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ABSTRACT

In distributedsimulationsmary entities(mobile agentsdis-

tributed objects, processestommunicateand may evolve

continuously Volumesof communicationsgroupsof com-

municatingentities,aswell ascomputationaheedsnayvary

a lot duringthe execution. Dueto thesedynamiccharacter
istics, the needof a migrationfor one or several entitiesis

generallydifficult to evaluate. A dynamiccommunication
graphconstituteghe modelfor the multiagentsystem.The

proposednethodevaluateghe traditionaltrade-of between
communicatioroverheadandload-balancingyy identifying

clustersof highly communicatingentities. A variantof clas-
sical ant algorithmswas designedfor that purpose. In our

implementatiorpheromonesgrecolored. Theverticesof the

communicatiorgraphare coloredaccordingto the effective

communicatiorbetweeneachother A changeof color for

avertex informsthata migrationof the correspondingntity

onthecorrespondingrocessoshouldbe beneficial.

1. INTRODUCTION

Naturepresentsnary examplesof complex systemswith a
sophisticatedylobal evolution while entities composingit
have simplebut evolving behaiors. Oneway of tacklingthe
problemof simulatingsuchsystemsconsistsin identifying
eachkind of entity andin modelingits main characteristics
and their evolution: capabilities, behaior, interactions
with the ervironmentand interactionswith other entities.
This may require mary entities, behaing independently
and evolving at their own speedin an asynchronousvay.
So distributed agent basedsystemsis the more suitable
architecturefor implementingsuch applications. Even if
performances not the mainreasorfor choosingdistributed
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systems,someproblemshave to be addressedn order to
avoid major perturbationghat might affect the executionof
theapplication.Amongtheseproblemswe areinterestedn
themanagememf thecommunicatiortraffic. Indeed,f the
communicationsare not regulated,the executionof highly
communicatinggroups of entities, composinginteresting
emeging structuresmaybe perturbated.

The paperis organizedasfollows : Section2 presentghe

graphmodel. In section3, we presentsomeclassicalant

algorithmsfor graphproblems. In section4, we definethe

generalmethodcalled coloredant system.In section5, we

describethe experimentationsnd presentsomeresults. Fi-

nally, thelastsectionconcludeghe work andsomeperspec-
tivesarediscussed.

2. DYNAMIC COMMUNICA TION GRAPH MODEL

We studythe previously describedproblemfrom the agent
migrationpoint of view. We call effectivecommunications
communicationdetweenagentdocatedon distinct proces-
sors.

Thecommunicationdetweeragentsaremodelwith agraph
G = (V, E) whereV is the setof verticescorrespondingo

theentitiesand E is thesetof edges Eachedgee = (v, v2)

representsthe communications(whatever the direction)
betweeragentsassociatedo verticesy; andvs. Thevolume
of dataexchangedetweenboth agentsis the label of edge
e = (v1,v2).

During execution, communicationshetween agents may
vary, may start or may stop. Such events changethe
numericalparametersf thegraph,but evenmoreimportant,
they may changethe structureof thegraph.

In this contet, the only way of limiting the volume of
effective  communications consists in gathering highly
communicatingagentson the sameprocessar which can



be achieved by a migration operation. However to avoid
the migration of all the agentson a single processarthis
criterionhasto be coupledwith aloadbalancingcriterion.

Theoriginality of thiswork consistin performingbothgraph
partitioning (clustersof highly communicatingentities)and
load balancingfor a dynamicapplication. The main goal of
our work consistan identifying groupsof highly communi-
catingentitiesfor giving someindicationabouttherelevance
of a migration operation. Moreover, this information may
alsobe profitablefor somesimulationapplicationin which
multi-scalepphenomenappearTranoueztal., 2001).

Two approachesan be considered. The first consistsin

applyingclassicaimappingstratgiesfor staticdeterministic
graphsby consideringperiodically a snapshobf the appli-

cation graph. But the fact that the graphmay changejust

after the snapshotmaking the future mappingout-of-date
beforeits computation,and the fact that the solution may
be not reusablefor the next snapshotare the two main

drawbacksof this approach.The secondapproactconsiders
the applicationgraphasa changingernvironment. We want
an arytime solution for the agentsallocation. For that
purpose, the allocation is continuously computed,and a

changein the structureor in the numericalparameterss

reportedin the graphandis takeninto accountfor the com-

putation.Oneway of performingsuchcomputationconsists
in deplgying computingelements. They identify relations
betweenverticesby analyzingthe traffic. Ant algorithms
arewell suitedfor thattaskasit hasbeenshavn in (Dorigo

etal.,1996)or in (CaroandDorigo, 1997;Schoonderwerd
etal., 1997;Heusseet al., 1998; Bonabeatet al., 1998)for

theadaptie routing problemin communicationsietworks.

3. ANT ALGORITHMS FOR GRAPH

Ant algorithmsare basedon natural ants behaiour. Ex-

perimentalstudiesshav (Gordon, 1995) that natural ants
continouslyforagetheir territoriesto searchfood. Myrme-

cologistshave alsoobsenedthatvery complex taskscanbe
achieved by cooperatiorbetweenants: bridge construction,
nestedification... This kind of collective behaior emeges
from the interaction betweenants as shovn by Langton
(Langton,1987).

The principle of ant algorithmsconsistsin exploiting the
ability of antsto find nearoptimal solutions, for difficult
problems. The intelligent collective behavior arisesfrom
their interactionsbasedon indirect communication&known
as stigmepgy. Sematectonicstigmegy produceschanges
in the physical ervironment, constructionof the nest for
instance. Stigmegy basedon signal usesthe ervironment
assupport. The resolutionprocesss basedon this volatile
chemicalsignal, a.k.a. pheromone.This approachprovide
robust solutionsfor a problemwith parameterghanges.lIt

is intrinsically distributed and scalableand usesonly local
information for computing high-quality global solutions.
These characteristicsconstitute the main quality of this
approach.

Ant-basedalgorithmshave beensuccesfullyappliedto vari-
ous combinatorialoptimizationproblemslik e the Traveling
SalesmarProblem(Dorigo andGambardellal997)or rout-
ing in networks (Caro and Dorigo, 1997; Schoonderwerd
etal.,1997;Bonabeatetal., 1998;Heusseetal., 1998).

4. COLORED ANT SYSTEM (CAS)

Our work concernslarge-scalesimulationson distributed
systems. Theseapplicationcan be modeledas a dynamic
communicatiorgraphwhereeachvertex is associatedo one
agentandwhereeachedgerepresentthevolumeof commu-
nicationsbetweena coupleof agents.Theideais to usean
ant-baseépproachor the detectiorof clustersof communi-
catingagentsMorever, theallocationneedsaloadbalancing
criterion. For that purposewe have introducethe notion of

coloredphelomones

Definition 1 (Dynamic communication colored graph)
A dynamiccommunicatiorcoloredgraphis a weightedundi-
rectedgraphG = (V, E, C) suc that:

e ( is asetof p colors whee p is the numberof proces-
sors of thedistributedsystem.

e V isthesetof vertices.Each vertex hasa color belong-
ingto C.

e E is the setof edges. Each ede is labelled with a
weight. A weightw(u, v) € IR associatedo an edge
(u,v) correspondgo a volumeof communicationde-
tweenthe coupleof agentscorrespondingo verticesu
andv.

On the examplefigure 1, asfurther explainedin section5,
the applicationis madeof 12 agentsandis distributedon a
four-processorsystem. Eachvertex is colored(from light
gray to dark). Verticesof the samecolor correspondgo
agentdocatedon the sameprocessar

The methodwe conceved proposedo changethe color of
someverticesif thesechangedeadto an improvementof
theallocation.During the execution,a vertex may changets
color several times, dependingmainly on the variationsof
the dataexchangedetweeragents.

We describenow the Colored Ant Systen(CAS)Algorithm
for the DynamicDistribution which is inspiredby Ant Sys-
tem(Dorigo etal., 1996).We consideta dynamiccommuni-
cationcoloredgraphG = (V, E, C) (seedefinition1). For
eachcolor ¢ € C asetof n antsis created(n > p).Thus
n x p antsareusedby our method.F denoteghe setof all
ants.



Figure1: An exempleof dynamiccommunicationcolored
graph.

1. Initially, ants are uniformly distributed among the
vertices. The color of eachant is fixed by its initial
vertex.

2. Thealgorithmis basednaniterative processBetween

stepst — 1 andt, eachantcrossoneedgeandreacha
new vertex. During its move, it dropspheromoneof its
color, on the edgecrossed.Moreover, eachanthasthe
ability to memorizethe lastvertex crossed.

We definethefollowing positive numbers:

¢ Thequantityof pheromoneof color ¢ droppedby
theantz ontheedge(u, v), betweerthesteps—1
andt, is notedA, (u, v, ¢).

e The quantityof pheromoneof color ¢ droppedby
antsontheedge(u, v), betweerthesteps—1 and
t is noted

Alu,v,¢) = Y Ay(u,v,0) (1)

TEF

e The total quantity of pheromoneof all colors
droppedby antson the edge(u, v), betweenthe
stepst — 1 andt is noted

Au,v) = > A, v,¢) (2)

ceC

o if A(u,v) # 0, therateof pheromoneof color ¢
ontheedge(u, v) betweerthestepst — 1 andt is

noted
A(u,v,c)

A(u,v)
ThisrateverifiesK.(u,v) € [0, 1].

KC(U,U) = ©))

3. Thecurrentquantityof pheromonef colorc presenbn
the edge(u, v) at stept is denotedby 7 (u, v, ¢). Its

initial value (whent = 0) is 0 andthenit is computed

following therecurrentequations:

o if A(u,v) #0,

O (u,v,¢) = pKY(u,v)r" Y (u,v,c)
+Kc(u,v)As (u,v,0)  (4)

o if A(u,v) =0,
7 (u,v,¢) = pr*= (u,v,¢) (%)

p € [0,1] representshe pheromonepersistencelueto
its evaporation.K . (u, v) and~y representepulsionfac-
tors. Thesevaluesdecrease¢he quantityof pheromone
whenmary antsof other colors have crossedthe arc.
Thus pK] (u,v) dependson the quantity of the other
colors and contributes to the evaporation of the ¢
pheromone.

. Letusdefinep(u, v, ¢) thetransitionprobability of an

edge(u,vg) incidentto vertex » for anantof color ¢
andwhosecommunicatiorvolumeis notedw(u, vy,).

e At theinitial step(t = 0),
w(u, vg)
p(u, vk, 0) = < (6)
w(u,v
25,7

o After thisinitial step(t # 0),

_ (T(t) (u,vk,c))a(w(u,vk))ﬁ
DL Vs €) = S0 (v, ) (w (e, vg))P

Vg€V
)

whereV, is thesetof verticesadjacento .

The relative valuesof a and g give the ponderation
betweerpheromondactorandcommunicatiorvolume.
We show later in the experimental section that this
ponderatioris oneof the majorfactorsin thealgorithm
corvergence.

The choiceof the next edgecrossedy anantdepends
on previous probabilities. However, to avoid the ants
movesto oscillatebetweertwo verticesweintroducein
the probabilityformula,a penalisatiorfactoryn € [0, 1].
Givenw, the last visited vertex by the ant z, the new
probabilityformulais:

(T(t) (U, Vg, C))a (w(u, Uk))ﬁnm,k

Pz U, Vg, C) =
(1,0, ) 5 170,04, )7 (0,09 Py
’qu u
@®)
where .
I I | PR



5. Thecolor of avertex u, noted¢(u) is obtainedfrom the
maincolor of its incidentarcs:

—_ t
£(u) = argmax ; ™ (u,v,c)  (10)

5. EXPERIMENT ATION

The model has beenimplementedand usedto determine
valid numericalvaluesfor its parametersin the following,

we give the parametersisedto tune the behaiour of the

CAS:

a Therelative importanceof pheromonen probability for-
mula(8).

B Therelative importanceof weightin probability formula

(8).
p Thepheromoneersistencen anedge.

1 The penalisatiorfactorthat retainsan antfrom returning
onthevertex it justleft.

In theseexperimentsthe parametety is heldto 1.

The initial parameterspumberof ants,antsper color, etc.
aresetthisway:

e An equalnumberof antsis allocatedto eachcolor. As
colorsrepresentomputingresourcegprocessors)this
repartitiongivesan equalimportanceto eachresource.
Changingit would give more power to one or more
computingresourcegomparedo others.

e Thenamongtheseants,anequalnumberof themis al-
locatedto eachvertex of agivencolor.

¢ Initially, for eachvertex, the numberof ants,allocated
to it, mustbe equalor greaterthanits degree(i.e. its
numberof connecteddges).

The validationtestsare computedon several graphsdefined
to form clustersof highly communicatingagents, while
theseclustersarelinkedto the othersby low communication
edgeqseefigurel).

We definedtwo methodgo expressthe quality of solutions:

e We use communicationgraphswhere clustersare al-
readyidentified. Thesegraphsarerandomlyperturbed
in term of color allocation. Thenthey aresubmittedas
initial configuratiorfor thealgorithmwhichtriesto find
theinitial allocationonthe graph,asa solution.

e We computeglobal communicationcosts,notede, by
summingeffective communicationn the graph (be-
tweenagentslocatedon distinct processors.e. allo-
catedto differentcolors,asdefinedin the beginning of
the section2). Thenwe computea ratio r; amongthe
total communicationnoteds, onthegraph(r; = e/s).

We have a secondcriterion, notedr,, measuringthe
loadbalancing:for eachcolor ¢, we have v, thenumber
of verticeshaving color ¢ andp, the power of processor
affectedto c¢. Thenwe have

min€

ro = where 8:{&;060}
max& Pe

We first investigatea dynamicgraphwith four colorswhere
four clustersshouldappearinitially, eachof themhasa pre-
dominantcolor, and one vertex of anothercolor, asshavn
under:

r1=0.68 -
r2=1 '1,22-33

The CAS algorithm finds clusters after five cy-
cles, using 100 ants, and the following parameters:
{a=1,=5,p=0.8,7=0.01}.

Anothertestusesasimilardynamicgraphandthesamenum-
ber of ants,but with a differentinitial configurationwhere
eachvertex in the four clusterhasa distinctcolor, asshavn
under:

r1=0.03
r2=1

Here the optimal parametersvhere: {a = 1,8 = 5,p =
0.3,7 = 0.0001} (notice p andn), and the solution was
foundaftersevento heightsteps.

The algorithmbecomes/ery sensitve to parametesettings
when graphsare initially very perturbedlike the second
exampleshovn above. However, a graphalreadycorrectly
colored (that is where clustersof highly communicating
entities are already of the same color) is almost never
changedy the CAS algorithm.

Thefollowing diagrammay help understandhe relative im-
portanceof the pheromondrail and edgeweight. The dia-
gramcharacterizethe algorithmcorvergencen function of



the value of o parametefwhich grows with relative impor-
tanceof pheromonerail) andin functionof the 8 parameter
(which grows with relative importanceof edgeweight). In
this diagram,a x meanghealgorithmdid not founda good
enoughsolution,anddid not stabilized.A ¢ meanghealgo-
rithm did not found a good enoughsolution, but stagnated.
Finally a ¢ meanshe algorithmfound a goodsolution,and
stabilizedoniit.

6. CONCLUSION AND PERSPECTIVES

This paperpresentsa variant of Ant System,using multi-
coloredpheromonesnd called Colored Ant System. The
aim of this methodis to solve the allocationproblemin dy-
namicagent-basedimulation,respectingsomeload balanc-
ing aspectsFirstvalidationsarepresente@ndsomenumer
ics valueshave beencomputedo estimatethe solutionqual-
ity. This approactloffersto give advicesfor agentmigration.
We studyactuallyamodelfor thecouplingandthefeed-back
on multi-agentsimulations respectingsomeof their specific
constraintandtakingadvantage®f theseadvices.
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