also because we preliminary observed im-
proved performance with this block.
Results shown in Table 5 highlight the benefit of SSL features
only in medium and low-resource settings, namely mTEDx: our
W2V2-Fr-M-large produces the best results across all language
pairs, except for pt which is too low-resourced to obtain de-
cent BLEU whatever the features used. In the higher-resource
scenario (CV2), however, the best-performing SSL features are
still 2.65 BLEU point below the MFB ones.

5.4. Automatic Emotion Recognition

Automatic emotion recognition aims at detecting human’s ap-
parent emotions from sensors such as microphones and cam-
eras. Affective computing has many useful applications in the
domain of health, education, art and entertainment.
Datasets We used the RECOLA dataset [49], which contains
3.8 h of noise-free recordings of spontaneous interactions be-
tween French-speaking subjects solving a collaborative task in

Table 6: AER results (Concordance Correlation Coefficient of
emotion predictions) on the RECOLA and AlloSat test sets.

Corpus RECOLA AlloSat

Model Feature Arousal Valence Satisfaction

Linear-Tanh MFB 0.192 0.075 0.065
Linear-Tanh W2V2-Fr-M-base 0.385 0.090 0.193
Linear-Tanh W2V2-En-large 0.328 -0.005 0.075
Linear-Tanh XLSR-53-large 0.155 0.024 0.093

GRU-32 MFB 0.654 0.252 0.437
GRU-32 W2V2-Fr-M-base 0.767 0.376 0.507
GRU-32 W2V2-En-large 0.629 -0.032 0.334
GRU-32 XLSR-53-large 0.605 0.320 0.446

GRU-64 MFB 0.712 0.307 0.400
GRU-64 W2V2-Fr-M-base 0.760 0.352 0.507
GRU-64 W2V2-En-large 0.635 0.015 0.367
GRU-64 XLSR-53-large 0.585 0.280 0.434

remote condition – training, development and test partitions in-
clude each one third of the data, and AlloSat [50], a more recent
corpus containing 37 h of real-life call center conversations in
French – training: 25.6 h, development: 5.8 h, and test: 6.0 h.
Both datasets are annotated by several annotators using time-
continuous dimensions which are averaged to define an emo-
tion gold-standard: arousal (from passive to active) and valence
(from negative to positive) for RECOLA, and a dimensional
axis ranging from frustration to satisfaction for AlloSat.
Features We extracted 40-dimensional MFB features that were
standardized to zero mean and unit standard deviation according
to the training set, and SSL features that were pre-processed by
a normalisation layer. Annotations were resampled to match the
sampling frequency of the features, which was 100 Hz for MFB
and 50 Hz for the Wav2Vec models.
Models We used a simple model based on a linear layer map-
ping features to one emotional dimension, followed by a Linear-
Tanh function. The other model is a 1-layer GRU with the hid-
den layer D = [32, 64], followed by the Linear-Tanh function.
Adam optimiser was used and patience was set to 15 epochs,
and the Concordance Correlation Coefficient [51] was used as
loss function to train the models as in [52, 53].
Results Best results are obtained by our W2V2-Fr-M-base rep-
resentation on valence, satisfaction and arousal, c. f. Table 6.
With a simpler model, best scores are also achieved on both
data sets with the Wav2Vec features, meaning that SSL repre-
sentations are rich enough to be used with a simple regressor,
even for low-quality speech signals (telephone conversations).

6. Discussion
After training our own SSL models for French, we evaluated
them for four speech tasks (ASR, SLU, AST, and AER) using
different architectures (shallow and deep architectures, end-to-
end or not). The learnt SSL models are particularly beneficial
for lower resource tasks (SLU, AST/TEDx, AER) or with sim-
pler NN architectures (AER) but they sometimes fail providing
a benefit compared to MFB or MFCCs (End-to-end ASR). Fine-
tuning of SSL models could probably help bridging the gap re-
maining for some tasks, but we used SSL features ‘as they are’
for this paper. Furthermore, efficient data augmentations tech-
niques for Mel Filterbanks such as SpecAugment were disabled
here to provide a comparison with SSL features, so we should
highlight that we did not make the best of our Mel Filterbanks.
All of these remarks and findings advocate for more exhaus-
tive and reliable evaluations to assess the real impact of SSL
for speech systems. We hope that decentralized projects such as
LeBenchmark will contribute to this goal.
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