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Abstract

Most distributed simulations are applications composed of
numerous mobile communicating entities that continuously
evolve. Such entities are organized or organize themselves in
groups or societies of cooperating agent or processes. To keep
these simulations efficient, it may be necessary to migrate enti-
ties of highly communicating groups so that they remain close,
ideally on the same processing unit, while at the same time, we
need to maintain a reasonable load for each processor.

We have proposed (Bertelle et al., 2002b) a method to hint
migration of entities making a trade-off between communica-
tion and load-balancing based on a variant of ant algorithms.
We use a dynamic communication graph to model distributed
simulations where vertices represent entities and edges com-
munications. Several colonies of ants, each of a distinct color
representing a computing resource, compete to mark vertices
of the graph using colored pheromones. A color change on
a vertex hints the entity it represents to migrate on the corre-
sponding processor. In some cases, the solution obtained is not
satisfying. We try to show in this paper the reasons and to give
improvements to solve it.

1 Introduction

Simulation are often used to study complex systems (ecosys-
tems, traffic road . . . ). In such simulations there are a very
large number of entities whose behavior and interactions de-
scribe the evolution of the system. Such models are implicitly
distributed due to their heterogeneous swarm nature. This kind
of problem does not allow a static placement, we are in front of
a non-predictable aspect.

However, when trying to distribute such systems, communi-
cations flows and computing resource load may become prob-
lematic for correct execution of the simulation. In this article

we propose a way to hint entities on locations that try to re-
duce communication impact on system execution by migrating
entities taking care of load-balancing.

The paper is organized as follows: Section 2 describes the
graph model that underlies our system. Section 3 provides
some background informations on ant algorithms whereas sec-
tion 4 describe our specific colored ant system and some pre-
liminary results. Section 5 presents our implementation, some
experiments, problems encountered with the initial colored ant
system, and enhancements made to it. Finally we conclude with
further expected improvements and perspectives.

2 Dynamic communication graph

2.1 Model
We model the simulation by a graph G = (V , E) where V is
a set of vertices representing entities of the application and
E = V × V is a set of edges e = (v1, v2) representing com-
munications between entities v1 and v2. We consider commu-
nications as being bidirectional and therefore the graph is undi-
rected. Edges are labeled by communication volumes. Each
vertex is assigned to an initial processing resource at start. This
initial distribution is fixed by the application and for the model
we consider it as random.

We call actual communications, communications between
entities that are not located on the same processor. We try to
limit the number of these actual communications by identify-
ing clusters of highly communicating entities (organisations).
However merely trying to avoid actual communications could
simply migrate all entities on a single processor. Therefore we
also need to do some load balancing. Colored pheromones have
been introduced for this purpose.

2.2 Dealing with a dynamic environment
The graph model we defined is dynamic, communication vol-
umes may vary, vertices and edges may appear or disappear.
These changes in both topology and valuation are one of the
major motivation for using ant algorithms.
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Indeed, a monotonic approach is one way to achieve clus-
tering on a graph. It consists in regularly applying a computa-
tion on a frozen copy of the dynamic graph, then trying to use
this information, though the real graph is still evolving. This
approach is problematic: the graph can have changed during
computation and results may not be usable any more, creating
discrepancies between the real application state and calculated
migration hints. Furthermore, it is not incremental, each time
the algorithm is performed.

Another way is to use an anytime algorithm. The dynamic
graph is considered as a changing environment for computing
entities that travel on the graph, taking into account the changes
as they appear, and storing the solution directly in the graph, as
a side effect of their evolution. Ant algorithms are well suited
for that task as it has been shown in (Dorigo et al., 1996).

3 Ant algorithms
Our method is based on ant algorithms. These techniques are
part of meta-heuristics approaches that yield near-optimal so-
lutions to hard optimisation problems where algorithms that
provide an exact solutions are not an issue. Ant algorithms
maintain a population of agents, that exhibit a cooperative be-
haviour (Langton, 1987), by continuously foraging their terri-
tories to find food (Gordon, 1995) using optimal paths, creating
bridges, constructing nests, etc.

Such self-organization appears from interactions that can be
either direct or indirect. Direct communication is done via
antennation, trophallaxis, any sort of contact (mandibular, vi-
sual, chemical). Indirect communications arise from individ-
uals changing the environment and other responding to these
changes: this is called stigmergy. For example, ants deposit
signals named pheromones in the environment that influence
others: the more pheromone on a path, the more ants tend to
follow it. As pheromones evaporate, long paths tend to have
less pheromone than short ones, and therefore are less used than
others.

Such an approach is robust and well supports parameter
changes in the problem. Besides, it is intrinsically distributed
and scalable. It uses only local informations (required for a
continuously changing environment), and find near-optimal so-
lutions. Ant algorithms has been applied successfully to var-
ious combinatorial optimization problems like the Travelling
Salesman Problem (Dorigo and Gambardella, 1997) or routing
in networks(Caro and Dorigo, 1997), (White, 1997), but also
to DNA sequencing (Bertelle et al., 2002a), graph partitioning
(Kuntz et al., 1997) and clustering (Faieta and Lumer, 1994).

4 Colored Ant System
As shown above, we model large scale distributed applications
by a dynamic graph G = (V , E) where vertices represent enti-
ties of the simulations and edges communication between these
entities. Edges are labeled by communication volume. The ant
algorithm is used to detect clusters of highly communicating

entities. To solve load balancing problems we introduce col-
ored ants and colored pheromones that correspond to available
processors. To support our algorithm we extend our graph def-
inition:

Definition 1 (Dynamic communication colored graph)
A dynamic communication colored graph is a weighted
undirected graph G = (V , E , C) such that:

• C is a set of p colors where p is the number of processors
of the distributed system.

• V is the set of vertices. Each vertex has a color belonging
to C.

• E is the set of edges. Each edge is labelled with a
weight. A weight w(u, v) ∈ N

+ associated with an edge
(u, v) ∈ V × V corresponds to a volume of commu-
nications between the couple of entities corresponding to
vertices u and v.

The figure 1 shows an example of a dynamic communication
colored graph. The proposed method changes the color of ver-
tices if this change can improve communications or processor
load. The algorithm tries to color vertices of highly communi-
cating clusters with the same colors. Therefore a vertex may
change color several times, depending on the variations of data
exchange between entities.

4.1 The colored ant algorithm
Our algorithm is inspired by the Ant System (Dorigo et al.,
1996). We used it as a base for further improvements that we
detail in the section 4.3. We consider a dynamic communica-
tion colored graph G = (V , E , C).

1. Each processing resource is assigned to a color. Each
vertex gets its initial color from the processing resource
where it appears. For each processor of color c ∈ C a
number of ants proportional to the processor power is al-
located and are uniformly placed on vertices of their color.
F denotes the set of all ants. An ant of color c deposits
pheromones of color c.

2. The algorithm is based on an iterative process. Between
steps t − 1 and t, each ant crosses one edge an reaches a
new vertex. During its move, it drops pheromone of its
color on the crossed edge. Moreover, each ant has the
ability to remember the vertex it comes from.

We define the following positive numbers:

• The quantity of pheromone of color c dropped by
one ant x on the edge (u, v), between the steps t− 1

and t is noted ∆
(t)
x (u, v, c).

• The quantity of pheromone of color c dropped by the
ants when they cross edge (u, v) between steps t− 1
and t is noted:

∆(t)(u, v, c) =
∑

x∈F

∆(t)
x (u, v, c) (1)
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Figure 1: Example of a dynamic communication graph, at start (t =

0), and clustered (t = 45).

• The total quantity of pheromone of all colors
dropped by ant on edge (u, v) between steps t − 1
and t is noted:

∆(t)(u, v) =
∑

c∈C

∆(t)(u, v, c) (2)

• If ∆(t)(u, v) 6= 0, the rate of pheromone of color c
on the edge (u, v) between the steps t − 1 and t is
noted

K(t)
c (u, v) =

∆(t)(u, v, c)

∆(t)(u, v)
(3)

This rate verifies K
(t)
c (u, v) ∈ [0, 1].

3. The current quantity of pheromone of color c present on
the edge (u, v) at step t is denoted by τ (t)(u, v, c). Its
initial value (when t = 0) is 0 and then is computed fol-
lowing the recurrent equation:

τ (t)(u, v, c) = ρτ (t−1)(u, v, c) + ∆(t)(u, v, c)

ρ ∈ [0, 1] represents the pheromone persistence due to its
evaporation.

4. At this stage of the algorithm, we have computed the cur-
rent quantity of pheromone, τ (t)(u, v, c), in classically,
as reinforcement factor for clustering formation based on
colored paths. We need now to take into account the load
balancing in this auto-organization process. For this pur-
pose, we need to balance this reinforcement factor whith
K

(t)
c (u, v), the relative importance of considered color

with regard to all other colors. This corrected reinforce-
ment factor is noted:

ω(t)(u, v, c) = K(t)
c (u, v)τ (t)(u, v, c)

Unfortunaly, this corrected reinforcement factor can gen-
erate too instable process. So we prefer to use a delay-
based relative importance of considered color with regard
to all other colors. For a time range q ∈ N

+, we define:

K(t,q)
c (u, v) =

t
∑

s=t−q

K(s)
c (u, v). (4)

According to this definition, we compute the new cor-
rected reinforcement factor :

Ω(t)(u, v, c) = K(t,q)
c (u, v)τ (t)(u, v, c) (5)

5. Let us defines p(u, vk, c) the transition probability of an
edge (u, vk) incident to vertex u for an ant of color c and
whose communication volume is noted w(u, vk).

• At the initial step (t = 0),

p(u, vk, c) =
w(u, vk)

∑

v∈Vu

w(u, v)
(6)
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• After the initial step (t 6= 0),

p(u, vk, c) =
(Ω(t)(u, vk, c))α(w(u, vk))β

∑

vq∈Vu

(Ω(t)(u, vq, c))
α(w(u, vq))

β

(7)

Where Vu is the set of vertices adjacent to u.

The relative values of α and β give the weighting between
pheromone factor and communication volumes. We will
see later that this weighting is a major factor in the way
the algorithm achieves its goals.

The choice of the next edge crossed by an ant depends
on the previous probabilities. However, to avoid the ant
moves to oscillate between two vertices, we introduce in
the formula a penalisation factor η ∈ [0, 1]. Given vx the
last vertex visited by ant x, the new probability formula is:

px(u, vk, c) =
(Ω(t)(u, vk, c))α(w(u, vk))βηx,k

∑

vq∈Vu

(Ω(t)(u, vq , c))
α(w(u, vq))

βηx,q

(8)
Where

ηx,q =

{

1 if vq 6= vx

η if vq = vx
(9)

6. The color of a vertex u, noted ξ(u) is obtained from the
main color of its incident arcs:

ξ(u) = arg max
c∈C

∑

u∈Vu

τ (t)(u, v, c) (10)

4.2 Solution quality
It is necessary to have a measure of the quality of the solution,
to know if we must continue to search a solution. They are two
aspects to take into account :

• The global costs of communications;

• The load-balancing of the application.

They are antagonist. So, in order to evaluate our solution we
defined two quality criterions r1 and r2. The first criterion r1

allows to know between two solutions which has proportion-
ally less actual communications. Thus we compute global com-
munication costs, noted e, by summing actual communications
on the graph (between entities located on distinct processors).
Then we compute a ratio r1 among the total volume of commu-
nications, noted s, on the graph and we have:

r1 = e/s

The more r1 is close to 0, the more actual communications are
low, as expected. The second criterion r2 considers the load-
balancing. For each color c, we have vc the number of vertices
having color c and pc the power of processor affected to c. Then
we have:

r2 =
minE

maxE
where E =

{

vc

pc

; c ∈ C

}

The more r2 is close to 1, the more load-balancing is good.
For example, we obtain on the two graphs (fig. 1) r1 = 0.7,
r2 = 1.0 for t = 0 and r1 = 0.1, r2 = 1.0 for t = 45.

These criterions are used to compare different solutions ob-
tained during the computation, essentially to verify if we im-
prove the solution during the steps. These criterions, enable us
to store the best solution obtained so far.

We use also these criterions to compare communication
graphs where clusters are already identified. These graphs are
randomly perturbed in term of color allocation to fix an initial
configuration. After the algorithm tries to find the initial alloca-
tion on the graph, as a solution or a solution where the criterions
are closest.

4.3 Ant populations algorithm
The original algorithm reveals several difficulties due to lack of
control over the relations between the numerous parameters. In
clusters of high communication, ants tend to follow privileged
paths that form loops. This is due to the fact communications
in such areas are mostly the same and pheromone take a too
large importance in ant path choices. Such paths exclude some
nodes that could be settled and leads to three problems: grabs,
starvation and overpopulation as explained under and shown in
figures 2, 3 and 4. In these figures, the graph representation is
as follows. Vertices are rectangles. Edges are shown with a pie
chart in the middle that indicates relative levels of pheromones
with the maximum pheromone level numbered. Vertices are la-
beled by their name at the top with under at the left the total
number of ants they host and at the right a pie chart indicating
the relative number of ants of each color present on this ver-
tex. These figures are excerpt from the communication graph
corresponding to figure 1.

grabs Small ants group of a given color are locked in an area of
the graph by a larger colony of another color that surround
them. In this case they cannot escape due to repulsion
factors and cannot help consolidating correct clusters of
their own color elsewhere (figure 2).

starvation Whole parts of the graph get less and less
pheromone trails and are left unoccupied by ants. As
pheromone evaporate, less and less ants are attracted by
them (figure 3).

overpopulation Some parts of the graph get too much ants as
the total number of ants on a vertex is not bounded. In the
worse case, ants of all colors can appear in such high den-
sity populations without the repulsion factors to operate
correctly (figure 4).

The base algorithm gives useful results if its parameters are
well set, however fixing them is delicate. If they are not cor-
rectly configured the algorithm may well fall in local minima
as shown in examples above: whether pheromones grow too
quickly and overpopulation appears, or they evaporate too fast
and starvation comes into play. These two cases leading to
grabs.
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Figure 2: Grab: red ants are unable to move to the red cluster
(not shown here), being hold in a small loop by blue ants. Both
groups of ants are responsible: red ants are attracted by their
own ever growing loop of pheromone, and blue ants repulse red
ones forcing them to remain on the loop.

Figure 3: Starvation: red ants remain on a small loop at the
bottom, leaving a whole part of a high communication group
unoccupied.

Figure 4: Overpopulation: the original distribution allocated
20 ants on each vertex. Here there are more than 50 ants on
each blue vertex running in a loop. Several other parts (not
shown here) of the graph are empty. This problem is due to bad
parameters α and β.

Control on the ant population as been changed. Before, this
control was used only to handle the dynamic graph (vertex and
edge appearance or disapearance). Now we add some death and
hatching mechanisms. We perturb the ants repartition generat-
ing small stable clusters which are the result of local minima.
Furthermore this procedure makes senses since our algorithm
runs continuously not to find a static solution as the standard
Ant System, but to provide anytime solutions to a continuously
changing environment.

Including death and hatching ask a question about popula-
tion: for a given number of vertices is it constant or not? In-
deed we want to avoid cases where all ants disappear or too
many ants appear. Therefore, we resolved to make one hatch
for one death.

Additions to the original Colored And Algorithm are:

1. We define the following positive numbers:

• τ (t)(u, c) is the quantity of pheromone of color c
dropped on all edges connected to vertex u:

τ (t)(u, c) =
∑

vq∈Vu

τ (t)(u, vq, c) (11)

• τ (t)(u) is the quantity of pheromone of all colors
dropped on all edges connected to vertex u:

τ (t)(u) =
∑

c∈C

τ (t)(u, c) (12)

• ϕc(u) ∈ [0, 1]:

ϕc(u) =
τ (t)(u, c)

τ (t)(u)
(13)

the relative importance of pheromones of color c
compared to pheromones of all colors on edges lead-
ing to vertex u.

2. Then, at each step, before the ant chooses an arc to cross
(equations 6 to 8), we must choose weither the ant will
die or not. We determine this using a thresold parameter
φ ∈ [0, 1]1 for an ant of color c on vertex u:

• if ϕc(u) < φ we make the ant die and create a new
ant choosing a new location for it as follows. We se-
lect randomly a set Vn of n vertices. Let card(F(v))
be the number of ants on vertex v. Then we select a
vertex u in Vn using:

u = arg min
v∈Vn

(card(F(v))) (14)

and make the new ant hatch on it.

• else, we proceed as specified in the original algo-
rithm choosing a new edge using probablities (equa-
tion 6 and following).

1Preferably small, under 0.1.
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This procedure eliminates grabs and starvation. Grabbed
ants die, and hatch in starvation areas. However it does not
eliminate loops, and sometimes loops tend to reappear. In or-
der to break them, we introduce more memory in ants: instead
of being able to memorize only one vertex, ants can memorize
three or more vertices.

5 Implementation and experimentation
In these experiments dynamic valuations of the edges are not
shown, we concentrate on the pheromone levels, edge col-
oration and ant populations.

5.1 Results of the base CAS
We tried the CAS on the graph given in figure 1. This partic-
ular graph is problematic. Finding good parameters for it was
difficult. The algorithm stagnating in a solution not very closed
to the optimal solution (see figure 5 with parameters: α = 1,
β = 4, η = 0.0001, ρ = 0.8). This configuration appears after
30 steps and stays identical after 570 more steps.

Figure 5: The original algorithm on a problematic graph after
600 steps

5.2 Results with ant population control
We then used the new algorithm with population control on the
same problem with the same parameters plus the two new pa-
rameters: φ = 0.3 and the memory set to 4. A correct solution
appeared after 23 steps as shown in figure 6. After 200 steps
the configuration was stable (figure 7), and remained the same
at 600 steps (figure 8) where the experiment was stopped.

Figure 6: The algorithm with population control after 23 steps.

We also tested the algorithm with grid like graphs like shown
in figure 9 and 10. Parts of the grid are subgrids of high com-
munication. A good solution was found after 50 steps and sta-
bilized at 100 steps.

We designed a software tool that allows us to edit graphs and
modify them as the ant algorithm performs, adding or removing
edges and nodes at runtime. The graph shown in figures 11, 12,
13 and 14 is a modification of 1. we also obtain good results,
though load balancing is here not optimal. Playing with param-
eters or adding a new processor (new color) breaks the biggest
cluster in two or three (placing some nodes of it in two other
colors, or allocating a new color to it following the solution
choosen).

6 Conclusion
In this paper we presented a variant of the Ant System called
Colored Ant System that offers advices for entity migration in
a distributed system taking care of the load and communication
balancing. We described a base colored ant algorithm and then
provided several improvements and shown their results.

This works aims at improving repartition of hydrosystem
simulations that use a large number of distributed entities. Such
simulations form a dynamic communication graph continu-
ously evolving and requires an incremental distribution algo-
rithm that can adapt to their dynamic nature and can provide
placement hints at any time.

In the near future, we will consider handling dynamic ant
populations where the ant count adapt to the available power
and load of associated processors. Later we plan to add more
control to our system: indeed, this system is reactive in nature,
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Figure 7: The algorithm with population control after 200
steps.

and it would be desirable to add some processing before giving
migration hint to the application (simulation). Therefore, we
plan to add an heuristic layer between the colored ant system
layer and the application layer that will control and smooth the
results given by the CAS. This layer would allow us to take into
account constraints tied to the simulation that cannot be directly
introduced in the ant system (e.g. non-migrable resources like
databases).
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Figure 9: The initial grid.

Figure 10: The algorithm on a grid after 100 steps.

Figure 11: The original graph.

Figure 12: After 50 steps.

Figure 13: After 100 steps.
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Figure 14: After 200 steps.
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