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Boltzmann machines (BM) are widely used as generative models. For example, pairwise Potts
models (PM), which are instances of the BM class, provide accurate statistical models of families
of evolutionarily related protein sequences. Their parameters are the local fields, which describe
site-specific patterns of amino-acid conservation, and the two-site couplings, which mirror the co-
evolution between pairs of sites. This coevolution reflects structural and functional constraints
acting on protein sequences during evolution. The most conservative choice to describe the coevo-
lution signal is to include all possible two-site couplings into the PM. This choice, typical of what is
known as Direct Coupling Analysis, has been successful for predicting residue contacts in the three-
dimensional structure, mutational effects, and in generating new functional sequences. However,
the resulting PM suffers from important over-fitting effects: many couplings are small, noisy and
hardly interpretable; the PM is close to a critical point, meaning that it is highly sensitive to small
parameter perturbations. In this work, we introduce a general parameter-reduction procedure for
BMs, via a controlled iterative decimation of the less statistically significant couplings, identified by
an information-based criterion that selects either weak or statistically unsupported couplings. For
several protein families, our procedure allows one to remove more than 90% of the PM couplings,
while preserving the predictive and generative properties of the original dense PM, and the resulting
model is far away from criticality, hence more robust to noise.

I. INTRODUCTION

Many applications of generative modeling, especially
in biological systems, are confronted to a limited amount
of available data, from which a large number of param-
eters have to be inferred [1]. A particularly interesting
example is that of proteins, which belong to the most
interesting complex systems in nature and are essential
in almost all biological processes. Most of them robustly
fold into well-defined three-dimensional structures, which
in turn form the basis of their functionality. This trian-
gular sequence-structure-function relationship has, over
several decades now, attracted substantial attention in
biological physics [2, 3].

A fascinating approach to the generative modeling of
biological sequences has emerged over the last years [4, 5].
In the course of evolution, biological sequences accumu-
late mutations and become more diverse. We can now
easily observe the sequence variability across large fam-
ilies of so-called homologous proteins, i.e. proteins of
common evolutionary ancestry and of close to equiva-
lent function but in different species or biological path-
ways [6]. Such homologous proteins may differ by 70-80%
of their amino acids without substantial changes in struc-
ture and function. However, their sequence variability is
not fully random: a vast majority of mutations is dele-
terious, reducing protein stability or functionality. They
are thus suppressed by natural selection. Only protein

variants of similar or even better functionality are main-
tained. In this way, the protein’s structure and function
constrain the viable sequence space that can be explored
by evolution. Inverting this argument, the empirically
observed variability of homologous sequences contains in-
formation about such evolutionary constraints, albeit fre-
quently well hidden. This idea is at the basis of the con-
cept of data-driven “sequence landscapes”, i.e. classes of
models that describe the statistical properties of protein
families, assigning high probabilities to functional amino-
acid sequences and low probabilities to non-functional
ones [5, 7]. The log-probability (or minus “energy”) is
thus interpreted as a measure of sequence fitness, hence
the name of sequence (fitness) landscape [8]. Among the
best known such models are Potts models (PM), param-
eterized by local fields and two-site interaction couplings
(cf. below for details), and constructed via the Direct
Couplings Analysis (DCA) method, which is now firmly
established [5, 7]. The DCA parameters can be obtained
via inference or learning procedures [9–12], and they can
be used to extract useful information on molecular struc-
ture [13–16] and function [17, 18], on the effects of muta-
tions [19, 20], and to generate new artificially-designed
molecules with specific properties [21, 22].

A concrete implementation of DCA is the follow-
ing [12]. Given training data in the form of a Multiple Se-
quence Alignment (MSA) of M homologous sequences of
aligned length L, the PM parameters are learned by the
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so-called Boltzmann machine learning (BML) algorithm
[23]. By performing gradient ascent on the log-likelihood
of the model given the data, BML determines values of
couplings and fields such that the one- and two-site model
frequencies match the empirical ones derived from the
MSA. A standard pairwise q-state PM is thus specified
by q2L(L− 1)/2 couplings and qL fields, where, for pro-
teins, q = 21 corresponds to the 20 naturally occurring
amino acids plus the gap symbol used for insertions or
deletions.

Crucially, despite the fact that modern sequencing
techniques are making available a huge amount of bio-
logical sequences, and in particular hundreds of millions
of protein sequences [24], a serious over-fitting problem
is present when PM are used as models of protein fami-
lies. In fact, with typical sequence lengths L ∼ 50− 500,
the parameters to be inferred are ∼ 106 − 108, which in
most cases substantially exceeds the available informa-
tion from the MSA. The resulting over-fitting is mani-
fested in several ways: (i) many couplings turn out to
be rather small and noisy, (ii) the PM is close to a criti-
cal point, i.e. it can be very susceptible to small changes
in its parameters, and (iii) different training procedures,
e.g. with different initial conditions, can lead to signif-
icant changes in the sets of parameters without affect-
ing the fitting accuracy, which severely limits the inter-
pretability of the model.

These observations call for a parameter reduction
procedure, which aims at identifying a minimal set of
couplings needed to accurately describe the training
data without overfitting. Hopfield-Potts models [25]
and the more general Restricted Boltzmann Machines
(RBM) [26] lead to a dimensional reduction of parame-
ter space by learning collective “patterns” from sequence
data, which in turn can be interpreted as extended se-
quence motifs and are activated via a limited number of
hidden variables. The resulting coupling matrix is low-
rank but still dense. A complementary approach aims
at sparsifying the network of couplings: `1-norm regular-
ization has been used in a number of approximate meth-
ods [27, 28], but cannot be easily used for generative mod-
eling, because the regularization penalizes also non-zero
couplings, which in turn assume too small values. Alter-
natively, a “color-compression” scheme [29] has been pro-
posed, which groups together sequence symbols with low
frequency in specific sites. However, frequent symbols
may also be involved into statistically non-supported cou-
plings. Another example is that proposed in [30] where a
candidate sparse graph topology is sought by pruning the
MSA columns associated with low values of the mutual
information. Although this method has to be preferred
when L is so large to prevent the standard DCA imple-
mentations, it completely loses some information on the
target statistical model. Overall, a statistically princi-
pled and efficient approach to construct sparse PM for
protein sequence modeling is still lacking.

In this work, we introduce an information-theory based
“decimation” procedure, which allows for an iterative and

controlled removal of irrelevant couplings. As a result,
parameters are removed either if they have no statisti-
cal support (as in color compression), or if they have
statistical support for being very small. We show that
up to about 90% of the coupling parameters can be re-
moved without observing any substantial change in the
fitting accuracy and in the generative properties of the
resulting Sparse Potts Model (SPM). Although greedy,
our pruning scheme does not require to add extra terms
in the energy function of the model, at variance with
any treatable regularization, like `1 or `2, and therefore
it preserves the generative properties of PM. Finally, we
show that the resulting SPM are not close to criticality,
at variance with the original PM learned using standard
DCA. Our results thus demonstrate that the observed
criticality of PMs inferred from protein sequence data is
not an intrinsic feature of the biological systems them-
selves, cf. [31], but results from the over-fitting in the
learning procedure.

II. AN INFORMATION-GUIDED DECIMATION
PROCEDURE

With each sequence S = (s1, · · · , sL) of length L, in
which si can take q possible values (q = 21 for proteins),
a PM associates a statistical “energy” or Hamiltonian
H(S), written as a sum over single-site fields hi(si) and
two-site couplings Jij(si, sj):

H(S) = −
∑

1≤i<j≤L

Jij(si, sj)−
∑

1≤i≤L

hi(si) . (1)

The negative of the Hamiltonian can be interpreted as
a “fitness score” for protein sequence S, with an asso-
ciated Boltzmann probability P (S) = exp{−H(S)}/Z,
where Z =

∑
S exp{−H(S)} is the partition function

guaranteeing correct normalization of P . Hence, the sur-
face defined by H(S) over the space of sequences can be
interpreted as a “fitness landscape” or – using a more
cautious term – “sequence landscape” for the protein
family represented by the training MSA. We define the
“model density” d as the number of non-zero couplings
Jij(a, b) 6= 0 divided by the total number of possible cou-
plings q2L(L − 1)/2. Note that this definition is given
element-wise, i.e. for each i, j, a, b, and not block-wise
for entire q×q matrices Jij coupling two sites i, j. Fields
are not decimated and do not contribute to the model
density: we consider them an essential ingredient of the
model because they encode amino-acid conservation.

A fully connected model, i.e. with d = 100%, can
be trained to arbitrarily high accuracy using standard
BML [12]. Let us define the empirical one-site frequency
fi(a) of observing amino acid a in position i in the MSA,
and two-site frequency fij(a, b) of observing amino acid
a in position i and b in position j in the same sequence
of the MSA. BML performs a gradient ascent on the log-
likelihood, which gives update equations for the couplings
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and fields at each learning epoch:

δhi(a) = ηh[fi(a)− pi(a)] ,

δJij(a, b) = ηJ [fij(a, b)− pij(a, b)] ,
(2)

where the pi(a), pij(a, b) are the one- and two-site
marginal probabilities of the PM, which are estimated
at each iteration of the learning by sampling P (S) via a
standard Markov Chain Monte Carlo (MCMC) simula-
tion, and ηh, ηJ are the learning rates for fields and cou-
plings. These equations are iterated until convergence
to a fixed point, at which the model almost perfectly
matches the empirical frequencies. For all the cases we
investigate (with one exception, see Appendix B 1), we
can ensure that the MCMC sampling is done in equilib-
rium and the resulting PM can be sampled ergodically in
relatively short times, see also [32] for a detailed discus-
sion. Note that a PM trained in this way also corresponds
to the maximum entropy or least constrained model that
is compatible with the one- and two-site empirical fre-
quencies [13, 33].

Our decimation procedure consists in choosing pairs
of sites i < j and amino acids a, b, and fixing the cor-
responding coupling permanently to Jij(a, b) = 0. The
coupling is removed from the set of adjustable parame-
ters, and the corresponding two-site frequency fij(a, b) is
no longer explicitly fitted in the subsequent BML epochs.
However, an important property of PM is the so-called
“gauge” or reparameterization invariance: the transfor-
mation

Jij(a, b)→ Jij(a, b) + Jij(a) +Kij(b) ,

hi(a)→ hi(a)−Hi −
∑
j(>i)

Jij(a)−
∑
j(<i)

Kji(a) , (3)

leaves the Hamiltonian in Eq. (1) and the associated
Boltzmann distribution P (S) invariant, for any choice
of the J , K and H. Hence, a gauge transformation can
transform a zero coupling into a non-zero one and vice
versa. Because the decimation procedure fixes some cou-
plings to zero, it breaks this invariance.

We thus begin our decimation procedure by a “gauge
fixing” step, which sets to zero 2q − 1 out of all q2 en-
tries of each coupling matrix Jij . To do so, we identify,
independently for each pair of sites 1 ≤ i < j ≤ L,
the 2q − 1 amino-acid pairs (a, b) of smallest connected
correlation cij(a, b) = fij(a, b) − fi(a)fj(b), and fix the
corresponding couplings Jij(a, b) to zero. Only the other
q2 − 2q + 1 = (q − 1)2 couplings are updated using the
BML, Eq. (2). This procedure chooses a model of mini-
mal density d = [(q−1)/q]2 = 90.7% out of all equivalent
PM related by the gauge transformation in Eq. (3). The
parameters are initialized using a “profile model” fitting
only the one-site frequencies fi(a). This initial model has

zero couplings and fields h
(0)
i (a) = log fi(a)+Hi, with the

constant Hi being fixed by
∑
a h

(0)
i (a) = 0 (with a very

small pseudo-count added to fi(a) to avoid infinite fields,
see Appendix A 4). The fitting quality of the learned PM

is tested by the Pearson correlation between the empiri-
cal cij(a, b) and their counterparts in the model P (S), the
latter being estimated from a large independently and
identically distributed MCMC sample. For all protein
families considered in this work, this Pearson correlation
exceeds 0.95, see Fig. 1 and Appendix B 1. Note that
the results of our decimation procedure depend on the
initialization and gauge fixing described above. We tried
a different initialization, either fixing both couplings and
fields to zero, or initializing both using pseudo-likelihood
maximization (PLM) [11]. We found qualitatively sim-
ilar results, but with slightly worse performance (Ap-
pendix C 3).

Any further decimation of couplings changes the
model. To measure the impact of removing a given cou-
pling Jij(a, b) from a PM, we determine the symmet-
ric Kullback-Leibler (KL) divergence between the Boltz-
mann distributions with and without that coupling. We
thus consider a Potts Model with Hamiltonian H, and
another with Hamiltonian H ′ in which a given coupling
is removed:

H ′(S) = H(S) + Jij(a, b)δa,siδb,sj . (4)

We observe that averages over P ′ = e−H
′
/Z ′ can be ex-

pressed in terms of averages over P = e−H/Z as

〈O(S)〉P ′ =

∑
S O(S)e−H

′(S)∑
S e
−H′(S)

=

∑
S O(S)e−Jij(a,b)δa,si

δb,sj e−H(S)∑
S e
−Jij(a,b)δa,si

δb,sj e−H(S)

=
〈O(S)e−Jij(a,b)δa,si

δb,sj 〉P
〈e−Jij(a,b)δa,si

δb,sj 〉P
.

(5)

Hence, the symmetric Kullback-Leibler divergence of P
and P ′ is

Dab
ij = DKL(P ||P ′) +DKL(P ′||P )

= −
∑
S

[P (S)− P ′(S)][logP (S)− logP ′(S)]

= 〈H ′ −H〉P − 〈H ′ −H〉P ′

= 〈Jij(a, b)δa,siδb,sj 〉P − 〈Jij(a, b)δa,siδb,sj 〉P ′ (6)

= 〈Jij(a, b)δa,siδb,sj 〉P

−
〈Jij(a, b)δa,siδb,sje

−Jij(a,b)δa,si
δb,sj 〉P

〈e−Jij(a,b)δa,si
δb,sj 〉P

= Jij(a, b)pij(a, b)−
Jij(a, b)pij(a, b)e

−Jij(a,b)

pij(a, b)e−Jij(a,b) + 1− pij(a, b)
,

where pij(a, b) = 〈δa,siδb,sj 〉P is the marginal two-site
probability of P , which coincides, at convergence of
Eq. (2), with the empirical frequency fij(a, b). Note
that we could also have equivalently used the non-
symmetrized KL divergence (Appendix A 1).

At each decimation step, we now remove the least sig-
nificant couplings, i.e. those with the lowest Dab

ij . For
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computational efficiency, this is done for a fixed fraction
(in this work we choose 1%) of all remaining couplings.
Note that Dab

ij = D(J, p ∼ f) (dropping the indices for
notational simplicity) goes to 0 either when f → 0 or
f → 1 at fixed J , or when J → 0 at fixed f . More
precisely, we have D(J, f) ∼ Jf(1 − e−J) for f → 0,
D(J, f) ∼ J(f − 1) for f → 1, and D(J, f) ∼ J2f(1− f)
for J → 0. The first and second limits imply that fi-
nite couplings can be decimated if the corresponding fre-
quency is close to zero or one, i.e. they have little statis-
tical significance because the corresponding amino acids
are almost never observed (as in color-compression [29])
or almost always observed. The third limit indicates that
small couplings are decimated whatever f is (similar to
the procedure proposed in [34] for the inverse Ising prob-
lem using PLM). Numerically, we observe that the per-
centage of pruned couplings corresponding to each cate-
gory varies during decimation (Appendix C 2). After a
decimation step, we perform additional BML iterations
of Eq. (2) on all undecimated couplings and the fields,
to reach convergence again. In this way, we progressively
obtain PMs of reduced density, and we stop the decima-
tion when d = 1%.

Note that in order to accurately estimate Dab
ij , it is

important that the PM learning is well converged be-
fore each decimation step. We attempted an “online”
decimation in which couplings are pruned either after
a fixed number of iterations of Eq. (2) or for having
reached convergence, and found that this provides no ad-
vantage (Appendix C 4), neither in terms of generative
performance (i.e. the Pearson correlations at d = 1%
do not improve), nor in computational efficiency (i.e.
the computational time required to reach d = 1% is
almost unchanged). Other decimation strategies based
on fij(a, b) only (removing statistically unsupported cou-
plings), or on Jij(a, b) only (removing small couplings),
or on applying `1-norm regularization to select relevant
couplings, were found to perform substantially worse
than the information-based procedure using Eq. (6) (Ap-
pendix C 1).

We have also tested our decimation procedure on syn-
thetic data (see Appendix A 2) and found that it is able
to correctly identify the ground-truth sparse model, pro-
vided enough data are available.

III. RESULTS AND DISCUSSION

We focus here on a representative protein family, the
PF00076 family from the Pfam database [6], correspond-
ing to a RNA recognition motif (RRM) of about 90 amino
acids, known to bind single-stranded RNAs. The MSA
provided by Pfam contains M = 137605 sequences of
aligned length L = 70. Results obtained for other fam-
ilies (Appendix B) fully confirm the general conclusions
drawn here for the RRM. The features of the protein
families used for this work are reported in Appendix A 3.

In Fig. 1 we show, for model densities down to 1%, the

FIG. 1. Fitting and generative quality for PF00076
– Pearson correlation coefficient between model and data fre-
quencies as a function of the model density. The one-site fre-
quencies fi(a) are directly fitted. The two-site connected cor-
relations cij(a, b) are fully fitted by the densest model, while
only a fraction of them are fitted for the sparse models at
d < 1. The three-site connected correlations cijk(a, b, c) are
never fitted. The generative performance of the model is es-
sentially unchanged down to a density of 10%, and slowly
decays for even sparser couplings. However, even down to
d = 1%, the Pearson coefficients remain at remarkably high
values above 95% for the two-site correlations, and above 84%
for the three-site correlations.

Pearson correlation coefficient between the empirical one-
site frequencies fi(a) obtained from the original MSA,
and the model one-site marginal probabilities pi(a), es-
timated by MCMC sampling. Similar curves are also
shown for the two-site connected correlations cij(a, b) and
for a selected sub-set (specified in Appendix B 1) of three-
site connected correlations, defined as

cijk(a, b, c) = fijk(a, b, c)− fij(a, b)fk(c)

−fjk(b, c)fi(a)− fki(c, a)fj(b) + 2fi(a)fj(b)fk(c) ,
(7)

where i, j, k are the indices of the columns of the MSA
(which take value from 1 to L), and a, b, c run over the
amino-acids and the gap symbol (practically, from 1 to
q). The one-site frequencies are perfectly reproduced
by the model, i.e. fi(a) = pi(a), as a consequence of
the fixed-point condition in Eq. (2), and the Pearson
coefficient thus remains equal to one at all d (up to
tiny deviations due to the finite MCMC samples used
in BML and in estimating pi(a)). For the maximal den-
sity dmax = [(q − 1)/q]2 obtained after gauge fixing, the
two-site correlations should also be perfectly reproduced
because of Eq. (2). In practice we only reach a Pear-
son coefficient of ∼ 0.975 due to sampling noise (Ap-
pendix A 5). On the contrary, for d < dmax only a frac-
tion of all two-site frequencies is explicitly fitted by the
model via sparse BML. Nevertheless the two-site Pear-
son coefficient is essentially independent of d, up to a
slight reduction when d < 10%. Finally, three-site corre-
lations, that are never explicitly fitted by the model (the
training process in Eq. (2) does not include three-site in-
formation), are nevertheless very accurately reproduced,



5

FIG. 2. Contact prediction for PF00076 – Positive
predictive values (PPV) for several model densities, i.e. the
fraction of true positives among the highest-ranking k pairs
(i, j) of sites, when ordered by decreasing FAPC

ij . Even the
most sparse model, with only 1.6% of couplings, shows an
excellent performance at contact prediction. The curve for
plmDCA, a standard DCA approach for contact prediction,
is shown for reference and gives comparable results.

with a Pearson coefficient around 0.94 for all d > 10%.
Note that the reproduction of unfitted observables is a
highly non-trivial test for the generative properties of our
models [12], i.e. of the capacity of the model to generate
data being statistically close to indistinguishable from
the natural sequence data used for model learning. Be-
low density d = 10%, the generative quality of the model
for three-site correlations is slightly reduced, remaining
nevertheless very high (above 84% down to d = 1%).
We discuss the generative property of the sparse models
introducing additional metrics in Appendix D.

A second test of model quality is the prediction of
structural contacts, which constituted the major appli-
cation of DCA in the last years. The idea is that pairs
of strongly interacting sites in the PM should correspond
to close-by residues in the three-dimensional structure,
which display strong coevolution to maintain the proper
protein fold and functionality. Using the standard con-
vention for coevolutionary contact prediction, we con-
sider a pair of residues to be in contact if the distance
between them is at most 8 Å, and we exclude easy-to-
predict short-range contacts by considering only pairs
with |i − j| ≥ 4 in our analysis. The reference (ground-
truth) distance was obtained by the package [35] that
takes the shortest distance between heavy atoms in all
protein structures registered in the Protein Data Bank
(PDB) [36] for the given Pfam family. We follow the stan-
dard procedure for contact prediction, which consists in
computing the average-product corrected (APC) Frobe-
nius norms of the coupling matrices (note that the cou-
pling matrices are transformed into the zero-sum gauge
and that the gap states a, b = q are excluded from the
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FIG. 3. Coupling distributions – Distribution of cou-
plings corresponding to true contacts (top) and to non-
contacts (bottom) in the three-dimensional protein fold, for
the initial PM with density dmax = 91% and a sparser model
having density d = 7% associated with a reasonably accurate
contact prediction.

sum [37]),

Fij =

√√√√ q−1∑
a,b=1

Jij(a, b)2 ; FAPC
ij = Fij −

∑
k Fik

∑
k Fkj∑

kl Fkl
.

(8)
In Fig. 2 we show the fraction of true contacts within the
first k pairs of sites, ranked in decreasing order of FAPC

ij .
We observe that the performance of the model at infer-
ring the structural contacts is only slightly deteriorated
even in the sparsest case d = 1.6%.

In Fig. 3 we show the probability distributions of cou-
plings Jij(a, b), separately for pairs i < j corresponding
to contacts and all the others. We observe that, both
for contacts and non-contacts, the decimation affects the
shape of the distribution around J ∼ 0 in a similar way,
while the tails are essentially unaffected. Overall, these
results explain why the performance of the PM for con-
tact prediction using FAPC

ij is essentially independent of
d (Fig. 2). Unfortunately, the large-J tail of the dis-
tributions of couplings on non-contacting sites does not
change upon sparsifying the model, which suggest that
our decimation procedure cannot help in devising better
contact predictors.

In order to study the criticality of the models, we
consider a simple perturbation of the statistical weight,
i.e. we rescale the Hamiltonian H(S) by a formal in-
verse temperature β = 1/T and set P (S) ∼ e−βH(S),
in such a way that T = 1 corresponds to the original
model trained on data, while measuring the variation of
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FIG. 4. Criticality – Heat capacity as a function of temper-
ature for models with different density. The densest models
show a strong peak of specific heat close to the reference scale
T = 1, which is a signature of criticality: the model is ex-
tremely sensitive to a small change of couplings, due to over-
fitting. On the contrary, sparse models display a much smaller
peak, which is also shifted away from T = 1 towards lower
temperatures, indicating a better robustness of the learning.

the model entropy S. In Fig. 4 we show the heat capacity
C = TdS/dT of the PM for several sparsities (see Ap-
pendix B 4 for details on the computation of C). Note
that a large C indicates a large variation of the model
entropy with T , or equivalently that the model statistics
changes strongly after a slight change of the parameters.
This is indeed the best definition of criticality in statisti-
cal physics, keeping in mind that our models have finite
size L and we thus cannot perform a finite-size scaling
analysis to determine if the observed peak in C corre-
sponds to a phase transition in the thermodynamic limit.
In Fig. 4 we observe that the denser models display a
large peak in C close to T = 1, which indicates that
the models are close to criticality. Upon sparsifying the
model, the peak amplitude is strongly reduced and the
peak is also shifted to lower temperatures, i.e. further
away from the reference scale T = 1. These results sug-
gest that the criticality of the dense models comes from
over-fitting. Because the dense models have a huge num-
ber of parameters, they are able to fit all the details of
the training data. As a consequence, the model becomes
very sensitive to noise, and a little change of the param-
eters changes a lot the model statistics. On the contrary,
sparse models have less parameters and are thus more
robust to noise.

Ref. [38] provides Deep Mutational Scanning (DMS)
data for a representative member of the PF00076 family,
namely the RRM2 domain of the Poly(A)-Binding Pro-
tein (PABP) in the yeast species Saccharomyces cere-
visiae. Using this domain as a reference, the authors
generated a library of 110,745 protein variants, includ-
ing 1,246 single amino-acid substitutions and 39,912 dou-
ble amino-acid substitutions. Each of these variants was
experimentally scored for function, by monitoring the
growth of mutant yeast and finally, a “fitness score”
was attributed to each mutant sequence in the experi-
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FIG. 5. Single and double mutations – Spearman cor-
relation between the experimental fitnesses and the model
predictions as a function of the model density, both for single
and double mutants of the PABP, a member of the PF00076
family. The dashed lines show the same correlations for a
profile model (i.e. d = 0) as a reference.

ment [38]. Within our models, the inferred Hamiltonian
H(S) in Eq. (1) is also interpreted as a sequence-fitness
score. Hence, a good test of the generative property of
our models is to check whether the energy differences
∆H = H(mutant) − H(reference) between mutant se-
quences and the PABP reference correlate well with the
experimental fitness variations. Because the mapping be-
tween experimental and model fitness may be non-linear,
in Fig. 5 we show the Spearman’s rank correlation be-
tween these two variables, both for single and double
mutants. In the dense d = dmax case, we reproduce the
reference values already given in Ref. [20]. We also ob-
serve that upon reducing density, once again the model
quality is not degraded, down to d ∼ 10%. Even for
d = 1.6% the model performs quite well, and much bet-
ter than a profile model, which coincides with the limit
d→ 0 of our decimation procedure.

IV. CONCLUSIONS

We introduced a general parameter reduction scheme
for Boltzmann Machine Learning, and we applied it
to Potts models for protein sequence data, i.e. for the
learning of highly accurate and generative, but sparse
DCA models. Our strategy makes use of a rigorous
information-based criterion to select couplings that are
iteratively pruned. Intuitively, removed couplings are
either statistically unsupported, i.e. they correspond
to pairs of amino acids that are almost never or al-
most always observed, similarly to the color-compression
scheme [29], or they are small, i.e. they correspond to
pairs that are only weakly correlated, or a combination of
both. The statistical significance of a coupling is precisely
quantified by the symmetric KL divergence between the
Boltzmann measure of the Potts model with and with-
out this coupling, which is exactly computable from the
model or the empirical statistics.
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While our method is fully general for learning Boltz-
mann machines from high-dimensional categorical data,
here we focused on its application to model protein fam-
ilies via Potts models, in which strong couplings are
usually associated with physical contacts in the three-
dimensional protein fold. We stress that the aim of this
work is not to provide a sparse graph topology underlying
the true interaction network, and indeed the pruning is
not performed block-wise but at the level of the individ-
ual coupling entries, but to provide a general framework
of parameters reduction strongly based on information-
theoretic assumptions. We have shown that the model
can be decimated down to less than 10% of the origi-
nal couplings, while losing neither its generative qual-
ity, nor its accuracy in contact prediction. However, it
has to be noted that many couplings not correspond-
ing to structural contacts remain non-zero even in the
lowest-density models. The interpretation of such cou-
plings remains unclear. They may result from subtle ef-
fects due to the phylogenetic relations between the train-
ing sequences [39, 40], but also from extended functional
constraints as those found by Restricted Boltzmann Ma-
chines or Hopfield-Potts models [25, 26]. As a result, fur-
ther work is needed to make DCA-type modeling fully
interpretable.

The sparse models resulting from our decimation pro-
cedure are also far away from criticality: they do not
display the specific-heat peak close to the formal temper-
ature T = 1 that characterizes the dense models. Hence,
we attribute the criticality observed in dense models to
over-fitting, and conclude that our decimation procedure
makes model learning more robust to finite-sample noise.
Finally, the model maintains its performance in predict-
ing the fitness of mutations around a reference sequence,
i.e. it is capable of predicting the local shape of the fitness
landscape after having been trained on a global alignment
of distantly diverged amino-acid sequences.

Our decimation procedure solves the first two problems
mentioned in the introduction: we can eliminate small
and noisy couplings, and the resulting model maintains
its fitting and generative qualities, while being statisti-
cally more robust. Unfortunately, we were unable to solve
the third problem, namely the strong dependence on the
initial condition of the training: different initial condi-
tions (zero couplings and fields, profile model, plmDCA)
produce fully-connected PMs of equal fitting quality but
with slightly different performances in predicting con-
tacts and mutational effects. This difference does not dis-
appear after decimation (Appendix C 3). In other words,
our decimation procedure remains sensitive to the initial
fully-connected model from which it is started.

The resulting sparse PMs attempt to fit the data by
using the minimal number of two-site couplings, i.e us-
ing coupling matrices that are as sparse as possible. In
the context of proteins (or RNA), it is natural to think
that the sparse couplings identified by the model are the
most relevant to describe the physical two-site correla-
tions that arise from the need to maintain the three-

dimensional folded structure. This strategy is comple-
mentary to collective-feature learning, e.g. via RBM or
Hopfield-Potts models [25, 26], in which the number of
parameters in the coupling matrix is reduced by assum-
ing it to be of low-rank. The features learned by these
machines are associated with global sequence motifs, re-
lated, e.g., to protein function or its interactions, but the
accuracy of contact prediction is reduced. An interesting
and natural perspective would be to combine these two
strategies into a general “sparse plus low-rank” scheme,
cf. [41] for a related idea, which could lead to an accurate
description of protein families in an easily interpretable
way, with sparse two-site couplings describing physical
constraints coming from structural contacts, and low-
rank couplings describing biological features associated
with protein function and its evolutionary history.

To conclude, we would like to stress once more that our
information-based decimation strategy is not specific to
the application of Potts models to protein sequence data.
It can directly be used in other applications of inverse
statistical physics and Boltzmann machine learning, as
e.g. in modeling neural or socio-economic data [1], and
may be adapted to more general network reconstruction
schemes.

The code for learning and pruning the PMs is available
at [42].
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Appendix A: Methods

1. Alternative decimation score

Using the relation

Z ′

Z
=

1

Z

∑
S

e−Jij(a,b)δa,si
δb,sj e−H(S)

= 〈e−Jij(a,b)δa,si
δb,sj 〉P

= pij(a, b)e
−Jij(a,b) + 1− pij(a, b) ,

(A1)
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we obtain

D̂ab
ij = DKL(P ||P ′) =

∑
S

P (S)[logP (S)− logP ′(S)]

= Jij(a, b)pij(a, b)

+ log[pij(a, b)e
−Jij(a,b) + 1− pij(a, b)] .

(A2)

This second quantity also coincides with the variation of
the likelihood of data under the change of model,

∆L =
1

M

M∑
m=1

[logP (Sm)− logP ′(Sm)]

=
1

M

M∑
m=1

Jij(a, b)δa,smi δb,smj + log
Z ′

Z

= Jij(a, b)fij(a, b)

+ log[pij(a, b)e
−Jij(a,b) + 1− pij(a, b)] ,

(A3)

which coincides with (A2) when the model is well con-
verged and pij(a, b) = fij(a, b).

Note that the qualitative form of Dab
ij and D̂ab

ij as a

function of fij(a, b) and Jij(a, b) is very similar, and Dab
ij

is a monotonous function of D̂ab
ij . Using Dab

ij or D̂ab
ij in

the decimation procedure thus leads to fully equivalent
results.

2. Test on synthetic data

To evaluate the accuracy of our information-based dec-
imation procedure, we learn and prune a fully connected
model learned from a set of synthetically generated se-
quences sampled from a known sparse model (a ground-
truth), whose parameters will be compared to our re-
sults. The true model is a Viana-Bray model of 50
Ising spins lying in a random regular graph of degree
4. The couplings associated with the 100 links are drawn
from a Gaussian distribution of zero mean and unit vari-
ance. We sample M independent configurations, with
M = {200, 500, 1000, 5000, 10000}, from the associated
Boltzmann distribution at β = 0.6; this value guarantees
the sampling to be performed in the paramagnetic phase
but close to the phase transition, expected at βc ∼ 0.7
for the same model in the thermodynamic limit [43] (al-
though for this instance the number of variables is finite,
we assume the critical point to be closer to that found at
the thermodynamic limit).

The pruning protocol is applied to each of the dense
models decimating 1% of the non-pruned couplings ev-
ery time the convergence error reaches the threshold of
ε = 2.5 × 10−2; the algorithm stops either because we
reach the density of the true model dtrue = 0.0816 or be-
cause we reach the maximum number of iterations set for
this experiment to 20000. We show in Fig. 6(f) the re-
construction error (computed as the `2− norm between

the learned and the true couplings) and the true posi-
tive, false negative, false positive and true negative rates
in Fig. 6(a), (b), (c) and (d) respectively. Different lines
correspond to different M as specified in the legend. For
small values of M the decimation procedure is very slow
because every time a new pruning step is performed, sev-
eral learning iterations are needed to reach a new con-
vergence. This explains why in Fig. 6(a), (b), (c), (d)
and (f) the lines associated with M = {200, 500, 1000}
do not reach dtrue within the 20000 iterations. The re-
construction performance is overall accurate as shown by
the reconstruction error although ∼ 20 of the true cou-
plings are set to zero within the decimation procedure
(as stressed by the values of the true positive and false
negative rates in (a) and (b) panels). For large M , the re-
construction performance (in terms of both the `2-norm
and the number of wrongly/correctly pruned couplings)
significantly improves: the algorithm is now able to reach
the desired sparsity and the true positive rate is close or
above 0.9 for all densities (only 12 parameters are inac-
curately estimated). These couplings have a true value
close to zero as shown in Fig. 6(e) by a scatter plot of
the true parameters versus the learned couplings of the
M = 10000 samples run for d = dtrue. The points form-
ing a cross in the origin of the axes are associated with
the 12 zero couplings of the learned model (in correspon-
dence of the 12 non-zeros parameters of the true one)
and, similarly, with the 12 non-zero learned parameters
that are not present in the true model.

3. Data set

In the following, we report the details of the five
protein families analyzed in our work, identified as
PF00014, PF00072, PF00076, PF00595, and PF13354 in
the Pfam database (https://pfam.xfam.org/) [6, 44].
For PF00014, PF00072, PF00076 and PF00595 we filter
the full set of sequences downloaded from Pfam, keeping
only those that have less than six consecutive gaps. Em-
pirically, we have found that the presence of stretched
gaps renders the training more difficult as the Markov
Chain Monte Carlo (MCMC) used for sampling has dif-
ficulties in visiting both very gapped sequences and gap-
free region of the sequence landscape in a proper way,
i.e. proportionally to the correct Boltzmann weight. This
leads to a systematic bias in the model statistics. For the
Beta-lactamase2 family PF13354, we used a slightly dif-
ferent procedure: we downloaded the Pfam pHMM model
for that family, and we scanned the NCBI database to
obtain aligned sequences. We then filtered sequences ac-
cording to two criteria: (i) 80% sequence coverage (i.e.
less than 20% gaps) and (ii) redundancy reduction at 80%
(soMeff ≈M in this case). We also removed the sequence
TEM-1 (which is used as reference in the deep mutational
scanning, as discussed below), and all sequences very sim-
ilar to it. Note that because there are overlapping Beta-
lactamase families in Pfam, our procedure, based on a

https://pfam.xfam.org/
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FIG. 6. Reconstruction performances measured by the true positive rate (a), false negative rate (b), false positive rate (c),
true negative rate (d) and `2-norm between the true and inferred parameters (f), as a function of the density for the controlled
experiment over a Viana-Bray model. We use different colors according to the value of M , the number of sequences used within
the learning step of the fully connected and of the sparse model. The vertical line represents the density of the true model
dtrue = 0.0816. In (e) we show the scatter plot of the true couplings against the parameters learned by the M = 10000 run for
d = dtrue.

single pHMM, gives also sequences that would align bet-
ter to some other family in Pfam, in particular to the
Beta-lactamase family PF00144.

In Table I we show the name of the protein domain
associated with each family, the length, i.e. the number
of columns L of the multiple sequence alignment (MSA),
the number of sequences M of the original MSA and
Meff , the number of statistically relevant sequences after
a standard re-weighting of close-by sequences [14].

4. Training protocol

We specify here the details of the Boltzmann learning
used to train the dense Potts model and to refine the
non-zero parameters within the decimation run.

First, we compute the data statistics from the input
MSA as

fi(a) = (1− α)f emp
i (a) +

α

q
, (A4)

fij(a, b) = (1− α)f emp
ij (a, b) +

α

q2
, (A5)

with f emp
i (a) and f emp

ij (a, b) being the one- and two-

site frequencies computed from the MSA (for all po-
sitions i, j and amino acids a, b), and with α being a
pseudo-count [45] introduced to avoid divergent fields
and couplings associated with poor statistics. Here we

set α = 1/Meff except for the PF13354 family for which
we set α = 10−50 (we observed that other values of the
pseudo-count do not lead to a significant change of the
trained models). Then, we start from a profile model,
i.e. all couplings are set to zero and the fields are equal
to hi(a) = log[fi(a)] + Hi with Hi a constant ensuring∑
a hi(a) = 0. Subsequently we iteratively refine the

parameters according to Eq. (2), using as learning rate
ηJ = ηh = 5 · 10−2. We stop the algorithm when the
convergence error ε, computed as the maximum error
attained in the fitting of the two-site connected corre-
lations,

ε = max
i,j,a,b

|fij(a, b)− fi(a)fj(b)− pij(a, b) + pi(a)pj(b)| ,

(A6)
reaches 10−2 (this value may slightly change depending
on the family, up to 5·10−2 for the PF13354 family which
is the most difficult to train). At each iteration, we use
Metropolis-Hasting MCMC to compute the model statis-
tics pi(a) and pij(a, b). We run Nchain independent MC
chains, with Nchain = 3000 for PF00014 and PF00595,
Nchain = 1000 for the longer PF13354, and Nchain = 5000
for the copious families PF00072 and PF00076. The
chains are initialized at the first iteration from a uni-
form independent random distribution over all possible
amino-acids, gap included, and are then persistent over
iterations, i.e. at each new iteration the chain is initial-
ized from the last configuration of the previous iteration.
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Identifier PF00014 PF00072 PF00076 PF00595 PF13354

Protein domain Kunitz domain Response regulator receiver domain RNA recognition motif PDZ domain Beta-lactamase2

L 53 112 70 82 202

M 13600 823798 137605 36690 7515

Meff 4364 229585 27785 3961 7454

TABLE I. We show here the Pfam identifier, the name of the protein domain, the length, the number of sequences and the
effective number of sequences for the families analyzed in our work.

Each chain runs for Teq = 20 MC sweeps (one sweep cor-
responds here to L single-site Metropolis-Hastings MC
steps) before starting to sample 10 configurations spaced
by Twait = 10 MC sweeps. Hence, the total number of
generated samples in a single iteration is 10 × Nchains

(from 104 to 5 · 104 depending on the family), and each
chain is evolved by 110 MC sweeps in a single iteration.

5. Sampling protocol

Once the training is complete, for the final set of pa-
rameters of the Potts Model, we need to generate a new
sample, from which we compute the model statistics to be
compared with the MSA statistics. As in training, the
MCMC method used for the sampling is the standard
Metropolis-Hasting algorithm, using Nchain independent
MC chains, initialized from a uniform independent ran-
dom distribution over all possible amino-acids, gap in-
cluded. Each chain is evolved for Teq MC sweeps in order
to achieve equilibration, before we start collecting sam-
ples, the waiting time between each sampled configura-
tions being Twait MC sweeps. We specify in Table II the
values of Nchain, Teq and Twait and of the total number of
collected samples, MMC. Note that the conditions for the
sampling are different from those used in the learning.

We also compute, for each model, the Hamming dis-
tance dH(t) between an equilibrium configuration and
its time evolution under the MCMC dynamics after t
MC sweeps (averaged over initial configurations and over
the dynamics), see Fig. 7. Obviously, dH(0) = 0 and
for short times, dH(t) grows linearly, with a coefficient
given by the acceptance rate of single-site mutations in
the MCMC dynamics. At long times, dH(t → ∞) sat-
urates at the average distance between two independent
samples from the Potts Model equilibrium distribution.
This quantity can also be computed by measuring the
Hamming distance between two independent MC chains,

Identifier PF00014 PF00072 PF00076 PF00595 PF13354

MMC 30000 30000 30000 30000 30000

Twait 60 80 60 90 100

Teq 10000 50000 30000 50000 50000

Nchain 100 100 100 100 300

TABLE II. We report here the details of the MC sampling
performed to evaluate the model statistics.

after equilibration, and is reported as a red horizontal
line in Fig. 7. The time it takes for dH(t) to reach its
asymptotic value gives an estimate of the decorrelation
time of the MCMC dynamics, i.e. the time needed to
generate a new independent equilibrium sample.

We observe that for PF00014, PF00072 and PF00076,
the decorrelation time is of the order of 102 MC sweeps,
and independent of sparsity, which suggest that the
model is sampled in equilibrium during the learning pro-
cess. In fact, we obtain exactly the same model statistics
upon resampling the model in different conditions.

For PF00595 the decorrelation time is ≈ 103 MC
sweeps for the dense model. Because our training is
done with persistent chains, and a small learning rate, we
still believe that proper equilibrium sampling is achieved
during learning. This is confirmed by the fact that we
reproduce the same model statistics under resampling.
Furthermore, we observe that the decorrelation time is
reduced upon sparsifying the model, which suggests that
the sparse models are less critical, as we discuss below.

For PF13354 the situation is radically different. In
this case, the decorrelation time is huge (more than 104

MC sweeps for the dense model). This is likely due to
the presence of multiple subfamilies, such that the MC
chains take a lot of time to jump from one subfamily to
another. With such a long decorrelation time, learning
becomes extremely hard and we cannot guarantee that
equilibration is achieved during it. In fact, we find that
upon resampling the model starting from random initial
states, the statistics is initially good (after ≈ 2×104 MC
sweeps) but then is degraded, indicating that the model
suffers from overfitting due to poor equilibration during
learning. For the sparse models, the decorrelation time
is substantially reduced (by almost a factor 100), and
consistently we find that resampling is stable at all times.

Appendix B: Results for the other protein families

In this section we report the same type of results shown
in the main text for PF00076, but for the four remaining
families: PF00014, PF00072, PF00595 and PF13354.

1. Fitting quality

To evaluate the quality of the sparse models we com-
pute, for each possible density, the Pearson correlation
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FIG. 7. Averaged Hamming distances between an equilibrium sequence at time t = 0 and the evolved sequence after t MC sweeps
for (a) PF00076 (b) PF00014 (c) PF00072 (d) PF00595 and (e) PF13354. The average is computed using 104 independent MC
chains.

coefficients between a certain type of statistics computed
from the empirical data (the MSA) and the model (via
MCMC). More precisely, we focus on one-site frequencies
and two- and three-site connected correlations, as defined
in Eq. (7). To select the indices of the most significant
three-site connected correlations we have first extensively
scanned all possible triplets and computed the empirical
frequencies for all possible color assignment. We then
keep the elements cijk(a, b, c) with empirical absolute val-
ues above 10−4: only for those elements we compute the
corresponding model correlations, in order to limit the
computational cost. The model correlations are com-
puted from a set of samples generated via the MCMC
procedure described in Appendix A.

In Fig. 8, we show the Pearson correlation coefficients
for the three metrics between the data and the mod-
els as a function of the model density, for the PF00014

(a), PF00072 (b), PF00595 (c) and PF13354 (d) fami-
lies. For all families, the Pearson coefficient maintains
almost the same value reached for the densest (fully con-
nected) model up to a density of about 10%. When the
density goes below 10%, the Pearson coefficient gradually
decreases for all families; not surprisingly, the reduction
associated with the three-site connected correlations is
more pronounced, because this more-than-two-site cor-
relation is not explicitly fitted by BM learning.

The case of PF13354 is special because, for the rea-
sons discussed in Appendix A, the learning, which is
done using rather short waiting times between samples,
suffers from a very long decorrelation time in the dense
case. Hence, the resampling degrades when MC chains
are evolved for long times, which explains why the Pear-
son coefficients are poor for d > 20%. For d < 20%, the
decorrelation time becomes much shorter, and the resam-
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FIG. 8. Pearson correlation coefficients between the three chosen metrics (first moments, two-site and three-site connected
correlations) of the data and the sparse models as a function of the density. Each panel (a), (b), (c) and (d) is associated with
a different family, respectively, PF00014, PF00072, PF00595, PF13354.

pling is stable over time, but the Pearson coefficients get
progressively degraded when d is reduced, as for the other
families. The optimal compromise seems to be d ≈ 20%
for this atypical family. See Ref. [32] for a more detailed
analysis of these non-equilibrium sampling effects.

2. Contact prediction

The APC-corrected Frobenius norms associated with
the couplings can be used for scoring each pair of sites of
the MSA (cf. main text). As already explored in litera-
ture, this score correlates well with the physical distances
between pairs of residues in the three-dimensional struc-
ture of the protein domains. Larger Frobenius norms
suggest larger probabilities of a physical interaction. As
usual, we try to estimate the quality of the sparse models
through a set of Positive Predictive Value (PPV) curves
associated with the prediction of contacts. As reference
structures we use those extracted from [35], a tool that
outputs the shortest relative distance of pairs of residues
over all known crystal structures registered in the Pro-
tein Data Bank (PDB) database [36]. In Fig. 9, we show
the PPV curves for a sub-set of the sparse models (the
density is mapped to a different color of the lines) to-
gether with the result of plmDCA [10] used here as com-
parison (red lines). Even keeping only 10% of the cou-
pling parameters, i.e. when 90% of them are removed by
the decimation procedure, the accuracy of the contact
prediction remains stable, that is the performances are
comparable to those of the fully connected models. The

comparison to plmDCA is instead heterogeneous: as found
in [12], the Boltzmann machine learning can have com-
parable performances to plmDCA as for PF13354 in panel
(d), slightly worse as for PF00014 and PF00072 in panels
(a), (b), or slightly better as for PF00595 in panel (c).

3. Coupling distribution

Because the couplings mirror a physical interaction
among residues, one may guess that the more we dec-
imate the model, the more we decimate the couplings
not associated with residues in contact. Similarly, one
may expect that the more a coupling is important in
terms of three-dimensional structure, the larger will be
its strength, hence it will be preserved by the decimation.

To check whether this is the case, we plot in
Fig. 10, for PF00014 (a), PF00072 (b), PF00595 (c) and
PF13354 (d), the distributions of the couplings linking
residues in contact (panel 1) and not in contact (panel 2);
the values of the corresponding densities are indicated in
the legend. We note that as we reduce the density of the
couplings, those corresponding to residues in contact are
slightly enhanced (indeed, the original red histograms in
Fig. 10 for the dense models are shifted to slightly larger
values in the sparse case), but we do not observe a signif-
icant change in the tails of the distributions, as discussed
in the main text.
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FIG. 9. Positive predictive value (PPV) curve for (a) PF00014, (b) PF00072, (c) PF00595 and (d) PF13354 associated with
the contact prediction of several sparse models, from yellow to black lines. As a comparison we show the PPV curve (red line)
obtained by the state-of-the-art method for this task, plmDCA.

4. Criticality

Dense Potts models are generally very sensitive to a
perturbation of their model parameters: a slight change
of the couplings or the fields leads to a dramatic trans-
formation of the model statistics, which thus seems to be
close to a phase transition, i.e. to be critical. A good
measure of the criticality of statistical models is repre-
sented by the heat capacity, which is obtained by apply-
ing a global variation to the parameters, J → J/T, h→
h/T , and measuring the derivative of the average internal
energy with respect to the temperature,

C(T ) =
∂〈H〉T
∂T

=
1

T 2

(
〈H2〉T − 〈H〉2T

)
. (B1)

The averages in Eq. (B1), denoted as 〈.〉T , are eval-
uated by sampling a system with Boltzmann weight
exp{−H/T}. Standard thermodynamic identities also
show that TC(T ) = ∂S/∂T , where S(T ) is the entropy
of the model. The model criticality is related to the mag-
nitude of C(T ) in the vicinity of T = 1, which expresses
how quickly the model entropy (or energy) varies under
a small rescaling of all couplings.

Fig. 11 shows the behavior of the heat capacity C(T ) as
a function of the temperature T for the models associated
with the four families analyzed here: the color of the lines
depend on the value of the density of the corresponding
model, which spans the range (1, 90)%. We observe that
for all families, upon sparsifying the model, (i) the heat
capacity is reduced rendering the model less sensitive to

changes in the model parameters and/or (ii) the peak
slightly shifts towards a temperature smaller than T = 1,
the natural temperature of the learning. In all cases, the
value of C(T = 1) decreases upon sparsifying the model.
This observation suggests that a dense model learned by
the empirical data is indeed close to a phase transition,
but the criticality disappears (or decreases substantially)
for the statistically equivalent sparser models. Hence, we
conclude that the sensitivity of the dense model is related
to over-fitting. Note that the suppression of criticality is
also suggested by the reduction of the decorrelation time,
as discussed in Appendix A.

5. Mutational landscape prediction

Similarly to the analysis we proposed in the main text
for the PF00076 landscape and the experimentally de-
termined single and double-mutants fitness, we show in
Fig. 12 the Spearman correlation coefficient, as a function
of the density, between the energy variation (computed
according to our models) and the experimental fitness as-
sociated with single-residue mutations. Here we consider
the libraries of single mutants for the Beta-lactamase2
domain of the TEM1 protein [46] (here the fitness is re-
lated to antibiotic resistance) and for the PDZ3 domain
of the PSD95 protein [47] (here the fitness refers to the
CRIPT ligand), which we assume to be described by the
models for PF13354 and PF00595 families, respectively.
As shown in Fig. 12, the correlation coefficient (spBM
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(a1)

(a2)

(b1)

(b2)

(c2)

(c1) (d1)

(d2)

FIG. 10. Distribution of the couplings associated with residues physically in contact (labeled ‘1‘ histograms) and with residues
not in contact (labeled as ‘2‘ histograms) for two different densities. Panels (a), (b), (c) and (d) refer to PF00014, PF00072,
PF00595 and PF13354 respectively.

lines) between the experimental measures and the energy
differences of our models are mostly constant as a func-
tion of the density; only a smooth increment (drop) is
appreciated for densities smaller than 10−1 for PSD95
(TEM1). We remark that even in the sparsest case,
the Spearman correlation coefficient never crosses that
obtained from a pure profile model (denoted as prof )
suggesting that the remaining non-zero couplings of our
sparse models are fundamental for the good description
of the fitness landscape.

Appendix C: Additional results on PF00076

To complete the analysis described in the main text, we
propose here a set of additional results for the PF00076
family. More precisely, we compare the learning and
decimation strategy used in the main text and in Ap-
pendix B (initialize the parameters in the profile model,
learn a dense model until convergence, then perform dec-
imation) to several different initializations of the learn-
ing and to other decimation strategies based on different
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FIG. 11. Heat capacity as a function of the temperature T for the other protein families PF00014, PF00072, PF00595 and
PF13354 in panels (a), (b), (c) and (d) respectively.

SPMSPM

FIG. 12. Spearman correlation coefficient between the energy
variations computed according to the sparse models (spBM
lines) and the experimentally determined fitness variations of
a set of single mutants, for the TEM1 (PF13354) and PSD95
(PF00595) proteins. The dashed lines show the results of the
Spearman correlation coefficients when the energy variations
are computed by the profile models of the corresponding fam-
ilies.

metrics. We also investigate the nature of the decimated
couplings, via the statistics of the second moments asso-
ciated with them, to stress the non-trivial nature of the
symmetric Kullback-Leibler based decimation.

1. Decimation strategies

The method presented in the main text uses
as criterion (or score) for the iterative decimation

an information-theory based measure, the symmet-
ric Kullback-Leibler divergence (symKLD) between the
model with or without a certain coupling. As a result,
the decimation score of each coupling takes into account
both its statistical relevance (related to the second mo-
ments associated with it), and the strength of the cou-
pling alone. We compare here the results presented in the
main text to two simpler strategies where at each decima-
tion step a) we remove 1% of the weakest couplings or b)
we remove 1% of the couplings associated with the lowest,
hence less statistically significant, two-site frequencies.

In Fig. 13, in the left panels, we compare the three pos-
sible decimation procedures using as comparison metric
the fitting quality of the sparse models. We show the
Pearson correlation coefficient of the empirical data and
our sparse models predictions, as a function of the den-
sity, for the first moments (panel a), the two-site (panel
b) and the most relevant three-site (panel c) connected
correlations, respectively. Among the three procedures,
that based on the two-site frequencies gives the poorest
results, as it always provides the lowest Pearson up to
density≈3% where the algorithm fails to converge, mean-
ing that it is no more able to fit the statistics associated
with the non-zero parameters. The decimation based on
the coupling strength outperforms the frequencies-based
one but the Pearson coefficients, for all comparison met-
rics, is systematically lower than that of the symKLD-
based decimation.

In addition to the fitting quality, we compare the three
methods looking at the contact prediction PPV curves,
shown in the top panel of Fig. 14, varying the model
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(c)

(d)
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(f)

(a)

(b)

FIG. 13. Left panels: Pearson correlation coefficients between (a) the first moments, (b) the two- and (c) three-site connected
correlations of each model (varying the density) compared to the empirical data. The lines are colored according to the metrics
used within the decimation procedure: the symmetric Kullback-Leibler distance, the strength of the couplings or the two-
site frequencies. Right panels: Pearson correlation coefficients between (d) the first moments, (e) the two- and (f) three-site
connected correlations varying the initial condition of the dense model learning. All data are for the PF00076 family.

density. It is worth noting that all procedures, for all
densities (except 3.2% using a frequency-based measure)
perform equally well.

We also considered a standard network selection strat-
egy, in which we first learn a series of dense models with a
`1-norm regularization at different strength γ, i.e. Eq. (2)
for the couplings is modified to

δJij(a, b) = ηJ [fij(a, b)− pij(a, b)]− γsgn(Jij(a, b)) .
(C1)

At convergence, all couplings such that |fij(a, b) −
pij(a, b)| < γ thus have zero gradient and are considered
as decimated. In this way one can obtain PMs of dif-
ferent density d by tuning γ. After selection, the sparse
PMs is trained again keeping the decimated couplings to
zero, but without the `1-norm regularization for the non-

decimated couplings, until convergence. The results for
this procedure are reported in Fig. 15, and are outper-
formed by the symDKL-based procedure.

2. Decimated couplings

As mentioned in the previous section, the couplings
that are decimated at each iteration are either associated
with poor statistics, i.e. pairs of residues that are rarely
or very frequently observed in two specific positions, or
their strength is very small rendering their contribution
in the Boltzmann weight negligible. It is interesting to
quantify how many decimated couplings fall into the first
or second class, as a function of the density. To this pur-
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(a)

(b)

FIG. 14. Positive predictive value for each decimation pro-
cedure (a) and for each initial condition (b) for the PF00076
family.

pose we plot in Fig. 16 the empirical cumulative density
function of the (logarithms of) the two-site empirical fre-
quencies associated with the decimated couplings. We
report in the same plot several curves depending on the
density of the considered model: more specifically we
observe the cases d ∈ {90.7, 69.9, 49.7, 12.2, 3.2}%. The
values of log10[fij(a, b)] in the range [−5,−4.3] empiri-
cally correspond to pairs of residues (a, b) appearing one
time in position (i, j). Note that, although these frequen-
cies are associated with a single occurrence, they span
an interval, i.e. they are not always equal to the same
value, because their computation takes into account the
re-weighting protocol described in Ref. [14], in which each
sequence may have a statistical weight smaller than one.
Therefore, the value of the cumulative density function
in log10[fij(a, b)] = −5 gives the fraction of decimated
couplings associated with the pairs (a, b) that are never
observed in sites (i, j). We see that this quantity changes
as a function of the density: when the model is quite
dense (for values of d = {90.7, 69.9, 49.7}%) about 70 %
of the decimated couplings corresponds to never observed
statistics and thus only 30 % are associated with negligi-
ble couplings. As the model becomes sparser and sparser
the fraction reduces and reaches about 30 % for the spars-
est models: here about 70 % of the decimated couplings
are associated with a rich statistics but nonetheless their
contribution to the Boltzmann weight is negligible.
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FIG. 15. Pearson correlations (a) and positive predictive
value (b) for the decimation via `1-norm regularization, for
the PF00076 family, compared with those reported in the
main text.

FIG. 16. Cumulative density function of the logarithms of the
two-site frequencies associated with the decimated couplings
for the sparse models having densities d = 90.7%, d = 69.9%,
d = 49.7%, d = 12.2% and d = 3.2%. The data refers to the
PF00076 and the decimation is performed according to the
standard protocol described in the main text.

3. Initialization of the learning for the dense
Boltzmann machine

An intrinsic difficulty arises when comparing statistical
models for protein sequences: the set of parameters that
are able to reproduce the empirical statistics well and also
give a good contact prediction is not unique. Therefore,
giving a clear interpretation of the fields and the cou-
plings of the inferred Potts model, i.e. to detect which
variables are sufficient to characterize the target ensemble
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of protein sequences, is a challenging task. When the suf-
ficient set of observables is not known, and one attempts
to fit all possible pairwise couplings and single-site statis-
tics through the Boltzmann machine learning, it is com-
mon to encounter ‘flat’ directions of the log-likelihood
landscape, where the learning usually converges (as any
attempt at modifying the parameters does not lead to
any significant improvement). The parameters found at
convergence thus strongly depend on the initial condi-
tions.

Here we evaluate how the results of the decimation pro-
cedure are affected by the dense model used as starting
point, which in turn depends on the initial conditions of
the parameters. For this comparison, we consider three
distinct initial conditions for the initial learning of the
dense model: (a) the profile model (h = hprofile, J = 0,
used for the results presented in the main text), (b) the
parameters from pseudo-likelihood maximization (h =
hplmDCA, J = JplmDCA), as implemented in plmDCA [10],
and (c) a null initial condition for all model parameters
(h = 0, J = 0). We then let the Boltzmann machine
learning converge, and we use the converged Potts model
as the starting model of the decimation run described in
the main text.

In the right panels of Fig. 13 we show the Pearson
correlation coefficients between the empirical frequencies
fi(a) and the model frequencies pi(a) (in panel (a)), and
the two-site and three-site connected correlations of the
empirical data and of the sparse models, for panels (b)
and (c) respectively. When all parameters are initialized
to profile we reach the larger Pearson correlation coef-
ficients, for all the three measures and for all densities.
The plmDCA and zeros initializations have comparable
results, and they reach Pearson correlation coefficients
equal to those of the profile initialization only for the
first moment in the high density regime.

In addition to the fitting quality, we can compare the
three different initializations through the contact map
prediction. We observe in Fig. 14 that all the three strate-
gies, independently of the density, provide very similar
contact prediction as the associated PPV curves com-
pletely overlap.

4. Online learning

In our decimation protocol, we proceed with a new
decimation step only when the learning has reached con-
vergence. Starting from a well converged dense Potts
model, and decimating only 1% of the couplings at the
time, allows us to modify smoothly the remaining pa-
rameters during the decimation. Indeed, we empirically
observe that most of the times two consecutive decima-
tions are separated by just a few learning steps. However,
the entire protocol requires to learn a dense model first,
which can be time-consuming.

We thus explored an alternative strategy in which the
decimation is performed on-line, i.e. within a unique
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FIG. 17. Pearson correlation coefficients for the online learn-
ing (blue line), for K = 10, 20, 40, compared to the converged
run (red line) as a function of the density, for the one-site
frequencies (a), two-site (b) and three-site (c) connected cor-
relations.

learning run. Here the decimation step is applied either
because the learning has performed K steps or because
it has reached the tolerance required for convergence. In
these experiments, we start from a set of parameters cor-
responding to the profile model (as in the protocol il-
lustrated in the main text) for PF00076 and we proceed
with the decimation step every K = 10, 20, 40 steps.

In Fig. 17 we compare the Pearson correlation coeffi-
cient between the one-site frequencies (panel a), two-site
(b) and three-site (c) connected correlations, of the data
and the models obtained by the two different strategies:
we refer to the conventional method as converged (corre-
sponding to K → ∞) while the on-line learning method
is characterized by the number K of steps. It is worth
noting that, at convergence, both strategies, and inde-
pendently of K, reach the same fitting quality even in
the three-site connected correlations. For completeness,
we show in Fig. 18 the contact prediction performance
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(a)

(b)

FIG. 18. Comparison between the Positive Predictive Value
(PPV) curve obtained for the online (for K = 10, 20, 40) and
converged runs at two different densities, 72% (a) and 3.2%
(b). All data are for the PF00076 family.

of the converged and on-line runs for densities equal to
72% (panel a) and 3.2% (panel b). In the denser case
(when we consider 72% of non-zero couplings) the con-
verged run outperforms the on-line learning for any K.
This can be explained by the poor fitting quality reached
by the on-line runs at the initial steps of the algorithm,
that is when the model is still inaccurate in fitting the
two-site frequencies. It is worth noting that, in the sparse
regime, i.e. for density equals to 3.2%, all the strategies
show comparable results, qualitatively similar to the per-
formance of the dense case (Fig. 18a).

Although the results of the on-line run resemble those
of the converged run for the very sparse models, the on-
line procedure is not always advantageous from the point
of view of the running time. We notice that, depend-
ing on the family, a unique learning-decimation run may
have problems fitting the statistics, i.e. to converge, be-
cause the decimation affects and ‘deviates’ the learning
of the machine, for small K. To cure this issue, one may
think of increasing the number of steps between each dec-
imation. However, this results in a very slow procedure,
because we remove 1% of the couplings every (large) K
steps. Instead, if the model is well converged first, then
convergence is achieved quite fast after each decimation,
resulting in a faster procedure overall.

Appendix D: Sequences similarity

The defining feature of generative models is the ability
to generate configurations that are statistically equiva-
lent to those used within the training process, but sub-
stantially different in the residue composition, i.e. a good
generative model should not just reproduce the sequences
of the training set. Hence, it is important to quantify
the distances between generated samples and the train-
ing data. For this purpose, we employed the following
metrics, introduced in [48, 49]:

DY (x) = min
y∈Y

D(x, y) , DXY =
1

NX

NX∑
n=1

DY (xn) .

(D1)
where X and Y are ensembles of the generic statisti-
cal variables x and y, D(x, y) is a certain distance de-
fined for the sequences x and y. The metric DY (x) com-
putes the minimum distance of the sequence x reached
when compared to each of the possible sequences in the
ensemble Y ; the quantity DXY is instead the average
value of DY (x) over the ensemble of X. In our problem,
we choose D(x, y) as the Hamming distance between se-
quence x and sequence y and the ensembles X and Y are
respectively t (the training set) and s, the synthetic se-
quences generated from the sparse Boltzmann machines.
A proper generative model would produce comparable
Dst and Dss and, concurrently, the two measures must
be sufficiently large (practically 20% of sequence sim-
ilarity is required for good training sets). This corre-
sponds to a scenario where generated sequences are vari-
able (large Dss), and similarly distant to natural or the
other generated sequences (Dss ' Dst). This corresponds
to a scenario where the average distance between each
pair of generated sequences is comparable to that ob-
tained between the two ensembles t and s: therefore,
the generated synthetic sequences are indistinguishable
from the natural sequences using distance based methods
(like nearest-neighbor classification, distance based clus-
tering). A similar argument can be applied to Dts. In
Fig. 19, we show the average distances Dts, Dst and Dss

for each protein family; we do not show the Dtt measure
which is obviously constant for all densities, and takes
values Dtt(PF00076) = 0.308, Dtt(PF00014) = 0.0917,
Dtt(PF00072) = 0.421, Dtt(PF00595) = 0.295, and
Dtt(PF00076) = 0.445. Because of the phylogenetic re-
lationship among sequences, the training set is composed
of similar (correlated) sequences and, as a consequence,
the Dtt is significantly smaller than the other distance
metrics. Regarding Dts, Dst and Dss we notice that, as
the density of the couplings decreases, the distances re-
main unchanged up to a density in the range 10% - 20%,
depending on the family. Then the minimum average
distance significantly increases which suggests that the
synthetic sequences are distributed more broadly in the
sequence space as the number of model parameters de-
creases. Besides, the difference betweenDts, Dst, andDss

decreases for most of the protein families, in the sparse
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regime, suggesting that the synthetic sequence ensembles
and the set of the natural sequences become more and

more statistically similar for increasing sparsity. We can
conclude that, according to these metrics, the decimation
improves the generative properties of the model.
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FIG. 19. Sequence variability for all the protein families considered in this work. We plot Dts, Dst and Dss as a function of
the density using blue, orange and green lines, respectively, for PF00076 (panel a), PF00014 (b), PF00072 (c), PF00595 (d),
PF13354 (e).
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