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Minimax Boundary Estimation and Estimation with Boundary

Eddie Aamari* Catherine Aaron' Clément Levrard?

Abstract

We derive non-asymptotic minimax bounds for the Hausdorff estimation of d-dimensional
submanifolds M C RP with (possibly) non-empty boundary dM. The model reunites and
extends the most prevalent C2-type set estimation models: manifolds without boundary, and
full-dimensional domains. We consider both the estimation of the manifold M itself and that of
its boundary M if non-empty. Given n samples, the minimax rates are of order O((log n/n)? d)
if OM = 0 and O((log n/n)Q/(d“)) if OM # ), up to logarithmic factors. In the process, we
develop a Voronoi-based procedure that allows to identify enough points O((logn/n)? (4+1))-
close to OM for reconstructing it.

1 Introduction

Topological data analysis and geometric inference techniques have significantly grown in importance
in the high-dimensional statistics area, both in its theoretical and practical aspects [42, [I8]. Unlike
Lasso-type methods [31] which strongly rely on a specific coordinate system, geometric inference
techniques naturally yield features that are invariant through rigid transformations of the ambient

space.
A central problem in this field is manifold estimation [8, [30, 29, [3, 39, 28]. Assuming that
data X,, = {X1,...,X,} originate from some unknown distribution P on RP, these works study

the estimation of its support M = Supp(P) C RP, assumed to be a submanifold of dimension
d < D. This provides a non-linear dimension reduction, that can allow to mitigate the curse
of dimensionality, and helps for data visualization [34]. Manifold estimation is also of crucial
importance for inferring other geometric features of M, as it appears as a critical intermediate step
in a growing series of plugin strategies. See for instance [17] for persistent homology, [9] for the
reach, or [23] for density estimation.

1.1 Support Estimation

Overview So far, the statistical study of support estimation in Hausdorff distance has been
carried out within two somehow orthogonal settings: Full dimensional domains dim(M) = D
on one hand — which necessarily have non-empty boundary OM # () —, and low-dimensional
submanifolds dim(M) = d < D without boundary M = () on the other hand. More precisely:

(i) Assuming that M = Supp(P) C RP is full-dimensional dim(M) = D (i.e. roughly everywhere
of non-empty interior) and that P has enough mass in every neighborhood of its support, [25]
19] derive error bounds of order (logn/n)'/P. Here, a rate-optimal estimator simply consists
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of the sample set M = X, itself. Even under the additional geometric restriction of S being
convex, this rate is still the best possible, due to the possible outward corners a convex set may
contain. Beyond convexity, faster rates can actually be attained with additional smoothness
constraints: if the (topological) boundary OM of the convex M is C2-smooth, [25] derives
a convergence rate of order (logn/n)% P+ by considering the convex hull M = Hull(X,),
which also allows to estimate M with M at the same rate. This phenomenon was also
exhibited by [37, 4], 5] in similar convexity-type settings. Note that despite a nearly quadratic
gain in the rate for smooth cases, this framework still remains a hopeless scenario for high
dimensional datasets, as it heavily suffers from the curse of dimensionality, both statistically
and computationally.

This paper extends these results in a setting where M possibly is of lower dimension d < D
and curved.

(ii) To overcome the curse of dimensionality, assuming that M = Supp(P) C RP is a C? submani-
fold of dimension dim(M) = d < D with empty (differential) boundary OM = (), [30, 33] show
that the minimax rate of estimation of M is of order (logn/n)%/¢. The estimator of [30] being
intractable in practice, [2] later proposed an optimal algorithm that outputs a triangulation
of the data points which is computable in polynomial time. Using local polynomials, faster
estimation rates of order (logn/n)¥/¢ were also shown to be achievable over C*-smooth sub-
manifolds [3]. Although insensitive to the ambient dimension D >> d, these results highly rely
on the fact that OM = ().

This paper extends these results in a setting where M possibly has non-empty boundary.

Background By definition, a submanifold M C RP of dimension d is a smooth subspace that
can be parametrized locally by R?. Hence, neighborhoods of points in M all look like d-dimensional
balls. In contrast, a manifold with boundary is a smooth space that can be parametrized locally
by R% or by R4 x R,. If not empty, the boundary of M, denoted by dM, is the set of points
nearby which M can only be parametrized by R*! x R.. Informally, the class of manifolds with
boundary allows to take into account the possible “rims” a surface may contain (see Figure [1)).

M

Figure 1: A surface M with non-empty boundary M. Note that dim(0M) = dim(M) — 1, so that
sample points from some roughly uniform distribution P on M almost surely never belong to OM.
However, points close to 0M should be processed differently in the analysis of such a sample, since
they have an unbalanced neighborhood: they may cause boundary effects.

As mentioned above, most of the existing manifold estimation techniques require that M = 0,
which is very restrictive in view of real data [42]. When the empty boundary condition is dropped,
the location of M is often assumed to be known via an oracle, able to correctly label points that lie
close to the boundary [40)]. Prior to the present paper, a theoretically grounded construction of such
an oracle given unlabeled data was not known, since the optimal detection and estimation rates of
OM in arbitrary dimension had not been studied. This is mainly due to the technicalities that the



presence of a boundary usually gives rise to. For instance, the restricted Delaunay triangulation
to a surface with boundary may not even be homeomorphic to the surface [2I]. Hence, Delaunay-
based reconstructions are not good candidates to handle boundary, which contrasts sharply with
the boundaryless case [11 [2]. Despite these barriers, a few interesting works on boundary inference
can be found in the literature.

For surfaces in space (d = 2, D = 3), the so-called peeling algorithm consists in pruning an
ambient triangulation (the a-shape of the point cloud) to handle boundary [2I]. This method
leverages boundary triangles being flatter than inner triangles. Unfortunately, such a method is
limited to low dimensions, for the same instability problems described in [12].

On the other hand, in full dimension (d = D), [19] proposed a plugin estimator based on an
estimator of M itself: under technical constraints, if M approximates M, then oM approximates
OM . Such an plugin strategy provides a wide range of very general consistent boundary estimators:
see for instance [41l 5] for convergence rates under additional assumptions. Note that naturally,
such an approach is very costly — as acknowledged by the authors themselves —, and does not
generalize easily to non-linear low-dimensional cases.

More recently, [6] designed an asymptotic boundary detection scheme based on local barycenter
displacements: if a point x € M is close to M, then the ball M N B(x,r) around x will not be
balanced, and its barycenter would shift away from M. This naturally yields a criterion to decide
whether x belongs to M or not. Unfortunately, this method requires the sampling density over
M to be Lipschitz and fails otherwise, as discontinuities of f far from M may create artificial local
barycenter shifts, and hence false positives. Let us also mention that this local barycenter shift has
also been used in the context of density estimation on a manifold with boundary: [I0] proposed a
method for estimating the distance and direction of the boundary in order to correct the extra bias
of a kernel density estimator near dM.

1.2 Contribution

This paper studies the minimax rates of estimation of d-dimensional C2-submanifolds M < RP
with possible C? boundary OM (Definition , and the estimation of the boundary itself if not
empty. As now standard in the literature, the loss is given by the Hausdorff distance dy (a sup-
norm between sets, see Definition , and C? regularity of sets is measured through their reach
T, Tom > 0 (a generalized convexity parameter, see Definition .

Informally, we extend the known full-dimensional C? support estimation rates to the case of
low-dimensional curved M with C? boundary. Indeed, if M is contained in a d-dimensional affine
subspace of R and has a C? boundary, its estimation boils down to the full dimensional case
(Section , and can be done with rate (logn/n)?/(“*1) [41][5]. The present article proves that
even if M is curved, the same rate drives the estimation hardness of M and M. In addition, the
estimator adapts automatically to the possible emptiness of 9M, in which case M can be estimated
at rate (logn/n)?? (see Section .

More precisely, up to logn factors, we show that for n large enough,

inf sup W,(0M)'Edu(0M,B,) =1, (Theorems and [3.12))
TMmein
TOM ZTB,min
and
inf sup W,(0M)'Edy(M,M) =<1, (Theorems and [3.15))

My, ™™ ZTmin
ToOM zTB,min



where

_ | (logn/n)?/@+D i oM # 0,
Un(OM) = {(log n/n)?/4 if OM = 0.

1.3 Outline

We first describe the geometric framework and statistical setting we consider (Section . Then,
we state the main boundary detection and estimation results (Section [3) and discuss them (Sec-
tion . Finally, we present the key geometric lemmas (Section |5)) and principal steps of the proofs
(Section @ For sake of clarity, the minor intermediate lemmas and most technical parts of the
proofs are deferred to the Appendix.

2 Framework

Throughout, D > 1 is referred to as the ambient dimension and R” is endowed with the Euclidean
inner product (-,-) and the associated norm ||-||. The closed Euclidean ball of center z and radius
r is denoted by B(z, ), and its open counterpart by B(:z:, r). Given a linear subspace T C RP, we
also write Bp(0,7) := T N B(0,r) for the r-ball of T centered at 0 € T

2.1 Geometric Setting
2.1.1 Submanifolds with Boundary

By definition, the d-dimensional submanifolds M C R” with boundary are the subsets of R” that
can locally be parametrized either by the Euclidean space R?, or the half-space R~! x R, [35,
Chapter 2].

Definition 2.1 (Submanifold with Boundary, Boundary, Interior). A closed subset M C R
is a d-dimensional C2-submanifold with boundary of RP, if for all p € M and all small enough
open neighborhood V), of p in RP, there exists an open neighborhood Uy of 0 in R? and a C2-
diffeomorphism ¥, : Uy — V,, with ¥,(0) = p, such that either:

(i) ¥, (Uo N (R? x {0}P~)) = M NV,
Such a p € M is called an interior point of M, the set of which is denoted by Int M.

(il) p (Up N (R x Ry x {0}P~4)) = M NV,
Such a p € M is called a boundary point of M, the set of which is denoted by 0M.

Remark 2.2 (Boundaries). The geometric (or differential) boundary dM is not to be confused
with the ambient topological boundary defined as 9.5 := S\ S for S € RP, where the closure and
interior are taken with respect to the ambient topology of R”. Indeed, one easily checks that if
d < D, then OM = M. On the other hand, the two sets 9M and OM coincide when d = D.

Then, submanifolds without boundary are those M that fulfill 9M = (), i.e. that are everywhere
locally parametrized by R¢, and nowhere by R4~ xR, . From this perspective — as confusing as this
standard terminology can be —, submanifolds without boundary are special cases of submanifolds
with boundary. Note that key instances of manifolds without boundary are given by boundaries of
manifolds, as expressed by the following result.

Proposition 2.3 ([35, Example 2.17]). If M C RP is a d-dimensional C%-submanifold with
nonempty boundary OM , then OM is a (d — 1)-dimensional C%-submanifold without boundary.



Remark 2.4. If non-empty, this fact will allow us to estimate M using the estimator designed
for manifolds without boundary from [2], that we will build on top of some preliminarily filtered
boundary observations (see Section .

2.1.2 Tangent and Normal Structures

In the present C?-smoothness framework, the difference between boundary and interior points
sharply translates in terms of local first order approximation properties of M either by its so-called
tangent cones or tangent spaces, which we now define.

Definition 2.5 (Tangent and Normal Cones and Spaces). Let p € M, and V¥, its local parametriza-
tion from Definition 2.1]

e The tangent cone Tan(p, M) of M at p is defined as

. doW, (R x {0}P—9) if p € Int M,
Tan(pa M) T {dO\I’p (Rd—l X R+ X {O}D_d) lfp S aM,

where doV,, denotes the differential of ¥, at 0.
The tangent space T,M is then defined as the linear span T, M := span(Tan(p, M)).

e The normal cone Nor(p, M) of M at p is the dual cone of Tan(p, M):
Nor(p, M) := {v € R? | Vu € Tan(p, M), (u,v) < 0}.
The normal space of M at p is defined accordingly by N,(M) := span(Nor(p, M)).

Whenever p € Int M, it falls under the intuition that T'an(p, M) = T,,M and Nor(p, M) = N,M,
while when p € OM, N,M and T,M share one direction which is orthogonal to T,0M. These
properties are summarized in the following proposition.

Proposition 2.6 (Outward-Pointing Vector). Let M be a C?-submanifold with boundary.

o If p € Int M, then Tan(p,M) = T,M and Nor(p, M) = N,M are orthogonal linear spaces
spanning RP.

o Ifp e dM, then Tan(p, M) and Nor(p, M) are complementary half-spaces. In particular, T, M N
N, M is one-dimensional. The unique unit vector n, in Nor(p, M)NT,M is called the outward-
pointing vector. It satisfies

Tan(p, M) = TyM N {(np,.) <0}, Nor(p, M) = NyM N {(np,.) >0},
and

L
T,0M @ span(n,) = T,M,

1
where @ denotes the orthogonal direct sum relation.

The proof of Proposition derives from elementary differential calculus and is omitted. The
above purely differential definition of the tangent and normal cones coincides with that of the general
framework of sets with positive reach [26] (to follow in Section [2.2]). This general framework will
enable us to quantify how well M is locally approximated by its tangent cones.



2.2 Geometric Assumptions and Statistical Model

Any C2?-submanifold M of R” admits a tubular neighborhood in which any point has a unique
nearest neighbor on M [15, p.93]. However, the width of this tubular neighborhood might be
arbitrarily small. This scenario occurs when M exhibits high curvature or nearly self-intersecting
areas [I]. In this case, the estimation of M gets more difficult, since such locations require denser
sample to be reconstructed accurately. The width of such a tubular neighborhood is given by the
so-called reach ([26l, Defintion 4.1]), whose formal definition goes as follows.

Given a closed set S C RP| the medial azis Med(S) of S is the set of ambient points that do
not have a unique nearest neighbor on S. More precisely, if

d(z, §) := min ||z — z|
stands for the distance function to S, then
Med(S) := {z € RD|EI:U FyeS|z—z|=z—-vyl= d(z,S)} . (1)
The reach of S is then defined as the minimal distance from S to Med(\5).
Definition 2.7 (Reach). The reach of a closed set S C R is

= mind Med(S)) = inf d(z,9).
TS es (w, Med(S)) zel\l/lgd(S) (2,5)

Remark 2.8. e By construction of the medial axis Equation , the projection on S

ms(z) = argmin ||z — z||
x€S
is well defined (exactly) on RP \ Med(S). In particular, 75 is well defined on any 7-
neighborhood of S of radius r < 7g.

e One easily checks that S is convex if and only if 7¢ = oo [26, Remark 4.2]. In particular, for
the empty set S = (), we have 7p = cc.

Requiring a lower bound on the reach of a manifold amounts to bound its curvature [38, Propo-
sition 6.1], and prevents quasi self-intersection at scales smaller than the reach [I, Theorem 3.4].
Moreover, it allows to assess the quality of the linear approximation of the manifold by its tangent
cones. In fact, [26, Theorem 4.18] shows that for all closed set S C RP with reach 7¢ > 0, its
tangent cone Tan(z, S) is well defined at all z € S, and d(y — z, Tan(z, S)) < |ly — z||* /(27s) for
all y € §. This motivates the introduction of our geometric model below.

Definition 2.9 (Geometric Model). Given integers 1 < d < D and positive numbers Tiin, 79, min,
we let M7d—;n?n77—8,min denote the set of compact connected d-dimensional C2-submanifolds M C RP

with boundary, such that
TM 2 Tmin and Tonp > T min-

Remark 2.10. e Let us emphasize that the model Mﬁfmm’mm includes both submanifolds with
empty and non-empty boundary 0M, the main requirement being that 7o > 79 min. If OM =
(), this requirement is always fulfilled since 75 = oo. Note also that Definition does not
exclude the case d = D, in which case M consists of a domain of R” with non-empty interior.
Furthermore, since the boundary 0M of a submanifold M is either empty or itself a submanifold
without boundary, a non-empty OM cannot be convex [32, Theorem 3.26]. As a result, Mi{’fmoo
is exactly the set of submanifolds M € MEP

Tmin,T9,min

Definition [2.9] encompasses the model of [30} 33} 2].

that have empty boundary. In particular,



e Similarly, since T = oo if and only if M is convex, Mﬁg’fﬁa i 18 exactly the set of submani-

folds M € M%EP To.mm that are convex (and hence have non-empty boundary). In particular,

Tmin,

Definition [2.9 encompasses the model of [25].

¢ In full generality, the two lower bounds on the respective reaches of M and M are not redundant
with one another. As shown in Figure[2| 7ps and 795 are not related when d < D. However, for
d = D, M is the topological boundary of M (Remark [2.2). In this case, [26, Remark 4.2] and
an elementary connectedness argument show that 7y > 7957. Said otherwise, this means that
the reach regularity of a full-dimensional domain is no worse than that of its boundary. Hence,
M%ﬁm,mm = M%’ﬁimT&mm for all Tiin < 79 min, so that for d = D, one may set Tin = 79 min

without loss of generality.

oM oM oM
M

M M
(a) Tom < T = 0. (b) Tonr = T (¢) Tom > T
Figure 2: For d < D, the reach of a submanifold M and that of its boundary OM are not related.
The geometric model Mﬁr’nl?mm’min being settled, we are now in position to define a generative

model on such manifolds. In what follows, we let #? denote the d-dimensional Hausdorff measure
on RP (see e.g. [27, Section 2.10.2]).

Definition 2.11 (Statistical Model). Given positive numbers 0 < fiin < fmax < 00, we let
pdD (fmin, fmax) denote the set of Borel probability distributions P on RPL such that:

Tmin,T9,min

e M = Supp(P) € M%P

Tmin,7T9,min?

o P has a density f with respect to the volume measure voly; = 1yH? on M, such that fui, <
f(z) < fmax for all z € M.

From now on, we assume that we observe an i.i.d. n-sample X1, ..., X,, with unknown common
distribution P € P& (fmin, fmax), and denote the sample point cloud by

Tmin,To,min
X, = {X1,..., X ).

Based on X, the performance of the estimators of M and 0M will be assessed in Hausdorff distance,
which plays the role of a L>®-distance between compact subsets of RP.

Definition 2.12 (Hausdorff Distance). Given two compact subsets S, S’ C RP, the Hausdorff
distance between them is

du(S,9") = max{meagc d(z, '), max d(, S)}.

z’'eS

3 Main Results

This section gathers the main results of this article: construction of estimators of M and M,
bounds on their Hausdorff performance, and nearly matching minimax lower bounds. To cope with
the possible presence of a boundary, our first step is to determine which data points lie close to the
boundary, if any.



3.1 Detecting Boundary Observations
3.1.1 Intuition

In the full-dimensional case (d = D), data points close to the boundary may be identified by how
(macroscopically) large their Voronoi cells tend to be [4I]. That is, if p > 0 is a detection radius,
the boundary observations may be defined as

Y, ={X; €X,|30 eRP, |0 - X;|| > p and B(O, |0 — X;i|) N X,, = 0}.
If X; belongs to Y, with associated O € RP, then 7; = ”8:7?” apears to provide an consistent
estimator of the unit outer normal vector of M at mopr(X;) [4]. The present work leverages the

above intuition and extends it to the case where M is a d-dimensional manifold with d < D. In
fact, the manifold M not being full-dimensional raises the following additional subtleties:

e Even if X; is far from OM, its Voronoi cell is large in the directions of Ty, M, as it actually
contains at least X; + BTX mL (0, 7min). To detect points close to the boundary only, we
shall hence avoid these normal non-informative directions and solely focus on the tangential
components of the Voronoi cells. For instance, by first projecting points onto (an estimate
Of) TXiM .

e If X, is close to OM but M is folded over X;, then the Voronoi cell of X; in the Voronoi
diagram of the projected sample might be small (see Figure|3). To detect enough points close
to the boundary, not all the sample should thus be projected, but rather just a neighborhood
X, N B(X;, Ry) of X;, for some localization radius Ry > 0 to be tuned.

oM

Figure 3: An ambient Voronoi diagram built on top of observations X, lying on an open plane
curve (d = 1, D = 2). The denser X,, in M, the narrower the Voronoi cell of the X;’s in the
tangent directions T'x, M. Observations close to OM yield cells that extend in the outward pointing
direction. Localization radius Ry > 0 prevents global foldings of M that would mix different
ambient neighborhoods of M when projecting onto T'x, M.

These two remarks lead to the following first detection procedure: for a collection of estimated
tangent spaces T;’s, one may label X; as being a boundary observation if it has a large Voronoi cell
within its Ro- nelghborhood when projected onto X; + T;. That i is, if there exists O € T; such that
|0]| > p and B(O, |O|) N 7 (Xn N B(Xi, Ry) — X;) = 0. Unfortunately, when 1 < d < D, this
intuitive detection method is not sufficient to detect enough observations close to the boundary.



This issue can be overcome by investigating all the Voronoi cells of 4 (X;) for X; € B(X;,7) NX,,
J

where r is a small scale parameter. The details of this detection procedure are given in Section|3.1.3
As it is now clear how critical the knowledge of tangent spaces is to build a Voronoi-based
boundary detection scheme, let us first briefly detail how we estimate them.

3.1.2 Tangent Space Estimation

Following the ideas of [2], we will estimate tangent spaces using local principal component analysis.

Definition 3.1 (Tangent Space Estimator). For i € {1,...,n} and h > 0, we introduce the local

covariance matrix 1
Ri(h) = —— > (X5 = Xi) (X — Xi) I x,n (X)),

n—1°-—
J#

and define 7} as the linear span of the first d eigenvectors of ;(h).

Note that T} is a local estimator, in the sense that it is ((Xj — Xi)ly, eB(Xi,h)) e -measurable.
<j<n
For a suitable choice of h, the following proposition provides guarantees on the principal angle be-

tween T'x, M and 7;. In what follows, given two linear subspaces T,T' C RP, the principal angle
between them is
(T, T = ||rp — 7rT/||Op,
where || Al|,, := supj, <1 [[Az| stands for the operator norm of A € R™*".
1

Proposition 3.2 (Tangent Space Estimation). Let h = (C’d% bg") 4 for a large enough constant

n—1

79, min A Tmin

2
Cy. Forn large enough so that h < Tgi» A\ =23 R with probability larger than 1 —2 (1)7, we

have

fmax h/

max Z(Tx,M,T;) < Cy

1<i<n fmin Tmin.
A proof of Proposition can be found in Appendix In what follows, we shall always
choose h and n large enough as in Proposition [3.2

3.1.3 Detection Method and Normal Vector Estimation

Now, for a local (but macroscopic) scale Ry > 0, a detection radius p > 0 and a local bandwidth
r > 0, we compute the d-dimensional Voronoi diagrams of (ﬂ-ﬁ- (B(Xi, Ro) N X, — Xi))1<i<n and
define our boundary observations detection procedure as follows.

Definition 3.3 (Boundary Observations). For i € {1,...,n}, we let Jg,,,(X;) be the set of -
neighbors X; of X; for which X; has a p-large Voronoi cell in the projected Voronoi diagram at Xj;.
That is, writing

Vor%g »

(Xi) = {O € TJ ‘]i%(O, |0 — ﬂ'Tj(Xi - X)) N WTj(B(XjaRO) NX, - X;) = @} ,
we define
VOYE%g’p(Xi) N ]%T] (7rTj (Xz _ Xj)’p)c ” @} .

The set of boundary observations Vg, r, C X, is then defined as the set of data points that have
at least one such large Voronoi cell:

yRomP = {XZ € X, ‘ JRO,T,p(Xi) #* 0} (2)

Trorp X)) i= { X; € B(Xi,7) N X,
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Remark 3.4. Detecting boundary observations requires to compute n Voronoi diagrams in di-
mension d. Note that this step does not depend on the ambient dimension D, and can run in
parallel.

This strategy also provides a natural way to estimate unit normal outward-pointing vectors. For
this, given a boundary observation X; € Vg, . ,, we simply consider directions in which Vorg‘%()J p(Xi)
is p-wide (see Figure . A formal definition goes as follows.

Definition 3.5 (Normal Vector Estimator). For X; € Vg, ,, and X; € Jryr,(X;), let

)
QI%O{’”ND

€ argmin {HQ — T (X; — Xj)H ‘Q € Vorg(lp(Xi) N BT] (TI'Tj (X; — Xj),p)c} .

The estimator of the unit normal outward-pointing vector in T] is defined as

o), - T, (Xi — Xj)

=) ._ _"Hore
i N Y _x
[9480 = ma, 0% - 1)

The final estimator of the unit outward-pointing normal vector at X; is then defined as

) 1 ~(7)
X '
#JR07 7p( )]EJRO,r,p(Xi)

Remark 3.6. Let us mention that the choice of Q%g rp in Definition has been made to ensure

measurability. As will be clear in the proofs (see Lemma , any choice of ) € Vorgo) ,(Xi) N

ETJ- (ﬂTj (Xi — Xj), p)¢ witnessing to the p-width of the Voronoi cell would lead to the same normal
estimation rates as 7);.

As expected, when localization radii are chosen properly, Theorem below provides quanti-
tative bounds for boundary detection and normal estimation.

Theorem 3.7 (Guarantees for Boundary Detection and Normals). Take Ry < Mr‘gﬁ#. Define

1
Fax Jogn ) 71 Ry Ro _ py
_ = min A )R —Lax - Ty = —, and p_ 1= — =: —
r \/(T Ta,mln) 0 (Cd fgmnRg T+ 19 ana p 1 2

Then, for n large enough, with probability at least 1 — 4n_%, we have that for all p € [p—, p+] and
re[r_,ryl:

(i) If OM =0, then Vg, rp = 0;

(ii) If OM # 0 then:

(a) For all X; € Yryrps

22
:
Tmin /\ T9,min

d(X;,0M) <

(b) For all x € OM,
d($7yR0,r,p) < 3r;
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(¢) For all X; € YRorp

20r
Mg nr (x) — Till < .
mou (X:) ' \/RO (Tmin A 7_<9,min)

Remark 3.8. Key quantities in Theorem are the scale Ry and the local bandwith r, that need
to be carefully tuned in practice. Whenever prior information on the reaches Ty and 7 min is
Tmin/\T8,min

at hand, we may choose Ry as large as = 5=™*. Then, an optimal choice 7 = r_ leads to the
bounds:

For all X; € Yryrp:

2

5 10 n d+1
d(Xi, 8M) < Tmin A\ T9,min (Cd Igax : d) ’
min N fmin (Tmin A 7-B,min)
For all x € OM,
fa 1 w1
ogn !
d(z, Vg < Tmin A T9.mi <Cd max ) >
( o,np) min I I?ﬁn nfmin(Tmin VAN Ta7min)d
For all X; € yRo,r,pv
[ dl (C - % >
Nrons (X)) — Till < | Ca '
mon (Xe) — 3 N fmin (Tmin A T9,min)?

The proof of Theorem is given in Section In a nutshell, Item guarantees that no
false positive occur if 9M = @. On the other hand, if M # 0, for ¢ =< (logn/n)"/@+1) and
optimal choices of r_ and Ry, Items and ensure that Vg, ,, is an O(e)-covering of OM
that consists of points 0(52)—close to OM. In the convex case Tyin = 00, taking the convex hull of
YVrRorp — similarly to [25] — would result in an O(e?)-approximation of M, and the boundary of
this convex hull in an O(e?)-approximation of M. Finally, Item asserts that the estimated
normals at boundary observations are O(g)-precise.

If no prior information on 7a; and 7, are available, choosing Ry = (logn)~

quirements of Theoremfor n large enough. As well, choosing r = \/Rglogn (logn/(nR3)) 1
would asymptotically meet the requirements of Theorem Both of these choices incur an extra
log n factor in the bounds.

Still based on Vg, ,, we extend this “hull” construction to the non-convex case by leveraging
the additional tangential (Proposition and normal (Theorem estimates, to provide
estimators of M and OM.

L would meet the re-

d+1)

3.2 Boundary Estimation

Assume that M # (. Then OM is a (d — 1)-dimensional C?-submanifold without boundary.
Therefore, using manifold estimators of [2, 3 [36] designed for the empty boundary case with input
points Vg, r, seems relevant. We choose to focus on the manifold estimator proposed in [2], based
on the Tangential Delaunay Complex [11], as it also provides a topologically consistent estimation.
This procedure, as well as the aforementioned two others, takes as input boundary points but also
estimates of the tangent spaces (of the boundary). Thus, a preliminary step is to provide estimators
for the boundary tangent spaces at points of Vg ;. ,.
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Definition 3.9 (Boundary’s Tangent Space Estimator). For all X; € Vg r.,, Taﬂ- is defined as the
orthogonal complement of 7 (7;) in T;. That is,

Ty, = (7, ()" N T

A straightforward consequence of Proposition and Theorem is that the estimator 7. B, 1S
a O((log n/n)l/(d+1))—approximation of Ty, (x)OM, for any X; € Vg, r,p-

Corollary 3.10 (Boundary’s Tangent Space Estimation). Under the assumptions of Proposi-

2

tion and Theorem we have, for n large enough, with probability larger than 1 —4n~4d,

20r
v/ (Tmin A Tomin) Ro

/(T NOM, Ty, <
x B oM i) <

Tmin /\Ta,min

Thus, choosing Ry = "= and r = r_ yields

5 1

. logn a+1
(x)OM, Ty;) < <Cd e g ] ) :

max  Z(T,
( fIi)liIl nfmin (Tmin A TH,min d

TOM
Xi€YVRg.r_,p

A short proof can be found in Appendix|B.2} that connects Z(T%,, (x,)0M, T&i) to Z(Tx, M, Tl)
and Z(nNx,,,(x,)>7)- The estimation rate for Ty, (x,)OM is then driven by the larger of these
quantities, i.e. Z(ny, M(Xa)s 7;) according to Proposition and Theorem

Equipped with Corollary[3.10] we are now in position to provide an estimator for 9M. Following
[2], we let e = C Taj%irz“‘r, where r and Ry are chosen as in Theorem and let Yy denote an e-
sparsification of Vg, r, i.e. a subset of Vg ., that forms an e-covering of Vg, ,,, with e-separated
points. Such a sparsification can be obtained by running the farthest point sampling algorithm
over VR,.r,p, and it results in a 2e-covering of M, according to Theorem We also denote by Ty
the collection of Ta,i’s, for X; € Yy, and define our estimator of M as the (weighted) Tangential
Delaunay Complex [11] based on (Yg, Ty):

OM := Del“* (Yy, Ts).

Since 9M has no boundary, [2, Theorem 4.4] applies and yields the following reconstruction result.

Theorem 3.11 (Boundary Estimation — Upper Bound). Provided that OM # () and under the
assumptions of Proposition [3.2 and Theorem [3.7, we have for n large enough, with probability
larger than 1 —4n™ 4,

(i) du(0M, M) < Ca™gger?,

(ii) OM and OM are ambient isotopic.

As a consequence, for n large enough, choosing Ry = W;# and r = r_, we have
AT fr?lax logn a1
E [du(0M, 801)] < Carpin (22 )
fmin 7 fmin (Tmin A Ta,min)
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The proof derives from a direct application of the reconstruction result of |2 Theorem 4.4],
the assumptions of which hold with high probability, according to the distance bounds of Theo-
rem and and the angle bounds of Corollary

Note that the ambient dimension D plays no role in Theorem [3.11] neither in the assumptions,
the rate nor the constants. Interestingly, it assesses the topological correctness of our estimator
OM, showing the particular interest of estimators based on simplicial complexes. Choosing the

7-rnin/\‘ra,rnin

largest possible Ry, i.e. Ry = "7, and r = r_, Theorem provides an upper bound on
du(0M, oM ) with high probability, uniformly over the class Pﬁ;{f’mm,mm( fmin, fmax) introduced in
Deﬁnition This uniform convergence rate is in line with the estimation rate O ((log n/n)?/ (‘”1))
for boundary estimation given by [41], 25], under convexity-type assumptions in the full dimensional
case. Letting mmin = 00, the convex case can even be seen of as a sub-case of our class of distri-
butions, since pLD (fmin, fmax) D ng{zaymm( frmins fmax)- In fact, even in this simpler case, we
can show that the rate O((log n/n)? (d“)) is minimax over the class of convex submanifolds.

Tmin,Td,min

Theorem 3.12 (Boundary Estimation — Lower Bound). Assume that fmin < ca/73 . andc,y/7d . <

Jmax for some small enough cg, (c})™' > 0. Then for alln > 1,

d+1
inf sup Epn A (OM, B)| = Catomin { 1A (Z)
n

B Pepg(’),D‘ra‘min(fminafmax) fminT@,min

A proof of Theorem [3.12]is given in Section and relies on standard bayesian arguments.

Since for all Ty > 0, P&?&mm (fmins fmax) C Pf—iﬂ,mmm (fmin, fmax), Theorem and The-
orem together ensure that our boundary estimation procedure is minimax over the class
Pgr;[ii“mmm( frins fmax), up to logn factors. From a statistical viewpoint, these two results show
that estimating the boundary under reach conditions on M is not more difficult than estimating

the boundary in the convex case.

3.3 Boundary-Adaptive Manifold Estimation
If OM = 0, it is known that M can be estimated optimally by local linear patches [3]. That

4 1/d .
is, choosing e,; = <C’d%) , and estimating M via the union of tangential balls M =

Uiy Xi + By, (0,¢p;) leads to du(M, M) < Cdfmaxai;[/(fminTmm) [3, Theorem 6], recovering the
minimax rate O((logn/n)?/¢) over the class of C? manifolds without boundary [33].

If OM # () and X; is close to M, a tangential ball X; + By (0,e,;) may go past OM along the
normal direction 7, (x,), leading to a poor approximation of M in terms of Hausdorfl distance.
In this case, replacing X; + BTi (0,e,;) by a tangential half-ball oriented at the opposite of the
outward-pointing normal vector 7., (x,) seems more appropriate. We formalize this intuition as
follows.

Let YRy, denote the detected boundary observations of Definition These points will
generate half-balls, with radius egys, that will roughly approximate the inward slab MNB(OM, egar)
of radius egy7. To approximate the remaining part of M, we further define the egps-inner points as

Veonr = {Xi € Xy | d(Xi, VRorp) = con1/2} - (4)

Then, the manifold M may be reconstructed as follows (see Figure 4)).
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Definition 3.13 (Boundary-Adaptive Manifold Estimator). Given some scale parameters €,; and
€gm, the manifold estimator M = My U Ma, is defined as

Mlnt = U X’L+BTZ(07€]\Z)7
Xzej)EaM
My= | (Xi + BTi((),gBM)) N{z, (z — Xi, ) < 0},
XieyRO,r,p

with
e the T}’s being the estimated tangent spaces from Proposition

e the 7;’s being the estimated of the outward-pointing normals from Theorem

e——
- -—>
EOM 5]\04

Figure 4: The local linear estimator M from Definition ford=1and D =2: Ma corresponds
to the union of the two blue segments, and My, to that of the black segments.

Note that M is adaptive in the sense that it does not require information about emptiness of
OM. If OM = 0, then Vg, r,, = 0 with high probability (Theorem . In this case M coincides
(with high probability) with the estimator from [3], which is minimax over the class of boundariless
C%-manifolds. Theorem below extends the error bound for M whenever OM # 0.

Theorem 3.14 (Estimation with Boundary — Upper Bound). Choose (Ro,r, p) as in Theorem

set .
logn )d
e, = | Cy and egpr = 187,
M ( fminn

Then for n large enough, with probability larger than 1 — 4n7%, we have

(fmax/fmin)%+15?\°4/7min Zf oM = Q),

du(M, M) < C,
a3, 1) < d{egM/RO if OM # 0.

Tmin /AT, min

As a consequence, for n large enough, with Ry = and r = r_, it holds

2
24d/2 a
ogn .
Tmin | o gd if OM =0,
2+d/2 JminThin™
min min

E [dH(M, M)} <0y

2

)dn> oM £,

5

(Tmin A To )< max
e o friin Jmin (Tmin A T3 min

logn

\

A proof of Theorem [3.14] is given in Section Again, note that Theorem [3.14] is com-
pletely oblivious to the ambient dimension D. In the empty boundary case, M achieves the rate
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O((log n/n)? d), which is minimax [33]. Whenever OM is not empty, the given convergence rate

of M coincides with that of M for boundary estimation (Theorem , as well as that of [25],
Corollary 1] for convex domains, and that of [41, Theorem 3] for r-convex domains. Note that these
last two convexity-type assumptions are stronger than the bounded reach assumption for M and
OM, so that Theorem generalizes [25], 41]. As for the boundary estimation problem, we show
that this rate O((logn/ n)?/ 4) is in fact minimax optimal over the class of d-dimensional convex
domains (i.e. Tmin = 00), up to logn factors.

Theorem 3.15 (Manifold Estimation — Lower Bounds).

(Boundaryless) Assume that fmin < cq/7, and /78

d < D —1, then for alln > 1,

< fmax, for some small enough cq, (c))™' > 0. If

in =

2
w o o] 2 {in (1))

. +d
M pepdD oo (fmin,fmax) fmmeinn

Tmin>

(Conver) Assume that fumin < cd/Tg’mm and C&/Tgmin < fmax, for some small enough cg, (cil)f1 > 0.
Then for alln > 1,

R 1 d+1
inf sup Epn [dH (M, M)} > CyTomin 4 1A (d )
M pepdD (fmin, fmax) fuinT min

T, min

The proof of Theorem relies on the same bayesian arguments as Theorem (see Sec-
tion . The first point is a slight refinement of the C? case of [3, Theorem 7], as it exhibits the
dependency on Tiin and fmin of the minimax rates over the class of C? manifolds without boundary.
Note also that in this case, the assumption d < D — 1 clearly is necessary for the model not to be
empty.

Interestingly, this shows that the upper bound given in Theorem [3.14] for the empty boundary
case is sharp with respect to Tmin. The second point of Theorem provides the minimax rate
for manifold estimation over the class of convex domains whose boundary has bounded reach.
In terms of sample size, this shows that our estimator has the best possible convergence rate
O((log n/n)? (dH)) (up to logn factors) in the convex case, as well as the two procedures of
[25 [41]. As for the boundary estimation problem, this result intuitively carries the message that
estimating a manifold with boundary under reach conditions is not more difficult than estimating
a d-dimensional convex C2-domain. In other words, for M # () and a fixed boundary’s convexity
radius 7y min, N0 additional gain can be expected from requiring a large convexity radius for the
manifold (driven by Tin). At last, Theorem shows that the given dependency on the reach
boundary 7y min is sharp, at least in the case where 7 min < Tmin. Whether the tradeoff between
Tmin and T min exhibited in Theorem [3.14]is sharp in general remains an open question.

4 Conclusion and Further Perspectives

Both generalizing over full dimensional C?> domains and boundaryless C2-submanifolds, this work
derives nearly tight minimax upper and lower bounds for C2-submanifold estimation with possibly
non-empty C? boundary. Both the boundary estimator and the manifold estimator exhibit rates
that are independent of the ambient dimension, which is of critical interest in the regime d < D to
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achieve efficient dimensionality reduction. To our knowledge, this is the first instance of a statistical
study dealing with general submanifold with boundary.

On the geometric side, a significant further direction of research pertains to manifold estima-
tion with boundary in smoother models than C?, such as those introduced in [3]. Beyond Hausdorff
minimax optimality, an interesting feature of the boundary estimator of Theorem [3.11]is its topo-
logical exactness. This property is made possible by the fact that 9(OM) = () and the existence of
constructive triangulations that reconstruct boundaryless submanifolds (see [2, Theorem 4.4]). In
contrast, topologically exact reconstruction methods of manifolds with boundary are only known
in the specific case of isomanifolds (see [14, Theorem 43]), which led us to stick to an unstructured
estimator with linear patches in this case (see Theorem [3.14)).

On the statistical side, a major limitation of this work is the absence of noise. The pro-
posed method would exhibit the same rates if noise of amplitude o < (logn/n)¥%1yy—p +
(logn/n)?/ @+ D155,y is added, but it is likely to fail otherwise as it is based on the data points
themselves. Such instabilities are common in the geometric inference literature [19, 1], [0, 22], and
noise is often assumed to vanish as n goes to co. However, a recent line of works in the boundariless
case exhibited various iterative denoising procedures that tend to relax this assumption. See for
instance 28,139, [7]. Whether such algorithms could be adapted for OM # () is of particular interest.
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5 Geometric Properties of Manifolds with Boundary

This section gathers geometric results that will be of use in the main derivations. For the sake of
completeness, proofs of these results are given in Appendix [Al Throughout the proof sections, GP-¢
stands for the Grassmannian — i.e. the space of d-dimensional linear subspaces of R” —, and dg
for the geodesic distance of S C RP.

5.1 Geodesics and Tangent Spaces

We begin with a result that connects geodesic and Euclidean distance.

Lemma 5.1 (Geodesic Bounds). Let p,q € M such that ||p — q|| < Tmin. Then

lp—qll <dm(p,q) < 2|p—qll.

A short proof is given in Appendix This result is well-known in the empty boundary case
(see [2, Proposition 8.6]). In the general case, Lemma follows from [13, Lemma 3]. The last
result of this section connects tangent spaces variations with the geodesic distance between their
base points.

Proposition 5.2 (Tangent Space Stability). Let M € Mﬁ;n?nﬂ—a,min' Then, for x,y € M,
L(TeM, TyM) < dy(z,y)/Tu-
If OM # 0, then for all p,q € OM,

L(TyOM, T,0M) < dont(p, q)/Tom -
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A proof of Proposition [5.2] is given in Appendix [A.I] Combining the two angle bounds from
Proposition easily yields a bound on the angle between the linear spaces span(n,) and span(n,),
for p,q € OM. Actually, making use of the structure of normal cones, a bound on |1, — || can be
derived, as presented below.

Proposition 5.3 (Normal Vector Stability). Let M € Mﬁ;ﬁ,,m,mm. Then for all p,q € OM such
that ||p — ql| < (7ar A Tonr)/32, we have

17p = nqll < 9lp — all/(7ar A Ton).

A proof of Proposition may be found in Appendix

5.2 Projections

Projections onto tangent spaces and normal directions play a key role in the estimation schemes
on this work. First, we adapt [26, Theorem 4.18] to the case where a small perturbation of the
tangent space is allowed.

Proposition 5.4 (Tangent and Normal Components of Increments). Let 2,y € M, and T € GP¢
be such that Z(T,M,T) < 0. Write (x —y)" and (x — y)* for the orthogonal projection of x —y
onto T and T+ respectively. Then,

Iy =) < lly = 2ll 0+ [ly — 2l /(27min)) ,
Iy =)l > lly = 2 (1= 6 — [ly — 2l /(27min)) -

A proof of Proposition [5.4]is given in Appendix The following result ensures that estimates
of the normal direction to the boundary may be derived from a suitable tangent space estimator.

Proposition 5.5 (Normals from Tangent Spaces). Letx € OM, and T € GP*¢ such that Z(T,M,T) <
1. Then T'0 Nor(z, M) contains a unique unit vector n, and it satisfies

10— ma|| < V24(Tu M, T).

A proof of Proposition [5.5] can be found in Appendix The remaining results of this section
describe the structure of the projection of balls onto perturbed tangent spaces. We begin by
investigating the case where the center of the ball is not on the boundary.

Lemma 5.6 (Far-Boundary Balls). Let R < 7min/16, © € M, and T € GP? be such that
L(TyM,T) <60 <1/8. If d(x,0M) > 0 (with the convention d(x,) = +oc), then

4
Br <0, £ min {R, d(z, 8M)}> C mr(B(x, R) N M — z).
A proof of Lemmal5.6is given in Appendix[A.3] Next, Lemmal5.7]describes mp(B(z, R)NM —x)

whenever x is a boundary point.

Lemma 5.7 (Near-Boundary Balls). Assume that OM # (). Let x € OM and T € G be such
that Z(TpyM,T) < 6 < 1/8. Denote by 1 the unit vector of T N Nor(x, M), choose R < Tiin/16
and r < min{2R/5, 779 min/5}.

Then, writing O := —rf) and O°“* := i, we have

B(O™,r)NT C np(B(z, R) N M — z) C B(O®,r)°NT.
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A proof of Lemma [5.7 may be found in Appendix [A73] A consequence of Lemma [5.7] is the
following Corollary that will be useful in the proof of Theorem

Corollary 5.8 (Parallelism of Projected Normals). Assume that OM # (). Let x € M be such that
d(z,0M) < Tmin/16, and y € RP. For T € GP4, let z* € Ty+7(OM N B(x, Timin/16)) be any point
such that

2" = myqr(z)|| = d(mysr(2), Tyt r(OM N B(2, Tmin/16)),

and
2’ € OM N B(z, Tmin/16) such that my p(z') = z*.

If Z(Ty M, T) <1/8, then Nor(z', M) N'T contains a unique unit vector n*(z'), and
v* = myr(z) = |27 = mypr (@)l 97 ().

A proof of Corollary is given in Appendix

5.3 Covering and Volume Bounds

This last preliminary section provides probabilistic bounds on the sampling density of X, in M, and
bounds on the volume of intersection of balls. They will drive the convergence rates of Theorem
First, we adapt [2, Lemma 9.1] to the non empty boundary case.

1
Lemma 5.9 (Sampling Density Bound). Let g1 = <C’d%) d, for Cy large enough. Then, for n
3

large enough so that €1 < 7~ A Ta’;‘i“, we have, with probability larger than 1 —n=2,

dH(M, Xn) S 1.

A proof of Lemma [5.9]is given in Appendix[A.4] It guarantees that the convergence rate of the
sample X,,, seen as a Hausdorff estimator of M, is the same as in the empty boundary case. Next,
Lemma below provides bounds on the mass of projected intersection of balls.

Lemma 5.10 (Mass of Intersection of Curved Balls). Let x € M, and T € GP%. Let O € T, and
r, R >0 be such that Br(O,r) C nmp(B(z,R)N M — x). For A > C&r%, write

Cdfs’l,ax logn é ;ll’LaCE logn %
h= 5/ ay s and g9 = A57 .
(n—1) (1)

min min

Then for n large enough, for all p > 1 and Q € T such that || — O < r+ p — &2,

a1, fA logn
Ly (u—)eB(O.r)nB(p) f (W) H(du) > Ar'z C&/%y
fmin(n - )
A proof of Lemma can be found in Appendix [A4] From a sampling point of view, it
will ensure that such intersections of (projected) balls will contain at least one sample point with

high probability. This point will allow to detect and characterize the boundary observations (see
Theorem [6.1)).

/Mﬂ(B(r,R)\B(m,h))
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6 Proofs Outline

6.1 Proof of Theorem

The main boundary detection result is based on the following geometric and purely deterministic
result.

Theorem 6.1 (Deterministic Layout for Boundary Detection and Normals). Let

Temi Ro A 79 mi R
Ry < 22y < 20 48’m‘“,r§1—§,

1 0 r?

_ —_ A —
120 Tmin A T9,min
Tmin /\ 79, min

d3r<p_<py<
and 3r < p— < py < <0

Assume that we have:
1. A point cloud X, C M such that dg(M, X,,) < &1,
2. Estimated tangent spaces Tj such that maxi<j<, £(Tx; M, Ty;) < 0.

For x € OM and j € {1,...,n} such that Z(T,M,T;) < 1, write nj(x) for the unit vector of
Nor(z, M)NT} (see Proposition. Defining V; := 71, (B(Xj, Ro)NX, —X;), assume furthermore
that:

3. For all x € OM and X; € X, N B(x,2r), for all p > p_ and Q € T; such that || —
(mr; (x — X;) = ronj (2))|| < ro+ p — €2 we have B(2, p) N Y; # 0.

Then for all p € [p—, p+], using notation of Definitions and [3.5, the following holds:
(i) If OM =0, then Yryrp = 0.
(ii) If OM # 0, then,

(a) For all X; € YRryrps
22
Tmin /A TH,min ’

d(X;, 0M) <

(b) For all x € OM,
d(x, Yryrp) < 3r.

(¢) For all X; € YR, rp with associated X; € Jryr,(X;) and witness 2 € Vorgg ,(Xi) N
B, (77, (Xi — Xj), p)¢,

_ 79| < 40 4 8, [ Tmin A\ TO.min r
||777T3A1(Xi) i H > + pATQH Tmin /\ 7'c’?,min.

A proof of Theorem [6.1] is given in the following Section [6.2] Now, with a random sample X,
it remains to ensure that the conditions of Theorem are fulfilled with high probability. This is
what the following proposition states.
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Proposition 6.2. Fiz Ry < Tmi“g#, define p— =rg =20, p, =10 and set
s | 2
ogn d+1
€2 =10 <Cd rgax & d)
Jovin fmin(n — 1)rg

Then for n large enough, the following statements hold with probability larger than 1 — 3n~a: for
allie{l,...,n},

=

. 1 fltdlogn
1) L(Tx, M, T;) < Cy== <1/24;
() AT, ,z>_Tmm< BT <1

(i) for all (z,9Q) € (B(X;,m0) NOM) x T},
1Q— (73, (x = Xi) —ronj (@) Sro+p—e2 = BLp) NI #0,

where ¥ (z) denotes the unique unit vector of Nor(xz, M) N'T; (see Proposition .
A proof of Proposition [6.2]is given in Section [6.3

Proof of Theorem [3.7F Combining Proposition [6.2] and Lemma [5.9] ensures that the requirements
of Theorem are fulfilled, with probability larger than 1 —4n—2/¢ for n large enough, by choosing
T; = T; and the following set-up:

Tmin A\ T9,min Ry Ry
Ry < ———— - = >p0>p —=rg= —
0= 10 »oy TPEZPZ P =T0=
logn ) 4 5 .
ogn d ogn +1
€1 = (Cd g ) , €2 =T <Cd rgax g d) ’
Jminn . fminnro
Ry
\/(Tmin A T@,min)52 =r_<r<ry= E ]

6.2 Proof of Theorem [6.1]

We decompose the proof into three intermediate results. As a first step, we prove that the sample
points witnessing for boundary observations — i.e. points X; making Jg,, ,(X;) nonempty, see
(2) —, must be close to dM. In fact, we show that they must be among points X; on which the
Assumption [3] of Theorem holds.

Lemma 6.3. Under the assumptions of Theorem if Xj € Jryrp(Xi), then OM # 0 and
d(X;,0M) < 2r.

Proof of Lemmal6.3 Suppose that X; is detected in the tangent space Tj. Then || X; — X,|| <,
and there exists ) € T such that HQ — 7 (X — Xj)H > p > p— and Y;NB(Q, HQ — 7y (X — XJ)H) =
(. Since H?TTj (Xi — X;)|| < r, it follows that [|Q[| > p— —r > 2r > r+¢;. Hence, define u := / [|€2]],
and := X; + (r+e)u. As [Q— (z — X;)|| = | —r —e1 < ||Q — 71, (Xi — X;)|| — €1, we get

(B(z,e1) — X;) NY; C B(Q,||Q = 7r, (X — X;)||) nY; = 0. (5)

From Equation , we now deduce that z — X; ¢ 7r,(B(0, Ro) N (M — Xj)). Indeed, if that was not
the case, there would exist y € M NB(Xj, Ro) such that 77, (y — X;) = v — X;. Asdu(M, &) < ey,
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there exists X € B(y,e1) N X,. Since |y — X;|| < Ry < Tmin/32 and 6 < 1/24, Proposition
yields that

Xe— X X lz — X 192

— < — < — S K - <

| X5 ]||_51+||y J||_81+1_9_HZ*XJ‘H _81+181(T+51)_R0,
Tmin

and thus Xy € B(Xj, Ro). By definition of )}, this leads to w7, (Xy — X;) € V;, and since
77, (Xk = X;) = (2 = X5)|| = [|7r, Xk = )| < 1 Xk —yll < e,
we get 77, (Xi — X;) € VN (B(x,e1) — Xj), which contradicts Equation . As aresult, z — X; ¢
71, (B(0, Ro) N (M — X)), so that Lemma [5.6] asserts that
4
g min {RO — 251,d(Xj,8M)} < H.’L‘ - XJH =r+e1.

As 4(Ro — 2¢1)/5 > Ro/4 > r + 1 by assumption, the above inequality yields that d(X;,0M) <
5(r+e1)/4 < 2r < 0o, and in particular that 9M # @, hence the result. O

The next step builds upon Lemma [6.3] to guarantee that the detected boundary observations —
i.e. points X; such that Jg, ,,(X;) # 0 — are close to the boundary 0M, and that the associated
estimated normals are close to the true normals at boundary points. In other words, we prove

Theorem and
Lemma 6.4 (Theorem and [(i1)d). Under the assumptions of Theorem for all X; €

yROa”‘vP’
d(X;, 0M) < 2e,,
and for all witness X; € Jryro(X5),

~(j 1 1 4r
H777r3M(Xi) - 777,0)” <4 (9 + <,0 + > E9 + ) .

To Tmin

Proof of Lemma[6.4 To begin with, note that as X; € Vg,,, has witness X; € Jgy,,(Xi),
Lemma entails that OM # (. Also, since || X; — Xj|| < 7 < 7min/48, Proposition and
Lemma [5.1] yield that

2r
) ) < < .
A(Tx, M, T5) < 0+ Tmin — 24 24 = 12 (6)

Furthermore, Lemma [6.3] and triangle inequality gives

d(Xl,8M) < HXz - X]H + d(Xj, 8M) < 3r,
so that o' := map (X;) € OM satisfies |2/ — X;|| < 3r < Ry.
Consider X € argmin.c. . (aMnB(X:,Ro)) |12 — Tx;+1; (Xi)[| (see Figure . As 2’ € OM N
J J
B(Xi, Ro), mx;+1; (2') lies in the set where the argmin defining X/ ranges, and hence

X5 = 7y (X [| < [ mx4m, (@) = 7y (X || < 2" = X[ < 3 (7)

Introduce now x € M N B(X;, Ry) such that 77, (z — X;) = X;. From |z — X;|| < Rp only,
Proposition @ and actually guarantee that

|X; = mx,m, (X))
T eex] S

12 2Tmin

lz = Xl <
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oM

X; + T

Figure 5: Layout for the proof of Lemma

Applying Proposition [5.2] and Proposition yields that

L(TuM,Tj) < Z(TyM, Tx, M) + Z(Tx,M, Ty, M) + Z(Tx, M, T})
2%l 20X,
Tmin Tmin

107 g 8)

Tmin

<

In particular, Z(T, M, T;) < 1/8, so that Corollary asserts that
Tx,+1y (X)) = X = = || X7 = x40, (X5) || 0] ()

where 77 () is the unit vector of T N Nor(x, M) (see Proposition [A.7). Now, we write O := X —
ron; (z). Recall that by definition, since X; € Jry,,,(X;), there exists Q = 77, (X; — X;) + ~(]) €T
such that B(2, p) N Y; = 0.

On one hand, since B(2, p) N Y; = 0, Assumption (3| of Theorem implies that |2 — O] >
ro + p — €2. On the other hand, we can develop

192 = 01l = || (ro = 17 = mx, 2, (X)) @) + i
= (70— |15 e, D) = 20000 = |7 — x4, (601 - <nj< 2),7))
p(ro — || X — mx, 7, (Xa)||) (1 = (3 (= (J)>)‘

*
<p+ro— HX;‘ = TXG+T; (XZ>H - p+ro— HX —7x;41y ( XZ;H

Hence, combining the two above bounds on [|£2 — O|| solves to

plro = |IX5 = mx,4m, (X0 ) (1~ (5(2), 7))
p+ro— HX;_FXH‘T]'(Xi)H < &s. 9)

HXZ* — TX;+T; (XZ)H +

From Equation @, we can now conclude readily.

e To bound d(X;,0M), note that @ gives HXl* — 7TX],+T].(XZ-)H < &9. Therefore, Proposition
yields Theorem by writing

HXz* - 7TXJ'JFTJ'(Xi)”
— Z(Tu M, T;) — | Xi — 2| /(27min)

A(X5,OM) < [1X: — o < 5 < 26,
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e To bound (|1, (x,) — ﬁi(j ) |, note that (9) and the fact that ro > 2e5 also yield

(i p+ro 1 1
R R A

()

As m7(z) and 7;"” are both unit vectors, this leads to

I (@) = 21| = \/2(1 = (3 (@), 7)) < 2 (1 + 1) . (10)

In addition, Proposition and bound combine to

N 10r
I45(0) = nll < VEATM,T) VB (1 +6). (1)
min
Finally, triangle inequality yields
||.5L‘ - 7I-8M()(2)H < ||Xz - CUH + d(Xza aM) <4ey < (Tmin A T@,min)/32’
so that Proposition [5.3| asserts that
36 1 1
HnﬂaM(Xz‘) - 77z” < m@ <2 < + ) £2. (12)

p To

Combining Equations to with triangle inequality concludes the proof of Theorem
and that of Lemma O

The last point of Theorem derives from the following lemma.

Lemma 6.5 (Theorem. Under the assumptions of Theorem if OM # 0, then for all
x € OM, there exists X; € YRy, such that

d(x7yR0,r,p) < 3r.

Proof of Lemmal6.5 Let x € M, and assume without loss of generality that ||2—X1|| = minj<j<y, [[x—
X;||. We thus have ||z — X;|| <& < Ry. Similarly to the proof of Lemma [6.4] define

X7 € argmin llz — X1l
ZETX+Ty (OMNB(X1,Ro0))

and take y € OM N B(X1, Ry) such that nx, 47, (y) = X;. As x € OM N B(X1, Ry), we have
| X7 — X1|| < |lmx, 47 (@ — X1)|| < |lo — X1|| < €1, so that Proposition [5.4] entails

€1
1-0— o

2Tmin

ly — X1 < < 2¢.

Since 6 < 1/24 and €1 < Tyin/120, Propositions and yield that

2[ X1 -yl
Tmin

Hence, let nj(y) be the unit vector of Nor(y, M) N T (see Proposition [A.7). In turn, Lemma

applied at y asserts that

Z(TyM, Tl) < Z(TyM, TXlM) + Z(Tle, Tl) < +60< 1/8

By (v + 20401 (9), 20+) N ysm By, Tanin/16) 1 M) = 0.
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Since Ry < Tmin/32, B(X1, Ro) C B(Y, Tmin/16). Moreover, 7x, 7, (B(X1, Ry) " M) = (X1 —y)* +
my+r; (B(X1, Ro) N M) and (X1 —y)+ = (X7 — y)*, and hence

B, 11y (X7 + 217 (¥), 204) N, 11y (B(X1, Ro) N M) = 0. (13)
Since p < 2p4, we deduce that éX1+Tl (X1 + pni(y), p) N (X1 + V1) = 0. Now, consider
6 :=min {t > 0, Bx, 11, (X7 + (0 = )ni (1), p) N (X1 + 1) # 0},
Since for all t > €9, the point € := X7 — X5 + (p — t)nj (y) € T} satisfies
192t = (7, (y — X1) —roni (W)l =ro+p—t <70+ p—e2,

Assumption |3| of Theorem forces to have B(€y, p) N Y1 # 0, and hence 6 < &5.
By construction of 4, there exists z = mx, 47, (Xi,) € OBx,+1 (X7 +(p—0)ni(y), p) N (X1 +Ih).
We may decompose z as z = X; +anj(y) + Bv, where v is a unit vector of T3 Nspan(n;(y))*. Since

2 € OBx, 41y (XF + (p— )i (y), p) and 2 € (X1 + V1) C Bxym (X5 + 20405 (y), 2p4)° from ([L3),
we have

o 2= (X{ +(p— )i ()] = p, and thus (a — p+0)* + 5% = p;
o |lz2— (X7 + 20407 (W))[| > 2p4, and thus ( — 2p4)* + 5% > 4p7.

Therefore, after developing the above, we get that || X} — z||* = o2 + 2 satisfies

IX5 = 2[1* = 2p0 — 62 + 2a(p — ) < 2p6 + 2py0,
1X5 = 2)1> > 4pra = 2(2p10),

which yields || X — z||* < 4pd < 4pes.

Also by construction, we have By, (5, p)NY1 = 0 and |25 — mx, 41, (Xiy — X1)[| = 2% — 2| = p
As aresult, it is clear that if || X;, — X1|| < r, then Q5 € Vorggyp(XiO), which yields X1 € Jg, p.r(Xig)
and hence X; € Vg, r,. Therefore, it remains to prove that || X;, — X1|| < r to conclude the proof.
For this, simply write

[7x,4 (Xs) = Xal| < [lz = X7 + | X7 — Xal| < (e1 +2y/pe2),
and since X;, € B(X1, Ro), Proposition applied at X7 yields
| X5 — X1 <2 (e1+2¢/pe2) <.
As a result, we can conclude the proof of Lemma (and Theorem by noting that
d(z, VRopr) < [l = Xig || < [lz = Xa[[ + [ X7 = X || < 3r. O

6.3 Proof of Proposition [6.2

Without loss of generality we fix ¢ = 1, and work conditionally on X;. Let A; denote the event

fotdrd (n—

min ‘min

1/d
. 4+d
Al = A(Tle’ Tl) < Cd < fmax logn 1)> )
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which has probability larger than 1—2 (1/n)1+% from Proposition Note that A; iso(Ya,...,Y,)-
measurable, where Y; = X;1x,cp(x,,n)- We further assume that n is large enough so that we have
L(Tx,M,T1) < 1/8 on A;.

As in Lemma [5.10, we assume g := <A%) w , where A is to be fixed later. For z €
B(X1,70)NIM, denote by Oy = mz, (x—X1) —rong(z). If Q € Ty is such that B(Q, p)NY; = 0 and
oint—Q
ptro—e2

Q—0™M|| < p+rg—ey for some p > p_ and p_+rg > €9 > 0, then choosing Qy = Q-+ p—p—
x P p=p P
yields that

{ B(Q0,p-) N1 CB(Q,p) N1 =0,
190 — O < 7o+ p — €2

But as ||z — X1|| < r¢, Lemma [5.7 ensures that on the event A; we have

B(OF',r0) NT1 C g, (B(X1,5r0/2 + o) N M — X1) C mp, (B(X1, Ro) N M — Xy).
Thus, if we let

Qpe 1= {(o, Q) € By, (0,2r0) x By, (0,470)|[|Q — Ol <7+ p—¢
and BT1 (O,’l“) - WTI(B(Xl,Ro) NnNM— Xl)} ,

then for all p > p_, we have the inclusion of events

{3(1’,9) € B(Xl,T‘()) X Tl | ”Q — O;mH <rg+p—e2 and B(Q,p) Ny = (Z)} N A;

c U BOp)n =004

(O,Q)Egro,p,,sg

This union of events being infinite, we now discretize space by considering an (£5/8)-covering C(e3)
of By, (0,4rg). For all (Q,0) € Qryp_ e, We also let Q' and O’ denote the closest elements in C(e2)
to Q and O respectively. Letting r{ := r9 — e2/8 and p|, := p_ — €2/8, triangle inequality yields
that on Ay,

BTI (Ol, 7“6) C U (B(Xl, Ro) N M) — Xy,

B(&, py) N Y1 =0,

1€ = O] <6+ po — £2/2.

As a result, provided that n is large enough so that €5 < 4r(, the previous event union satisfies

U B )nn=0n4c U {B (Q,%’)myl:(i)}mAl.

QTo,p_,E2 Qm p; QOC(EQ)Q
2022
Let (0,9) € (TZO, pQ‘,%Q) be now fixed. Recalling that Y; = Xjlx,ep(x, n), and that A is
o(Ya,...,Y,)-measurable, we may write

P (100 {305 )31 o))

E _P(Am{B (Q%‘) AV =0
soae (B(0.55) i)

14 P -
A (Xiexnn(Borﬁl,%o)\B(Xl Iz,

b 0 v)]
|

(Ya,... ,Yn)ﬂ

N
=

(X - x1) - 9| > 2 | (Yz,...,Yn)>],
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Furthermore, as the family (7 (Xi))x,¢B(x,,n) 18 i.i.d conditionally on (Y2,...,Y,), Lemma
yields

. p—
E |14,P (Xi—X1) - > | (Ve,.... Y,
{Al (Xiexnt(%%%o)\B(Xhh))”%< D=0l > 1 >>]

él XIO n n—|X,NB(X1,h)|
<& |t (1407 Cdf"‘*-a(v%—gl))
— logn ek
5 et (- i )
k= mln

logn  Cyf5 logn\" !
< 07 Ca fffnn( 1) faw(r—1)

1—d

Choosing A := Cd Imax 7“05 > Cyry? , for Cy large enough, yields that

Ce)?P (40 {B (2, %*) Ny =0}) < <i>1+3 ,

for n large enough. Thus, a union bound gives the result of Proposition since we have set

2
€2 =170 (Cd opax loi) T for Cq large enough.

mll’l fl’l’llll(n 1)""0

6.4 Proof of Theorem [3.14]

The proof of Theorem is based on the following deterministic result, whose proof is deferred
to Appendix [C]

Theorem 6.6 (Estimation with Local Linear Patches). Write ro := (Tmin ATo,min)/40, let €9, a, >
0, and 0 < 6,0 <1/16. Assume that we have:

1. A point cloud X, C M such that dg(M, X,,) < e,
2. Estimated tangent spaces (T;)1<i<n such that maxi<i<n Z(Tx,M,T;) <0,
3. A subset of boundary observations Xy C X, such that

max d(z, Xp) < 6 and maxd(z, M) < ad?,
r€IM T€EXp

from which we build interior observations
X,

oM "

{XZ' e X, ’ d(XZ', Xa) > EaM/2}.

4. Estimated unit normal vectors (1;)1<i<n on Xy such that maxx,ex, [|1; — 777raM(Xi)|| <@
Let M = M(X,,, Xy, T,n) be defined as M := My, UMy, with
M= () Xi+Br(0,ey),
Xi€depy

My := U (Xi + BTi(O,éfaM)) N{z,(z — Xi,m) <0},
XiEXB
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Then if eanr < 10/2, €0 <€)y < €an /6, and max{é, a(52} < egnm/6, we have
dn(31,11) < { S0t O <ai/7o) YoM =0,
2a0” 4 8eans (0 + 0" + conr/r0)  if OM # 0.

Equipped with Theorem choose, fori € {1,...,n}, T; = T; as in Proposition n; = 1; as
in Theorem and Xy = Vg, rp- Then we define
M = M(Xp, YRy rps T 7).

Combining Proposition [3:2] Corollary [3.10] Theorem [3.7] and Lemma ensure that the require-
ments of Theorem m are satlsﬁed with probability at least 1 —4n™ 3 for n large enough, with the
following choices of parameters: 937 = 69,

1 1
. . logn \d R logn \d
0 = 3r, €0 = (C fmlnn> ) Syt = (C fmlnn> )
1
d
o T log n /_ 20 _ -1
b= (Cd f5+d (nlg;) 0= (Tmin/\T:) in)Ro’ “= (4(Tmin A TB,min)) ’

which concludes the proof of the first bound in Theorem [3.14

To get the bound in expectation, let K denote the diameter of M, and note that there exists
X;, € X, such that {X;,} C M, so that sup,c,; d(z, M) < K, almost surely. Conversely, since
M c M+ B(0,eg9m V €yy), we deduce that sup,_y, d(z, M) < K for n large enough. Finally,
noticing that for n large enough,

2
2+d/2 a 5 2
_2 logn logn d+1
An~d) K < Cq(Tmin A T min) o /\( has ,
( ) e m iitld/2 fminTICIllinn fr5nin fmin(Tmin A T@,min)dn

the result follows.

6.5 Proof of the Minimax Lower Bounds

The minimax lower bounds (Theorems and |3.15)) will be proven using the standard Bayesian
arguments relying on hypotheses comparison method. This is usually referred to as Le Cam’s
method. It involves the total variation distance, for which we recall a definition.

Definition 6.7 (Total Variation). For any two Borel probability distributions Py, P; over RP, the
total variation between them is defined as

1
V(R P) = [ 1= ol

where p is a o-finite measure dominating Py and P;, with respective densities fy and f;.

In the context of manifold and boundary estimation for the Hausdorff distance dy, Le Cam’s
lemma [43] writes as follows.

Lemma 6.8. Fiz an integer n > 1 and write P = Pfrﬁ,m,mm (fmin, fmax)-

(i) Then for all Py, Py € P with respective supports My and M,

. ~ 1 n
inf sup Epn [dH(M, M)} > Sdu(Mo, M) (1= TV(Po, P))"
M PecPpP

where the infimum ranges among all the estimators M= M(Xl, e X))
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(ii) If in addition, OMy and OM; are non-empty,

A 1
inf sup Epn [yt (OM, B) Loarzo| > 5du(9Mo, OM) (1 = TV(Py, )",
B PeP 2
where the infimum ranges among all the estimators B = B(Xl, e Xn).

Proof of Lemmal6.8 Apply [43, Lemma 1] with loss function dy, model P, parameters of in-
terest §(P) = Supp(P) and 6(P) = O(Supp(P)) respectively, and conclude with the bound
(1—TV(F, PP) > (1 - TV(Py, Py))". 0

Aiming at applying Lemma we shall first describe how to construct hypotheses Py and P;
that belong to the models, close in total variation distance but with supports (or boundary) far
away in Hausdorff distance.

6.5.1 Hypotheses with Empty Boundary

To do so in the boundariless case 75 min = 00, we will use a structural stability result of the family
of model. We recall that [|-[|,, denotes the operator norm, that is ||A4||,, = max),=; [|Av]|| for all

A € RP*D,

Proposition 6.9 (Reach Stability). Let M € MED and ® : RP — RP be a C? map such

Tmin,79,min
that lim,| o0 [|@(2)|| = 00. Assume that supyerp [Ip — do®||,, < 1/10 . Then ® is a global
diffeomorphism, and the image ®(M) of M by ® satisfies:
e 0D(M)=P(OM),
o If sup,crp Hd%@”op <1/ (27min); then To(ar) = Tmin/2,

o If sup,crp Hd%CbHOp <1/ (279min), then Too(ar) > To,min/2-

d,D }

The proof is to be found in Appendix[D.1} Essentially, the class { M%0 -, . iy 18 stable

up to C%-diffeomorphism, with explicit bounds on the parameters. From there, we consider P, over
a boundariless manifold M, € Mg;gimoo, and P; over M; that is obtained by bumping M; locally
(see Figure[6). The method is similar to that of [3, Lemma 5], with an explicit dependency in the
parameters of the model.

and c/7d, <

min

Proposition 6.10 (Hypotheses with Empty Boundary). Assume that fmin < cq/7%
fiax, for some small enough cq, (¢;)™! > 0.

Ifd < D — 1, then for all n > Cy/(fminT%,,), there exist Py, Py € Pﬁr}ﬁ,oo(fmin,fmax) with
boundariless supports My and My such that

TV(Py, Py) <

. 1 2/d
— and dH(Mo,Ml) > C&Tmin () :
n n

fminTr(Iilin

See Appendix for the construction of these hypotheses. We are now in position to prove
Theorem [3.15|[(Boundaryless)|

Proof of Theorem (3.15|(Boundaryless). Let P := Pgrﬁ,oo(fmm,fmax) and ng = [Cd/(fmmﬁiinﬂ,
where Cy > 0 is the constant of Proposition [6.10
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My = 5 "
Figure 6: Boundariless supports My and M; of Proposition for d = 1 and
D = 2. Here, the total variation between the associated uniform distributions is of order

TV(Py, P1) < fuinHUMoAM;) =< fuind® and Hausdorff distance dy(Mo, M) = 7. The reach
bound forces the bump to have height 7 < 62 /7, so that optimal parameter choices yield:

1 1/d 52 1 2/d
= ( ) and 7 =< = Tmin (d> .
Jminm Tmin fmin'rminn

As TV(Py, P1) <1, this can only be done when fuind? <1, ie. n > 1/(fmin7'r‘flin).

e If n > ng, applying Lemma with hypotheses Py and P; of Proposition yields

R 1 1 2/d 1\ "
inf sup Epn |dig(M, M) | > 5 Clirin <d> (1 = >
M PeP 2 fminTminn

) 2/d
2 Cngin 1A <W> .
min “min

e Otherwise, if n < ng, note that since inf ;; suppcp Epn [dH (M , M )} is a non-increasing se-

quence, the previous point yields

inf sup Epn [dH (M, M)} > inf sup Epno [dH(Mv M)}

M PeP M PepP
1 2/d
e fminTI(IilinnO
) ) 1 2/d
Z CcliTmin Z Céﬂ-min 1A (d) )
fminTminn
which concludes the proof. ]

6.5.2 Convex Hypotheses (with Boundary)

Similarly to the previous section, we shall use a stability result under diffeomorphisms in the
convex case Tyin = o0. Unfortunately, Proposition only provides convexity of ®(M) (i.e.
To(ay) = oc) for diffeomorphisms @ that are affine maps, which does not allow enough flexibility.
Beyond affine maps, the following result allows to quantify how much one may bump a strictly
convex full dimensional domain while keeping it convex.

Proposition 6.11 (Stability of Strict Convexity). Let C C R? be a compact domain with C # 0,
that has a C? boundary OC. Assume that:

e for allz € OC, OC \ {x} is connected;
e forallz,y € C, d(y — x, T,0C) > Ally — z||*, for some A > 0.
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Let ® : R — R? be a C% map such that limyjz) o0 |@(2)]| = o0, [[1g — d®||,, < 1/10 and Hd2<I>H0p <
A, then C and ®(C) are conver.

See Appendix for the proof. Equipped with Propositions and we build hypotheses
as shown in Figure[7] The formal statement goes as follows.

Proposition 6.12 (Convex Hypotheses). Assume that fuin < Cd/Tg’min and c&/Tgmin < fmax for
some small enough cq, (cj))™! > 0.

Then for alln > Cd/(fminTg,min); there exist Py, P| € Pé@?a,mm(fmin, fmax) with convex supports
My and My such that

2/(d+1)
1 1
TV(PQ,Pl) S — and dH(aMo,aMl) = dH(M(),Ml) Z C&T&min <d> .
n fminT,a’minn
M, .
aM() )

Figure 7: Convex supports My and M of Proposition for d = D = 2. Here, the total variation
between the associated uniform distributions is of order TV(Py, Pi) = fummHAU(MoAM;) =
fmind? 17 and Hausdorff distance dig (Mo, M) = du(0Mp,0M;) = n. The reach bound forces the
bump to have height n < §2/ To,min, SO that optimal parameter choices yield:

3 1 1/(d+1) - 52 ~ 1 2/(d+1)
o=x|——m and 7 =< = TH,min I E— .

7_(9,min.]cminn TH,min fminT(’),min

As TV(Py, P;) < 1, this can only be done when fu,;,09 'n <1,ie n> 1/(fmin7'gmin)-

See Appendix for the construction of these hypotheses. We are finally in position to prove

Theorem and Theorem (Convex)|

Proofs of Theorem[3.13 and Theorem [3.15[(Convez)] The proof follows the lines of that of Theo-
rem 3.15||(Boundaryless)| mutatis mutandis. That is, by setting P := Pé@?aymin( fmin, fmax), N0 =

[Ca/(fminT§ pin) | Where Cq > 0 is the constant of Proposition and applying Lemma
and with the hypotheses Py and P; of Proposition O

A Geometric Properties of Manifolds with Boundary

A.1 Geodesics and Tangent Space Variations

In addition to the Euclidean structure induced by R” on M C RP, we can also endow M and oM
with their intrinsic geodesic distances dj; and dgps respectively. To cover both cases at once, let
S € {M,0M}. Given aC! curve c: [a,b] — S, the length of ¢ is defined as Length(c) = f; I/ (t)]| dt.
Given p,q € S belonging to the same connected component of S, there always exists a path v,
of minimal length joining p and ¢ [I6, Proposition 2.5.19]. Such a curve 7y,_, is called geodesic,
and the geodesic distance between p and ¢ is given by dg(p,q) = Length(v,—4). If  and y stand
in different connected components of S, then dg(z,y) = cc.
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A geodesic 7 such that ||7/(¢)|| = 1 for all ¢ is called arc-length parametrized. Unless stated oth-
erwise, we always assume that geodesics are parametrized by arc-length. If S has empty boundary,
then for all p € S and all unit vectors v € 7},S, we denote by v, , the unique arc-length parametrized
geodesic of S such that ,,(0) = p and ~;, ,(0) = v [24, Chap. 7, Theorem 2.8]. The exponential
map is then defined as expg (vt) = Ypo(t). Note that if in addition S is compact, expg 1,8 = S
is defined globally on 7},S [16, Theorem 2.5.28]. We let Bg(p, s) denote the closed geodesic ball of
center p € S and of radius s > 0.

Although they might differ drastically at long range, geodesic and Euclidean distances are good
approximations of one another when evaluated between close enough points. The following result
quantifies this intuition, and implies Lemma, [5.1

Proposition A.1. Let S C RP have positive reach s > 0, and z,y € S be such that ||y — z|| < 75.
Then,

ly — =]
ly =zl < ds(z,y) < {1+ ly — ]|
2072

Proof of Proposition[A.1. We clearly have ||y — z|| < ds(z,y), and on the other hand, [I3, Lemma
3] yields

2
I

ds(z,y) < 275 arcsin (Hyz_m”> < (1 + Hy_z) ly — =,
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where the last inequality follows uses that arcsint < t(1 4 t2/5) for all 0 < ¢ < 1/2. O

Next, we ensure that the angle between tangent spaces can be bounded in terms of geodesic
distances between base points. In the empty boundary case, this result is well known, and can be
shown using via parallel transportation of tangent vectors (see the proof of [3, Lemma A.1]). In
the general case, the tangent space stability property writes as follows.

Proposition 5.2 (Tangent Space Stability). Let M € Mﬁ;ﬁ,,m,m. Then, for xz,y € M,
L(TyM, TyM) < dm(x,y)/Tm.
If OM # 0, then for all p,q € OM,
Z(TyOM, T,0M) < dons(p, q)/Tonr-

Proof of Proposition[5.3. If OM = (), the first claim follows from [I3, Lemma 6].

Assume that OM # (). From Proposition OM is a C?-submanifold without boundary. Then,
the second statement also directly follows from [I3, Lemma 6]. For the first claim, the key technical
point is to handle geodesics that would hit the boundary.

To do this we define a push-inwards operator that will allow to consider path in the interior of
M only. First, an elementary results on an atlas of M is needed.

Lemma A.2. Let Uy,...,Ug be charts of M that cover OM. Then there exists ro > 0 such that

VpedM 3Jje{l,....k} B(p,ro)NM CU;nM.
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We now consider a smooth kernel K : Ry — [0, 1] such that

K(2) 1 ifx <7gp/4
€Tr) =
0 ifx>7on/2

and we define the vector field V on M by

_ ) K [d(p, 0M)]mr,m (Vp (d(+,0M))) if d(p, 0M) < (ro A Tom)/2,
Vip) = 0 otherwise.

Note that if ¢ € OM, V4d(-,0M) = —ng, where 7, is the unit outward-pointing normal vector at
q. By construction, V is a C! tangent vector field on M. We now examine its flow.

Lemma A.3. For all p € M, the flow of V starting from p is defined globally on R, .

Equipped with Lemma [A-3] we may define our push-inwards operator as follows:

ge: M — M
p—g(pe)

where g(p,t) denotes the flow of V at time ¢ > 0 starting from p € M. The following properties of
ge will shortly be of technical interest.

Lemma A.4. For allp e M and e > 0,
lg=(p) — pl| <&, 9:(p) ¢ OM, and ||dpg. — Idr,arlop < Kee'e,

where K = SUDpe M |dpV lop-

We can now finish the proof of the first result in Proposition .2l We let p,q € M, and v a
unit-speed curve joining p and ¢ whith length dys(p,q). We define ~. as the push-inwards of ~,
that is

Ve(t) = ge(7(2)),

for all t € [0,da(p,q)]. As ge(p) ¢ OM for all p € M (Lemma |A.4), parallel transportation of
tangent vectors in the interior Int M of M (see for instance the proof of [3, Lemma A.1]) yields

that I
L(Tp. M, Ty M) < (%);
™

where p. = g:(p), ¢ = g=(q), and L(~.) denotes the length of .. But from Lemma again,

das (p,q) , das (p,q) , K
L(v) = /0 In.(6)lldt = /0 I 9: [ ®)] 1t < (1 + KeeX)da(p, q)-

L(Ty. a1, TyM) < Keel¢, and £(T,. M, T,M) < Kee®¢. As a result, triangle inequality yields

d
L(TyM, TyM) < 2Kee"* + (1+ KseKE)M’

™
so that the result follows after letting e — 0. O

We finally prove the intermediate results of Lemmas to that we just used to derive
Proposition
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Proof of Lemma[A.3 For all p € OM, set

r(p) :=sup{r>0]3je{1,....k},B(p,r) C U;}.

Note that since (U;)1<i<k is an open covering of dM we have r(p) > 0. Consider

= inf
To pgéMr(p),

which clearly satisfies the announced statement by definition. Suppose, for contradiction, that
ro = 0. Then there would exist a sequence (pp)neny € (OM)N such that r(p,) — 0. As OM is
compact, we may assume (up to extraction) that p, — p € OM as n — +oo. As a result, for n
large enough, we have IOB(pn, r(pn)) C 103(p, r(p)) C Uj, for some jo, which is a contradiction. O

Proof of Lemma[A.3 We distinguish cases according to the value of d(p, 9M) with respect to the
chart radius 79 of Lemma

If d(p,OM) > 1pr/2, then V(p) = 0 and the flow of V starting from p is p(¢) = p for all ¢ > 0.

If 70/2 < d(p, dM) < Top7/2, then we may find r; € (0,79/2) such that B(p, 1) N M is diffeomor-
phic to an open subset of R?. Using Cauchy-Lipschitz theorem in this chart space, we get that
there exists g > 0 such that the flow of V starting from p is well-defined at least on [0, ¢p).

If d(p,0M) < ro/2, denote by ¢ = moar(p) and let j € {1,...,k} be such that B(g, o) C Uj,
where ¥ : Uj N M — (R¥ x Ry) Nap;(U;) is a chart of M. Without loss of generality we may
assume that d,(1;)(n,) = —eq, where €4 is the d-th vector of the canonical basis of R%.

Let r1 > 0 be such that V; = ]%(wj(p),rl) N(RII xRy) C (R x Ry)Nep;(U;), and denote by
Vo the vectoor field on Vi defined by di; [V]. Then V3 can be extended into a Lipschitz vector
field V3 on B(v(p),r1), by choosing V3(x1,...,2q) = V3(z1,...,0) if z4 <O0.

Then, the Cauchy-Lipschitz theorem ensures that there exists ¢y such that the flow of V3 starting
from ;(p) is defined on | — to,to[. Let g2(¢,v;(p)) denote this flow. According to Lemma
it holds (V3(g2(0,%;(p))),eq) = 1. Thus, there exists ¢; > 0 such that for all ¢t € [0,],
g2(t,p) € EQ;(”L/J]‘ (p),r1) N (R¥1 x Ry), and therefore the flow of V3 starting from ;(p) stays in
103(% (p),r1) N (R x R;). When pushed back, this means that the flow of V starting from p
stays in the chart (Uj,;).

In summary, we have shown that for all p € M there exists ¢, > 0 such that the flow g(¢,p) of

V starting from p is well-defined for ¢ € [0,¢,]. Since g(-,p) goes to the compact M and satisfies
g(t1 + ta,p) = g(t2,9(t1,p)), we deduce that for all p € M, g(-,p) is well-defined on R. O

Proof of Lemma[A.4) Since ||[V]| < 1, we directly get that

loct) ol = || [ Veatotnae] < [ vt ar <

To obtain the second point, write d(g-(p), 0M) — d(p,0M) as

/0 T (V(9(p.1)). V(- OM)) dt

= d(p) 8M) + /0 K [d(g(p7 t)a aM)] <7rTg(p7t)M(vg(p,t)d('7 8M))’ vg(p,t)d('v aM)> di.

Thus,
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o If p ¢ OM, then d(g-(p),0M) > d(p,0M) > 0.

o If p € OM, then 7r,n (Vg(p’o)d(-,BM)) = —1n)p. Since V is continuous, there exists ¢y such
that for all t < tg, we have

<V(g(p,t)),vg(p,t)d(-,aM» > 1/2 > 0.

As a result, we also get that d(g-(p), 0M) > 0 for all £ > 0.

For the third point, we write K := sup,¢ s [|dpVlop < 00, since V is C! and M compact. Let
v € T,M be a unit vector, and v be a path such that v(0) = p and +/(0) = v. For a fixed ¢ and
u < ¢, consider f(u) := |lg(v(t),u) — g(p,u)||*. Then

| ()] =2 [{g(v(t),w) — g(p,w), V(g((t),u) — V(g(p,u)))|
< 2K f(u).

Since f(0) = ||y(t) — p||?, we deduce that f(u) < ||7(t) — p||?e2E¥, so that

lg(v(t),u) — g(p, w)|| < [[7(t) — plle™™.

e 560 =200 = [ Vigtlt)w)au,
we have
9e(7(8)) — ge(p) = tv + o(t) + /05 (V(g(7(t),w)) — V(g(p,u))) du.
Thus
‘ ge(’y(t))t— 9:) || < o(1) + Kece | (t) - pll/t.
Letting t — 0, we get that |[dyg: — Idr,ar|| < Kee**, since |y(t) — pl|/t = o] = 1. -

The two following results guarantee that for all p € M, there exists a ball with large enough
radius with center close to p that does not hit OM.

Lemma A.5. Assume that OM # (. Let ¢ € OM and 0 < t < T AN T3, Then there exists
pt € Int(M) such that

L] Hpt—qH € [t—4t2/TM,t+4t2/TM],
. B(pt,t—4t2/TM) NOM = ().

Proof of Lemma[A.3 Let n, be the outward-pointing unit normal vector of M at ¢. Denote by
gt = q — tng, and py == mpr(q). Note that d(ge, M) <t < 7p, so that p; is well-defined.

Let us first prove that p; ¢ OM. For this, if we assume that p, € OM, then p; = morr(q:) and,
since (¢: — q) € NgOM with |l¢: — q|| < Ton, pr = mom (@) = g. But as p; = ¢, we get mar(q:) = g,
with ||¢: — ¢|| < Tas. Thus, we conclude that ¢; — ¢ = —tn, € Nor(q, M), which is a contradiction.
Therefore, we do have p; ¢ OM for 0 <t < Tar A Ton-

Now, assume that ¢ < 7 A M. For some unit vector uy, € (T, M), it holds

Hpt - Qt|| = <pt - qt7upt> .



Since ||q: — ¢l = t < 7ar/2, [26, Theorem 4.8 (8)] entails that ||p: — ¢l = ||[mar(@) — mar(q)||
Tt/ (Tar —t) < 2t. From Proposition we deduce that (T, M+, T,M~*) = £(Tp,M,T,M)
4t/7yr. Hence, there exists uq € (T, M)~ such that [Jug — up,|| < 4t/7ar. It follows that

VARIVAN

4¢
ot — @l < (Pt — @i uq) + — |lpe — @l »
™

and thus, since n, € T,M and u, € (T,M)* C Nor(gq, M), we can write

1 4¢
5”%-%” < 1——)lpt — &l
™

<pt — a1, uq)
= (pt — q — tng, ug)
= (pt — q, uq)
2

< lpe — ql|
- 2Tm

22
S )

T™

where the last but one inequality follows from [26, Theorem 4.18]. As |¢: —¢|| = t, triangle

inequality then yields ||p: — ¢q|| € [t — %,t + %] At last, since n, € (T,0M)* and t < Topr,
B(q,t) N OM = . Noting that B(p;,t — %) C B(g,t) concludes the proof. O

Corollary A.6. For all v < F4 N3 and v € M, there exists ' € B(x,3r/4) " M such that
B(z',r/4) NOM = 0.

Proof of Corollary[A.6 Let us write A := d(z,dM), with the convention d(z,0) = +oco. If A >
r/2, then taking 2’ := z gives the result directly. We shall now assume that A < r/2. Denote by
q :=mam(x) and g := q — tn,, where t > 0 and 7, is the unit outward-pointing vector of M at q.

Write v := Tpan(g,an)(* — ). Since x —q € (T,0M)* and that mr,omyL (Tan(g, M)) = R_nq,
(see Proposition , we can write v = —{n, for some £ > 0. Thus, we may decompose

T —q=—{ng+u,

with u € Nor(q, M) and ||u|| = d(z — ¢, Tan(q, M)) < A%/(27y), from [26, Theorem 4.18]. From
this decomposition, reverse triangle inequality yields

10— Al =[|=tng|l = Iz — q| |
< ]
< A%/(21y).

We hence deduce that ||z — qal| < [0 — A| + |Jul] < A2%/7y.
Now, pick @' := mar(gatr/2). It is immediate that [|gai,/2 — gall = r/2. Then, following the
proof of Lemma since A + § < 321 < 5L, it holds

4(A +1/2)?

/
— <
||QA+r/2 || < p—
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These bounds altogether lead to

12" = 2l < [|2" = qasrsol| + [[2atr/2 — aal| + llaa — |l

4A+5)?2 A2
<2 4o =
™ 2 Ty
(11 1Y
=82 18) =1
A . , e ABFD?
t last, since A+ 5 < 79pr/2 and (A + 5) — —-2= > 5(1—1/6) > r/4, we have
. 4(A 4+ 1)
B (« T)m@McB(;c', (a+7) —(+2)> noM
2 ™
cf%(qu,AJrg) NoM
=0,
which concludes the proof. O

Proposition 5.3 (Normal Vector Stability). Let M € Mﬁfmmymm. Then for all p,q € OM such
that ||p — ql| < (7ar A Tanr) /32, we have

11p = nqll < 9lp — all/(7ar A Ton)-

Proof of Proposition[5.3. Let p,q € OM, with ||p — q|| = £(7ar A Tonr), where k < 1/32. According
to Proposition 5.2 and Proposition [A.1] (applied with M), there exists u € T,M such that ||, —u| <
2|lp — ql|/ma < 2k. Decompose u as

U = Qg + Vg,

where vy, € T,0M. We may bound ||v,|| as follows. Let w, € T,0M with ||wg|| =1 be fixed. Using
Proposition and Proposition again (but applied with OM), let w, € T,0M be such that
|lwp — wqll < 2|lp—qll/Tom < 26. We may write

(wg, vg) = (wg,u)
= (wp + (wg — wp),1p + (v —17p))
_ 4+ mlp—d
- ™M N\ ToMm
so that |lvgl| < 4(1+&)||p — qll/(Tar A Tonr)-
Next, let us prove that o > 0 by contradiction. For this, assume that o < 0, and let Ay =
(Tar A Toar)/8. Proceeding as in the proof of Lemma yields that
2 A2
4o AG < ﬁ.
™ 2
On the other hand, since 1, € Nor(p, M), [26, Theorem 4.8 (12)] asserts that B(p+ A7, Ag) M =
(). But triangle inequality allows to write

d(g+ algng, M) <

]j%(q + along, Ao(1 — 10k — 4k(k+ 1)) N M
CB(g+ (p—q) + Do(mp — u) + Agang + Agvg, Ag) N M
= Eog(p + A077p> Ao) NnM
= (),
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so that we get to
d(qg + along, M) > (1 — 10k — 4k(k + 1)) Ao > Ag/2,
which is the desired contradiction. Thus, we have proven that o > 0. Next, note that

L= {lnpll < llnp — ull + [|u]
< a+ lug]l + 2,

so that &« > 1 — 2k — 4k(1 + k) > 1/2. Further, we may write

(1 —)? +2a (1 = (np, 1)) = [ — amy|?
2
< ([l = wll + [lvgll)

24+4(1+r)\?
<(()|m—ﬂﬁ
™ N\ ToM

that leads to

2+4(1+ k) ? HP—QHQ
2
lImp — gl ( (11ps1q)) ( ™ A Tou > o

2+4(1+k)\?
32(()np—mﬁ
™ N\ Tom

hence the result. I

A.2 Projections and Normals

Proposition 5.4 (Tangent and Normal Components of Increments). Let 2,y € M, and T € GP¢
be such that Z(T,M,T) < 0. Write (x —y)T and (x — y)* for the orthogonal projection of x —y
onto T and T+ respectively. Then,

Ity =) < lly = =) (0 + lly — ]l /(27min)) ,

Ity =)l > [ly — 2 (1 =0 = lly — ]| /(27min)) -

Proof of Proposition[5.7. Let (y — x)T= and (y — 2)= be the orthogonal projections of y — z onto
T, M and (T, M)* respectively. Since /(T,M,T) < 6, we have

=2t < (=2 + (- 2™

< |-t +ollw -
_ 2
<2y gy —a,

where the last line comes from [26], Theorem 4.18]. This proves the first inequality. The second one
follows from the first one and triangle inequality. O

We now move to the proof of Proposition [5.5] which we split into two intermediate results.

Proposition 5.5 (Normals from Tangent Spaces). Letx € OM, and T € GP¢ such that Z(T,M,T) <
1. Then T N Nor(xz, M) contains a unique unit vector n, and it satisfies

In — na|l < V24(T, M, T).
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Proof of Proposition[5.5 This is a straightforward consequence of Proposition [A.7] and Proposi-
tion [A.8 O

The following two results imply Proposition[5.5 First, Proposition[A.7 ensures that estimates of
tangent spaces at boundary points contain a normal vector to dM. Second, Proposition [A.§ ensures
that this normal vector is close to the unit outward-pointing vector at the considered boundary
point.

Proposition A.7. Assume that OM # (. Let x € OM and T € G be such that /(T M,T) < 1.
Then T'N Nor(z, M) is a half-line: it contains a unique unit vector 1.

Furthermore, if y € OM and (y — )" denotes the orthogonal projection of (y — x) onto span(n),
we have
ly — ||

2Tom

Proof of Proposition[A.7. Since Z(T,M,T) < 1, for all z € RP\ {0},

Iy — )" <

|77 + 7, 0 0)(2)|| = 12 = (77 — 7, 00) ()| > (1 = Z(Te M, T)) |2 > 0.

Hence, mp + T, ML has full rank, which means that RP = T+ T, M+ c T + N, M. Furthermore,
dim(T") + dim(N,M) = D+ 1 entails that TN N, M = Ru for some u # 0. We may thus decompose
uas u = ul +u” + ule where ulv = Tt (1), ute = Tyt (w), and u = 7N, e, (w).
Since u € NyM, we have ul* = 0, and the angle bound Z(T,M,T) < 1 yields that [u"=| >
|lul|(1 — £Z(TxM,T)) > 0. As a result, n := sign({u,n;))u provides us with the announced unique
unit n € TN Nor(z, M).

Now, the fact that n € Nor(x, M) C (T,0M)* allows to write

Iy —2)"ll = [ {y — 2, m) |
= | <7T(T18M)l(y - 56)7"7> |

< HT‘-(TxaM)J-(y - x)H

_ly—al?

= 2Tom
where the last inequality follows from the reach condition on M and [26, Theorem 4.18]. O
Proposition A.8. Assume that OM # (. Let x € OM and T € GP4 be such that Z(T,M,T) <

9 < 1. Write n for the unit vector of Nor(xz, M)NT (Proposition[A.7). Then,
I — 2|l < v/26.

Proof of Proposition[A.8. Since n € Nor(z, M), n= = 0. Furthermore, the angle condition yields
that ||nt=|| < 6||n|. We may thus decompose 7 = (1,7,) 1, + fu for some unit v € (n,)* and
|8] < 0. In particular, | (n,7,)| > V1 —602. But since n € Nor(z, M), (n,n,) > 0, so that in fact,
(n,mz) > V1 —62. Finally, as  and 7, are both unit vectors, we get

1n =12l = V23/1T = (12 < V21— V162 < V/26.

Next, we state a simple lemma that will be useful for describing boundary balls.
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Lemma A.9. Assume that OM # (. Let r < Tmin, * € OM and u € N,OM be such that (n,,u) > 0.
Then B(xz + ru,r) N M = {z}

Proof of Lemma[A.9 As u € N,OM and (n,,u) > 0, Proposition yields that v € Nor(x, M),
so that [26, Theorem 4.8 (12)] asserts that x is the unique projection of x 4+ ru onto M. O

The following result provides a quantitative bound on the metric distortion induced by project-
ing M locally onto (approximate) tangent spaces.

Proposition A.10. Let x+ € M and T € G be such that Z(T,M,T) < 6. Then, for all
Y,z € M NB(z, Tmin/4), we have

(6/10 = 0) [ly — 2] < [l7r(y) — 7o (2)[| < [ly — 2|
In particular, if 0 < 1/2, then wp : M N B(x, Tmin/4) = 7p(M NB(x, Tmin/4)) is a homeomorphism.

Proof of Proposition[A.10. The right hand side inequality is straightforward, since 7p is an or-
thogonal projection. For the other inequality, combine Proposition and Proposition to
get

Z(T, T,M) < Z(T,TyM) + £(T,M, T, M)
dM(l’, y)

Tmin

2 p—
§9+<Huy asH)Hy z|

2
20755, Tmin

<6+

<o+ +1/320 =2l

Tmin

Thus, Proposition [5.4] applied at y and z entails

Irr(v) = mr(a)] 2 (1= 40+ 1+ 1/320) Iy = ol i} = 2L 1y 2

2 min

> (6/10=0) [ly — 2|,
which concludes the proof. O

For ¢ € M, the following result characterizes the boundary of =p(M N B(q,r) — q), when seen
as a subset of T = R%,

Lemma A.11. Let 0 < r < Tin/16. Then for all ¢ € M and T € GP¢ such that L(TyM,T) <
0 <1/8,
Omgrr (M NB(g,7)) = mgrr (OM NB(gq, 7)) U mgrr (M NOB(g,7)).

Proof of Lemma[A.11 As preliminary remarks, first note that since M N B(g,r) is compact and
Tg+T is continuous, we have

7o (M N B(q,1) = mger(M N B(g,7)).

Furthermore, for all p € B(q,r), Proposition and Lemma yield that Z(T,M,T) < 1/4. We
recall that Int(M) = M \ oM.
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Step 1: First, we prove that g7 (Int(M) N B(g, 7)) C (mg4+r(Blg,m) N M))°.
For this, let p € Int(M) N B(g, r) be fixed. Let pyr € (0, min {r — ||p — q||,d(p, ®M)}) (with the
convention d(p, () = +00), so that in particular, M NB(p, pas) C Int(M) N B(g, r). According to
[3, Lemma 1], there exists 0 < ra < 737/8 such that

exp, ]iD)TpM(O, r9) — B(p, par) N Int(M)

is a diffeomorphism onto its image, and can be decomposed as exp,(v) = p + v + Np(v), with
Np(0) =0, doNp = 0, [|dyNp|lop < 5/(47ar). We now consider the map g defined as

g: Br(0,73) = B(p, par) N Int(M)
u— expp(ﬂTpM(u))

Note that, since Z(T,M,T) < 1/4, 7,0z : Br(0,r2) — ]éTpM(O,rg) is a diffeomorphism onto its
image that satisfies ||u — w7, a7 (u)|| < [|ul|/4 for all u € Br(0, 7). In particular, 7T, M is injective
on T, and hence so is g on its domain. As a result, for all uq,us € ET(O, r9),

9(u1) = g(uz) = (ur —u2) + (7, ar(v1 — ug) — (U1 — u2))

+ Np(mr, 0 (u1)) = Np(mr, e (u2))-

We may thus bound

1
lg(u1) — g(uz) — (u1 —u2)|| < ZHul — Uzl + 572/ (4Tmin) |u1 — uz|
< s —
—||Uu1 — U .
>~ 2 1 2

Let now f : Bp(0,r2) — Br(0, pas) be defined as f(-) := g1 © (9(+) — p). By composition and
Proposition f is clearly injective. Moreover, for all uy,us € By(0,72),

1 3
§Hu1 —uz|| < [[f(u1) — fluz)]] < §Hu1 — ual,

since mr(up — 7{,2) = uy —ug and |77 (g(u1) — g(u2) — (u1 — u2)) || < ||lur — we||/2. Thus, f :
Br(0,72) = f(Br(0,72)) is @ homeomorphism, which ensures that f(Br(0,72)) is an open subset
of T that contains 0 = f(0). But by construction,

grr(p) + f(Br(0,72)) C mgyr(B(p, par) N Int(M)),
which shows that mo17(p) € (mg1r(B(g,7) N M))°, and concludes the first step.
Step 2: Next, we show that no element of 7y 7((0MNB(g, r))U(MNS(g,r))) can be in (mq+7(B(g, ) N M))°.

— IfOM # 0, let p € OM NB(q,r) be fixed. Striving for a contradiction, assume that 7,17 (p) €
g+ (M NB(q,r))°. In particular, for § > 0 small enough, mg 7 (p+6n,) € mgrr(B(g,r) N M).
Without loss of generality, we shall pick ¢ € (0, Tiin/16) small enough so that p+dn, € B(q, 7).
Then there exists p’ € B(g,r) N M such that mg7(p') = meyr(p + 01p), or equivalently,
mr(p' —p) = d0mp(np). Consider v := p’ — p — dn,. By construction, mr(v) = 0, so that v € T+,
and its norm is at most

[oll < [[p" = p| + 160y ]| < 2r + 6 < 37nin/8.

Furthermore, v # 0, as otherwise this would mean that p+dn, = p’ € B(¢q,r) "M C M, which
is impossible since d(p + dnp, M) = 6 from [26, Theorem 4.8 (12)]. We may now decompose v
as v = v1 + v, with vy € T, M and vy € TpML.
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* On one hand, the angle bound Z(T,T,M) < 1/4 and v € T,M~ yield [Jv1] < ||v]|/4-

« Furthermore, § < Tynin/16 ensures that [|va| < ||v]| < 37Tmin/8 < Tar — 6. Let us now consider
s:=p+0n, +v2. As o, +v2 € Nor(p, M) and ||dn, + v2|| < Tar, [26, Theorem 4.8 (12)]
asserts that my/(s) = p and d(s, M) = ||dn, + v2||. But on the other hand, s +v; = p' € M,
so clearly ||v1|| > d(s, M). Therefore,

lor® = [|6mp + w2
= 6% + [l
=62+ [[v]|* = flun |I”

> [|ol* = floal?,

and thus |Jvq|| > |Jv]|/V2.
The last two items contradicting each other, we finally obtain that p ¢ w4 r(M N B(g,7))°.

— Let now p € 0B(q,r) N M be fixed. Striving for a contradiction, assume that m,17(p) €
g+ (MNB(g,7))°. In particular, for all § < 1 small enough, mg17(p+0(p—q)) € mg+7(B(g,7)N
M). Then there exists v € T such that p+8(p—q)+v € MNB(g, 7). Denote by vy = T, s (V)
Since Z(T,M,T) < 1/4, we have ||v|| > 3||vz||/4. On the other hand, since p+3(¢—p)+v € M,
we have

177,002 (6(p = @) +v)|| = d((p + 8(p — q) +v) — p, T,M)

_ 16— ) +f?
- 2T
< 8%r? + ||UH2’
™
from [26, Theorem 4.18]. And noting that
7,00 00 = 0) + )| = 700 (0 = @) + 22
2 vzl = 6d(q — p, Ty M)
vl or?
> T T a9
- 4 2T
we obtain
4 (o2 8% 4 ||| ort 8% 4 ||v|?
ol < 2 (22 DAY oo (0 Sy, (14)
3\ 27y ™ 210 T™

On the other hand, since p + d(p — q) +v € B(gq,r), we have ||(1+6)(p — q) +v||*> < r?, and
therefore
(20 +6%)r2 + ||ol® = 2(L + O)rllv]| < 0,

But according to , this last inequality yields

(20 + (52)7"2 + ||vH2 —2(1+9)r|v]|

2Tm ™

:Hmﬁ(1—q1+®;;>+ﬂ<@5+$)—q1+®{‘W-+“P}>,

2Tm ™

2 2,..2 2
z@mm%ﬁ+ww—quy<& +5T+M”)



42

and since r < 757/16 and § € (0, 1], we finally get

2
1 1
(26 + 6%)r2 + ||lv||* = 2(1 + &)r||v|| > HUQ” + r? <(25 +6%) —6(1+90) {8 + 4}>
S [Ells 25
= 2

>0

which is the desired contradiction. That is, we have mg17(p) ¢ mgrr(M N B(g,r))°, as an-
nounced.

Conclusion: Putting everything together, we deduce that

Tq+7((OM NB(q,7)) U (M N 9B(q,7))) = 7g1r(M NB(g,7) \ mgr(M NB(g,7))°
= 87TQ+T(M N B(er))

which is the announced result.

A.3 Structure of Balls on Manifolds with Boundary

Using Lemma we are now able to derive the two key results on the structure of 77 (B(z, Ry) —
x). This structure depends on whether z is either near or far from dM. We start with the case
where z is an interior point.

Lemma 5.6 (Far-Boundary Balls). Let R < Tuin/16, € M, and T € G be such that
L(TyM,T) <0 <1/8. If d(z,0M) > 0 (with the convention d(x,0) = +00), then

By <0, % min {R, d(z, 8M)}> C np(B(z, B) N M — 1),

Proof of Lemmal[5.6. Let 2 be in B (z,4min {R,d(z,0M)} /5) N (z + T), and assume for contra-
diction that 2’ ¢ m,47(B(xz, R) N M). Then by connectedness, there exists z € [z, 2] such that
z € Omyyr(B(z, R) N M).

e Note that, since B (2,4min {R, d(x,dM)} /5) N (x + T) is convex and contains {z, z'}, we have
z € B(xz,4min{R,d(z,0M)} /5) Nz +T.

e According to Lemma we can write z = m17(y) with y € 0B(z, R)N M or y € B(z, R) N
OM. Therefore, we have ||y —z| = R, or |y—=z| > d(x,0M), which entails ||y — x| >
min {R,d(x,0M)}. Applying Proposition gives that

[ = z[| = [[7r(z) — 7 (2)]

> min {R, d(z,0M)} (1 —0- Hx—yH>

Tmin

> ;—; min{R,d(z,0M)}

> gmin{R, d(x, OM)},

leading to z ¢ B (x,4min {R,d(z, M)} /5), and hence a contradiction.
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It follows that B(z,4{R,d(x,dM)}/5) N (z + T) C mpir(B(z, R) N M) . The closedness of
et (B(x, R) N M) then concludes the proof. O

Next we turn to the case where x is a boundary point.

Lemma 5.7 (Near-Boundary Balls). Assume that OM # (. Let x € OM and T € G be such
that Z(T,M,T) < 6 < 1/8. Denote by 1 the unit vector of T N Nor(xz, M), choose R < Tmyin/16
and r < min{2R/5, 779 min/5}.

Then, writing O™ := —rf) and O°* := rf, we have

B(O™,7)NT C np(B(x, R) N M — z) C B(O®™,r)¢NT.

Proof of Lemma[5.7 Take O = x + an with |a] = 7.
We first prove that (B(O,r) N (z + T)) N Ompyr(B(x, R) N M) = {x}. For this, consider
2 € mpyar(MNB(z, R)\{z} andy € MNB(z, R) such that z = z+(y—2)" = z+(y—2)' +(y—2)".
Recall that (y — z)! denotes the orthogonal projection of 3 — x onto - N T. We have that
) " 2 Nt
10 =217 = (|| = 27| £ lal) "+ || — =)
. 2 i 2
(=7 = 10)"+ o =¥

SN e e (|

v

According to Lemma if z € Omyyr(M NB(x, R)), we have either z € my 7 (M NOB(z, R)), or
z € Tpyr(OM NB(z, R)). In the first case, Proposition [5.4] gives

10 =22 > + ||(y— )7 || = 2r || (y — )",

=+ || =) ([t = 2)"]| - 2r)

>+ |y —a)| (?);R— 2r> :

)|
)|

In the second case, using Proposition and Proposition [A.7] leads to

2
10—z =2+ qly—a? | (22) - ).
- 32 279 min

In both cases, since z # = by assumption, we have (y — x)” # 0 and hence y — x # 0, so that if
r < min{2R/5, 779 min/5}, we have ||O — z|| > r, which entails z ¢ B(O,r). In other words, we
have proved that B(O,r) N 0my7(B(x, Ro) N M) = {z}.

By connectedness, it follows that if O € {x + O™, z + 0°"*}, we have either

B(O,T‘) N (.f + T) - 7T$+T(B(x7R0) N M)7

or

B(O,r)N(z+T) C (mpsr(B(z, Ro) N M) U {z}.

Let us now focus on B(z + O r) N (z + T). Consider a sequence z}, = z + &,/ with &, > 0
converging to 0. Suppose that z} € 7, 7(B(z,R) N M) ie. there exits x, € M such that
z} —x = (v, —2)’. By Proposition we have ||(z, — 2)*|| < €n(6 4+ 1/4). Let Q@ =z + 17

n
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with 7 < min(7min, 79,min). On one hand Lemma ensures that || — z,|| > 7’ and, on the other
hand

2
12 = @all® = (" = ea)? + || (an — @) 1| <72 = 220 4+ 2 (14 (04 1/4)%).

Thus, for n large enough ||Q — 2,||* < 2, which is impossible. Hence, for n large enough 2* ¢
o+ (B(2, R) N M), which proves the right hand side inclusion

Topr(B(z, R) N M) C (B(z + 0", r)° N (z + T)) U {x}.

Next, we prove that if § < 1/8, then there exists #* € x + T N B(x + O™, r) such that 2* €
Terr(B(x, R) N M), and thus B(x + O™, r) Nz + T C merr(B(z, Ro) N M). For this, introduce
n = mr,m(7) and 7' = 7p(n). We clearly have [[n]| < 1, |l'[| < 1, | —nl| <6 and [|n — ' < 6. In
particular, this implies that ||’ — 7| < 20 < 1 and ||| > 1—26. Hence, decomposing ' = A+ pw,
with v € TN (4)* and |jv|| = 1, we have A > 0, with

(1-202<XN+p?><landXA>1-26.
Furthermore, since n € T, M and that
(11e) 2 1= =nall 2 1= llne =l = 17 —nll =1 —v20 =6 >0

from Proposition we get that n € Nor(xz, M) from Proposition or equivalently that
—n € Tan(x, M). Hence, [26], Definition 4.3] asserts that there exists a sequence (zp,)n, € M \ {z}

o, that is

converging to x such that Hw xH Hnll H

1
Tp =2 — ||z — x4 < + wn) with |[lw,| < 1.

Considering z}, = mpy7(xy,), w) = mr(wy), and &, =

lz—zn]
(Il

, we may hence write

T, =T —¢€p <>\17+,qu—|- il >,
so that

o+ O™ =i | < 11 = Aew)i + enpro]| + =

< \/7“2—2?")\6714-6,214‘@
n

<Vlr=2e)? 1A +

<(r—2Xep) +en 1—x4+n
n

1 )
+—1.
n
On the other hand, we have

— 1 — 3 1
lez—wHZM<~/)\2+u2—>2M<4—>>0,
n

[l [l n

Since A > 1 — 260 > 3/4, this yields

SES

Haz—kOi“—xZHST—an <i—
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for n large enough. Thus, for n large enough, z} € (z+T)NB(z+ O™, r) with 2, € 7,7 (B(z, R)N
M) and z}, # x, ensuring that

B($ + Oina T) N (CB + T) C 7I-ﬂv-l-T(B(:L'a RO) N M)a
which is the left hand side inclusion. O

At last, the following consequence of Lemma will be of particular interest in the proof of
Theorem [6.1]

Corollary 5.8 (Parallelism of Projected Normals). Assume that OM # (). Let x € M be such that
d(z,0M) < Timin/16, and y € RP. For T € GP4, let z* € my17(OM N B(x, Tmin/16)) be any point
such that
Jo* = 7y (@)]| = Ay (@), 7y r (OM OB, Tuin/16)),
and
2’ € OM NB(z, Tmin/16) such that T, r(x') = z*.

If Z/(Ty M, T) <1/8, then Nor(z', M) NT contains a unique unit vector n*(z'), and
x* = mypr(z) = |Ja* = myer (@)l 0" (2").

Proof of Corollary[5.8 According to Proposition Nor(z', M)NT contains a unique unit vector
n*(2"). By definition of z* we have

o

By (my (), 1" — iy (@)]) O (DM A B, T /16)) = 0. (15)
Since Ty = Ty + Tpi(y — &), Lemma applied at 2’ with Ry = 7iin/16 yields
Ex’+T($/ + ron* (l‘/), r0) Ny (M N B($/, Ry)) = 0.
Since w47 = mypr + po (a2’ —y), and that for all p € 2’ + T and r > 0,
éx’-ﬁ-T(pv r) =mpi(a —y) + BerT(ﬂ'erT(p)v r),
we deduce that
By (& + roi (), 7o) (1 Ty (M A B(&, Ro)) = 0. (16)
Now, decompose
o — myr(z) = cos |7 — myyr(2)|| 07 (2) +sinp |z — Tyr(@)| v
with v € n*(z’)* and ¢ € [0,27), and consider
xy = 2 + tsin(m — o/2)n* (2") + t cos(m — ¢/2)v,
for t > 0. Straightforward calculus yields
|l&* + ron*(a)) — x> = 13 + 2 — 2rot sin(m — ¢/2),
Iy (x) = @e]|* = |l2* = myyr(@)]|* + 2 + 2t 2" — my ()| sin(r + ¢/2),
|z — z¢|| < ||x — 2z*| + t with || — 2*|| < d(z,0M) < Tiin/16.

Suppose, to derive a contradiction, that ¢ # 0. Then for small enough ¢, we have
21 € B2, Tmin/16) N By 0(2* + 1o (@), 70) 0 Bysr (mysr (@), o* = myer (@) ).

Then, Equation provides z € (x4, Ty (2)) such that z € 7wy (OM NB(z, Timin/16)). But since
|z — mypr(z)|| < ||z* — mysr ()| by construction, Equation leads to the desired contradiction.
Hence, ¢ = 0, which yields the announced result. O
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A.4 Volume Bounds and Covering Numbers

1
Lemma 5.9 (Sampling Density Bound). Let ¢; = (C’d logn ) . for Cy4 large enough. Then, for n

fminn
large enough so that e1 < 7ge A Ta’g‘i“, we have, with probability larger than 1 — n=3,

dH(Mv Xn) <eq.

Proof of Lemma[5.9 Letey < T'l’—‘é“/\m’;i“, andz € M. AsX,, C M,dy(M,X,,) = maxgep d(z,X,).
Furthermore, according to Corollary

zeM z'eM
(', 0M)>e1/4

16d Cdf i
< ——€Xp <—n mme‘li ,

d
Cdfmin51 8

P <maXd(:L",Xn) > 81) <P max d(2',X,,) > ¢e1/4
d

-

where the second inequality follows as [2] Lemma 9.1]. Thus, choosing £ = (Cd }:ﬁ;) , for Oy

large enough, yields that dy(M,X,,) < 1, with probability larger than 1 —n=3. O
Lemma A.12 (Volume of Intersection of Balls). Let 0 <1’ <r, and O,0" € R? that satisfy

1O -0 || =r+7"—h,
for some 0 < h <7r'. Then

HI(B(O,r) NB(O', 1)) > LS5 ()5,
d2 =z
Proof of Lemma[A.19 Let A := 0B(O,r) N [0,0], B := dB(O',7") N [0,0’], and Q be the or-
thogonal projection of any point of 9B(O,r) N IB(O’,r’) onto [0, 0']. Also define a := ||A — Q]
b:=||B — Q| and £ := d(Q, 0B(O,r)NIB(O',r")) (see Figure[§). Let C (resp. C’) denote the section
of cone of apex B (resp. A), direction O—0’ (resp. O’—0), and basis B(2, £)N(Q + span(0’ — O)™+).

By convexity, we have C,C’ C B(O,r) NB(O’,r’), and since C N C’ is included in a hyperplane,
we get

HY(B(O,r) NB(O',r)) > HIY(CuUC)
=H4C) +HYUCH

de‘l ¢(a + b)

- Lil*led—lh. (17)

Furthermore, since a + b = h, Pythagoras theorem gives
(r—0)>4+ 2 =7r* and (' —a)? + 0> =172,

leading to

2rh — h? rh h? < r 1>

- 2(r+r"—h) - r+r’+r+7”—h r+r 2
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Figure 8: Layout for Lemma

Recalling that v’ < r, we may write

<a<l ——.
r+r r+r' —h

2

Finally, since ¢? = 2r'a — a?, we hence obtain

IS 0 rh - 2r'rh . rh - r'rh
al2r — — )
- r+r' —h/) " r4+1r 2r'(r4+r"—h)) — r+r

Combining the equation above with concludes the proof. ]

Lemma 5.10 (Mass of Intersection of Curved Balls). Let € M, and T € GP%. Let O € T, and
r, R >0 be such that Br(O,r) C mp(B(z,R)N M — ). For A > C&T%, write

1 2

Caft logn\ ¢ A logn \ 71

B = 24 maz O5 T dey = [ ALmaz 08T '
< fr?’lin(n - 1) P e fr?lin(n - 1)

Then for n large enough, for all p > r and Q € T such that |2 — O] <r+p — ea,

d—1 4 logn
Ty , fwHY(du) > Ar"z ¢l -maz —S
/Mﬂ(B(x,R)\B(x,h)) (- OnNBE ]| : fin(n = 1)

Proof of Lemma[5:10, As |75 o wrllop = |77, < 1, we have y/|det(n] o mr)]) < 1, so that the
co-area formula [26, Theorem 3.1] entails that

/ ﬂﬂ'T(u—x)EB(O,r)ﬁB(Q,p)f(u)Hd(du)
MN(B(z,R)\B(z,h))

Z fmin/ ]lﬂ71 v 1 Or 0 (v)dv.
e (MAB(@.R)—z) T (v)¢B(0,h) " B(O,r)NB(Q,p)
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Since :H.ﬂ_—l(v)gB(O h) > Ly¢n(o,n), We get, provided A is large enough,
T g ’

Ler(u-a r fu)H (du
/MO(B(x,R)\B(x,h)) r(u—2)eB(0.n)NB(2,p) f (W H (du)

> fmin/ LogB(0,h) LB(0,r)nB(0,p) (V)dV
(MNB(z,R)—x)
> fmin/ Ig(0,mnB(Q,p) (V)dv — fminwgh®
BT(O 7‘)

~ _ 1 1
> fmin <Cdr‘121Aw dedw>

fr?un(n_ 1) fr?lin( B 1)
> AT 2 C maX log n
mm( B 1)
where the second to last inequality comes from Lemma O

B Tangent Space Estimation

B.1 Tangent Space of the Manifold

Proposition 3.2 (Tangent Space Estimation). Let h = (C’ fm“‘ log”) , for a large enough constant

n—1

2
Cy. For n large enough so that h < T A Ta;““ A Tmﬁ, with probabzlzty larger than 1 — 2 (%) < we

have

fmax h‘

f min Tmin

Z(T MT <
ax A(Tx M T) < Ca'p—

1
Proof of Proposition[3.9. We let h = ( f:m lsg Tf) d, where k£ > 1 will be fixed later, and assume

that n is large enough so that h < Z4& A 2L A %. Without loss of generality we consider the case
where ¢ =1 and X; = 0. We let z E B(O, h) N M be such that B(z,h/4) N OM = 0, according to
Corollary Slightly differing from the notation in Proposition for any vector u € R?, we
denote by ur = mr,pm(u) and uy = wp, ppy (u). For short, we also write p(h) := P(B(0,h)) and
pn(h) = P,(B(0,h)), where P, = n~1 3" | dy, stands for the empirical measure. The proof of
Proposition will make use of the following concentration result, borrowed from [2].

Lemma B.1 ([2, Lemma 9.5]). Write

S(h) :=E (X7 (X1) Ipon (X)) -

1+2

Then for n large enough, with probability larger than 1 — 2 (%) , we have,
10(2 + 2)logn
pa(h) < 2p(h) + ——25——,
n—1
and
1 " fmax
o D (X)X lpom (Xi) — S(h)|| < Cdfmin\/Ep(h)hQ
=2 F
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We now assume that the event described by Lemma [B.I] occurs. We may decompose the local
covariance matrix as

LS () = S (X + R
1=2 =2
where .
Ri= 1 3 [(Xr(Xk + (X0 (X0 + (X)L (X)L ].
=2

Since B(0,h) C B(x,2h), we have ||(X;)r|| < h and, according to |26, Theorem 4.18], ||(X;) || <
(X = 2) L[|+ [I(z = 0) L]l < 222, Thus, | Rullp < 22p,,(h) < Cqfo=t™= according to Lemma [B.1
Next, using Lemma [B.1] again, we have

1 " I%lax d
Amin (n—l Z(Xi)T(Xi)tTﬂB(o,h) (Xi)) > Amin (X(h)) — Cdmh 2,

=2

On the other hand, for v € T, M, we have
W= [ ) f) M)
B(0,h)NM
> fmin/ (’LL, yT>2 f(y)Hd(dy)
B(z,h/4)NM
> fmin / (u, exp, (V)7 — 1 + 27)” |det (dy(exp,))| dv,
B4(0,h/4)
according to [2, Propositions 8.5 and 8.6]. Moreover, [2, Proposition 8.7] ensures that |det (d,(exp,))| >

cq provided that ||v|| < h/4 < 7p1/4, and [2, Proposition 8.6] gives exp,(v) = x + v + R(v), with

|R(v)| < 54';’}1':, under the same condition. Thus,

u'S(h)u > Cdfmin/ (u, v+ R()r + x7)? dv
B4(0,h/4)

> —¢q fmin / (u, v+ 27)* dv
B4 (0,h/4)

2\ 2
— 3¢4fmin / (5”“”) av.
Ba(0,h/4) \ 8Tmin

Denoting by o4—1 the surface of the (d — 1)-dimensional unit sphere and using polar coordinates
yields

N | =

2 2 h d+2 1
u, v+ de/ U,V dvz<> —— 041,
/Bd(o,h/4)< i Bd((],h/4)< ) 4 d(d+ 2) -1

2\ 2 2 d+4
fos Gone) = () @25 (5)
By(0,h/4) \ 8Tmin 8) (d+4)13i \4

and
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Since h < Tpr/Vd, it follows that
)\mm(z(h)) > Cdfminhd+2a

for some positive constant ¢y. Gathering all pieces and using [2, Theorem 10.1] leads to

A~ fmaxh
ATMT) < Cor e o ()"

4
Thus, choosing k = Cy (f m‘”‘) , for Cy large enough, gives

min

fmax

Z(TuM,Ty) < f e
min

Noting that Z(ToM, T, M) < 2h/1p; from Proposition and lemma the result of Proposi-
tion [3.2] follows after using a union bound. O
B.2 Tangent Space of the Boundary

Corollary 3.10 (Boundary’s Tangent Space Estimation). Under the assumptions of Proposi-
tion and Theorem we have, for n large enough, with probability larger than 1 — 4n_%,

20r

max Z(Tﬁak[(Xi)aM’ Ta,l) <

Xi€VRg,rp (Tmin A T@,min)RO '
Thus, choosing Ry = Wi# and r = r_ yields
| 1
. ogmn +1
max  L(Ty, (x)OM,Ty;) < <C'd max > :
Xi€VRg,r_.p mom (X:) " fr5nln N fmin (Tmm N To mln)d

Proof of Corollary[3.10. Under the assumptions of Theorem [3.7] and Proposition we let X; €
YRo,rpy EOM = (CdR Jmax 1°g") d+1, and h = (C Jipax log") so that with probability larger than

2 5
frnm fmm n—1

1 —4n=2/? we have

a max h
L 5008) < 20 and - 2T, M.T) < G

o 0 f min Tmin .

Combining Theorem with Lemma and Proposition entails

L(Tppr(xy M, T;) < 4(T7raM( VM, Tx, M) + £(Tx,M,T;)
<2 3M+C Fma < Cyeom,
Ry fmin Tmin d=oM

for n large enough. Finally, since

A(Tﬂ'aM(Xz)aM> Ta,i) < A(Tﬂ'aM(Xi)M7 T‘l) + l(nﬂaM(Xi)a ﬁl)a

the bound follows. O
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C Local Linear Patches

Theorem 6.6 (Estimation with Local Linear Patches). Write ro := (Tmin ATo,min)/40, let €9, a, >
0, and 0 < 6,0' <1/16. Assume that we have:

1. A point cloud X,, C M such that dg(M, X,,) < eo,
2. Estimated tangent spaces (T;)1<i<n such that maxi<i<n Z(Tx,M,T;) <0,
3. A subset of boundary observations Xy C X, such that

max d(z, Xp) < 6 and max d(z, M) < ad?,
z€OM reEXy

from which we build interior observations
X,

EOM

= {Xz € Xn ’ d(XZ', Xa) > 58M/2}'

4. Estimated unit normal vectors (1;)1<i<n on Xy such that maxx,ex, |1 — n,raM(Xi)H <.

Let Ml = M(X,,, Xy, T,n) be defined as M := My, UMy, with

M= )  Xi+Brn(0,e5),
XZ'E.)%E(?M
My := |J (Xi+Br(0,20m)) N1z, (z — Xi,mi) < 0},
XZ'EXa

Then if eanr < 10/2, €0 <€)y < €an /6, and max{é, a52} < eom /6, we have

dp (M, M) < { M (6 + €557/ Tmin) if OM =0,
’ | 2a6% + 8epns (0 + 6" +conr/ro)  if OM # 0.

Proof of Theorem [6.6, First, note that the choice 79 = (Tmin A 79 min)/40 satisfies the requirements
of Lemma 5.7} for a radius Ry = Tiin/16. For short, let M := M(X,, Xs, T, ).

e Let x € M be fixed. We bound d(z, M) depending on its closeness to OM.

— First assume that d(z,0M) < egpr — 6. Then d(z, Xy) < esn, and we let X;, € Xy be
such that ||z — X;,|| < egp. Without loss of generality we may assume that ig = 1. Let
Py := X1 +Br,(0,e90) N{z,(z — X1,m) < 0} C My denote the half-patch at X;.

From Proposition [5.4] we have

x4, (0) = ol < eong (84 2L ). (18)
Tmin

As a result, if mx, 47 (z) € Py, then d(z,M) < ||7x,+1, (z) — x| yields the desired bound.

Otherwise, if 7x,+7, (z) ¢ P1. Sinced(z,P1) < ||z — X1|| < egnr, we may decompose mx, 47, ()

as mx, 17, (z) = X1 + amp + Bu, with unit v € T3 Nspan(ny)*, and o = d(7x, 17, (), P1) > 0

such that a? + 82 < ¢2,,. Writing 1 := mapr(X1), triangle inequality ensures that

o — 21 < |lo — X1l + [| X1 — 21]] < com + ad® < Tinin/32-
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From Lemma and proposition 5.2} we also have
L(Tp, M, Ty) < L(Tp M, Tx, M) + ZL(Tx,M,T) < 291 /Tmin + 0 < 1/8.
As a result, Lemma applies and gives
mry (z — X1) € Bry (0,€00m) N (Bry (77y (21 — X1) + 707215 70))
Thus, we have

ro < [lam + fv — rone, + 7 (X1 — x1)]|
< Hanl + BU — ToNz, ” + a627

which, since ad? < rg and o + 32 < egur, leads to

(ro — ad*)? < ||(am + Bv) — rons, |12
< 6c’29M + 7“8 - 27‘00‘<771777£E1> - 2TOB<U77711>'
As (1, 0a,) = 1= Im — ne, I /2 > 1= 0/2 > 0 and [(v,05,)| = (v, 11 — Ny )| < ¢, we deduce
that

2 2 / 2
€5y T 2road” + rogan 0 €50 9 ,
< 2a0 mt .

2r0(1 — 072/2) = + 2a0° + €5

At the end of the day, combining the above inequality with yields the bound

a=d(mx,+n (z),P1) <

2
d(z, M) < 2a6? + epur (9 0+ ff’M> : (19)
0

which also holds if 7x, 11, (z) € Py.

— Now, assume that d(z,0M) > espr — 6. Let X, denote the closest point to x in X,,, with
ip = 1 without loss of generality. Since ||z — X|| < o, we deduce that

A(X1, %) > d(z, Xp) — 2 — X3
> d(x, 0M) — ad* — &g
> eom — 0 — g9 — ad?
> eonm /2.

Thus X7 € /{’gaM, and therefore Py := X7 + BT1<0,€M) is a patch of M,y € M. Because
€y = €o, the point 7x, 7 (x) belongs to Py, so that d(z,M) < |l7x, 47 (z) —z||. Using
Proposition [5.4] again, we get

d(z, M) < & (9 + 250 > . (20)

Tmin
e Let now z € M be fixed. We bound d(x, M) depending on whether z belongs to a “boundary
patch” (i.e. to My) or an “interior patch” (i.e. to Myy).
— Assume that * € My belongs to “boundary patch”. That is, without loss of generality,
x € X1+ Br,(0,e90m) N{z, (z — X1,m) <0} with X; € Xy. Define x; := mapr(X1),

*

L1 = Trx, 4, (OMNB(X1,Tmin/16)) (X1),



93

and let 2} € OM N B(X1, Tmin/16) be such that mx, 47, (2}) = 2]. According to Corollary
we have 27 — X7 = ||2] — X1]|| n}, where 1] is the unit vector of Nor(z}, M)NT;. Furthermore,
Proposition [5.2] Proposition and Proposition combined yield the bound

”UT - nw’l” < \/ié(Tx’le Tl) < \/5(9 + 2H$/1 - Xl”/Tmin)'
Furthermore, by definition of z7 and the fact that x; € M N B(X1, Tmin/16), we also have
1X1 = 3| < |7z, (X3 — 21| < [ X1 = 21| = d(X1,0M) < ad”.

As [| X1 — &) || < Timin/16, Proposition [5.4] ensures that || X7 — a7|| > || X1 — )| (1 — 0 — 1/32),
which leads to || X7 — 2} || < 2a6? and hence to ||z1 — || < 3ad? < (Tmin A Tomin)/32. As a
result, Proposition [5.3] applies and asserts that

9|z — 24| < 27a6?

—n. || < )
Hnml 77‘%1 H - Tmin A Ta,min o Tmin A Ta»min

Gathering all the pieces together, we obtain

In = mll < lnx = nag | + M2y — 1 [l + 1920 — m|
(27 + 4v/2)ad?
Tmin /\ T9,min

2
<Vap o+

To
— 9//

<V204+ 6 +

Now, if € Bx, 41, (2] — roni,ro), we have d(z, Bx,+n, (7 — ronf,70)) = 0. Otherwise, if
x ¢ Bx, 4+, (7 — rony, ro), we have

d(z, Bx,+1y (2] — roni,m0)) = |z — (21 — roni)|l — 10 > 0.
We may hence write

r— X1 = —am + fv with a > 0,0® + 32 < %),, and unit v € Ty N span(n)*,
i — Xy = tn} with 0 <t < aé? and ||m — nj|| < 0"

Since (n1,n7) > 0 and [{(v,n7)| = [{(v,n} —m)| < 6", it follows that

2 *1(12
|z — (27 — ron)|I” = l(z — X1) + (1o — )07
< eqn +2(ro — ) ({(—am,mi) + (Bu,mi)) + (ro — t)°
< 5<29M + 263]\/[(7“0 — L‘)@” + (7“0 — t)2.

Therefore, no matter whether or not x belongs to Bx, 11, (z] — roni, o), we have

2
Com
d(z,Bx,+n, ($T —roni,70)) < gaMH// + 2(rg i a52)

52
< €8M6// + ZOM
To
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From the left-hand side inclusion of Lemma we hence get the existence of some y €
B(z, Tmin/16) N M such that

2
9
I = mxoar ()] < eon8” + =22

We will now show that this point y € M is close to x.
For this, a first (rough) bound on ||y — X1|| may be derived, using ||y — X1| < ||y — || +
2} — X1|| < Tmin/16 + 2a6? < Tmin/8. According to Proposition we have

7z, (y — X1)|
0 — [ly — X1l /(27min)

which, by using the other bound of Proposition [5.4] leads to
04 ||7TT1(?/—X1)H> ,

Tmin

ly = Xl < 7= < 2|jmr (y = X,

Iy = o, )] < 2l o - X
Hence, further bounding

|7z (y — X))l < [lo — Xal| + |2 — 7x, 41 ()]
2
g
<egm + EaMGN + oM

To
< 2eom
since 0" < 1/2 and egps < ro/2, we finally obtain
lz =yl < llz = 7x, 0 W+ ly = 7x, 01 (W)

2
€ 2o
< eont" + —fof“ + degmr (9 4+ =9 )

Tmin
< 8eous <9+9’+€ié‘4> :

where we used that ad? < egps. In particular, we have

d(z, M) < 8cons (e +0 + W) . (21)
7o
Assume that z € My, belongs to an “interior patch”. That is, without loss of generality,
r € X1+ Br(0,e,;) with d(X1, Xy) > eanr/2. We have d(X1,0M) > epnr/2 — 0 > 3ey,/2, so
that an applying Lemma at X1 provides the existence of some y € M N B(Xy,¢,;) such
that © = mx,+7, (v). Thus, Proposition entails

A, M) < Iy — 2] = (g — X2) " < ey (9+ 2 ) . (22)

2Timin
To conclude the proof of Theorem we combine the above results as follows.

(i) If OM = 0, then d(z,0M) = oo for all z € R”, so that Xy = () and hence My = ). As a
result, dg(M, M) is bounded by the maximum of Equations and (22). The requirement
g0 < g,y ensures that

du(M, M) < £, <9+ "M > .

2Tmin
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(ii) If oM # 0, then dg (M, M) is bounded by the maximum of Equations (19) to (22)). This boils
down to

dg (M, M) < 2a6” + 8o (9 +60' + 5781M> .
0

D Proof of the Minimax Lower Bounds

D.1 Stability of the Model
D.1.1 Reach Bounds

To prove Proposition we will use the following general reach stability result.

Lemma D.1 ([26, Theorem 4.19]). Let S € RY with 7s > 79 > 0, and ® : RP® — RP be a
Cl-diffeomorphism such that ®,®~ 1, and d® are Lipschitz, with Lipschitz constants K,N and R

respectively, then
70

> .
() = (K + Rro)N?

Proposition 6.9 (Reach Stability). Let M € Mﬁr’nli)n,mmin and ® : RP — RP be a C? map such

that lim,| 00 [|®(2)|| = 00. Assume that supyerp [Ip — du®]|,, < 1/10 . Then ® is a global
diffeomorphism, and the image ®(M) of M by ® satisfies:

o OD(M) = B(OM),

[ IfSprE]RD Hd%@“op S 1/ (2Tmin)7 then T@(M) Z Tmin/2;

o [fsup,crp Hdi(I)Hop <1/ (279 min), then Tod(M) = Taymin/z

Proof of Proposition[6.9. First note that since sup, ||d,® — Ipl|,, < 1, d,® is invertible for all x €
RP, so that ® is a local diffeomorphism in the neighborhood of z. In addition, limj . [|[®(z)|| =
00, 5o that the Hadamard-Cacciopoli theorem [20] asserts that & is a global diffeomorphism of R”.

Now, for short, let us write M’ = ® (M). As ® is a global diffeomorphism of RP M’ is a
d-dimensional submanifold: indeed, using notation of Definition any local C? parametrization
W, of M at p € M lifts to the local C? parametrization \ijq;,(p) = ®o W, of M at ®(p) € M’
In particular, M’ = ®(OM). Moreover, ® is ld®|l,, < (1 + |[Ip —d®|,,)-Lipschitz, o1 is
|d@~t|,, < (1—IlIp — d®]|,,)~"-Lipschitz, and d® is ||d*®|, -Lipschitz. Hence, Lemma

applied with S = M yields

TM(]' - HID - d(I)Hop)2
HdQ(I)HopTM + 1+ Ip — dq)”op)

M 2 > TM/2 > Tmin/27

where the second inequality used that |Ip —d@®||,, < 1/10 and Hd2<I>HOp v < 1/2. Similarly, if
the boundary S = M is not empty and Hd2<I>HOp Tom < 1/2, we get

ToM' = To(oM) = ToM/2 > To,min/2,

and otherwise Tgp;r = Tp = 00 > T9,min/2, which concludes the proof. ]
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D.1.2 Strict Convexity

To prove Proposition [6.11] we will use the following non-standard characterization of convexity for
full-dimensional domains.

Lemma D.2. Let C C R? be a compact domain with C £ 0, that has a C? boundary OC. Assume
that:

e for allx € OC, OC \ {x} is connected;
e forallz,y € 0C, d(y — x,T,0C) > 0 as soon as T # y.
Then C' is convez.

Proof of Lemma[D.3 Let us prove the contrapositive. To this aim, assume that C' is not convex,
meaning that 7o < co. We will prove the existence of points x, 7 € C such that d(§—z, T,0C) = 0.

From [26], Theorem 4.18], there exist © # y € C such that d(y — =z, Tan(z,C)) > 0. But
for all z € C, Tan(z,C) = RY, so that x € OC necessarily. From here, Proposition asserts

that Tan(z,C) is a half-space with span(Tan(z,C)) = R¢ = T,,0C é span(n,) and Tan(z,C) =
{{ne,.) <0}, for some unit vector 7, € R% Using this representation, for all z € C, we have
d(z — 2, Tan(x,C)) = (z — ,n,), and d(z — 2, T,0C) = | (z — x,ma) | .

On one hand, we have seen that the continuous map C' > y = (y — x,7,), takes a positive
value. Hence, by compactness of C, it attains its maximum at some yo € C with (yo — x,71,.), =
{(yo — z,mz) > 0. But for 6 € R? small enough, (yo + 6 — T,Mz)y = (Yo + 6 —x,m) = (Yo — 2, Mx) +
(8,1m2), so yo must belong to JC as otherwise, yo would belong to C and one could increase the
value of (- — x,7;), locally around yo and still stay in C'.

On the other hand, if we assumed that for all y € 0C, (y — z,n,) > 0 this would lead to a
contradiction. Indeed, this inequality would extend to all the points z € C: since C is compact,
for all z € C and v € R?\ {0}, {z + Av, A € R} N C is a non-empty compact set, so there exist
A_ < Ay such that for all A € [A_, A\, ]¢, 2+ v ¢ C and y+ = 2z + Axv € C. In particular, y € 9C
and z € [y_,y+] C R% This shows that z € C can be written as linear combination of elements
y+ € OC and as a result the assumption (y+ — z,7;) > 0 would yield (2 — x,7n,) > 0. This is a
contradiction, since by definition of Tan(z,C) 3 —n, (Definition [2.5), there exists Z € C'\ {z} such

that H—nm — ez

=]
y1 € OC such that (y; — z,7,) < 0.

Summing everything up, we have shown that the continuous map 9C \ {z} > y — (y — x,1,)
takes both a positive and a negative value on its connected domain dC'\ {z}. Hence, it must vanish
at some point § € C \ {r}, meaning that x # § € 9C and d(y — =, T,,0C) = 0, which concludes
the proof. O

’ < % and in particular, (£ — z,n,) < 0. This ends proving that there exists

Proposition 6.11 (Stability of Strict Convexity). Let C' C RY be a compact domain with C # 0,
that has a C? boundary OC. Assume that:

e for allx € OC, OC \ {x} is connected;
o for all z,y € IC, d(y — x, T,0C) > Ally — x|, for some A > 0.

Let ® : RY — R? be a C% map such that im0 |@(2)]| = 00, [[1g — d®||,, < 1/10 and Hd2<I>H0p <
A, then C and ®(C) are conver.
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Proof of Proposition[6.11. First, from Lemma[D.2] we get that C' is convex. Furthermore, as in the
proof of Proposition note that the assumptions [|d® — I4|,, < 1 and limj,| o [|2(2)] = o0
yield that ® is a global diffeomorphism of R?, using the Hadamardo—Cacciopoli theorem [20]. Hence,
writing €' = ®(C), we get that C’ is a compact domain with C” # (), that has a connected C
boundary dC’. In addition, dC’ = ®(9C) and for all 2’ = &(x) € IC', TpIC' = d, ®(T,IC).
Now, for all z,y € OC and u € T,,0C, Taylor’s theorem and the assumption d(y — z, T,0C) >
Ally — | yield
-1
Idz®-(y — ) — dy®.ull = [|d ™| lI(y — ) — u]
_1p-1 =
> [|de~|,, d(y — =, T,9C)
-1
2 qu) 1Hop A ||y - :BHQ
2
> (1= [[Ig — d®||,,)Ally — =]
> (94/10) ly — .

At second order, Taylor’s theorem writes
1©(y) — @(2) — do®.(y — 2)|| < [|*®]| Iy — ]* /2.

As a result, for all o' # ¢/ € 0C’', writing 2’ = ®(x) and ¢/ = ®(y) we have z # y as ®~ ! is
one-to-one, and

d(y' — 2/, Tp0C") = inf ||®(y) — ®(z) — dpP.ul
u€T,0C

> uei%lfgc{”d”q)'(y — ) = dp@oul| — [[O(y) — ®(2) — da®.(y — )|}

> (9A/10 —[|a*],, /2> ly —=|?

> 0,

since Hd2<I>HOp < A <9A/5. From Lemma C’ is hence convex. O]

D.2 Construction of Hypotheses

Throughout this section, we will use a smooth localizing bump-type function ¢ : R — R to build
local variations of manifolds. The following result gathers differential estimates, and can be shown
using elementary differential calculus.

Proposition D.3. The localizing function defined as
¢:RP — R
x> exp (~ 2/ (1 = 2I”)) 1o 1 (@)
is C* smooth, equal to 0 outside B(0,1), satisfies 0 < ¢ <1, ¢(0) =1,

1do|l,p := s ldsdllo, < 5/2 and ||d*¢||,, = s 24|, < 23.
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D.2.1 Hypotheses with Empty Boundary

The proof of Proposition follows that of [3, Lemma 5], and provides a result similar to [30,
Theorem 6] in essence. We include it below for sake of completeness and to keep track of explicit
constants.

Proposition 6.10 (Hypotheses with Empty Boundary). Assume that fmin < g/, and cj/7e, <
Sfmax, for some small enough cg, (Cil)_l > 0.
If d S D — 1, then fOT all n Z Cd/(fminTglin), there exist Po,P1 S ’Pi;ﬁ,oo(fminafmax) with

boundariless supports My and M; such that

in

1 2/d
TV(Po,Pl) S and dH(Mo,Ml) Z C&Tmin () .
n

1
n fminTI(Iilin
Proof of Proposition[6.10. We let R = 27y, and My = S%(0, R) x {0}P~9~! be a d-dimensional
sphere of radius R embedded in R x {0}P~(4+D Clearly, 9My = () (meaning that ToM, = OO)
and Ty, = R = 27Tmin.

Let e; = (1,0,...,0) denote the first vector of the canonical basis of RP, and zy = Re; € M.
For § > 0 to be specified later, consider the probability distribution Py having the following density
with respect to the d-dimensional Hausdorff measure H%:

1 — 2fmin " (Mo N B(z0,6))
Jolte) = 2min oo (#) + 303, A B(ag,ay) Mol ()

for all z € RP. Clearly, Py has support My as soon as 2fuinH% (Mo N B(zg,0)) < 1. In addition,
writing o4 for the volume of the d-dimensional unit Euclidean sphere,

1 — 2fminHE(Mo N B(xo,6)) L 1= 2 fminHE (Mo N B(xg, 6))
H(Mo N B(xo, 6)°) - H(Mo)
1 — 2 fminRYH? (Bga (0, 2 arcsin(5/(2R)))
oqR4

1 5\*
> — 2fmin | 5 .
- O’de f <R>

As a result, fo > 2fmin over My as soon as (04(27min)?) ™' > 4 fuin and § < 27i,. To upper bound
fo on My, we note that 2fmin < fmax/2 as soon as 2¢g < ¢;/2, and that similarly to above, we
derive

1 — 2 fminHE(Mo N B(xo,6)) - 1 < 2
He( Mo N B(xg, 6)°) = og(RY—§9) ~ o4R4

as soon as & < Tyin, Which is further upper bounded by fmax/2 as soon as 2/(2%,) < /2. This
ends proving that Py € Pgrfii,oo(2fmin, fmax/2).

We now build P; by small and smooth ambient perturbation of Fy. Namely, for n > 0 to be
specified later, write

¢m»=x+n¢(x;”jeh

where ¢ : RP — R is the localizing function of Proposition We let P, = ®,F be the
pushforward distribution of Py by ®, and M; = Supp(F}).
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From Proposition [D.3] ® is C* smooth, ||d® — Ip|,, = % |d¢|,, < 3}, and ||d2<1>H

5= Hd2¢H < 2;’27’. Recalling that 77, > 27min, Proposition asserts that M; € M2D
soon as g—g < % and 23" < 4T!1mn.
density f; with respect to H? that satisfies

Furthermore, from [3, Appendix, Lemma A.6], P; admits a

fmin = 111ff0/2 < inffl < Supfl < 2supfO < fmax
MO Ml Ml M(]

as soon as ‘;’—g < 3 d A m Hence, under all the above requirements, we finally get that

Pl S ,PT,;,imoo(fmim fmax)~
Now, notice that by construction, xg + ne; = ®(x¢) belongs to M; = ®(Mjy). As a result,

dH(M07M1) Z d(xo + nelaMO) =T1.

In addition, under the same requirements on § and 7 as above, ® is a global diffeomorphism of
RP (Proposition . As it coincides with the identity map on B(zg, §)¢, this implies that Py and
P, = &, P, coincide outside B(zg, d). Hence,

TV(F, 1) = sup [Pi(ANB(x0,6)) — Fo(ANB(xo,9))|
AeB(RPD)

< sup Po(ANB(zp,0))V Pi(ANB(x,9))
AeB(RD)

< Py(B(x0,9)) V Pi(B(z,5))
= Po(B(zo,9))

= 2 frmin " (Mo N B(xo, 6))

= 2 fmin RYH? (Bga (0, 2 arcsin(5/(2R)))

< 2O-dfmin5d

Setting 20 fmind? = 1/n and n = 53410 05 A 92Tmm (which satisfy all the above requirements) then
yields the result, since with that choice, § < 7 and n = 92i2ni as soon as n > Cy/(fmin mm) for

some large enough Cy > 0. ]

D.2.2 Convex Hypotheses (with Boundary)
The proof of Proposition [6.12]is similar to that of Proposition [6.10

Proposition 6.12 (Convex Hypotheses). Assume that fuin < Cd/’l'g’min and C&/Tg,min < fmax for

some small enough cq, (¢;))™! > 0.

Then for alln > Cd/(fminTg,min): there exist Py, P, € Pé@{:ia,mm(fmin, fmax) with convex supports
My and My such that

TV(Po, P1) <

S

fminTé{min

1 /(d+1)
and dH(aMo, 8M1) = dH(M(], Ml) Z Oéﬂ-@,min <> .
n

Proof of Proposition[6.13 Let R = 275 min, and My = Bga(0, R) x {0}P~? be a d-dimensional
ball of radius R embedded in R? x {0}P —d_ (Clearly, My is convex, meaning that ™, = 00, and
OMy = 8710, R) x {0}P~? has reach 795, = R.
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Let e; = (1,0,...,0) denote the first vector of the canonical basis of R”, and 2y = Re; € M.
For § > 0 to be specified later, consider the probability distribution Py having the following density
with respect to the d-dimensional Hausdorff measure #H:

1 — 2fmin " (Mo N B(zo, )
Jo(@) = 2fminatoB (a0, (*) + He( Mo N B(zo, 6)°) LatorB(an 0-(7);

for all z € RP. We see that Py has support Mg if 2 fuinHe (Mo N B(xg,)) < 1. Denoting by wy the
volume of the d-dimensional unit Euclidean ball, we derive

1 — 2fminHE (Mo N B(z0,0)) J 1= 2 fnin (Mo N B(zo, 6))
Hd(Mo N B(l‘o, 5)0) - %d(MO)
1 — 2 fmin(wad?/2)
wde

d
> L - fmin é :
wde R

As a result, fo > 2fuin over My as soon as (wq(27min)?) ™" > 4 fmin and § < 274, To upper bound
fo on My, we note that 2fmin < fmax/2 as soon as 2¢g < ¢;/2, and that similarly to above, we
derive

1 — 2fmin " (Mo N B(z0,9)) - 1 o2
Hd(Mo N B(ﬂjo, 5)0) - wd(Rd — (5d/2) B wde

as soon as & < R = 2Ty, which is further upper bounded by fimax/2 as soon as 2/(2%wq) < /2.

In all, we have Py € P25, . (2 fmin, fnax/2)-
Now, to build P, let > 0 be a parameter to be specified later, and write

O(r) =z +no (m _5:60> e1,

where ¢ : RP — R is the localizing function of Proposition We let P, = ®,F) be the
pushforward distribution of Py by ®, and M; = Supp(P;). Note by now that if 6 < R, we have
My C M.

From Proposition ® is C*° smooth, [d® —Ipll,, = #Idoll,, < 25, and Hd2<I>H
5= Hd2¢H0p 23’7. It is also clear that lim| o [|®(7)]| = oo. Hence, recalling that Tons, > 27‘a’mm,
. In addition, as ®

preserves R? x {0}P~% both My and M; can be seen as compact domams of Rd with non-empty
interior. In this d-plane RY x {0}P~¢ =2 RY| M has a C? (topological) boundary dMq = S4=1(0, R),
the set OMy \ {x} is connected for all z € OMj (note that for d = 1, this set is only reduced to a
point), and for all z,y € dMy, d(y — z, T,OM) = — :1;||2 . As a result Proposition 6 11

applied with k = d asserts that M7 = ®(Mj) remains convex as soon as 5" < 0 and 2377 < 4Ta .

Proposition W asserts that 7op;, > 7o min as soon as 5” < 0 and %!

This ends proving that My, M; € Mg&,%ymm under the above requirements.
Furthermore, from [3, Appendix, Lemma A.6], we get that P, admits a density f; with respect
to HY that satisfies

fmin = 111fo/2 < inffl < Supfl < 2SupfO < fmax
My M M, Mo



61

51 1 1 .
as soon as 55 < 55 A 3T Hence, under all the above requirements, we have Py, P, €

d,D
,POO,Ta,min (fmim fmax)-
Further analyzing the properties of f1, let y € M; N B(xzp,d). As the diffeomorphism & maps
B(zg,0) onto itself, y = ®(x) for a unique = € MyNB(zg, ). Hence, applying [3, Appendix, Lemma
A.6] again we get

115) 2ol = 1(0) — o)
< fota) (5 V32 - 1) a0 - 1,
2d+10fmin77
_ 2

provided that “;’—g < % From this bound, we also read that fi < 3 fumin on My N B(zo,0) as soon as

d+10
2 3 7' < 1. We can now move forward and prove the result.

First, notice that by construction xy + ne; = ®(zg) belongs to IM; = ®(0My). As a result,

du(0My, OMy) = du(Moy, M1) > d(zo + ner, Mo) = 1.

Second, under the same requirements on § and 7 as above, ® is a global diffeomorphism of R
(Proposition . As it coincides with the identity map on B(zg,d)¢, it implies that Py and
P, = ®,P, coincide outside B(zg,d). Applying the second formula of Definition with the
o-finite dominating measure p = Lgay {O}D_d?-[d, we hence get

1

TVPJ?:/
( 0 1) 2 B(moﬁ)ﬂ(MoUMl)

1 1
:/ m_zmmﬂﬂ+/ frdH?
2 JB(z0.6)nMo 2 JB(z0.8)n(0 \Mp)

2d+lofmin77 d 3fmin
< 2 Jmny ZJ/min
- 20 # 2
Furthermore, by construction, H¢(B(zo, §)NMp) < wgd?/2 and H¢(B(wzo, §)N(M1\Mp)) < C46%1n
, so that

|fi — foldH?
(B(l’o,(S) N M()) +

H(B(z0,6) N (M1 \ My)).

TV(Py, P1) < CY fruind® 1.

Finally, setting C fuind®'n = 1/n and n = 2;% A % (which satisfy all the above re-
quirements) then yields the result, since with that choice, 6 < 7Ty, and n = %;ST as soon
asn > Cy/( fminTg,min) for some large enough Cy > 0. O
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