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Abstract

Multiscale statistical analyses of inertial particle distributions are presented to investigate the

statistical signature of clustering and void regions in particle-laden incompressible isotropic turbu-

lence. Three-dimensional direct numerical simulations of homogeneous isotropic turbulence at high

Reynolds number (Reλ & 200) with up to 109 inertial particles are performed for Stokes numbers

ranging from 0.05 to 5.0. Orthogonal wavelet analysis is then applied to the computed particle

number density fields. Scale-dependent skewness and flatness values of the particle number density

distributions are calculated and the influence of Reynolds number Reλ and Stokes number St is

assessed. For St ∼ 1.0, both the scale-dependent skewness and flatness values become larger as

the scale decreases, suggesting intermittent clustering at small scales. For St ≤ 0.2, the flatness at

intermediate scales, i.e. for scales larger than the Kolmogorov scale and smaller than the integral

scale of the flow, increases as St increases, and the skewness exhibits negative values at the inter-

mediate scales. The negative values of the skewness are attributed to void regions. These results

indicate that void regions at the intermediate sales are pronounced and intermittently distributed

for such small Stokes numbers. As Reλ increases, the flatness increases slightly. For Reλ ≥ 328,

the skewness shows negative values at large scales, suggesting that void regions are pronounced at

large scales, while clusters are pronounced at small scales.
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I. INTRODUCTION

Inertial particles suspended in three-dimensional (3D) turbulent flows are ubiquitous

in geophysical flows. The spectrum of applications covers plankton dynamics, pollution

dispersion in cities or in the atmosphere, or even the planet formation in the early age of

our universe. The precipitation mechanism in convective clouds, where inertial particles

(i.e., water droplets) are suspended in high Reynolds number turbulence, is of particular

interest in atmospheric flow [1]. For instance cloud droplet motion in turbulence increases

the collision coalescence frequency and enhances the rain drop formation. The importance

of turbulence in the collision coalescence process is well summarized in the introduction of

Ref. [2]. One of the key factors that determines the droplet collision coalescence frequency

is turbulent clustering of cloud droplets. When the particle size is smaller than the smallest

turbulent scale, i.e., the Kolmogorov scale, and the particle density is larger than the fluid

density, inertial particle motion deviates from turbulent flow motion, and particles form a

nonuniform number density distribution, which consists of cluster (large number density)

and void (small number density) regions. Clustering of cloud droplets can also increase the

radar reflectivity factor [3, 4] due to the interference of microwaves scattered by spatially

correlated droplets. Quantitative estimates of the increase in the radar reflectivity factor

require the Fourier spectrum of number density fluctuations of turbulent clustering particles

which covers scales comparable to radar wavelengths. Sound modeling becomes necessary

for improving weather prediction and requires thus deep insight into the nonlinear multiscale

dynamics.

Inertial particle clustering in homogeneous isotropic turbulence was investigated in many

publications. For review articles on this topic, we refer readers to, e.g., Refs. [5, 6]. In this

paper, we consider inertial heavy particles; i.e., the particle density is sufficiently larger than

the fluid density. The particle acceleration balances the drag force, which is proportional to

the velocity difference of a particle and fluid, and the proportional coefficient is given by the

inverse of the particle relaxation time, τp. The dimensionless parameter for τp is the Stokes

number, which is defined as St ≡ τp/τη, where τη is the Kolmogorov time. The clustering of

inertial heavy particles was first explained by the preferential concentration mechanism [7, 8],

in which inertial particles are swept out from strong vortices due to centrifugal effects and

concentrate in low-vorticity and high-strain-rate regions when the particle relaxation time
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is sufficiently small compared to the time scale of vortices. The pair correlation function

(PCF) is widely used to analyze clustering, because it is directly related with the particle

collision rate [9, 10]. The PCF shows typically a power-law behavior at sub-Kolmogorov

scales and the slope is dependent on the Stokes number St. Boffetta et al. [11] pointed out

that a multiscale structure of clustering can be observed in the inverse cascade range in

two-dimensional turbulence. They showed that the probability density function (PDF) of

void area exhibits a power-law, independent of the Stokes number. Yoshimoto & Goto [12]

reported similar results for the PDF of void volumes at scales larger than the Kolmogorov

scale in homogeneous isotropic turbulence using 3D direct numerical simulation (DNS).

Coleman & Vassilicos [13] further showed that the scale similarity of particle distribution is

explained by the sweep-stick mechanism proposed by Goto & Vassilicos [14], in which par-

ticles are swept by large-scale flow motion while sticking to stagnation points of Lagrangian

fluid acceleration (see also Refs. [15, 16]). The multiscale structure of clustering was also

observed in experiments by Monchaux et al. [17]: They measured particle distribution in

a wind tunnel and reported that both PDFs of void and cluster areas exhibit power-laws

independent of the Stokes number. Bec et al. [18] discussed the scale dependence of par-

ticle distribution, using the PDF of particle mass density, coarse grained on scales in the

inertial range based on their 3D DNS data. They reported that the PDF is changing with

the scale-dependent contraction rate. The multiscale clustering structure was also analyzed

using the PCF [12, 19] and the Fourier spectrum of number density fluctuations [3]. It was

shown that both PCF and Fourier spectrum are strongly dependent on the Stokes numbers

even at scales larger than the Kolmogorov scale. The scale similarity of particle clustering

in the inertial range of turbulence was also discussed on the basis of theoretical analyses

(e.g., Refs. [20, 21]). However, the multiscale clustering structure is not fully described by

such theoretical analyses.

Bassenne et al. [22] proposed a wavelet-based method to extract coherent clusters of

inertial particles in fully developed turbulence. Wavelet multiresolution statistics of particle-

laden turbulence has been recently introduced in Ref. [23] for studying the cross-correlations

between energy spectra of the fluid and the dispersed-phase field variables in particle-laden

turbulence. Wavelets represent turbulent flow fields in scale and position, complementary

to Fourier techniques which yield insight into wave number contributions of turbulent flows.

Hence the wavelet representation can quantify spatial fluctuations at different scales, which
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is a key for analyzing spatial intermittency. This is possible due to the local and oscillatory

character of the wavelet basis functions which yield an efficient orthogonal representation

of the flow field thanks to fast algorithms. For the Fourier transform this task is out of

reach owing to the global character of the basis functions. Wavelet techniques for turbulent

flow have already some history starting with the work of e.g., Refs. [24–26]. Numerous

applications can be found to extract coherent vorticity [27–29], quantifying intermittency

[30, 31], performing scale-dependent statistics [32] and turbulence modeling [33, 34]. A

review for computing turbulent flows can be found in Ref. [35]. Recently, orthogonal wavelets

have been applied to active matter turbulence [36], turbulent premixed combustion [37] and

droplet-laden turbulence [38].

The aim of the current work is to get insight into the scale-dependent statistics of the par-

ticle distribution and into the multiscale structure of clusters and voids in particle-laden tur-

bulence. To this end orthogonal wavelet decomposition of the particle number density fields

is performed. The analyzed data are obtained by DNS of 3D homogeneous isotropic tur-

bulence at high Reynolds number laden with inertial particles, where the Taylor-microscale

based Reynolds number is Reλ & 200. The influence of different physical parameters,

Reynolds number Reλ and Stokes number St, is assessed.

The remainder of the paper is organized as follows. First, we briefly summarize the gov-

erning equations and the performed DNS computations in Sec. II. In Sec. III, we describe the

wavelet methodology and wavelet-based statistical measures to quantify the scale-dependent

distribution of the particle number density field. Numerical results are then presented in Sec.

IV. Finally, Sec. V draws some conclusions and gives perspectives for future work.

II. PARTICLE-LADEN TURBULENCE

We present the governing equations of particle-laden turbulence in Sec. II A, and describe

the DNS computations in Sec. II B. In Sec. II C we explain the conversion of the Lagrangian

particle data into an Eulerian number density field, including its Fourier spectrum.
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A. Basic equations

We consider a homogeneous velocity field u(x, t) of an incompressible fluid obeying the

Navier–Stokes equation together with the divergence free condition:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , (1)

∇ · u = 0, (2)

where x = (x1, x2, x3), ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), t is the time, f(x, t) is an external

solenoidal forcing, p(x, t) is the pressure, ν is the kinematic viscosity of the fluid, and ρ is

the density. The equations are completed with periodic boundary conditions and a suitable

initial condition. Here and in the following, we omit the arguments x and t, unless otherwise

stated.

We assume that the particle size is sufficiently smaller than the Kolmogorov scale and

the particle density ρp is sufficiently larger than the fluid density ρ (i.e., ρp/ρ � 1). Then,

Lagrangian motion of inertial heavy particles can be described by

dxp
dt

= v, (3)

dv

dt
= −v − u

τp
, (4)

where xp and v are the position and velocity of a Lagrangian particle, and τp is the relaxation

time of particle motion. Assuming the Stokes flow for spherical particles, τp is given by

τp =
ρp
ρ

2a2

9ν
, (5)

where a is the particle radius.

The important parameters in this study are the Taylor-microscale based Reynolds number

Reλ and the Stokes number St. The Taylor-microscale based Reynolds numberReλ is defined

as Reλ ≡ u′λ/ν, where u′ is the turbulent velocity fluctuation u′ ≡
√
〈|u|2〉/3, and λ is the

Taylor microscale λ ≡
√

15νu′2/ε. ε is the energy dissipation rate, defined by ε ≡ ν
〈
∂ui
∂xj

∂ui
∂xj

〉
,

and 〈·〉 denotes an ensemble average. The Stokes number St indicates the contribution of

particle inertia and defined as St ≡ τp/τη, where τη is the Kolmogorov time (τη ≡
√
ν/ε). In

homogeneous turbulence the ensemble average can be regarded as space and time average

under appropriate assumptions.
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B. Direct numerical simulation

The DNS of particle-laden turbulence was performed using the same DNS program as

that used in Ref. [3]. Equations (1) and (2) were solved on Cartesian staggered grids.

The fourth-order central-difference schemes were used for the advection and viscous terms

[39] and the second-order Runge–Kutta scheme was used for time integration. The velocity

and pressure were coupled by the highly simplified marker and cell (HSMAC) method [40],

where the second-order central difference scheme was used for the pressure gradient. To

obtain statistically steady-state turbulence, a parallelized external solenoidal forcing [41]

was applied to the large scales satisfying k < 2.5. Here k = |k| is a magnitude of wave

number vector k. Equations (3) and (4) were solved for discrete Lagrangian points. The

time integration scheme was the same as that for the flow field.

The computational cubic domain has side length of 2π. Periodic boundary conditions are

applied in x1, x2 and x3 directions. The domain was discretized uniformly into N3
grid grid

points, giving a grid spacing of ∆ = 2π/Ngrid. The DNS was performed for three turbulent

flows at different Reynolds numbers; Flow 1, Flow 2 and Flow 3. The resolution was chosen

to satisfy kmaxη ≈ 2, where kmax is the maximum wave number given by kmax = π/∆,

and η = (ν3/ε)1/4 is the Kolmogorov scale. Inertial particles were imposed uniformly and

randomly in the computational domain at t = 0, where the turbulent flow field had reached

a statistically steady state. Particle position data were sampled at 10 time instance of

t = 11T0 to 20T0 at interval of T0, where T0 is the dimensionless time unit and comparable

to the eddy-turnover time. The Stokes number St of inertial particles was set to 0.05, 0.1,

0.2, 0.5, 1.0, 2.0 and 5.0 for Flow 1, and the particle motion of St = 1.0 was tracked for Flow

2 and Flow 3. The statistics of the obtained turbulent flows and the number of particles Np

are summarized in Table I. Note that Np particles were tracked for each case of St for Flow

1. Time average for the statistics was taken for the period of 10T0 ≤ t ≤ 20T0.

C. Number density fluctuations

The number density field of the discrete particle positions can be described as

nδ(x, t) =
1

n0

Np∑
m=1

δ (x− xp,m(t)) , (6)
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Ngrid Re Reλ u′ kmaxη Np

Flow 1 512 909 204 1.01 2.02 1.07 ×109

Flow 2 1024 2220 328 1.00 2.12 5.00 ×107

Flow 3 2048 5595 531 1.00 2.14 4.00 ×108

Table I. DNS parameters and statistics of obtained turbulence; the number of grid points Ngrid,

the Reynolds number of DNS Re = ν−1, the Taylor-microscale based Reynolds number Reλ, the

turbulent velocity fluctuation u′, kmaxη, and the number of particles Np.

where δ(x) is the Dirac delta function, the subscript m denotes the identification number

of the particle, and n0 is the scaling factor: The mean dimensional number density n0 =

Np/(2π)3 is used in order that 〈nδ〉 = 1. However, wavelet analysis cannot be applied directly

to nδ(x, t). Thus, to apply the wavelet analysis, the number density field in Eq. (6) was

converted to the number density field data on equidistant grid points based on the histogram

method; i.e., the computational domain was discretized into an array of N3
g equally sized

boxes, and the number of particles in each box was counted. The histogram method, which

corresponds to the zeroth-order kernel density estimation, retains fine clustering structures

better than higher-order kernels. The number density field based on the histogram method

is given by

n(x, t) =

Ng−1∑
i1,i2,i3=0

{∫
T
Kh(xi1,i2,i3 − x′)nδ(x′, t)dx′

}
h3Kh(x− xi1,i2,i3), (7)

where T = 2πR/Z, xi1,i2,i3 is the box position given by xi1,i2,i3 = h(i1+1/2, i2+1/2, i3+1/2),

and Kh(x) is a piecewise constant function defined as Kh(x) = 1/h3 for −h/2 ≤ xi < h/2

(i = 1, 2, 3), while Kh(x) = 0 otherwise. Here h denotes the width of the piecewise function,

and for the histogram we have h = 2π/Ng. Note that Eq. (7) satisfies 〈n〉 = 1. For the

number density field n(x, t) the number of grid points in each direction was set to Ng = 1024,

independently of the number of grid points Ngrid in the DNS. The influence of Ng on the

wavelet-based statistics is discussed in Appendix A. Bassenne et al. [22] also used the

histogram method to obtain the number density field for the wavelet analysis. Nguyen et al.

[42] used the kernel density estimation with the Gaussian kernel, but the Gaussian kernel

smooths out fine clustering structures because it works as a blunt low-pass filter.
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III. WAVELET ANALYSIS OF THE NUMBER DENSITY FIELD

The scale-dependent statistics of the particle number density field n(x, t), Eq. (7), are

based on an orthogonal wavelet decomposition which is summarized in Sec. III A. For details

on wavelets we refer the reader to textbooks, e.g. Refs. [43, 44]. The scale-dependent

moments of the number density field yield statistical estimators of the different quantities

considered such as variance, skewness and flatness values, and are defined in Sec. III B.

A. Orthogonal wavelet decomposition

We consider here a scalar field n(x, t), i.e., the particle number density field at a given

instant t, in the (2π)3 periodic cube. The field is decomposed into a 3D orthogonal wavelet

series, and it is thus unfolded into scale, positions and seven directions (µ = 1, · · · , 7).

The 3D mother wavelet ψµ(x) is hereby based on a tensor product construction and a

family of wavelets ψµ,γ(x) can be generated by dilation and translation. This family yields

an orthogonal basis of L2(R3). The multi-index γ = (j, i1, i2, i3) denotes the scale 2−j and

position 2π×2−ji = 2π×2−j(i1, i2, i3) of the wavelets for each direction, and i` = 0, · · · , 2j−1

(` = 1, 2, 3). The wavelets are well-localized in space around position 2π × 2−ji and scale

2−j, oscillating, and smooth. Application of a periodization technique [44] to the wavelets

generates likewise an orthogonal basis of L2(T3). The spatial average of ψµ,γ(x), defined

by 〈ψµ,γ〉 = (2π)−3
∫
T ψµ,γ(x)dx, vanishes for each index, which is a necessary condition for

being a wavelet.

The number density field n(x) sampled on N3
g = 23J equidistant grid points, can be

developed into an orthogonal wavelet series:

n(x) = 〈n(x)〉 +
J−1∑
j=0

nj(x), (8)

where nj(x) is the contribution of n(x) at scale 2−j defined by

nj(x) =
7∑

µ=1

2j−1∑
i1,i2,i3=0

ñµ,γψµ,γ(x), (9)

and 〈n(x)〉 is the mean value. Due to orthogonality of the wavelets, the coefficients are

given by ñµ,γ = 〈n, ψµ,γ〉, where 〈·, ·〉 denotes the L2-inner product defined by 〈ξ, ζ〉 =
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(2π)−3
∫
T ξ(x) ζ(x)dx. At scale 2−j we have 7 × 23j wavelet coefficients for n(x). Thus, in

total we have N3
g coefficients for each component of the vector field corresponding to N3

g − 1

wavelet coefficients and the non-vanishing mean value. These coefficients are efficiently

computed from the N3
g grid point values for n(x) using the fast wavelet transform, which

has linear computational complexity.

The scale 2−j of the wavelet transform and the wave number kj of the Fourier transform

are related via

kj = kψ2j, (10)

where kψ is the centroid wave number of the chosen wavelet. For the Coiflet 12 wavelet

chosen here, which has four vanishing moments, we have kψ = 0.77.

B. Wavelet-based statistics of the particle number density field

We discuss scale-dependent statistics of the particle number density field n(x) which are

based on scale-dependent moments using the wavelet decomposition of Eq. (8) We define

the q-th order moments of nj(x),

Mq[nj] = 〈(nj)q〉, (11)

and note that by construction the mean value vanishes, 〈nj〉 = 0. The moments are thus

central moments. These scale-dependent moments are intimately related to the q-th order

structure functions [30].

In the following, we consider the second order moment M2[nj], the third order moment

M3[nj], and the fourth order moment M4[nj]. The wavelet energy spectrum of nj(x) can be

defined using the second order moment M2[nj] and Eq. (10),

E[nj] =
1

∆kj
M2[nj], (12)

where ∆kj = (kj+1 − kj) ln 2 [26]. The wavelet spectrum E[nj] corresponds to a smoothed

version of the Fourier energy spectrum [25, 26]. The orthogonality of the wavelets implies

that we obtain the variance of the number density field
∑J−1

j=0 E[nj]. The asymmetry of the

PDF of nj(x) can be quantified by its skewness defined as

S[nj] =
M3[nj]

(M2[nj])
3/2
. (13)
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Figure 1. Wavelet spectra E[nj ] (black) and Fourier spectra En(k) (red) of number density fluc-

tuation at Reλ = 204 for the cases of (a) St ≤ 1 and (b) St ≥ 1.

The scale-dependent flatness, which measures the intermittency at scale 2−j, is defined by

F [nj] =
M4[nj]

(M2[nj])
2 . (14)

For a Gaussian distribution the flatness equals three at all scales.

In Ref. [31] it was shown that the flatness is directly related to the energy spectrum of

Eq. (12) and the standard deviation of the spatial variability of E[nj],

F [nj] =

(
ϑ[nj]

E[nj]

)2

+ 1, (15)

where ϑ[nj] is the standard deviation and defined as ϑ[nj] = (1/∆kj)
√
M4[nj]− (M2[nj])

2.

This relation illustrates that the spatial variability of the spectrum, quantified by the fourth

order moment, is reflected in increasing flatness values at small scales.
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IV. NUMERICAL RESULTS

A. Scale-dependence of particle clusters and voids

Figure 1 presents wavelet spectra of number density fluctuations E[nj] together with

number density Fourier spectra En(k) at different Stokes numbers. The wave numbers kj

and k are normalized by the Kolmogorov scale η. In Fig. 1(a), we can see that the spectra

E[nj] increase with St for each kjη when St ≤ 1.0. This increase suggests that the particle

clustering becomes prominent as St becomes larger. In the case that St ≥ 1.0, at larger

scales kjη & 10−1 the spectra become larger with St (see Fig. 1(b)). In contrast, at scales

satisfying kjη . 10−1, the spectra become smaller for each kjη, as St increases from unity.

This non-monotonic behavior of E[nj] in terms of St shows that the scale of the most

intense particle clustering becomes larger with St(≥ 1.0). The St dependence of E[nj] is

in accordance with that reported by Ref. [3]. We can also see that for each St, E[nj] is in

good agreement with the number density Fourier spectra En(k). It should be noted that

a number density Fourier spectrum could contain the Poisson noise caused by the discrete

nature of particle distribution when the standard Fourier transform is applied to the number

density field [45]. In the Fourier spectra in Fig. 1, the Poisson noise is removed by using

the analytical Fourier transform technique of Ref. [3]. In contrast, the influence of the

noise remains in the wavelet spectra and is observed for St = 0.05, 0.1, 0.2 and 5.0. The

wavelet spectra E[nj] are also plotted in the case of random particle positions with uniform

probability as reference: E[nj] ∝ k2j , where the PDF of particle number density satisfies the

Poisson distribution.

To get intuitive ideas about particle clustering and its scale dependence, we visualize

spatial distributions of scale-dependent number density fields nj on a two-dimensional plane

at different scales for St = 1.0 and St = 0.05 together with the total number density

fields n(x) in Fig. 2. The scale-dependent number density field nj is normalized by σ[nj],

the standard deviation of nj. Here, σ[nj] =
√
M2[nj]. In Figs. 2(a) and 2(b), we can

see the prominence of the particle clusters and void regions, especially at St = 1.0. The

prominence of the clusters becomes substantial as scales becomes smaller, i.e., the scale

index j becomes larger. In addition, it seems that the clusters and the voids are distributed

more intermittently in space with increasing j for each St.
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Figure 2. Spatial distributions of total number density field n(x) (a, b) and scale contributions

nj(x) at j = 2 (c, d), j = 4 (e, f) and j = 8 (g, h) in a x1-x2 cross section; (a, c, e, g) St = 1.0, (b,

d, f, h) St = 0.05.
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B. Reynolds number dependence

We examine the influence of the Reynolds number Reλ on the scale-dependent skewness

and flatness values of the particle number density, S[nj] and F [nj], for inertial particles at

St = 1.0 and those for randomly distributed particles. The DNS for the three Reynolds

numbers, Reλ, uses different number of particles (imposed by their computational cost), as

shown in Table I. Thus, we also consider three sets of randomly distributed particles with

the corresponding number of particles. Figure 3 shows that skewness S[nj] and flatness

F [nj] increase with kjη, irrespective of the values of Reλ. In Fig. 3(a), we can see that

the skewness values S[nj] for three Reλ well collapse in the range 0.02 . kjη . 0.5, which

suggests the Reλ dependence of S[nj] is negligible in this kjη range. In contrast, Fig. 3(b)

shows that F [nj] increases with Reλ for fixed kjη in the same range.

Note that the statistics of the particle number density field for randomly distributed

particles are equivalent to those for fluid particles (St = 0). The number density of the

fluid particles is uniform due to the volume preserving nature of the incompressible flow.

Thus void and clusters regions are absent and consequently the skewness values vanish and

flatness values remain constant for the case of random particles, if the number of particles

Np is sufficiently large. This is confirmed in Appendix A. Thus, for Reλ = 204, S[nj] and

F [nj] are nearly independent of Np. For the higher Reynolds number cases, as illustrated

by the randomly distributed particles in Fig. 3, the Np dependence of S[nj] and F [nj] is not

quantitatively negligible for smaller scales kjη & 0.5. Thus, here we limit the discussion of

the Reλ dependence only for kjη . 0.5.

C. Stokes number dependence

The Stokes number dependence of F [nj] and S[nj] is assessed. Figure 4 shows the scale-

dependent flatness F [nj] for different Stokes numbers. For the case of 0.5 ≤ St ≤ 2.0, F [nj]

increases as the scale becomes smaller, showing that intermittency of clustering is significant

in small scales. For St = 5.0, F [nj] decreases at the smallest scale; i.e., clusters are less

intermittently distributed at the smallest scale. This observation for St = 5.0 is attributed

to weak sensitivity of the particles to small eddies. The most interesting point in this result

is that, for St ≤ 0.2, the flatness F [nj] at intermediate scales (0.02 . kjη . 0.4) increases

14



(a) (b)

���� ���� ���� ��� ���

kjη
��

�

�

�

�

	
S[
n j
]

Reλ=204��ηp=1.07×109�
Reλ=328��ηp=5.0×107�
Reλ=531��ηp=4.0×108�

����
��ηp=1.07×109�

����
��ηp=5.0×107�

����
��ηp=4.0×108�

��
� ��
� ��
� ��� ���

kjη
���

���

���

���

η[
n j
]

Reλ=204��λp=1.07×109�
Reλ=328��λp=5.0×107�
Reλ=531��λp=4.0×108�
���	�
��λp=1.07×109�
���	�
��λp=5.0×107�
���	�
��λp=4.0×108�

Figure 3. Reynolds number dependence of scale-dependent skewness S[nj ] and flatness F [nj ] for

St = 1.0.
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Figure 4. Scale-dependent flatness F [nj ] at Reλ = 204 for (a) St ≤ 1.0 and (b) St ≥ 1.0.

as the Stokes number decreases. This result is in contradiction to our intuition that the

inertial particle distribution becomes close to a random distribution as the Stokes number

decreases.
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Figure 5. Scale-dependent skewness S[nj ] at Reλ = 204 for (a) St ≤ 1.0 and (b) St ≥ 1.0.

Figure 5 shows the scale-dependent skewness S[nj] for different Stokes numbers. For the

cases of 0.5 ≤ St ≤ 2.0, S[nj] increases as the scale becomes smaller, and, for St = 5.0,

S[nj] saturates for kjη & 0.8. For St ≤ 0.2, the skewness S[nj] shows negative values at

intermediate scales (0.02 . kjη . 0.4). For the intermediate scales we observe that for

St ≤ 0.2 the skewness has locally a concave shape, corresponding in the flatness to a locally

convex shape. The local minima of skewness values and the local maxima of the flatness

occur at similar scales. These results suggest that void regions are more pronounced rather

than clusters for St ≤ 0.2 while clusters are more pronounced for St ≥ 0.5.

D. Cluster-pronounced and void-pronounced structures

To clarify the difference of cluster-pronounced and void-pronounced structures, the PDFs

of nj(x) normalized by the standard deviation σ[nj] for St = 1.0 and St = 0.05 are shown

in Fig. 6. For St = 1.0, skewness S[nj] is positive for kjη & 0.05 (j = 4, · · · , 9) as shown

in Fig. 5(a). The PDF in Fig. 6(a) has a heavier tail on the positive side for each j (j =

4, · · · , 9). In contrast, for St = 0.05, the PDF in Fig. 6(b) has a heavier tail on the

negative side for each j (j = 2, · · · , 6), where S[nj] is negative (i.e., 0.02 . kjη . 0.4) as

shown in Fig. 5(a). These trends in the PDFs imply that nj(x) has higher probability of
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Figure 6. PDF of the normalized scale-dependent particle number density nj/σ[nj ] for (a) St = 1.0

and (b) St = 0.05 at Reλ = 204. The dotted lines are the Gaussian distribution N (0, 1).

large positive values when S[nj] > 0, while nj(x) has higher probability of large negative

values when S[nj] < 0. Thus, the spatial distribution of nj(x) is expected to behave like

in the schematic figures in Fig. 7. To clarify whether negative skewness is a sign of void-

pronounced structures, we verify the relationship between the large negative values of nj(x)

and void regions. Figures 8(a) and 8(b) respectively show magnified views of Figs. 2(b)

and 2(f), which are the total number density n(x) and the scale contribution for j = 4,

corresponding to k4η = 9.7 × 10−2. Note that the scale index j = 4 corresponds to the

scale at which the skewness value is minimum at this Stokes number, St = 0.05. Figure 8

shows that the location of large negative values in nj(x) corresponds to void regions in

n(x). We can therefore conclude that for St ≤ 0.2 negative skewness values are indicators

for void-pronounced structures.

For St ≤ 0.2, the scales of local minima of the negative skewness in Fig. 5(a) almost

correspond to the scales of local maxima of the flatness in Fig. 4(a). This suggests that the

flatness at intermediate scales for St ≤ 0.2 is attributed to the intermittent distribution of

void regions. Thus the intermittent void distributions play an important role for inertial

particle clustering for St ≤ 0.2. Negative skewness values can also be observed in Fig. 3:
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Figure 7. Schematic figures of (a) cluster- and (b) void-pronounced structures for nj .

(a) (b)

Figure 8. Magnified spatial distributions of (a) total number density n(x) and (b) scale contribu-

tions nj(x) at j = 4 for St = 0.05 in the same x1-x2 cross section as Figure 2.

for Reλ ≥ 328, S[nj] shows negative values at large scales kjη . 0.02. It is conjectured that

void regions are pronounced at large scales, while clusters are pronounced at small scales.

This result could be connected to “cloud voids” reported by Karpińska et al. [46]. They

observed many void regions with the diameter of up to 12 cm during mountain observations

and explained that the phenomenon is caused by the inertial motion of cloud particles.
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V. CONCLUSION

We have studied scale-dependent statistics of the particle distribution to get insight into

the nonuniform distribution of inertial particles, i.e., clusters and voids, in isotropic turbu-

lence. To this end orthogonal wavelet analyses have been applied to particle data obtained

by performing three-dimensional direct numerical simulation of particle-laden homogeneous

isotropic turbulence at high Reynolds number (Reλ & 200) using up to 109 particles. The

number density fields n(x, t) are obtained by the histogram method using equidistant bins,

and are then decomposed into scale-dependent contributions nj(x, t) at scale 2−j using

orthogonal wavelet filtering. Scale-dependent skewness and flatness values have been in-

vestigated and the influence of the Reynolds and Stokes number has been assessed. The

following conclusions can be drawn.

For St = 1.0 the influence of Reynolds number Reλ was assessed. We found that the

scale-dependent flatness F [nj] increases slightly as Reλ increases at scales larger than the

Kolmogorov scale, while the Reλ dependence of the scale-dependent skewness S[nj] is neg-

ligibly small.

We observed that the influence of the Stokes number St on F [nj] and S[nj] is more

significant compared to the influence of the considered Reλ. For 0.5 ≤ St ≤ 2.0, both

the scale-dependent skewness and flatness values become larger, when the scale decreases.

This suggests intermittent clustering at small scales. The intermittency is reflected by the

increasing flatness values, while the clustering can be explained by the increasing skewness

values. For St > 1.0, we observe that the flatness at the smallest scale becomes smaller as

St increases, which means that the particle number density becomes less intermittent. We

also found that for small Stokes numbers, St ≤ 0.2, the skewness S[nj] exhibits negative

values at intermediate scales, i.e. for scales larger than the Kolmogorov scale and smaller

than the integral scale of the flow, and the flatness F [nj] at the intermediate scales increases

as St decreases. We have shown that negative values of S[nj] imply higher probability of

large negative values of nj. Our visualizations show that these large negative values of nj

can be attributed to void regions of the particle number density. Hence we can conclude

that void regions at the intermediate scales are pronounced and intermittently distributed

for St ≤ 0.2. We conjecture that intermittent void distributions play an important role for

inertial particle clustering for St ≤ 0.2. Our results for higher Reynolds numbers, i.e., for
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Reλ = 328 and 531, confirm that negative values of the skewness S[nj] are likewise observed

at large scales. This suggests that void regions are pronounced at large scales, while clusters

are pronounced at small scales.

The dynamics of scale-dependent cluster and void formation is still an open issue and

its clarification is of importance for modeling. The divergence of the particle velocity plays

hereby a key role, as recently shown in Ref. [47]. Analyzing the dynamics of the scale-

dependent divergence is an interesting perspective for future work.
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Appendix A: Grid number and particle number dependence

The influence of the numerical parameters, i.e., the number of grid points Ng and the

number of particles Np in simulations, can be crucial when performing statistical analyses,

especially for higher order statistics. We check the influence of these parameters on the

energy spectra E[nj], scale-dependent skewness S[nj] and flatness F [nj] of particle number

density fields n(x) in the DNS for St = 1.0 and Reλ = 204. In addition, we compare them

with randomly distributed particles. Figure 9 quantifies the impact of Ng and Np on the

scale-dependent statistics, E[nj], S[nj] and F [nj], plotted as a function of kjη. Figure 9(a)

illustrates that doubling Ng from 512 to 1024 has a small influence on the energy spectrum

of inertial particles at small scales due to the difference of the filter size for the histogram

method in Eq. (7), while the doubling does not impact the spectrum for randomly distributed
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Figure 9. Wavelet spectra E[nj ] (a, b), scale-dependent skewness S[nj ] (c, d) and scale-dependent

flatness F [nj ] (e, f) at Reλ = 204 and St = 1.0 for (a, c, e) Ng = 512 and 1024 at fixed Np(=

1.07× 109) and for (b, d, f) Np = 1.68× 107, 1.34× 108 and 1.07× 109 at fixed Ng(= 1024).
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particles which exhibits a k2 behavior [22, 45]. Changing the number of particles Np, while

keeping the grid size fixed (Ng = 1024), shows some impact on the spectra at small scales

in Fig. 9(b). Figure 9(b) nicely quantifies the influence of the particle noise. The spectra

for randomly distributed particles are shown for comparison. The latter are proportional to

k2j/Np and we can see that at small scales the spectra of the particle fields are polluted with

noise contributions implying a k2 behavior.

Figure 9(c) shows that the number of grid points Ng has small impact on S[nj] only at

the smallest scale of each Ng. The influence of Ng becomes even weaker for F [nj], as shown

in Fig. 9(e). For inertial particles both quantities grow significantly with decreasing scale,

i.e., increasing kjη. For the random cases, we observe that for each Ng, S[nj] increases only

weakly with decreasing scale and F [nj] even remains almost constant. However, for inertial

particles the number of particles Np has some impact on both S[nj] and F [nj]. This is also

the case for the random particles. For inertial particles we find that the growth of S[nj]

and F [nj] with kjη becomes more pronounced when increasing the number of particles from

Np = 1.68 × 107 to Np = 1.07 × 109, as observed in Figs. 9(d) and 9(f). For the random

case this trend is inverted: increasing Np yields more stable statistical estimators and thus

the growth of S[nj] and F [nj] with kjη is reduced. The current results suggest that in

the case of random particles S[nj] and F [nj] increase for 2−3(j+1)Np . 1. As for randomly

distributed particles, void and cluster regions are absent, the skewness values should vanish

and the flatness values should remain constant with scale. In other words, deviation of the

skewness and flatness values for the random case is caused by statistical sampling, i.e., the

finite numbers of particles Np. The above observations illustrate the importance to use a

sufficiently large number of particles to get statistically converged results and to observe

skewness and flatness values independent of Np. The increasing values of S[nj] and F [nj]

with kjη, i.e., for decreasing scale, in the random cases can thus be used to determine

whether Np is sufficiently large or not.
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