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Abstract. Explanations of Machine Learning (ML) models often
address a ‘Why?’ question. Such explanations can be related with select-
ing feature-value pairs which are sufficient for the prediction. Recent
work has investigated explanations that address a ‘Why Not?’ question,
i.e. finding a change of feature values that guarantee a change of predic-
tion. Given their goals, these two forms of explaining predictions of ML
models appear to be mostly unrelated. However, this paper demonstrates
otherwise, and establishes a rigorous formal relationship between ‘Why?’
and ‘Why Not?’ explanations. Concretely, the paper proves that, for any
given instance, ‘Why?’ explanations are minimal hitting sets of ‘Why
Not?’ explanations and vice-versa. Furthermore, the paper devises novel
algorithms for extracting and enumerating both forms of explanations.

1 Introduction

The importance of devising mechanisms for computing explanations of Machine 
Learning (ML) models cannot be overstated, as illustrated by the fast-growing 
body of work in this area. A glimpse of the importance of explainable AI (XAI) 
is offered by a growing number of recent surveys and overviews [2,3,5,10,19,30–
34,45,59–62,71,72,79].

Past work on computing explanations has mostly addressed local (or 
instance-dependent) explanations [15,16,38,51,69,70,75,76]. Exceptions include 
for example approaches that distill ML models, e.g. the case of NNs [26] among 
many others [69], or recent work on relating explanations with adversarial exam-
ples [39], both of which can be seen as seeking global (or instance-independent) 
explanations. Prior research has also mostly considered model-agnostic explana-
tions [51,69,70]. Recent work on model-based explanations, e.g. [38,75], refers 
to local (or global) model-agnostic explanations as heuristic, given that these 
approaches offer no formal guarantees with respect to the underlying ML model. 
A taxonomy of ML model explanations is summarized in Table 1. Examples
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of heuristic approaches include [51,69,70], among many others1. In contrast,
local (or global) model-based explanations are referred to as rigorous, since
these offer the strongest formal guarantees with respect to the underlying ML
model. Concrete examples of such rigorous approaches include [15,16,35,38–
41,43,52,64,75–77].

Most work on computing explanations aims to answer a ‘Why prediction π?’
question. Some work proposes approximating the ML model’s behavior with a
linear model [51,69]. Most other work seeks to find a (often minimal) set of
feature value pairs which is sufficient for the prediction, i.e. as long as those
features take the specified values, the prediction does not change. For rigorous
approaches, the answer to a ‘Why prediction π?’ question has been referred to
as PI-explanations [75,76], abductive explanations [38], but also as (minimal)
sufficient reasons [15,16]. (Hereinafter, we use the term abductive explanation
because of the other forms of explanations studied in the paper.)

Another dimension of explanations, studied in recent work [60], is the dif-
ference between explanations for ‘Why prediction π?’ questions, e.g., ‘Why did
I get the loan?’, and for ‘Why prediction π and not δ?’ questions, e.g., ‘Why
didn’t I get the loan?’. Explanations for ‘Why Not?’ questions, labelled by [60]
contrastive explanations, isolate a pragmatic component of explanations that
abductive explanations lack. Concretely, an abductive explanation identifies a
set of feature values which are sufficient for the model to make a prediction π
and thus provides an answer to the question ‘why π?’ A contrastive explanation
sets up a counterfactual link between what was a (possibly) desired outcome
of a certain set of features and what was the observed outcome [1,13]. Thus, a
contrastive explanation answers a ‘Why π and not δ?’ question [18,58,61].

In this paper we focus on the relationship between local abductive and con-
trastive explanations2. One of our contributions is to show how recent approaches
for computing rigorous abductive explanations [15,16,38,75,76] can also be
exploited for computing contrastive explanations. To our knowledge, this is
new. In addition, we demonstrate that rigorous (model-based) local abductive
and contrastive explanations are related by a minimal hitting set relationship3,
which builds on the seminal work of Reiter in the 80s [68]. Crucially, this novel
hitting set relationship reveals a wealth of algorithms for computing and for enu-
merating contrastive and abductive explanations. We emphasize that it allows
designing the first algorithm to enumerate abductive explanations. Finally, we
demonstrate feasibility of our approach experimentally. Furthermore, our exper-
iments show that there is a strong correlation between contrastive explanations
and explanations produced by the commonly used SHAP explainer.

1 There is also a recent XAI service offered by Google: https://cloud.google.com/
explainable-ai/, inspired on similar ideas [28].

2 In contrast with recent work [39], which studies the relationship between global

model-based (abductive) explanations and adversarial examples.
3 A local abductive (resp. contrastive) explanation is a minimal hitting set of the set

of all local contrastive (resp. abductive) explanations.



Table 1. Taxonomy of ML model explanations used in the paper.

Instance-

Dependent Independent

ML model- Agnostic Heuristic local explanation for π

Examples: SHAP, LIME, Anchor, etc.

Heuristic global explanation for

π.

Examples: SHAP, LIME (e.g.

submodular pick)

Based Rigorous local explanation for π

Examples:

Rigorous global explanation for

π

Examples: absolute/global

AXps

‘Why π?’ ‘Why not ¬π ?’

PI- (abductive)

explanations

(AXps)

contrastive (CXps)

(our work)

2 Preliminaries

Explainability in Machine Learning. The paper assumes an ML model M, which
is represented by a finite set of first-order logic (FOL) sentences M. (When
applicable, simpler alternative representations for M can be considered, e.g.
(decidable) fragments of FOL, (mixed-)integer linear programming, constraint
language(s), etc.)4 A set of features F = {f1, . . . , fL} is assumed. Each feature
fi is categorical (or ordinal), with values taken from some set Di. An instance
is an assignment of values to features. The space of instances, also referred to
as feature (or instance) space, is defined by F = D1 × D2 × . . . × DL. For real-
valued features, we require that a suitable interval discretization is applied first
as a preprocessing step, e.g. if we consider an income feature for a person, we can
split an interval of possible values into a set of intervals and treat each interval
as a feature value. Therefore, our approach is applicable to any data that can
be represented using a set of feature, e.g. tabular data, images, text, etc.

A (feature) literal λi is of the form (fi = vi), with vi ∈ Di. In what follows, a
literal will be viewed as an atom, i.e. it can take value true or false. As a result,
an instance can be viewed as a set of L literals, denoting the L distinct features,
i.e. an instance contains a single occurrence of a literal defined on any given
feature. A set of literals is consistent if it contains at most one literal defined on
each feature. A consistent set of literals can be interpreted as a conjunction or
as a disjunction of literals; this will be clear from the context. When interpreted
as a conjunction, the set of literals denotes a cube in instance space, where the
unspecified features can take any possible value of their domain. When inter-
preted as a disjunction, the set of literals denotes a clause in instance space. As
before, the unspecified features can take any possible value of their domain.

The remainder of the paper assumes a classification problem with a set of
classes K = {κ1, . . . , κM}. A prediction π ∈ K is associated with each instance

4 M is referred to as the (formal) model of the ML model M. The use of FOL is not
restrictive, with fragments of FOL being used in recent years for modeling ML models
in different settings. These include NNs [38] and Bayesian Network Classifiers [76],
among others.



X ∈ F. Throughout this paper, an ML model M will be associated with some
logical representation (or encoding), whose consistency depends on the (input)
instance and (output) prediction. Thus, we define a predicate M ⊆ F × K, such
that M(X,π) is true iff the input X is consistent with prediction π given the
ML model M5. We further simplify the notation by using Mπ(X) to denote a
predicate M(X,π) for a concrete prediction π.

Moreover, we will compute prime implicants of Mπ. These predicates defined
on F and represented as consistent conjunctions (or alternatively as sets) of
feature literals. Concretely, a consistent conjunction of feature literals τ is an
implicant of Mπ if the following FOL statement is true:

∀(X ∈ F).τ(X) → M(X,π) (1)

The notation τ � Mπ is used to denote that τ an implicant of Mπ. Similarly,
a consistent set of feature literals ν is the negation of an implicate of Mπ if the
following FOL statement is true:

∀(X ∈ F).ν(X) → (∨ρ�=πM(X, ρ)) (2)

Mπ � ¬ν, or alternatively (ν � ¬Mπ) ≡ (ν � ∨ρ�=πMρ). An implicant τ (resp.
implicate ν) is called prime if none of its proper subsets τ ′ � τ (resp. ν′ � ν) is
an implicant (resp. implicate).

Abductive explanations represent prime implicants of the decision function
associated with some predicted class π6.

Analysis of Inconsistent Formulas. Throughout the paper, we will be inter-
ested in formulas F that are inconsistent (or unsatisfiable), i.e. F � ⊥, repre-
sented as conjunctions of clauses. Some clauses in F can be relaxed (i.e. allowed
not to be satisfied) to restore consistency, whereas others cannot. Thus, we
assume that F is partitioned into two first-order subformulas F = B ∪ R, where
R contains the relaxable clauses, and B contains the non-relaxable clauses. B can
be viewed as (consistent) background knowledge, which must always be satisfied.

Given an inconsistent formula F , represented as a set of first-order clauses,
we identify the clauses that are responsible for unsatisfiability among those that
can be relaxed, as defined next7.

Definition 1 (Minimal Unsatisfiable Subset (MUS)). Let F = B ∪ R
denote an inconsistent set of clauses (F � ⊥). U ⊆ R is a Minimal Unsatisfiable
Subset (MUS) iff B ∪ U � ⊥ and ∀U ′�U , B ∪ U ′ � ⊥.

5 This alternative notation is used for simplicity and clarity with respect to earlier
work [38,39,75]. Furthermore, defining M as a predicate allows for multiple predic-
tions for the same point in feature space. Nevertheless, such cases are not considered
in this paper.

6 By definition of prime implicant, abductive explanations are sufficient reasons for
the prediction. Hence the names used in recent work: abductive explanations [38],
PI-explanations [75,76] and sufficient reasons [15,16].

7 The definitions in this section are often presented for the propositional case, but the
extension to the first-order case is straightforward.



Informally, an MUS provides the minimal information that needs to be added to
the background knowledge B to obtain an inconsistency; it explains the causes
for this inconsistency. Alternatively, one might be interested in correcting the
formula, removing some clauses in R to achieve consistency.

Definition 2 (Minimal Correction Subset (MCS)). Let F = B∪R denote
an inconsistent set of clauses (F � ⊥). T ⊆ R is a Minimal Correction Subset
(MCS) iff B ∪ R \ T � ⊥ and ∀T ′�T , B ∪ R \ T ′ � ⊥.

A fundamental result in reasoning about inconsistent clause sets is the mini-
mal hitting set (MHS) duality relationship between MUSes and MCSes [11,68]:
MCSes are MHSes of MUSes and vice-versa. This result has been extensively
used in the development of algorithms for MUSes and MCSes [8,48,49], and also
applied in a number of different settings. Recent years have witnessed the pro-
posal of a large number of novel algorithms for the extraction and enumeration
of MUSes and MCSes [7,9,29,48]. Although most work addresses propositional
theories, these algorithms can easily be generalized to any other setting where
entailment is monotonic, e.g. SMT [17].

Running Example. The following example will be used to illustrate the main
ideas.

Example 1. We consider a textbook example [66] [Figure 7.1, page 289] address-
ing the classification of a user’s preferences regarding whether to read or to skip
a given book. For this dataset, the set of features is:

{ A(uthor),T(hread), L(ength),W(hereRead) }

All features take one of two values, respectively {known, unknown},
{new, followUp}, {long, short}, and {home,work}. An example instance is: {(A =
known), (T = new), (L = long), (W = home)}. This instance is identified as
e1 [66] with prediction skips. Figure 1a shows a possible decision tree for this
example [66]8. The decision tree can be represented as a set of rules as shown
in Fig. 1b9.

Our goal is to reason about the ML model, i.e. to implement model-based
reasoning, so we need to propose a logical representation for the ML model.

Example 2. For implementing model-based reasoning, we need to develop an
encoding in some suitable fragment of FOL10. 0-place predicates11 are used for

8 The choice of a decision tree aims only at keeping the example(s) presented in the
paper as simple as possible. The ideas proposed in the paper apply to any ML model
that can be represented with FOL. This encompasses any existing ML model, with
minor adaptations in case the ML model keeps state.

9 The abbreviations used relate with the names in the decision tree, and serve for
saving space.

10 Depending on the ML problem, more expressive fragments of FOL logic could be con-
sidered [47]. Well-known examples include real, integer and integer-real arithmetic,
but also nonlinear arithmetic [47].

11 Which in this case are used as propositional variables.



Length?

skips

long

Thread?

reads

new

Author?

skips

unknown

reads

known

followUp

short

(a) Decision tree

IF (L = lng) THEN skips (R1)

IF (L = shrt) ∧ (T = flUp) ∧ (A = ukwn) THEN skips (R2)

IF (L = shrt) ∧ (T = new) THEN reads (R3)

IF (L = shrt) ∧ (T = flUp) ∧ (A = kwn) THEN reads (R4)

(b) Rule set

Mπ(L,T,A,W) �

[(L ∨ ¬L ∧ T ∧ ¬A)→(π = skips)]∧

[(¬L ∧ ¬T ∨ ¬L ∧ T ∧ A)→(π = reads)]

(c) Encoding ofMπ

Fig. 1. Running example [66]

L, T, A and W, as follows. We will associate (L = long) with L and (L = short)
with ¬L. Similarly, we associate (T = new) with ¬T, and (T = followUp) with T.
We associate (A = known) with A and (A = unknown) with ¬A. Furthermore, we
associate (W = home) with ¬W and (W = work) with W. An example encoding is
shown in Fig. 1c. The explicit values of π are optional (i.e. propositional values
could be used) and serve to illustrate how non-propositional valued could be
modeled.

3 Contrastive vs. Abductive Explanations

Recent work [15,38,75,76] proposed to relate model-based explanations with
prime implicants. All these approaches compute a set of feature values which, if
unchanged, are sufficient for the prediction. Thus, one can view such explanations
as answering a ‘Why?’ question: the prediction is the one given, as long as some
selected set of feature values is the one given. In this paper, such explanations
will be referred to as abductive explanations, motivated by one of the approaches
used for their computation [38].

3.1 Defining Abductive Explanations (AXps)

As indicated earlier in the paper, we focus on local model-based explanations.

Definition 3 (Abductive Explanation [38]). Given an instance τ , with a
prediction π, and an ML model represented with a predicate Mπ, i.e. τ � Mπ,
an abductive explanation is a minimal subset of literals of τ , σ ⊆ τ , such that
σ � Mπ.

Example 3. With respect to Example 1, let us consider the instance (A =
known,T = new, L = short,W = work), which we represent instead as



(A,¬T,¬L,W), corresponding to prediction π = reads. By inspection of the deci-
sion tree (see Fig. 1a), a possible answer to the ‘Why pred. reads?’ question is:
{¬L,¬T}. In this concrete case we can conclude that this is the only abductive
explanation by inspection of the decision tree.

3.2 Defining Contrastive Explanations (CXps)

As [60] notes, contrastive explanations are,

“sought in response to particular counterfactual cases... That is, people do
not ask why event P happened, but rather why event P happened instead
of some event Q.”

As a result, we are interested in providing an answer to the question ‘Why π
and not δ?’, where π is the prediction given some instance τ , and δ is some other
(desired) prediction.

Example 4. We consider again Example 1, but with the instance specified
in Example 3. A possible answer to the question ‘Why pred. reads and not
pred. skips??’ is {L}. Indeed, given the input instance (A,¬T,¬L,W), if the
value of feature L changes from short to long, and the value of the other features
remains unchanged, then the prediction will change from reads to skips.

The following definition of a (local model-based) contrastive explanation cap-
tures the intuitive notion of the contrastive explanation discussed in the example
above.

Definition 4 (Contrastive Explanation). Given an instance τ , with a pre-
diction π, and an ML model represented by a predicate Mπ, i.e. τ � Mπ, a
contrastive explanation is a minimal subset of literals of τ , ρ ⊆ τ , such that
τ \ ρ � Mπ.

This definition means that, there is an assignment to the features with literals
in ρ, such that the prediction differs from π. Observe that a CXp is defined
to answer the following (more specific) question ‘Why (pred. π and) not ¬π?’.
The more general case of answering the question ‘Why (pred. π and) not δ?’
will be analyzed later. Also, we point out a connection between notions of CXp
and robustness defined in [74]. In [74], the local robustness for a given instance
τ is defined as the minimum Hamming distance from τ to an perturbed input
τ ′ s.t. τ ′ � ¬Mπ. Note that given such a perturbed sample τ ′, we can obtain a
minimum size CXp. This CXp contains all perturbed features of τ . Furthermore,
links between robustness and counterfactual explainability (and so contrastive
explanations) have been studied in recent work [6].

3.3 Relating Abductive and Contrastive Explanations

The previous section proposed a rigorous, model-based, definition of contrastive
explanation. Given this definition, one can think of developing dedicated algo-



rithms that compute CXps using a decision procedure for the logic used for
representing the ML model. Instead, we adopt a simpler approach. We build
on a fundamental result from model-based diagnosis on the hitting set relation-
ship between diagnoses and conflicts first investigated by Reiter [68] (and more
generally for reasoning about inconsistency [8,11]) and demonstrate a similar
relationship between AXps and CXps. In turn, this result reveals a variety of
novel algorithms for computing CXps, but also offers ways for enumerating both
CXps and AXps.

Local Abductive Explanations (AXps). Consider a set of feature values τ ,
s.t. the prediction is π, for which the notation τ � Mπ is used. We will use the
equivalent statement, τ ∧ ¬Mπ � ⊥. Thus,

τ ∧ ¬Mπ (3)

is inconsistent, with the background knowledge being B � ¬Mπ and the relax-
able clauses being R � τ . As proposed in [38,75], a (local abductive) explanation
is a subset-minimal set σ of the literals in τ , such that, σ ∧ ¬Mπ � ⊥. Thus,
σ denotes a subset of the example’s input features which, no matter the other
feature values, ensure that the ML model predicts π. Thus, any MUS of Eq. 3
is a (local abductive) explanation for M to predict π given τ .

Proposition 1. Local model-based abductive explanations are MUSes of the pair
(B,R), τ ∧ ¬Mπ, where R � τ and B � ¬Mπ.

Example 5. Consider the ML model from Example 1, the encoding from Exam-
ple 2, and the instance {A,¬T, L,¬W}, with prediction π = skips (wrt Fig. 1,
we replace skips = skips with true and skips = reads with false). We can thus
confirm that τ � Mπ. We observe that the following holds:

A ∧ ¬T ∧ L ∧ ¬W �





(L ∨ ¬L ∧ T ∧ ¬A) → true
∧

(¬L ∧ ¬T ∨ ¬L ∧ T ∧ A) → false



 (4)

which can be rewritten as,

A ∧ ¬T ∧ L ∧ ¬W ∧





(L ∨ ¬L ∧ T ∧ ¬A) ∧ ¬true
∨

(¬L ∧ ¬T ∨ ¬L ∧ T ∧ A) ∧ ¬false



 (5)

It is easy to conclude that Eq. 5 is inconsistent. Moreover, σ = (L) denotes an
MUS of Eq. 5 and denotes one abductive explanation for why the prediction is
skips for the instance τ .

Local Contrastive Explanations (CXps). Suppose we compute instead an
MCS ρ of Eq. 3, with ρ ⊆ τ . As a result,

∧

l∈τ\ρ(l) ∧ ¬Mπ � ⊥ holds. Hence,
assigning feature values to the inputs of the ML model is consistent with a
prediction that is not π, i.e. a prediction of some value other than π. Observe
that ρ is a subset-minimal set of literals which causes τ\ρ∧¬Mπ to be satisfiable,
with any satisfying assignment yielding a prediction that is not π.



Proposition 2. Local model-based contrastive explanations are MCSes of the
pair (B,R), τ ∧ ¬Mπ, where R � τ and B � ¬Mπ.

Example 6. From Eq. 3 and Eq. 5 we can also compute ρ ⊆ τ such that τ \ ρ ∧
¬Mπ � ⊥. For example ρ = (L) is an MCS of Eq. 512. Thus, from {A,¬T,¬W}
we can get a prediction other than skips, by considering feature value ¬L.

Duality Among Explanations. Given the results above, and the hitting set duality
between MUSes and MCSes [11,68], we have the following.

Theorem 1. AXps are MHSes of CXps and vice-versa.

Proof. Immediate from Definition 3, Definition 4, Proposition 1, Proposition 2,
and Theorem 4.4 and Corollary 4.5 of [68]. ⊓⊔

Proposition 1, Proposition 2, and Theorem 1 can now serve to exploit the
vast body of work on the analysis of inconsistent formulas for computing both
contrastive and abductive explanations and, arguably more importantly, to enu-
merate explanations. Existing algorithms for the extraction and enumeration
of MUSes and MCSes require minor modifications to be applied in the setting
of AXps and CXps. The resulting algorithms are briefly summarized in Sect. 4.
Interestingly, a consequence of the duality is that computing an abductive expla-
nation is harder than computing a contrastive explanation in terms of the num-
ber of calls to a decision procedure Sect. 4.

Discussion. As observed above, the contrastive explanations we are computing
answer the question: ‘Why (π and) not ¬π?’. A more general contrastive expla-
nation would be ‘Why (π and) not δ, with π = δ?’ [60]. Note that, since the
prediction π is given, we are only interested in changing the prediction to either
¬π or δ. We refer to answering the first question as a basic contrastive expla-
nation, whereas answering the second question will be referred to as a targeted
contrastive explanation, and written as CXpδ. The duality result between AXps
and CXps in Theorem 1 applies only to basic contrastive explanations. Never-
theless, the algorithms for MCS extraction for computing a basic CXp can also
be adapted to computing targeted CXps, as follows. We want a pick of feature
values such that the prediction is δ. We start by letting all features to take any
value, and such that the resulting prediction is δ. We then iteratively attempt
to fix feature values to those in the given instance, while the prediction remains
δ. This way, the set of literals that change value are a subset-minimal set of
feature-value pairs that is sufficient for predicting δ. Finally, there are crucial
differences between the duality result established in this section, which targets
local explanations, and a recent result [39], which targets global explanations.
Earlier work established a relation between prime implicants and implicates as
a way to relate global abductive explanations and so-called counterexamples.

12 Although in general not the case, in Example 5 and Example 6 an MUS of size 1 is
also an MCS of size 1.



Algorithm 1. Enumeration of CXps

Function CXpEnum(Mπ,C, π)

Input: Mπ: ML model, C: Input cube, π: Prediction
Variables: N and P defined on the variables of C

1 I ← ∅ ; // Block CXps

2 while true do

3 µ ← ExtractCXp(Mπ, C, π, I)
4 if µ = ∅ then break;
5 ReportCXp(µ)
6 I ← I ∪ NegateLiteralsOf(µ)

In contrast, we delved into the fundamentals of reasoning about inconsistency,
concretely the duality between MCSes and MUSes, and established a relation
between model-based local AXps and CXps.

4 Extracting and Enumerating Explanations

The results of Sect. 3.3 enable exploiting past work on extracting and enumerat-
ing MCSes and MUSes to the setting of contrastive and abductive explanations,
respectively. Perhaps surprisingly, there is a stark difference between algorithms
for extraction and enumeration of contrastive explanations and abductive expla-
nations. Due to the association with MCSes, one contrastive explanation can
be computed with a logarithmic number of calls to a decision procedure [49].
Moreover, there exist algorithms for the direct enumeration of contrastive expla-
nations [49]. In contrast, abductive explanations are associated with MUSes.
As a result, any known algorithm for extraction of one abductive explanation
requires at best a linear number of calls to a decision procedure [42,44,54,55], in
the worst-case. Moreover, there is no known algorithm for the direct enumeration
of abductive explanations, and so enumeration can be achieved only through the
enumeration of contrastive explanations [23,48,49,53,56,57].

We apply state-of-the-art algorithms for the enumeration of MUSes and
MCSes [8,9,29,48,49] to find all the abductive and contrastive explanations.
Note that, as in the case of enumeration of MCSes and MUSes, enumeration
of CXps is comparatively easier than enumeration of AXps. Algorithm 1 shows
our application of MCS enumeration algorithm to the enumeration of CXps [49].
Other alternatives [29] could be considered instead. Algorithm 1 finds a CXp,
blocks it and finds the next one until no more exists. To extract a single CXp,
we can use a standard algorithm, e.g. [8,53,56,57]. In principle, enumeration
of AXps can be achieved by computing all CXps and then computing all the
minimal hitting sets of all CXps, as proposed in the propositional setting [49].
However, there are more efficient alternatives that we can adapt here [8,9,48,63].
Algorithm 2 applies [48] to the case of computing both AXps and CXps. The
algorithm simultaneously searches for AXps and CXps and is based on the hit-
ting set duality defined above.



Algorithm 2. Enumeration of AXps (and CXps)

Function XpEnum(Mπ,C, π)

Input: Mπ: ML model, C: Input cube, π: Prediction
Variables: N and P defined on the variables of C

1 K = (N , P) ← (∅, ∅) ; // Block AXps & CXps

2 while true do

3 (stλ, λ) ← FindMHS(P, N ) ; // MHS of P st N
4 if ¬stλ then break;
5 (stρ, ρ) ← SAT(λ ∧ ¬Mπ)
6 if ¬stρ then // entailment holds

7 ReportAXp(λ)
8 N ← N ∪ NegateLiteralsOf(λ)

9 else

10 µ ← ExtractCXp(Mπ, ρ, π)
11 ReportCXp(µ)
12 P ← P ∪ UseLiteralsOf(µ)

5 Experimental Evaluation

This section details the experimental evaluation to assess the practical feasibility
and efficiency of the enumeration of abductive and contrastive explanations for a
few real-world datasets, studied in the context of explainability and algorithmic
fairness. To evaluate, we use Algorithm 1 and Algorithm 2 in Sect. 413.

(a) Real 6 (b) XGBoost (c) SHAP (d) CXp1 (e) CXp2 (f) CXp1–3

(g) Fake 6 (h) XGBoost (i) SHAP (j) CXp3 (k) CXp4 (l) CXp3–5

Fig. 2. The ‘real vs fake’ images. The first row shows results for the real image 6; the
second – results for the fake image 6. The first column shows examples of inputs; the
second – heatmaps of XGBoost’s important features; the third – heatmaps of SHAP’s
explanation. Last three columns show heatmaps of CXp of different cardinality. The
brighter pixels are more influential features.

13 The prototype and the experimental setup are available at https://github.com/
alexeyignatiev/xdual.



5.1 Enumeration of CXps

Our experiments demonstrate a novel, unexpected practical use case of CXps
enumeration algorithms. In particular, we show that our method gives a new
fine-grained view on both global and local standard explanations extracted from
ML models. The goal of these experiments is to gain better understanding of
existing explainers rather than generate all CXps for a given input.

Setup. To perform enumeration of CXps in our first experiment, we use a con-
straint programming solver, ORtools [65]. To encode the enumeration problem
with ORtools we converted scores of XGBoost models into integers keeping 5
digits precision. We enumerate contrastive explanations in the increasing order
by their cardinality. This can be done by a simple modification of Algorithm
1 forcing it to return CXps in this order. So, we first obtain all minimum size
contrastive explanations, and so on.

We conduct two sets of experiments. The first experiment, called “real vs
fake”, distinguishes real from fake images. A dataset contains two classes of
images: (a) original MNIST digits and (b) fake MNIST digits produced by a
standard DCGAN model [67] (see Fig. 2a and Fig. 2g for typical examples). The
second experiment, called “3 vs 5 digits”, uses a dataset that contains digits “3”
and “5” from the standard MNIST dataset (these digits are similar in writing)
and we distinguish “3” from “5” images.

Brief Overview of the SHAP Explainer. Given a classifier f and an explainer
model g, SHAP aims to train g be similar to f in the neighborhood of some
given point x. The objective function for SHAP is designed so that: (1) g
approximates the behavior of the black box f accurately within the vicin-
ity of x, and (2) g achieves lower complexity and is interpretable: ξ(x) =
arg ming∈G L(πx, g, f) + Ω(g), where the loss function L is defined to mini-
mize the distance between f and g in the neighborhood of x using a weight
function πx and Ω(g) quantifies the complexity of g; Ω(g) and πx are defined
based on game-theoretic notions [51]. We chose SHAP for our experiments due
to its efficiency to generate an explanation (within seconds per input).

“Real vs Fake” Experiment. First, we discuss the results of the “real vs
fake” experiment in details. We train an XGBoost model [14] with 100 trees of
depth 6 (accuracy 0.85/0.80 on train/test sets). We quantized images so that
each pixel takes a value between 0 and 15, image pixels are categorical features
in the model.

Global and Local Explainers. We start by discussing our results on a few samples
(Fig. 2a and Fig. 2g). First, we extract important features provided by XGBoost.
As these features are global for the model, they are the same for all inputs
(Fig. 2b and Fig. 2h are identical for real and fake images). Figure 2b shows that
these important features are no very informative for this dataset as these pixels



form a blob of pixels that cover an image. Then we compute an image-specific
explanation using the standard explainer SHAP (see Fig. 2c for the real image
and Fig. 2i for the fake image). SHAP explanations are more focused on specific
parts of images compared to XGBoost. However, it is still not easy to gain
insights about which areas of an image are more important as pixels all over the
image participate in the explanations of SHAP and XGBoost. For example, both
XGBoost and SHAP distinguish some edge and middle pixels as key pixels (the
bright pixels are more important) but it is not clear why these are important
pixels.

Enumeration. Our goal here is to investigate whether there is a connection
between the important pixels that SHAP/XGBoost finds and CXps for a given
image. The most surprising result is that, indeed, a connection exists and, for
example, it reveals that the edge pixels of an image, highlighted by both SHAP
and XGBoost as important pixels, are, reveal in fact, CXps of small cardinal-
ities. For an image, we enumerate first 2000 CXps. Given all CXps of size k,
we plot a heatmap of occurrences of each pixel in these CXps of size k. Let us
focus on the first row with the real 6. Consider the heatmap CXp1 at Fig. 2d
that shows all CXps of size one for the real 6. It shows that most of important
pixels of XGBoost and SHAP are actually CXps of size one. This means that it
is sufficient to change a single pixel value to some other value to obtain a dif-
ferent prediction. Note that these results lead us to an interesting observation.
DCGAN generates images with a few gray edges pixels (see Fig. 4. Indeed, some
of them have several edge pixels in gray.) This ‘defect’ does not happen often
for real MNIST images. Therefore, the classifier ‘hooks’ on this issue to classify
an image as fake. Now, consider the heatmap CXp2 at Fig. 2e of CXps of size
two. It overlaps a lot with SHAP important pixels in the middle of the image
explaining why these are important. Only a pair of these pixels can be changed
to get a different prediction.

A Correlation Between CXps and SHAP’s Important Features. To qualitatively
measure our observations on correlation between key features of CXps and
SHAP, we conducted the same experiment as above on 100 random images
and measured the correlation between first CXps and SHAP features. First,
we compute a set T of pixels that is the union of the first (top) 100 smallest
size CXps. On average, we have 60 pixels in T . Note that the average 60 pixels
represent a small fraction (7%) of the total number of pixels. Then we find a
set S of |T | SHAP pixels with highest absolute weights. Finally, we compute
corr = |S ∩ T |/|S| as the correlation measure. Note that corr = 0.4 on average,
i.e. our method hits 40% of best SHAP features. As the chances of two tools
independently hitting the same pixel (out of 784) are quite low, the fact that
40% of |S| are picked indicates a significant correlation.

“3 vs 5 Digits” Experiment. Consider our second the “3 vs 5 digits” exper-
iment. We use a dataset that contains digits “3” (class 0) and “5” (class 1)
from the standard MNIST (see Fig. 3a and Fig. 3g for representative samples).



(a) Digit 3 (b) XGBoost (c) SHAP (d) CXp3 (e) CXp4 (f) CXp3–5

(g) Digit 5 (h) XGBoost (i) SHAP (j) CXp1 (k) CXp2 (l) CXp1–6

Fig. 3. Results of the 3 vs 5 digits experiments. The first row shows results for the
image 3. The second row shows results for the image 5. The first column shows examples
of inputs; the second column shows heatmaps of XGBoost’s global important features;
the third column shows heatmaps of SHAP’s important features. Last three columns
show heatmaps of CXp of different cardinality.

Fig. 4. Additional fake images. We reduced values of zero-valued pixels to highlight
gray pixels on the edges for some fake images.

XGboost model has 50 trees of depth 3 with accuracy 0.98 (0.97) on train/test
sets. We quantized images so that each pixel takes a value between 0 and 15.
As before, each pixel corresponds to a feature. So, we have 784 features in our
XGBoost model.

Global and Local Explainers. We start by discussing our results on few ran-
dom samples (Fig. 3a and Fig. 3g). First, we obtain the important features from
XGBoost. As these features are global for the model so they are the same for all
inputs (Fig. 3b and Fig. 3h are identical for 3 and 5 images). Figure 2b shows that
these important features. The important pixels highlight that the top parts of
images are important, which is a plausible high-level explanation of the classifier
behavior. Digits 3 and 5 are mostly differ in the top part of the image. However,
some pixels are way more important than other and it is hard to understand
why.

Next, we compute an image-specific explanation using the standard explainer
SHAP (see Fig. 3c for the digit 3 and Fig. 3c for the digit 5). While SHAP
explanations mimic XGBoost important features, they do provide additional
insights for the user. Note that both XGBoost and SHAP mark a “belt” of
pixels in the upper middle part that as important (bright pixels is the most
important pixels).



Enumeration. We run our enumeration algorithm to produce CXps of increasing
cardinality. For each image, we enumerate first 2000 CXps. Given all CXps of
size k, we plot a heatmap of occurrences of each pixel in these CXps of size k.
Let us focus on the second row with the digit 5. For example, CXp2 (Fig. 3k)
shows the heatmap of CXps of size two for the digit 5. As we mentioned above,
both XGBoost and SHAP hint that the ‘belt’ of important pixels in the middle.
Again, our method can explain why this is the case. Consider the heatmap CXp1

at Fig. 3j. This picture shows all CXps of size one for the digit 5. It reveals that
most of important pixels of XGBoost and SHAP are actually CXps of size one.
We reiterate that it is sufficient to change a single pixel value to some other
value to obtain a different prediction. Now, consider the heatmap CXp1–6 at
Fig. 3l. This figure shows 2000 CXps (from size 1 to size 6). It overlaps a lot
with SHAP important pixels in the middle of the image. So, these pixels occur
in many small size CXps and changing their values leads to misclassification.

Correlation Between CXps and SHAP Features. To qualitatively measure our
observations on correlation between key features of CXps and SHAP, we con-
ducted the same experiment as above on 100 random images and measured the
correlation between CXps and SHAP features. First, we compute a set T of pix-
els that is the union of the first (top) 100 smallest size CXps. On average, we
have 38 pixels in T . Note that the average 38 pixels represent a small fraction
(5%) of the total number of pixels. Then we find a set S of |S| SHAP pixels with
highest absolute weights. Finally, we compute corr = |S ∩ T |/|S| as the corre-
lation measure. Note that corr = 0.6 on average, i.e. our method hits 60% of
best SHAP features. As the chances of two tools independently hitting the same
pixel (out of 784) are quite low, the fact that 60% of |T | are picked indicates a
significant correlation.

5.2 Enumeration of CXps and AXps

Datasets. Here, we aim at testing the scalability of explanation enumeration.
The results are obtained on the six well-known and publicly available datasets.
Three of them were previously studied in [70] in the context of heuristic expla-
nation approaches, namely, Anchor [70] and LIME [69], including Adult, Lend-
ing, and Recidivism. These datasets were processed the same way as in [70].
The Adult dataset [46] is originally taken from the Census bureau and targets
predicting whether or not a given adult person earns more than $50K a year
depending on various attributes, e.g. education, hours of work, etc. The Lending
dataset aims at predicting whether or not a loan on the Lending Club website
will turn out bad. The Recidivism dataset was used to predict recidivism for
individuals released from North Carolina prisons in 1978 and 1980 [73]. Two
more datasets were additionally considered including Compas and German that
were previously studied in the context of the FairML and Algorithmic Fairness
projects [21,22,24,25], an area in which the need for explanations is doubtless.
Compas is a popular dataset, known [4] for exhibiting racial bias of the COM-
PAS algorithm used for scoring criminal defendant’s likelihood of reoffending.



Table 2. Results of the computational experiment on enumeration of AXps and CXps.

Dataset

Adult Lending Recidivism Compas German Spambase

# of instances 5579 4414 3696 778 1000 2344

Total time (sec.) 7666.9 443.8 3688.0 78.4 16943.2 6859.2

Minimal time (sec.) 0.1 0.0 0.1 0.0 0.2 0.1

Average time (sec.) 1.4 0.1 1.0 0.1 16.9 2.9

Maximal time (sec.) 13.1 0.8 8.9 0.5 193.0 23.1

Total oracle calls 492990 69653 581716 21227 748164 176354

Minimal oracle calls 14 11 17 13 23 12

Average oracle calls 88.4 15.8 157.4 27.3 748.2 75.2

Maximal oracle calls 581 73 1426 134 7829 353.

Total # of AXps 52137 8105 60688 1931.0 59222 18876

Average # of AXps 9.4 1.8 16.4 2.5 59.2 8.1

Average AXp size 5.3 1.9 6.4 3.8 7.5 4.6

Total # of CXps 66219 8663 77784 3558.0 66781 24774

Average # of CXps 11.9 2.0 21.1 4.6 66.8 10.6

Average CXp size 2.4 1.4 2.6 1.5 3.6 2.3

The latter dataset is a German credit data (e.g. see [22,25]), which given a list
of people’s attributes classifies them as good or bad credit risks. Finally, we
consider the Spambase dataset from the UCI repository [20]. The main goal is
to classify an email as spam or non-spam based on the words that occur in this
email. Due to scalability constraints, we preprocessed the dataset to keep ten
words per email that were identified as the most influential words by a random
forest classifier.

Implementation and Setup. A prototype implementing Algorithm 2 target-
ing the enumeration of either (1) all abductive or (2) all contrastive explanations
was created. In the experiment, the prototype implementation is instructed to
enumerate all abductive explanations. (Note that, as was also mentioned before,
no matter what kind of explanations Algorithm 2 aims for, all the dual explana-
tions are to be computed as a side effect of the hitting set duality.) The prototype
is able to deal with tree ensemble models trained with XGBoost [14]. For that
purpose, a simple encoding of tree ensembles into satisfiability modulo theories
(SMT) was developed. Concretely, the target formulas are in the theory of linear
arithmetic over reals (RIA formulas). (Note that encodings of a decision tree into
logic are known [12,50,78]. The final score summations used in tree ensembles
can be encoded into RIA formulas.)

Due to the twofold nature of Algorithm 2, it has to deal with (1) implicit
hitting set enumeration and (2) entailment queries with SMT. The former part
is implemented using the award-winning maximum satisfiability solver RC2 [37]
written on top of the PySAT toolkit [36]. SMT solvers are accessed through the



PySMT framework [27], which provides a unified interface to a variety of state-
of-the-art SMT solvers. In the experiments, we use Z3 [17] as one of the best
performing SMT solvers. The conducted experiment was performed in Debian
Linux on an Intel Xeon E5-2630 2.60 GHz processor with 64GByte of memory.
Given a dataset, we trained an XGBoost model containing 50 trees per class,
each tree having depth 3. (Further increasing the number of trees per class
and also increasing the maximum depth of a tree did not result in a significant
increase of the models’ accuracy on the training and test sets for the considered
datasets.) All abductive explanations for every instance of each of the six datasets
were exhaustively enumerated using the duality-based approach (Algorithm 2 in
Algorithm 4). This resulted in the computation of all contrastive explanations
as well).

Evaluation Results. Table 2 shows the results. There are several points to
make. First, although it seems computationally expensive to enumerate all expla-
nations for a data instance, it can still be achieved effectively for the medium-
sized models trained for all the considered datasets. This may on average require
from a few dozen to several hundred of oracle calls per data instance (in some
cases, the number of calls gets up to a few thousand). Also observe that enu-
merating all explanations for an instance takes from a fraction of a second to
a couple of seconds on average. These results demonstrate that our approach is
practical.

Second, the total number of AXps is typically lower than the total number
of their contrastive counterparts. The same holds for the average numbers of
abductive and contrastive explanations per data instance. Third and finally,
AXps for the studied datasets tend to be larger than contrastive explanations.
The latter observations imply that contrastive explanations may be preferred
from a user’s perspective, as the smaller the explanation is the easier it is to
interpret for a human decision maker. (Furthermore, although it is not shown in
Table 2, we noticed that in many cases contrastive explanations tend to be of
size 1, which makes them ideal to reason about the behaviour of an ML model.)
On the other hand, exhaustive enumeration of contrastive explanations can be
more time consuming because of their large number.

Summary of Results. We show that CXps enumeration gives us an insightful
understanding of a classifier’s behaviour. First, even in cases when we cannot
enumerate all of CXps to compute AXps by duality, we can still draw some con-
clusions, e.g. CXps of size one are exactly features that occur in all AXps. Next,
we clearly demonstrate the feasibility of the duality-based exhaustive enumera-
tion of both AXps and CXps for a given data instance using a more powerful
algorithm that performs enumeration of AXps and CXps.

6 Conclusions

This paper studies local model-based abductive and contrastive explana-
tions. Abductive explanations answer ‘Why?’ questions, whereas contrastive



explanations answer ‘Why Not?’ questions. Moreover, the paper relates expla-
nations with the analysis of inconsistent theories, and shows that abductive
explanations correspond to minimal unsatisfiable subsets, whereas contrastive
explanations can be related with minimal correction subsets. As a consequence
of this result, the paper exploits a well-known minimal hitting set relationship
between MUSes and MCSes [11,68] to reveal the same relationship between
abductive and contrastive explanations. In addition, the paper exploits known
results on the analysis of inconsistent theories, to devise algorithms for extracting
and enumerating abductive and contrastive explanations.
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robots: results from a systematic literature review. In: AAMAS, pp. 1078–1088
(2019)

6. Asher, N., Paul, S., Russell, C.: Adequate and fair explanations. CoRR,
abs/2001.07578 (2020)

7. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
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