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Abstract

In this paper, we designed and analyzed a piezo-lens to focus flexural waves in thin plates. The piezo-lens is comprised of a 
host plate and piezoelectric arrays bonded on the surfaces of the plate. The piezoelectric patches are shunted with negative 
capacitance circuits. The effective refractive indexes inside the piezo-lens are designed to fit a hyperbolic secant distribution 
by tuning the negative capacitance values. A homogenized model of a piezo-mechanical system is adopted in the designing 
process of the piezo-lens. The wave focusing effect is studied by the finite element method. Numerical results show that the 
piezo-lens can focus flexural waves by bending their trajectories, and is effective in a large frequency band. The piezo-lens has 
the ability to focus flexural waves at different locations by tuning the shunting negative capacitance values. The piezo-lens is 
shown to be effective for flexural waves generated by different types of sources.

Keywords: wave focusing, piezoelectric patch, negative capacitance, homogenization, finite

element modeling, power flow

1. Introduction

Wave focusing is a method which promises to be useful in

applications such as structural health monitoring (SHM) [1],

energy harvesting [2], etc. It is reported that acoustic waves

[3, 4] and elastic waves [5, 6] can be focused by a flat slab

composed of phononic crystals (PCs) at a certain frequency

band. The main fault of this kind of focusing is that the

effective frequency band is quite narrow. In order to obtain

more broadband wave focusing, methods based on the gra-

dient index (GRIN) were proposed. GRIN is often used to

describe an inhomogeneous medium, in which the refractive

index is dependent on spatial coordinates. In a GRIN med-

ium, wave rays follow curved trajectories. Therefore, by an

appropriate choice of the refractive index profile, a GRIN

medium can focus waves. Generally, a GRIN medium that

can focus waves is termed a GRIN lens in the literature

[1, 2, 7]. GRIN lenses are well known in optics [7], and in

recent years, they have been introduced to focus acoustic

waves and the lowest order Lamb waves in plate-like struc-

tures. No matter what kind of wave they are used for, the

main challenge for the GRIN lens is the realization of the

desired refractive index profile.

In the literature, for acoustic waves and elastic waves,

GRIN lenses were realized by using PCs, metamaterials or

geometry design. PCs are composite with a periodically

arranged unit lattice. They behave at a low frequency band as

homogenous materials with effective parameters mainly

dependent on the unit lattice. Therefore, by locally changing

the parameters of the unit lattice according to specific func-

tions, artificial GRIN lenses can be obtained. Following this

approach, GRIN lenses were designed for acoustic waves [8–

10] and guided waves in a plate [2, 11, 12]. Metamaterials

exhibit unusual effective dynamic properties and they show
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promise as alternative candidates to achieve GRIN lenses.

This has been demonstrated, for instance, in the work of Yan

et al [1]. In their work, the metamaterial is obtained by

bonding a local resonator on a host plate’s surface. The

effective mass density of this metamaterial can be tuned by

designing the local resonator. According to this, a GRIN lens

was realized by periodically arranging the local resonators on

the plate surface and tuning them to fit a required refractive

index variation pattern. Geometry design is the third typical

way to realize GRIN lenses. At a low frequency band, where

the Kirchhoff-love plate theory holds, the wave numbers of

A0 (the flexural wave) and S0 (the longitudinal wave) Lamb

waves in a thin isotropic plate are dependent on the plate

thickness. Based on this, Climente et al [13] developed two

kinds of GRIN lenses in a plate by modifying the local

thickness.

However, the existing GRIN lenses realized by PCs,

metamaterials or geometry design face several challenges in

practice. For example, the GRIN lenses composed of PCs or

obtained by geometry design need to modify the original host

structure; this may result in new problems. The GRIN lens

made by local resonant metamaterials is only effective in a

narrow frequency band. In order to obtain more advanced and

practical GRIN lenses, a promising way is to use piezoelectric

materials.

In the past few decades, piezoelectric materials were

proposed for many applications. For example, piezoelectric

materials were widely used in vibration suppression. Active

and passive techniques were developed in this application

[14]. In one kind of passive technique, piezoelectric patches

are directly connected with passive external circuits. Theor-

etical analysis of such passive techniques were first carried

out by Hagood and VonFlotow [15]. In their works, the

resistive (R) shunt and the resistive-inductive (RL) shunt were

involved. Accoding to their interpretation, the piezoelectric

patch shunted through the R circuit has a similar effect to

viscous damping; the piezoelectric patch with RL shunt acts

like a vibration absorber at the resonance frequency of the

circuit. Since then, more complex passive techniques of this

kind were proposed to have better effectiveness. For example,

multi-mode techniques [16, 17], negative capacitance circuits

[18, 19] and distributed shunted piezoelectric patches [20]. In

another kind of passive technique, the piezoelectric patches

are periodically distributed on the controlled structures and

are interconnected with an electric network. The key idea is to

design the electric network, which is coupled with the elastic

structure through the piezoelectric patches, to obtain wide

band electromechanical energy exchange. For example, in the

work of Alessandroni et al [21], they periodically distributed

piezoelectric patches on the surface of a plate, and then

designed an electric network to interconnect them. The

designed electric network is mathematically analogous to a

flexural plate. Multi-mode vibration suppression is obtained

by tuning the parameters in the electric network to induce

internal resonances between electric modes and structural

modes.

Piezolectric materials were also adopted to control wave

propagation and energy flow. For the wave propagation

control, Thorp et al [22] periodically placed shunted piezo-

electric patches along rods to control the longitudinal wave

propagation in them. They found that at certain frequency

ranges (namely stop bands) no propagative longitudinal

waves exist and these stop bands can be extended or relocated

by tuning the RL shunts. This concept was later extended to

flexural beams [23] and plates [20, 24]. Piezoelectric patches

shunted with negative capacitance circuits were also inte-

grated into lattices of initial periodic structures to control band

gaps [25] or directivities [26]. For the energy flow control, in

[27], piezoelectric patches were periodically distributed on a

host beam to form a periodic piezo-composite structure, and

this functional beam was connected with a passive beam with

identical parameters to the host beam. It was found that at the

interface of these two different beams, by utilizing and opti-

mizing negative capacitances as well as resistances, the total

reflection or total absorption of certain types of waves inci-

dent from the passive beam can be achieved. In another work

[28], an interface composed of a host plate and periodically

distributed piezoelectric patches shunted with negative capa-

citances and resistances was arranged between two passive

plates to diminish energy translated from one passive domain

to another one by optimizing the shunting impedances. Its

effectiveness was verified by experiments in Tateo et alʼs

works [29, 30]. Another example of energy flow control can

be found in Fan et alʼs work [31].

The prospect of piezoelectric materials in building GRIN

lenses comes from the fact that their effective parameters can

be controled by the shunting impedance. It was theoretically

demonstrated by Hagood and Von Flotow [15] that when the

electrodes of the piezoelectric patches are directly connected

with an external electrical network, the effective material

parameters of these shunted piezoelectric patches can be

modified by tuning the shunting impedance. In particular,

later research shows that when piezoelectric patches are

shunted with negative capacitance circuits [29], their effective

material parameters are independent of the frequency and can

be modified to a great extent [32].

In this work, efforts are made to focus flexural waves in a

thin plate by using shunted piezoelectric patches. Piezo-

electric patches are periodically bonded on the upper and

lower surfaces of the host plate in a collocated fashion to form

a flat GRIN piezo-lens. Negative capacitance circuits are used

to shunt the piezoelectric patches. An analytical relation

between the negative capacitance value and the effective

refractive index of the piezo-mechanical system is established

by homogenizing the piezo-mechanical system. The piezo-

lens is designed based on this relation. The focusing effects

are studied by using the finite element method. In the num-

erical study, the focusing effect of the piezo-lens is verified

and the adaptive ability is demonstrated. The performances of

the piezo-lens at different frequencies are then analyzed. After

that, the performances of the piezo-lens for flexural waves

generated by different types of sources at different fre-

quencies are estimated. A double piezo-lens configuration is

proposed to focus waves excited by near field point forces.

Discussions on the potential applications of the piezo-lens are

also made based on the numerical results in the conclusion.
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The remainder of this paper is organized into four sections.

Section 2 introduces the piezo-lens model and describes the

design process of the piezo-lens. Section 3 introduces the

numerical model of the piezo-mechanical system and the

energy analyses used in analyzing the numerical results.

Section 4 presents the numerical results. Section 5 sum-

marizes the remarkable conclusions and gives corresponding

discussions.

2. Piezo-lens model and design

The piezo-lens in this study is comprised of an aluminum host

plate and two 14-by-6 arrays of piezoelectric patches (PZT26)

bonded respectively at the upper and lower surfaces of the

host plate as depicted in figure 1. The host plate lies in the x −

y plane and occupies the spatial region  -h z h2 2b b .

The piezoelectric patches are shunted with negative capaci-

tance circuits. A detailed shunted piezoelectric lattice in the

piezo-lens zone is shown in figure 2.

As proposed by [8], a flat GRIN lens to focus flexural

waves in a thin plate can be obtained if the refractive index for

the flexural wave inside the lens zone fulfills a hyperbolic

secant function:

( ) · [ ( )] ( )a b= -n y n ysech 10

in which, n0 represents the refractive index of the background

plate, α is the gradient coefficient and β represents the y

coordinate of the symmetry axis of the refractive index

profile. Waves incident into the lens from the x direction will

be focused at a focal point on the b=y line, with a focal

length represented as p a=f 2 .

In the considered piezo-lens, the above variation of the

refractive index is approximately realized in a piecewise form

by designing the shunting negative capacitance values.

According to equation (1), the refractive index only varies in

the y direction. Thus, in a piezo-lens, the shunting negative

capacitance values are equal in the same row (the x direction)

but will be different in the same column (the y direction). To

determine the required shunting negative capacitance value in

each row, firstly, a homogenized model of the shunted

piezoelectric lattice depicted in figure 2 is developed.

The homogenized model is obtained in three steps [33].

The first step is to represent the effective material parameters

of the shunted piezoelectric patches as functions of the

negative capacitance. Assume directions 1, 2 and 3 corre-

spond to the x y z, , axis respectively, and the electrode sur-

faces of the piezoelectric patches are perpendicular to

direction 3. The thickness of the piezoelectric patches are

much smaller than the host plate’s thickness, therefore it is

reasonable to assume that all piezoelectric patches are under

plane stress condition and they are isotropic in the x − y

plane. According to Hagood and Von Flotow [15], the

effective Young’s modulus and the effective Poisson’s ratio

of these piezoelectric patches shunted with negative capaci-

tances are:

( )

( )

( )
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+ +

+ -
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Here, E sh
p and m

p
sh are the Young’s modulus and the Poisson’s

ratio of the short-circuit piezoelectric material, respectively;

k31 is the coupling factor; C T
p is the intrinsic capacitance value

of the piezoelectric patch under constant stress; Cneg is the

applied negative capacitance value.

The second step is to determine the effective parameters

of the shunted piezoelectric sandwich structure highlighted by

the dashed lines in figure 2. According to the classical lami-

nated plate theory [34] as well as the Kirchhoff–Love plate

theory, the effective area density, the effective flexural

rigidity for the piezoelectric sandwich structure can be

expressed as:
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Here,
( )

=
m-

Db
E h

12 1

b b

b

3

2 is the flexural rigidity of the host plate

and mE ,b b denote the Young’s modulus and the Poisson’s
ratio of the host plate respectively; rb and rp are the densities
of the host plate and the piezoelectric patches respectively.

The last step is to derive the effective parameters for the

entire shunted piezoelectric lattice. With equations (2) and (3),

Figure 1. Piezo-lens on plate.

Figure 2. Top and side view of one unit shunted piezoelectric lattice.
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the effective area density and the effective flexural rigidity

of the entire unit lattice can be obtained as [33]:

( )

( )
( )

r cr c r

c c

= + -

=
+ -

h

D
D D

D D

1

1
. 4

eff A b b

eff
A b

A b

Here, ( )c = l lp b
2 is the ratio of the surface area covered by a

piezoelectric patch to the surface area of a unit lattice.

After developing the homogenized model for the shunted

piezoelectric lattice, the effective refractive index for flexural

waves incident from the background plate into the shunted

piezoelectric lattice is obtained. It is expressed as the ratio of

the group velocity in the background plate to the effective

group velocity in the lattice:

( )=n
c

c
. 5eff

b
g

eff
g

For the homogeneous and isotropic plate, the group

velocity of the flexural wave is double the phase velocity and

is independent of the direction. Hence, equation (5) can be

further written as:

( )
r

r
=

⎛

⎝
⎜

⎞

⎠
⎟n

D

h D
. 6eff

eff b

b b eff

1 4

Figure 3 illustrates the variation of the effective refractive

index with the non-dimensional applied negative capacitance

value l = -C Cneg p
T . It is observed that the effective

refractive index can be increased or decreased to a great

extent by varying the negative capacitance value in the

stable zone.

With the relationship between the negative capacitance

value and the effective refractive index of the shunted

piezoelectric lattice shown in equation (6) or in figure 3, the

required negative capacitance value for each row in the piezo-

lens can be determined.

As a summary of this section, the piezo-lens is designed

in three steps. In the first step, we choose the parameters α

and β in the refractive index profile in equation (1) to design

the location of the focal point. In the second step, the required

refractive index for each row in the lens zone is obtained by

substituting the central y coordinate of the row into

equation (1). In the last step, the required refractive index for

each row is fulfilled by choosing the negative capacitance

value according to equation (6).

3. Numerical model and energy analysis

3.1. Finite element model of the piezo-mechanical system

The piezo-mechanical system studied in this paper can be

generally illustrated by figure 4. In this system, the mechan-

ical structure occupies a domain Wm with particular Dirichlet

boundary conditions applied on the surface Sm
u and Neumann

boundary conditions on the surface sSm. A set of piezoelectric

transducers are connected to the mechanical structure occu-

pying a domian We (only one is depicted in the figure as an

example). Zero charge conditions are applied to the lateral

surfaces Se
l of the piezoelectric transducers. The connecting

interfaces -Sm e are grounded and the free electrode Se
i of each

piezoelectric transducer is applied with a surface charger Q0
i

or a voltage V0
i , here [ ]Î ¼i P1, 2, , and P is the total

number of the piezoelectric transducers.

The 3D dynamical equilibrium equations for the piezo-

mechanical system described above can be written as:

·

· ( )

Èsr -  = " Î W W
 = " Î W

w f x

D x

¨ ,

0, 7

m e

e

with associated mechanical boundary conditions:

· ( )s
= " Î
= " Î s

w w x

n x

S

T S

,

, 8

m
u

m

0

0

and electric boundary conditions:

·

·

] ( )

ò
j

= " Î
= " Î

=

= " Î Î ¼

-

⎡⎣

D n x

x

D n

x

S

V S

s Q or

V S and i P

0,

0,

d

, 1, 2, , . 9

e
l

m e

i

i
e
i

0

0

In the equations above, w is the mechanical displacement

tensor, s is the stress tensor, f is the applied external force

tensor, D is the electric displacement tensor and f is the

electric potential, n is the outward unit normal vector.

The stress tensor and the electric diplacement tensor in

piezoelectric materials are related to the linear strain tensor e

Figure 3. Variation of effective refractive index with non-dimen-
sional applied negative capacitance value.

Figure 4. A generic piezo-mechanical system.
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and electric field tensor E through the constitutive relations

below:

·

· · ( )
s e

e
= -
= +
C e E

D e E

:

. 10
E

T

S

Here, C e,E and S denote the elasticity tensor at constant

electric field, the piezoelectric coupling tensor and the

dielectric permittivity tensor at constant strain, respectively.

(·)T indicates transposition. The strain tensor is calculated as

( · · )e =  + w wT1

2
. The electric field tensor and the

electric potential are related as j= -E .

Assume that the electric potentials on the free electrode

of each piezoelectric transducer are identical. By using the

finite element discretization technique, the discrete governing

equations for the piezo-mechanical system are obtained:

( )

+ + =
+ =

M d K d K V F

K d K V Q

¨

. 11

dd dd dV

dV
T

VV

Here, d and V represent the structural and electric degree of

freedom, respectively.

The negative capacitance circuit is introduced into each

piezoelectric transducer by applying the following electric

boundary condition:

( )=Q C V . 12neg

In the numerical simulations in this paper, the structures

were discretized by 3D quadratic Lagrange elements. At least

ten elements were guaranteed in one wavelength. The simu-

lation domain was surrounded by perfectly matched layers to

avoid wave reflections at the boundaries [35, 36]. The piezo-

lens in the simulations has dimensions of *m m0.24 0.58 in

the x − y plane as depicted in figure 1. The geometry para-

meters for one unit of the piezoelectric lattice are illustrated in

table 1; corresponding meanings of the symbols in the table

can be found in figure 2. The Young’s modulus, the Poisson’s

ratio and the density of the aluminum are =E 70 Gpab ,

m = 0.3b and r = kg m2700b
3, respectively. The material

parameters for the PZT26 are listed in table 2. Light damping

amounting to a hysteretic coefficient of 0.1% was applied.

3.2. Energy analysis for a harmonically excited thin plate

To better understand the underlying physics and the focusing

effects of the piezo-lens, energy analyses including power

flow or kinetic energy have been conducted.

The very essential consequence of wave propagation is

the power diffusion in the medium. The power diffusion

pattern can be characterized by power flows. Accordingly,

power flows are useful in depicting the wave paths inside the

lens zone. In the frequency domain, the power flow in an

elastic medium is defined as:

· ( · ) ( )*sw= -I wre
1

2
. 13

Here, (·)* represents the conjugate value and (·)re means only

the real part is retained. Therefore, the power flow in a thin

plate excited by harmonic forces can be obtained as:

( )ò= -
I I zd . 14tot

h

h

2

2

For harmonically excited structures, the time averaged

kinetic energy is:

· ( )*w r= w wW
1

4
. 15k

T2

It will be used in estimating the focusing effects.

4. Numerical results

4.1. Focusing effect

In the simulations, to verify the focusing effect of the piezo-

lens, flexural waves were excited by a surface line harmonic

transverse force located m0.1 away from the left boundary of

the lens. The parameters of the piezo-lens were set as

a p= 0.6 and b = 0. With these settings, theoretically

flexural waves will be focused at a distance =f m0.3 on the

y = 0 line.

Figure 5 shows the normalized power flows in the host

plate without and with a piezo-lens at 2000 Hz. In the figure,

the arrows indicate the directions and magnitude of the power

Table 1. Geometry parameters of one unit piezoelectric lattice.

lb hb lp hp

0.04 m 0.005 m 0.035 m 0.001 m

Table 2. Material parameters of PZT26.

Symbol Value Property

=S S S,E E E
11 22 33 1.30E-11, 1.96E-11 (Pa−1) Compliance matrix under constant electric field

=S S S,E E E
12 13 23 −4.35E-12, -7.05E-12 (Pa−1)

=S S S,E E E
44 55 66 3.32E-11, 3.47E-11 (Pa−1)

=d d31 32 −1.28E-10 (C/N) Piezoelectric matrix

d33 3.28E-10 (C/N)

=d d24 15 3.27E-10 (C/N)

ρ 7700 (kg m3) Density

e e e=s s s,11 22 33 e e+ +E E1.19 03 , 1.33 030 0 Dielectric permittivity under constant stress

5



flows. It can be observed that the magnitude of the power

flows in the plate reduces when the waves are incident into the

piezo-lens zone, and the reduction becomes more obvious at

locations far from the symmetry axis y = 0. There are two

reasons for this phenomenon. On one hand, the refractive

indexes inside the piezo-lens are designed to fit equation (1).

Thus, at the left and right interfaces between the piezo-lens

and the background plate, the impedances only match on the

symmetry axis, and the impedance discontinuities increase

with the distance away from the symmetry axis. As a result,

part of the incident waves will be reflected at the interfaces and

the reflections gain with the distance away from the symmetry

axis. On the other hand, in the piezo-lens zone, the piezo-

electric patches are bonded on the surfaces of the host plate,

and part of the incident power in the host plate will flow into

these patches. It can also be observed that, except near the

upper and lower boundaries, power inside the piezo-lens zone

flows toward the designed focal point. This verifies that the

piezo-lens bends the flexural waves as designed. It should be

noted that the outgoing power near the upper and lower

boundaries is not unique to the piezo-lens—it is a character-

istic of the flat GRIN lens; more details can be found in

the supplementary document stacks.iop.org/sms/25/075007/
mmedia.

Figure 6 is the normalized kinetic energy distribution

pattern after the piezo-lens at 2000 Hz. It can be observed that

due to the wave bending effect, most of the incident energy is

concentrated inside a limited zone around the designed focal

point. To characterize this energy concentration effect, an

energy concentration zone is defined. The kinetic energy

inside this zone satisfies the following condition:

( )
( )W

Wmax
0.8. 16

k

k

Figure 5. Normalized power flows in the host plate at 2000 Hz (a)
without and (b) with the piezo-lens. The black cross indicates the
designed focal point.

Figure 6. Normalized kinetic energy distribution after the piezo-lens
at 2000 Hz. The black cross indicates the designed focal point, the
solid line indicates the energy concentration zone.

Figure 7. Energy enhancement ratio distribution after the piezo-lens
at 2000 Hz. The black cross indicates the designed focal point, the
dashed line indicates the energy enhancement zone.
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The condition in equation (16) indicates that inside the

energy concentration zone, the kinetic energy is larger than or

equal to 0.8 times the maximum kinetic energy after the lens.

This zone is highlighted by a solid line in this paper. For

example, the energy concentration zone at 2000 Hz is illu-

strated in figure 6.

Compared to the case without the lens, the energy con-

centration effect after the piezo-lens could enhance the energy

Figure 8. Left panel: normalized kinetic energy distributions after the piezo-lens for different focal locations at 2000 Hz. The black crosses
indicate the designed focal points, the solid and dashed lines indicate the energy concentration zones and the energy enhancement zones,
respectively. Right panel: normalized kinetic energy along y = 0 lines for different focal locations at 2000 Hz. The black crosses indicate the
designed focal points.
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Figure 9. Left panel: designed refractive index profiles. Right panel: normalized kinetic energy distributions after the piezo-lens for different
refractive index profiles at 2000 Hz. The black crosses indicate the designed focal points, the solid and dashed lines indicate the energy
concentration zones and the energy enhancement zones, respectively.
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Figure 10. Normalized kinetic energy distributions after the piezo-lens at different frequencies. Black crosses indicate the designed focal
points, solid and dashed lines indicate the energy concentration zones and the energy enhancement zones, respectively.

9



in the particular zone. To illustrate this effect, an energy

enhancement ratio (Eer) is defined as the ratio of the kinetic

energy of the plate with the lens to the kinetic energy of the

plate without the lens:

( )
( )

( )
( )=Eer x y

W x y

W x y
,

,

,
. 17k

l

k

In figure 7, the Eer after the piezo-lens at 2000 Hz is

illustrated. According to figures 6 and 7, it can be observed

that the energy is significantly enhanced inside the energy

concentration zone. Similarly, to characterize this energy

enhancement effect, an energy enhancement zone is defined.

In this zone, the Eer satisfies the following condition:

( ) ( )Eer x y, 2. 18

The energy enhancement zone is depicted by a dashed

line in this paper, as can be observed in figure 7.

4.2. Adaptive ability

In the piezo-lens, different refractive index profiles can be

fulfilled by just tuning the shunting negative capacitance

values, i.e. with the same geometry configuration, the piezo-

lens can focus waves at different locations. This adaptive

ability is demonstrated here, and in these simulations the

flexural waves are excited by a surface line harmonic trans-

verse force located 0.1 m away from the left boundary of

the lens.

The piezo-lens can focus waves at different locations in

the x direction. To verify this, the parameter β is fixed as

b = 0, but the parameter α is chosen as a p= 0.6,

a p= 0.8 and a p= , to focus waves at distances 0.3 m,

0.4 m and 0.5 m on the y = 0 line, respectively. The focusing

effect of these three piezo-lenses at 2000 Hz is illustrated in

figure 8. In the left panel, the normalized kinetic energy

distribution after the piezo-lenses are shown. Depicted in the

right panel are the normalized kinetic energy of the plates

with the piezo-lenses along the y = 0 line; the results of the

plates without a lens are also illustrated as references. The

adaptive ability of the piezo-lens in the x direction can be

observed from the results in figure 8. It can also be observed

that the energy concentration zone enlarges as the focal length

increases, indicating that the energy will be less concentrated

at a larger distance.

The piezo-lens can also focus waves at different locations

in the y direction. For example, fix the parameter α as

a p= 0.6 and chose the parameter β as b b= =0.12, 0

and b = -0.08 to focus waves at a distance 0.3 m on the

y=0.12 line, y = 0 line and = -y 0.08 line, respectively.

Figure 9 shows the designed refractive index profiles and the

focusing effects of the corresponding piezo-lenses at 2000 Hz.

It can be observed that the piezo-lens is adaptive in the y

direction. It should be noted that a larger distance between the

symmetry axis of the refractive index profile ( b=y line) and

the central axis of the lens (y= 0 line) will result in less

energy concentration intensity and a smaller energy

enhancement zone, as illustrated in the figure.

4.3. Performances of the piezo-lens at different frequencies

The focusing effects of the piezo-lens at different frequencies

are studied in this sub-section. In the numerical simulations,

the same excitation source and parameters of the piezo-lens

used in the simulations in sub-section 4.1 were adopted.

Figure 10 shows the focusing effects of the piezo-lens at

different frequencies. As expected, the effectiveness of the

piezo-lens is limited within a certain frequency band. The

Figure 11. The maximum energy enhancement ratios at different
frequencies.

Table 3. Geometry parameters of one unit piezoelectric lattice in the
new piezo-lens.

lb hb lp hp

0.03 m 0.005 m 0.025 m 0.001 m

Figure 12. The maximum energy enhancement ratios at different
frequencies for the new piezo-lens with smaller lattices.
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lower limit frequency is dominated by the characteristic

length of the piezo-lens. At frequencies smaller than the lower

limit, the corresponding wavelengths will be larger than the

characteristic length of the piezo-lens. Under these

circumstances, waves will bypass the piezo-lens by a dif-

fraction effect [2] and the piezo-lens will have a poor focusing

performance. The lower limit for the piezo-lens in this paper

is around 100Hz. At this frequency, the flexural wavelength is

just a little longer than the piezo-lens’ length in the y direc-

tion. As a result of the diffractive effect, most of the waves

will bypass the piezo-lens without being focused, leading to

quite a large energy concentration zone and no energy

enhancement zone. On the other hand, the upper limit fre-

quency is dominated by the length of the lattice. At fre-

quencies near the upper limit, the flexural wavelengths will be

approximately equal to twice the lattice’s length. Most of the

incident energy will be reflected by the piezo-lens [29], which

results in poor performance. The upper limit in this paper is

about 8000 Hz. At 8000 Hz, the wavelength is almost equal to

twice the lattice’s length. At this frequency, even though an

energy concentration zone can still be observed, there is no

energy enhancement zone due to the large reflection.

Inside the effective frequency band, the performances of

the piezo-lens are dependent on the frequencies. At fre-

quencies from 1000 Hz–6000 Hz, as the frequency increases,

energy will be less concentrated and the energy concentration

zone will shift to the right-hand side of the designed focal

point. The consequent energy enhancement zone will become

longer in the x direction. However, below 2000 Hz, energy is

concentrated almost around the designed focal point. The

wavelength at 2000 Hz is nearly four times the lattice’s

length. Hence, the piezo-lens could focus energy near the

designed point if the wavelength is larger than four times the

lattice’s length.

Figure 13. Normalized kinetic energy distributions after the piezo-lens for waves incident with q = 20 . The black cross represents the
designed focal point, the solid and dashed lines indicate the energy concentration zones and the energy enhancement zones, respectively.

Figure 14.Variation of the maximum energy enhancement ratio with
the incident angle at different frequencies.
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There are several reasons that probably contribute to the

shifting of the focal location and less concentration of energy

at higher frequencies inside the effective frequency band.

Firstly, the wavelength is more comparable to the lattice’s

length at higher frequencies. In the piezo-lens, the variation of

the refractive index is realized in a piecewise form. At smaller

wavelengths, this variation will be less smooth. Secondly, the

homogenized model of the piezoelectric lattice used in the

designing process becomes less accurate at higher frequencies

[33]. Accordingly, the actual refractive index variation profile

in the piezo-lens will deviate from the designed one at these

frequencies. Since the focal location of the waves is depen-

dent on the refractive index profile inside the piezo-lens, this

deviation will make the flexural waves focus away from the

designed point. Thirdly, the anisotropy of the piezoelectric

lattice could be more obvious at higher frequencies. The

anisotropy of the lattice will cause the aberration of

focus [37].

The performances of the piezo-lens at different fre-

quencies can also be predicted by the maximum energy

enhancement ratio ( ( )max Eer ) after the lens. The ( )max Eer

after an ideal lens and a piezo-lens at different frequencies are

illustrated in figure 11. The ideal lens is used as a reference. It

has the same dimensions as the piezo-lens and is designed by

consecutively varying the Young’s modulus in the lens zone.

In the figure, a larger ( )max Eer generally indicates a better

focusing effect. This can be seen from the fact that at the

lower limit frequency (100 Hz) and at the upper limit fre-

quency (8000 Hz), the ( )max Eer after the piezo-lens are

much smaller than most of those at frequencies inside the

effective frequency band. As the frequency approaches the

upper limit, the performance of the piezo-lens declines. This

is coincident with the results revealed in figure 10. In part-

icular, near the upper limit at 7000 Hz, the performance of the

piezo-lens is already poor. Therefore utilization near the

upper limit should be avoided for better applications. The

piezo-lens is commonly less effect than the ideal lens inside

the effective frequency band. This is reasonable since the

piezo-lens has a discrete configuration, and it will reflect more

energy than the ideal one.

According to the results above, the effective frequency

band of the piezo-lens can be extended by increasing the

length of the piezo-lens and/or decreasing the length of the

lattice. To demonstrate this, a new piezo-lens model with

smaller lattices was designed. The new piezo-lens is com-

posed of 19-by-8 array of piezoelectric lattices, each unit

piezoelectric lattice has the dimensions illustrated in table 3.

The new piezo-lens has smaller lattices but has more, there-

fore there are little differences between the global dimensions

of the new piezo-lens ( *m m0.24 0.57 ) and the existing one

( *m m0.24 0.56 ). The parameters of the new piezo-lens are

set as a p= 0.6 and b = 0, which are coincident with the

settings in other simulations in this sub-section. Figure 12

shows the maximum energy enhancement ratio after the new

piezo-lens at different frequencies. Compared with the results

in figure 11, it is clear that the effective frequency band has

been significantly broadened, from [ ]1000, 6000 Hz to

[ ]1000, 11500 Hz.

4.4. Performances of the piezo-lens for flexural waves exicited

by different types of sources

Flat GRIN lenses are originally designed to focus waves

incident from the normal direction. Actually, any wave can be

decomposed to have a component in the normal direction.

Thus, a flat GRIN lens should have focusing effects for other

kinds of incident waves to some extent. In this sub-section,

the performances of the piezo-lens for obliquely incident

plane waves and waves excited by a point source are studied.

The parameters of the piezo-lens are set as α = π/0.6 and

β = 0 in this sub-section.

4.4.1. Oblique plane waves. In these cases, oblique plane

waves are generated by a surface line harmonic transverse

force with an angle θ against the left boundary of the piezo-

lens. A positive θ represents waves that are incident from the

bottom left direction and a negative one represents waves that

Figure 15. Influence of the incident angle on (a) the energy
concentration zone and (b) the energy enhancement zone at 2000 Hz.
The black cross represents the designed focal point.
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are incident from the upper left direction; due to the

symmetry, only the positive θ will be considered.

The focusing effects of these cases are demonstrated by

an example in figure 13. For the oblique plane wave, energy is

focused above the designed focal point. The deviation of the

energy concentration zone from the designed location is

expected. The wave incident with an angle can be decom-

posed into an x component and a y component. The x

component will be focused to a point and the y component

will deviate this real focal point away from the designed one

in the y direction. Similar to the normal incident wave case, as

the frequency increases, the energy concentration zone will

shift to the right and enlarge. Note that at a higher frequency

(6000 Hz), an extra focalization can be observed near the

right piezo-lens boundary. The reason for this phenomenon is

interpreted in the supplementary document.

The influence of the incident angle on the focusing

effects at different frequencies are predicted in figure 14.

Inside the effective frequency band (from 1000 Hz–6000 Hz),

the overall trend is that the focusing effects decline with the

increase of the incident angle. Particularly at θ = 40° case, the

max(Eer) at frequencies inside the effective frequency band

are comparable with that at the upper limit frequency (8000

Hz). The max(Eer) at frequencies inside the effective

frequency band should be much larger than that at limit

frequencies if the piezo-lens has a good performance. From

this point of view, the piezo-lens already has a poor effect at

θ = 40° case. Therefore, the incident angle of the plane waves

should be limited in a range—in our case here the range is

about [−40°, 40°].

The more specific influences of the incident angle on the

focusing effects at 2000 Hz are illustrated in figure 15. As the

incident angle increases, the energy concentration zone will

Figure 16. Normalized kinetic energy distributions after the piezo-lens for waves excited by a point force located 1.2 m away from the left
lens boundary. The black crosses indicate the designed focal points, the solid and dashed lines indicate the energy concentration zones and
the energy enhancement zones, respectively.

Figure 17. Influence of the point force distance on the maximum
energy enhancement ratio at different frequencies.
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shift upward and become smaller. Consequently, the energy

enhancement zone also shifts upward and shrinks. According

to figures 14 and 15, at the case with larger incident angle,

even though the energy is more concentrated, the max(Eer) at

that case is smaller. This is mainly caused by the fact that

more energy will be reflected when the waves are incident

with a larger angle.

4.4.2. Waves excited by point forces. In these simulations,

flexural waves are generated by a point force located on the

central axis of the piezo-lens (y= 0 line) with a distance d

from the left boundary of the piezo-lens. It is easy to

understand that if the point force is far enough away from the

piezo-lens, the waves incident upon the piezo-lens can be

treated as plane waves; the piezo-lens should have focusing

effects at these cases. For the =d 1.2 m case, the distance is

more than five times the longest wave length of the

considered frequency; it is assumed that this distance is far

enough. The focusing effects at this case are illustrated in

figure 16. It can be seen that energy is effectively focused.

Comparing the corresponding results in figures 10 and 16, the

right shifting of the energy concentration zone is more

obvious in figure 16, indicating that the piezo-lens is more

sensitive to frequency in the point force case.

The influence of point force distance on the focusing

effects at different frequencies are predicted in figure 17.

Inside the effective frequency band (1000 Hz–6000 Hz), from

an overall point of view, the focusing effects improve with the

increase of distance. At distances larger than or equal to

0.3 m, the max(Eer) at frequencies inside the effective band

are obviously larger than that at limit frequencies (100 Hz and

8000 Hz). Therefore the distance of the point force should be

larger than 0.3 m for achieving acceptable focussing effects,

which is almost one and a half times the longest wavelength

of the considered effective frequencies.

The variations of the energy concentration zone and

energy enhancement zone with the point force distance at

2000 Hz are illustrated in figure 18. It can be observed that as

the distance increases the energy will be focused closer to the

designed focal point and will be more concentrated.

Consequently, the energy enhancement zone shifts to the left

and shrinks.

The piezo-lens can also focus waves generated by point

force away from the central axis. According to the

performances of the piezo-lens for oblique plane waves and

waves excited by point forces on the central axis, it has

limitations for the location of the paraxial point force. The

vertical distance of the point force to the left piezo-lens

boundary should be at least one and a half times larger than

the longest wavelength and the vertical distance of the point

force to the central axis should guarantee that the incident

angles of the waves are smaller than 40
◦ . Even with these

limitations, the point force is available in a large zone. As an

example, shown in figure 19 are the focusing effects for

waves excited by a point force located 1 m away from the

piezo-lens and 0.2 m away from the central axis. As expected,

the piezo-lens is effective in a large frequency band. Energy is

concentrated away from the designed focal point and the

energy concentration zone shifts to the right with the increase

of frequency. Similar to the oblique plane wave cases,

multiple focalization is observed at a higher frequency.

4.5. Double piezo-lens configuration

The piezo-lens has good focusing effects for waves generated

by a point force located sufficiently far away, whereas the

wave fields generated by point force are scattered, and the

energy reduces with the wave travelling distance. Even

though energy can be significantly enhanced after the lens, the

magnitude of the energy could be still unacceptable. Thus, it

is more practical to focus waves near the point source. The

wave propagation in the flat GRIN lens zone is reversible, i.e.

Figure 18. Influence of the point force distance on (a) the energy
concentration zone and (b) the energy enhancement zone at 2000 Hz.
The black cross represents the designed focal point.
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Figure 19. Normalized kinetic energy distributions at different frequencies for waves excited by paraxial point force. Black crosses indicate
the designed focal points, solid and dashed lines indicate the energy concentration zones and the energy enhancement zones, respectively.

Figure 20. Normalized kinetic energy distributions after the double piezo-lens configuration for near field point force at different frequencies.
The black crosses indicate the designed focal points, the solid and dashed lines indicate the energy concentration zones and the energy
enhancement zones, respectively.
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waves generated by a point force located at the designed focal

point will be adjusted to parallel with the central axis by the

lens. According to this, a double piezo-lenses configuration is

proposed here.

In this configuration, an identical piezo-lens depicted in

figure 1 is positioned just after the original one. The first

piezo-lens is used to bend the waves generated by a point

force at the designed focal point to be parallel with the central

axis. The second piezo-lens is then used to focus these waves.

The efficiency of this proposition is demonstrated by an

example below. Set the parameters as a p= 0.6 and b = 0

for each piezo-lens in the double-lens configuration. The focal

point on the left side is 0.06 m away from the left boundary

on the y = 0 line and a point force is located at it. The

focusing effects at different frequencies are demonstrated in

figure 20.

Due to the adaptive ability, the double piezo-lens con-

figuration can focus energy at different locations, as demon-

strated in figure 21. In these examples, the two piezo-lenses in

a double-lens configuration are identical. Parameter α is set as

a p= 0.6 for all the double piezo-lens configurations, but

parameter β is chosen differently as b b= =0.12, 0 and

b = -0.08 to focus waves at a distance 0.3 m on the y = 0.12

line, y = 0 line and = -y 0.08 line, respectively. Flexural

waves are excited by point forces located at the corresponding

left focal points at these three cases as depicted in the figure.

5. Conclusion and discussion

The most remarkable conclusions obtained from the numer-

ical results in this paper are summarized below with

corresponding discussions.

• The piezo-lens is effective in a frequency band; the lower

limit frequency is dominated by the characteristic length

of the piezo-lens, and the upper one is limited by the

length of the lattice. The effective frequency band can be

extended by decreasing the length of the lattice. Inside the

effective frequency band, the focal zone will shift towards

Figure 21. Normalized kinetic energy distributions after the double
piezo-lens configurations at 2000 Hz for different focal locations.
The black crosses indicate the designed focal points, the red points
indicate the locations of the point forces, the solid and dashed lines
indicate the energy concentration zones and the energy enhancement
zones, respectively.

Figure A1. Real-life negative capacitance circuit used in Tateo et alʼs
works [29, 30].
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the right and enlarges as the frequency increases. But

energy can almost be focused near the designed location

if the wavelength is larger than four times the lattice’s

length.

A large effective frequency band makes the piezo-

lens quite promising in broadband energy harvesting

systems [38].

• With the same geometry configuration, the piezo-lens can

focus waves at different locations by tuning the shunting

negative capacitance values.

This adaptive ability distinguishes the piezo-lens

from other existing GRIN lenses. With this ability, the

piezo-lens can be used in SHM to simultaneously monitor

a large region [39].

• The piezo-lens is effective for obliquely incident plane

waves and waves excited by point forces in a broadband.

The incident angle is available in a broad range and the

point force can be located in a large zone.

In the existing literature, flat GRIN lenses were only

verified to be effective in focusing plane waves incident

from the normal direction. The effectivity of the piezo-

lens for waves generated by different types of sources

demonstrates that the piezo-lens can be applied in other

cases.

• The proposed double piezo-lens configuration is effective

for waves excited by point forces located in the near field

in a large frequency band and can concentrate energy at

different locations by adjusting the negative capacitance

values.

The double piezo-lens configuration is more practical

for point source cases. The characteristics summarized

above make it useful in broadband energy harvesting

systems and SHM.
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Appendix A. Tuning the negative capacitance values

in real-life applications

In practice, the negative capacitance value can be realized by

a synthetic circuit as used in Tateo et alʼs works [29, 30]. The

layout of this circuit is described in figure A1. It contains a

number of passive components, four resistors R R R R, , ,1 2 3 4

and a capacitor C, as well as an operational amplifier (Op-

Amp). The equivalent impedance of this circuit is :

( ) ( )w
w

= -
+

Z R
R

R j C

1
. 19eq

R

1
3

4
1

2

Here, = -j 1. According to Tateo et al, the formula in

equation (19) can be simplified without loss of generality.

First, the resistor R2, which is necessary for the stability of the

Op-Amp at DC, is sufficiently large to be considered negli-

gible. Second, the resistor R1, required in practical realization

of the circuit, can be slected small enough to be negligible.

Therefore, the equivalent impedance in equation (19) can be

simplified as:

( ) ( )w
w w

= - =Z
R

R j C j C

1 1
. 20eq

neg

3

4

Thus, a required negative capacitance value = -Cneg
R C

R

4

3

can be obtained by tuning the values of R R,3 4 and C in the

circuit in figure A1.

Appendix B. Applied negative capacitance values in

simulations for different focal locations

The negative capacitance values used in the simulations to

demonstrate the adaptive ability of the piezo-lens are listed in

table B1. For reference, the value set corresponding to the

unstable zone is [−11.82, −10.74] nF.
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