
HAL Id: hal-03317656
https://hal.science/hal-03317656

Submitted on 6 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ACTIVE OBJECTS TO DEVELOP COMPUTER
GAMES FOR BLIND CHILDREN

Cyrille Bertelle, Antoine Dutot, Damien Olivier, Guillaume Prévost

To cite this version:
Cyrille Bertelle, Antoine Dutot, Damien Olivier, Guillaume Prévost. ACTIVE OBJECTS TO DE-
VELOP COMPUTER GAMES FOR BLIND CHILDREN. GAME-ON 2002, Nov 2002, Harrow,
United Kingdom. �hal-03317656�

https://hal.science/hal-03317656
https://hal.archives-ouvertes.fr

ACTIVE OBJECTS TO DEVELOP COMPUTER GAMES FOR BLIND CHILDREN

Cyrille Bertelle Antoine Dutot
cyrille.bertelle@univ-lehavre.fr antoine.dutot@univ-lehavre.fr

Damien Olivier Guillaume Prévost
damien.olivier@univ-lehavre.fr guillaume.prevost@univ-lehavre.fr

Université du Havre
25 rue Philippe Lebon, BP 540
76058 Le Havre Cedex, France

KEYWORDS

Active-objects, Multimodality, Visual Disability,
Specific Peripherals.

ABSTRACT

The TiM project focuses on creating games for visually
impaired or blind children. In this context, the TiM plat-
form is designed to help the creation of such games. For
the modeling of games, we usedactive objects. This ar-
ticle deals with the benefits and specificities of this ap-
proach. Most game creators will not be computer pro-
grammers, and to facilitate the use of our tools (pro-
vided under the form of Java programming libraries) we
define both a higher level and very simple language, and
then above it a graphical tool. This framework provides
facilities to create both very simple games when the au-
thor has no programming skills, or to develop advanced
games for more advanced computer users.

THE TIM PROJECT

The overall aim of the TiM project is to offer visually
impaired children the possibility to play with multime-
dia computer games. They will be intended to severely
visually impaired children (blind and partially sighted),
with different levels of physical and psychological dis-
ability, so that they can use them in an autonomous way,
without assistance of a sighted person.

This work will be completed by parallel tasks like an
evaluation by educators of children behavior confronted
to these games. An evaluation and study of cognitive
process and educational potential, in the continuation of
this work will be done.

Those studies will be oriented toward visually im-
paired children’s capacity to space and cognitive orien-
tation in the game. They will generate a feedback to
the software developers and game content designers in
order to improve the games.

THE TIM PLATFORM

The approach is to build authoring tools that allow to
conceive games from the ground up, or to adapt exist-

ing games, that can be played using specialized or nor-
mal devices. The parts developed here are:

game engineThe game engine is in charge of running
the game, managing active objects, and driving
the I/O layer. At this level, only the semantic of
the game is described. This means for example
that we know that characters exist but we do not
know how they will look like to the player. Iden-
tically, for inputs we know the player can go left,
right, up or down, but we do not know how these
orders will be given to it.

I/O layer Its role is double: It transparently outputs a
game according to the current hardware of the
user, and it must input player orders sent via spe-
cialized peripherals to present them to the game
engine under a generic form.

game programming language TL (TiM Language)
This part allows to program a game more eas-
ily than simply using the provided API in Java,
providing dedicated constructs.

graphical authoring tool This tool add an higher level
tool to develop games. It is limited to predefined
games but allows to derive them very quickly and
easily.

Figure 1: The game creation process

The game engine

Active objects are at the core of the TiM platform.
An active object[3] adds a life-cycle to the usual object-
oriented approach. It allows them to work in parallel.
They own a behavior[2], acting according to rules and
beliefs, and "live" in an environment that restrain their
acts.

The use of active objects was motivated by a main
reason: most of actual games define characters inside

an environment, and active objects directly map on such
a concept. Nowadays games uses engines based on this
model or close to it. Even games usually implemented
sequentially can be easily transcribed using active ob-
jects.

In our model, active objects are constrained by an
environment that influence their behavior and impose
them rules. This is a general view: environments are
not necessarily physical. An environment can be 1D,
2D or 3D, in the case of a one dimensional game, the
environment is sequential as for example in card games,
where it only describe a set of game rules (role, turn,
etc.). In 2D or 3D games, at the contrary, the environ-
ment is used as a playground in addition to describing
game rules.

Active objectare notobjects. This means that ac-
tive objects are never forced to follow orders of another
object. They communicate using messages. They can
choose not to respond to a message. They can also be-
have differently to the same message according to their
current environment.

Messages are organized instreams. Streams are dis-
tinct and every interaction in the system is based on
their use. For example there exist streams for vision, or
streams for mere inter-object communication, etc. An
object never sends the internal representation of what
it perceives. It only sends a symbol and the other ana-
lyzes it and reacts to it. Some communication streams
cannot be ignored by active objects. For example vi-
sion streams cannot be canceled. However each object
is constrained by its ability to analyze such an input
stream. For example some active objects can only see
at a given distance.

All in the system is modeled as active objects, com-
prising the environment. Games or environments are
specific derivations of active objects but the base and
the relationship between them are the same. This unifies
the model.

The I/O layer

To provide games for blind children an input output
software has been developed. This part of the platform
is then interfaced with a game engine that handles ac-
tive objects. The input output layer had to be able to
use various peripherals. But such devices are often non
standard (e.g. braille terminals or sensitive tablets) and
the I/O layer must providemultimodality[1] to hide this
complexity. Multimodality means that it will automat-
ically recognize peripherals and provide the appropri-
ate I/O drivers. For example, both the keyboard arrow
keys and a joystick can be used to control a character
in a game, or a character can be rendered as sounds for
blinds or on a display with high contrast for visually
impaired people, and this transparently for the game de-
signer.

The language

Basically the engine is provided as an API (Applica-
tion Programming Interface) in the Java language. We
then designed a very simple language to allow rapid cre-
ation of games for people that do not know Java or are
not acquainted with computer programming.

The developed language[4] provides specific con-
structs and directly maps on the active object model
defined by the engine. Here are the main entities: a
gamelinking severalscenes, in turn managing several
actorsor classes.

The distinction between actors and classes resides in
the fact that classes have no actions or perceptions.

An active object of the game engine is represented
by an actor of the language. Such an entity has sev-
eral states, and a behavior. The behavior defines the
messages it understands and what to do according to the
current situation when these messages arrive. Further-
more, the actor defines two blocksperceptionandac-
tion that allow it to estimate its situation and act accord-
ingly when not receiving messages.

Scenes define the environment of actors. They are
also active objects, but have no perception or action. A
scene can be one dimensional, two dimensional, or three
dimensional. When defined as a single dimension, a
scene describes the steps of the games: turns for play-
ers, etc.

A game is defined by a set of scenes and a behavior
block that lists the messages that will switch from one
scene to another. Like scenes, the game has no action or
perception.

Here is a simple example of a player in a labyrinth.
The user must find a treasure. We define five entities: a
game, a scene, an actor and two classes.

The game only defines the scene. This scene is acti-
vated when the game receives the automatically gener-
ated"init" message. We will send the"end" mes-
sage ourself when the actor will have found the treasure.

game
TreasureHunter

states
scene laby: Labyrinth;

behaviours
on "end" do exit; end
on "init" do activate(laby); end

end

The scene is initialized when it receives the au-
tomatically generated"init" message. The(2)
specification creates a 2D scene:

scene
Labyrinth(2)

states
actor p: Player;

behaviours
on "init" do

read_repr("labyrinth.txt");
end

end

An actor is created only according to a scene hence
the(Labyrinth) added after the actor name. It sends
the"end" message to the predefinedgame entity.

actor
Player(Labyrinth)

behaviours
perception do

if same_location("Treasure") do
game.comm("end");

end
end
action do

player_movement();
end

end

The classes are empty:

class
Wall

end

class
Treasure

end

We provide a rich set of predefined functions like
read_repr() that creates a 2D environment from a
simple description file or aplayer_movement()
that change the location of an actor using the I/O layer.

The graphical interface

Above the language, a GUI (Graphical User Inter-
face) has been defined that allows to create predefined
kinds of games. It takes care of the game hierarchy
(game, environment, active objects), and automatically
handles messages (streams), rules and behaviors. It also
provide development methods guiding the game author
through the creation steps. Figure 2 shows screenshots
of it.

CONCLUSION

We developed several arcade games like PacMan,
Doom, but also board games like card games that are
readily playable. However the platform still needs de-
velopment in several areas:

• Automatic detection of deadlocks between active
objects,

• I/O improvements,

• streams are currently not completely imple-
mented,

• new kind of games should be developed to test the
active objects concept,

• improve our game development methodology.

Figure 2: Snapshot of the GUI

ACKNOWLEDGEMENTS

The TiM project is funded by the European Commis-
sion, on the program IST 2000 (FP5/ IST/ Systems and
Services for the Citizen/Persons with special needs) un-
der the reference IST-2000-25298.

We also thank our TiM partners for their various re-
marks. More information about the TiM project can be
found at:
http://www.snv.jussieu.fr/inova/tim .

REFERENCES

[1] D. Archambault and D. Burger,“TIM (Tactile In-
teractive Multimedia): Development and adaptation
of computer games for young blind children,”in
Proc. ERCIM WG UI4ALL & i3 Sping Days 2000
Joint workshop, Interactive Learning Environments
for Children, (Athens, Greece), Mar. 2000.

[2] Maja J Mataric,"Behavior-Based Systems: Main
Properties and Implications"in Proceedings, IEEE
International Conference on Robotics and Automa-
tion, Workshop on Architectures for Intelligent Con-
trol Systems, Nice, France, May 1992, 46-54.

[3] P. Terna,Building Agent Based Models with Swarm,
Journal of Artificial Societies and Social Simula-
tions, 1998.

[4] D. Archambault, A. Dutot, D. Olivier,TL a Lan-
guage to Develop Games For Visually Impaired Chil-
dren, In Computer Helping People With Special
Needs, p. 193-195, ICCHP 2002, Linz (Austria).

