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Abstract

While there is an abundant literature on the distribution of spirorettgticsn various
sulsets of the human populaticepparentlyittle is known ofthe structure of theypically
verysmall sample of measures that can be gatttirenga spirometry sessioffhis paper
starts witha theoreticahnalysis of the relatiolinking the measure of forced vital capacity
(FVC) to the parameter of total lungs capacitiC). Sincethe maximization effort exerted
on FVC measures by thiesteess opposed by the resistancelafC, theirimpassable
personalpperlimit, a ceiling effect mudake placeon the continuum dfFVC measurement
Two predictionsfollow concerning the withisubject distribution oFVC. One is thathe
distributionshouldbe negatively skewethe other is thats first and second momergfould
correlate negativelgcross sessionghese predictiongere tested witlthe publicly available
large-scalespirometry data collected by the Third National Health and Nutrition Examination
Suwey. Usingoriginal data processinggchniques especially deviseduioveil the shape of
smallsessiorsamples oFVC measures, the papeports highly consistembnfirmatory
evidence, based on the analysis of thousandsdofidual test sessionghata typical session
sampleof FVCis indeedstrongly skewed negatilyeandthat thesessiormeanand the
sessiorstandard deviation dfVC doindeed bear a strong negative correlatSeveral
implications of these results are discussedneof which cut acrosshe frontiers of
respirology It is suggestedhatthe proceduratigor andsimplicity of spirometry testingnake
it a privileged paradigm farndestandingguantitativeperformanceneasuremenh general.



1. Introduction

A spirometry measuriss a meaninglessumber unlesg can be situated in the frame of
reference ofits natural variatioramonghumars. Thus amabundant statistical literatuhas
accumulated providingeference curves aimed to infopractitionersabout theadmittedy
normal range of varation of spirometrystatisticsin differenthumansubpopulationgaking
into account such factors asageand stature, gender, and ethnicitg(g.,Harkinsan etal.,
1999; Stanojevic et al., 200&uanjer et al., 201Rochat et al., 2013; Coates et al., 2016

Statistical samplingheorydistinguisheshree sorts ohumericalentities: (1)basicmeasures

which come irfinite samples; (2fummary statisticis such as the sampl eds
sampl eds standar d devi thaemprital infevrhation bontasinediv e t o
a sampleof measuresand (3)parert population parametersuch as the populationsiean

and standard deviatiomhich weoftenwantto estimatenductively fromsummary statistics.
Statistical sampling takes a special form in spirom#&tfyile their basic observatiois the

measure oforced vital capacityRVC) givenby the spirometet practitionersuse asingle

summary statistiovhich is not araverageéut an extremunmamely the maximurof the

s e s s sampiedf §VC measure$FVCnay). The relevanparent population parameteere

is total lungs capacityT{LC), theupper limiton whichFVCmnaxwould gradually converge

were it possible to obtain, in an unending session, an infinite sample of measures from the
same subject.

While the statistical literature on spirometrgvolvesaboutthe betveenindividual sort of
variability, this paperin contrastis mainly concerned witlthe within-individual variability
of FVC measureghevariability observablacross the successineneuves of a spirometry
sessionAlthough obviously different, tabetweenrindividual and the withinindividual
variability problens are in one regargequivalent both raisea statistical sampling problem,
that of infering inductively properties of a parent distribution from a limited sample of
observationsln our reatment of the withindividual distribution ofFVC below we will
have in minda parent population of maneuveasher thara parent populatioof human
individuals.

Comparativelittle attentionseems to havieeenpaidto the problem of thewithin-subject,
within-sessiorvariability evidentin everysingle spirometry session. That problem looks
intractable at first sighas the sample of measures that can be actually gathered in a Bession
typically so smallasto defy any statistical descriptidnone may wondewhat couldoe

learned from drequencyhistogram constructed with only threefour measures.

Nevertheless the very fact of asking, aswile do, aboutthe mechanisms thaxplainthe
within-subjectvariability of FVC across successiveaneuves implies theassumptiorthat,
however small theessiorsamplethere exists a parent population of witis@ssiorFVC
measures.

A word of terminology is in order. Statistically speaking the problem of spirometry is
remarkablysimple, a sessiodeliveringjust one sample d¥VC measure$rom just one

subject Ther efore t he adi-seecstsiivoan 0 -®akfpgr lewesatoi nns i w
notediwW-So, will be usedhereassynonymsand sowillt h e e x p r weessi eosnssi ofinboe t
and Abeduleeant 6, MB-B.intly noted

1 For simplicity, his papefocuseson volumetricspirometry flow measurements being essehtiteft aside
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2. Respiratory @pacity, Effort, and Performance

Forced vital capacitfFVC),? awidely usedmeasuref spirometry is defined asithe
maximal volume of air exhaled with maximally forced effiooim a maxmal inspiratiord
(Brusasco, Crapo, & Viegi, 2005, p. 3ZQuanjer et al., 1993, p. L1

While standardized instructiomssistentlyask the testee forrmaximalinspiration and
expiration effort, practitioners encounter the difficulty ttregt e s t e eid reevemstiicflyo r t
maximal varyingerraticallyfrom maneuver to maneuvéret us assuméhatthe magnitude

of this effort notedE, rangesrom 0% to 100%.Werethe maximuneffort requirement
perfectlymet with E invariably equal to 100%he maneuversf a sessiomvould all deliver

the same valu@ne thatvould each time coincide exactlyith what respirologists call the
total lungs capacityTLC)" the volumeof airthatthet e s tluagsand airwaysan

physically containHowever, hete s t e e GissneverfeXaaily totednd so pactitionersmust
content themselves with the fact thia@ measure they recoislalmost surelyess tharLC:

FVCOTLC. (1

Reflecting thesizeand thefunctional statef the pulmonary apparatusl.Cis a testee
specific parametein these pages will be considerecananthropometriparametewhose
valueis fixedduring a spirometry sessigust like, say,body weightQuite wlike body
weight, howeverTLC cannot beneasuredy the practitione It is an unknowrconstant
whoseinductiveestimationfrom a sample of FVC measuresonstituteghe maingoal of
volumetricspirometry.lnequality 1 says thatLC constitutegshe upper boundf the FVC
measure

Obviouslythe measur&VC depends othe capacityTLC. The most plausiblenodel of this
dependencis a linearfunctionwhoseslopeisgi ven by t he magniitude of

FVC=E x TLC. )

The multiplication of a constant byrandom variablgieldsa random variabldghe source of
the haphazard variability fVC is indeedthe haphazard variability &. At this point itmust
berecalkedthat themaximal expiratorynaneuverequireswo consecutive efforts, an
inspiration effortEinsp followed by an expiratioeffort Eex, neither ofwhich can be strictly
maximal Sincethetwo percentagesombinemultiplicatively

E = Einsp X Eexp, ©)

occasionallythevalue ofE in Equation2 may be problematadly low. Supposéhat in a
maneuver théesteanakestwo decentefforts, for exampleEin = 80% andthenEex= 90%.
The product of these two efforts will lie= 80% x 90% =72%, yielding a non-negligible
mismatchbetweerthe measuredalue ofFVC andTLC.

2 Incidentally, the traditionakerminologyof spirometryi s sl i ght |l 'y mi sl eadi ng. I f the
c a p a seenmgyuite appropriate to designate winadybe called dicapacity in both the metaphorical sense of

a capability and the literal sense of an inner volume susceptible to be filled with a liquid or a gas, the term

fi ¢ a p a csontewhatnfortunate intheexprs si on Af or cerdif wir tt & ld becaypeiei t vy @

latter quantity consisting of performance measunich varies from maneuver to maneuver depending on the

strength of thé e s t e e, & a capatitf in meither sense.
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Letting Udenotethatundeestimation errqr

U RvC TLC, (4)
we can seérom Equations 2and 4thatit varies asan affine function othet e s teféod 0 s
U ExTLCO TLC, (5)

whose slope and intercept are both given by the unknowstardiiLC. The estimationerror
increases linearlfrom 0% (O ml) to 100% ( TLC) as the effort declines from Q% to 0%
(Figure 1.

effort E (-)
0 1
estimation
error €
(ml)
—TLCH

Figure 1. The error madein estimating TLC from FVC as a function ofthe magnitude of the
testeebs effort

Thus, the reasnwhy practitioners following the recommendations e$tablishedgtandards
(Graham et al., 201930insistently urgeheir patientdo maximize their respiratory effert
seems cleathe stronger the efforthe closer the value &V Cto that ofTLC and hencehe
smallerthep r a c t i errorio esenratdhgl LC. By thesame tokenEquation 5 explains
why the standards of spirometajsoaskpractitioners tesummarize the variouseasuresf a
session witlthe session mamum: FVCnaxis indeedthesess o rbéstvalue the onewhich
estimateg LC with the smallest error.

What has just been propossdn idealizedand schematimodelof the relationshiglinking
the threémportant quantities of volumetric spirometthie effort, the capacity ande
measureln particular there ifittle doubt that the physical capacity of the luaes not result
in astrictly fixed upper bounan the continuum dfVC measurement, if only becauskthe
elasticityof the various tissues involved tine spirometrymaneuverNeverthelesshis
simplified, heuristic conceptual framewovkll help usformulate the statistical probleat
handandthenguide our exploration of empirical data

3. A Ceiling Effect in FVC Measurement

If it is assumedhat (1) esteeslotry their best upon each maneuveptoduceas close
value ofFVC as possible to their persoridlC limit, that (2)the magnitude of their
maximization effort variesandomlyfrom maneuver to maneuvand that (3}hroughoutthe



test sessiolLC represents fixed upper bound on the continuume¥C measurementhen
one must expedctceiling effecin W-S distributionsof FVC.3

The expeatd effect isreminiscent othat examined bpsychologistGeorge Miller (1956) in

his famous paper on the limited capacity of humans for transmitting information. Miller
discussed the widely replicated finding thatthe information content of a stimulus is
gradually increasenh absolute identification taskthe volume ofnformationper judgment
effectivelytransmitted by experimental participaigvels off at about 2.5 bits (7+2 items).
Such a ceiling effect, Miller explained, reflects the existence of an impassable upper limit in
the humannformationtransmissiorcapacity best nodeledmathematicallyoy what Shannon
(1948) called the capacity of an information transmission channel.

Below we will focus onwo tightly related, yet independédyntestablepredictiors concerning
theW-S distributionof FVC, which follow from the abovassumptions ancbnstitute two
differentexpressions of theameceiling effect Themost obvious predictiois that theN-S
distribution ofFVC shouldbe negatively skewedih general the testees are willitggcomply
with the instructions they receivand thus theghouldtend toaccumulag their small sampge
of FVCvaluesnot far from their personaipperlimits. In other wordghere should ban
abrupt, non conveftont on the righthandsideof the WS distribution constrained by the
hard wall of @ impassable upper bound, aardevanescentonvextail onthe lefthandside
not constrained by a lower bourgincethe skewnes®f a distributionmeasures the relative
extension®f its two tails? obviously a distribution whose values tend to clustéhe
vicinity of a fixed upper limitwill be left or negatively skewed.

Thejustification of themetaphor of dront observable on the bounded side of performance
distributions(Guiard, 2020; Guiard, Olafsdottir, & Perrault, 2011; Guiard & Rioul, 2@15)
ratherstraightforwardto accumulate theffVC values as close as they can to tiA&i€C limit
is, after all,precisely what testees agplicitly instructedto do.If the maximization effort of
spirometry is conceptualized as a physical force orieapsvard, then the front can be
defined as the region of the continuunFMC measurement whereatforce meets the
resistance of the capacity limit. Ritve FVC scoresof a session th€LC parameteplaysa
dual role it is, by definition aglobal attractor, testeedbeingsupposedo push each of their
FVC measures as close as possibléhatlimit; butat the same timi¢ is alocal repellerin
the sense thggushng o n eF&¥Gvalue closer and closer ton e 6 meansekperiencing a
harder and hardeepelling reaction.

The fcondpredictionwe will investigate belovis thatthe mean and th&andard deviatioof
FVC measures shoulgnd tocorrelate negativelacrosssessionsThat correlation
(henceforth referred to as the MS correlatisimpuldexist andbe negative becausiee
stronger the maximization effamade in a sessipthehigher the meaof FVC but at the
same timedue to the ceiling effecthe more nearly deterministic tHe/C value At the limit,
weret he s ubj e ovadabe 1% the mean okVC would reachits absolute
maximum ofTLC while the variance oFVC would reachits absolute minimum of zero

3The sat of ceiling effect considered heshould not be confused with the tectogical artefact reported in
situations where a measurement devVéiks to completely cover the relevant range of measureniéris is not
the case of properly calibrated spirometers (Madsen, 2012).

4 See for examplattps://mathworld.wolfram.com/sear@lguery=skewness&x=12&y=12
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Theprediction caralsobeexplainedn terms ofrespiratorycapacity rather than effort.
Forminggroupsof subjectsvith more and more homogeneous capacisgsetty mucHike
deblurringthe upper limit ofFVC. While there should be little or NS correlationon FVC
acrosssessios run bysubjectshavingawholediversity of respiratory capacities, the
expectedhegativecorrelationshouldbecomeobservable irsufficiently homogeneous groups
of capacities

4. The NHANES III Spirometry Data

Theresultsto be presented belogxploitthe verylargeset ofspirometry datamade publicly
available by the US Center for Dise@entrol and PreventionThe data, collected ih988

94 by trained technicians durirtge Third National Health and Nutrition Examination Survey
(NHANES I11), comefrom about 2,000 subjectsf both gendersaged 8yearsand over,
selected from householdsross the United Stat@dankinson et al 1999)

Two files wereof specialinterest for the present purposéie filenamedSH3SPIRO.csy
released in June 200dontainsdetailedquantitativespirometrydataon eachmaneuver of
eachtesteeaequired to perfornat leasffive technicallysatisfactorymaneuversThe otherfile,
namedGROWTHCH.xpf released in November 201é&ntainsrich anthrometrianformation
on eachtestee The surveyhavingassigned a unique identification number astendividual
testeejt was possible to merge the two filéis the analges belowevery single value dfVC
camefrom a testee whose age, gender, weighd, standing heightereknown$

Table 1.Age and Gender @mposition of theData Set

COUNT OF SUBJECTS
Age (years)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 8-17 years18-25 years Al
Males 233 267 291 281 201 184 187 184 195 189 170 164 143 158 155 170 179 166 2212 1305 3517
Females 226 267 252 269 232 218 219 197 214 210 185 188 173 181 180 195 197 148 2 304 1447 3751
Both genders 459 534 543 550 433 402 406 381 409 399 355 352 316 339 335 365 376 314 4516 2752 7268

COUNT OF MANEUVERS
Age (years)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 8-17 yearsl8-25 years Al
Males 16521902206518991340117811921181124111371077 996 857 966 923 103410801047 14 787 7980 22 767
Females 157418861801184415461507147813001449137911891 156109411781 1181 2421 222 887 15 764 9 086 24 850
Both genders 3226 3 788 3866 3 7432886 26852 67024812690 2516 2 266 2152 1 951 2 1442 041 2 276 2 302 1 934 30 551 17 066 47 617

MEAN NUMBER OF MANEUVERS PER SUBJECT
Age (years)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 8-17 years18-25years  All

Males 7.09 7.12 7.10 6.76 6.67 6.40 6.37 6.42 6.36 6.02 6.34 6.07 599 6.11 595 6.08 6.03 6.31 6.63 6.11 6.47
Females 6.96 7.06 7.15 6.86 6.66 6.91 6.75 6.60 6.77 6.57 6.43 6.15 6.32 6.51 6.21 6.37 6.20 5.99 6.83 6.27 6.62
Both genders 7.03 7.09 7.12 6.81 6.67 6.68 6.58 6.51 6.58 6.31 6.38 6.11 6.17 6.32 6.09 6.24 6.12 6.16 6.74 6.20 6.55

Themerged csv file prepared for ¢hstudy includes a total of 47,617 measurds\id
collected in 7,268 male and female subjects ag28 Bears (see Table Mlore often than

5 https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default ¢3gries 11 No. 9A).

5 Thanks are due to Francisco Grisanti, who carried out the merging of the wva filartial fulfilment of a

Master in computer science of the University of Houston duringr@#dth stay at the University of Pafsaclay
under the supervision of this writer: Grisanti, F. (20T8)velopment of a User Interface for Access to Biometric
and Spirometry Data from the NHANES III Surveyppublished Master thesis.
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not kelow the data from just adults will be more than enough to seétempirical factsof
interest

The samplesf data gathexd in the spirometry sessions of the NHANES Il survey were
slightly larger than thostypically gathered by clinicianghetechnicians beingstructedo
obtainat least five satisfactory maneuveasd so theurvey reports an average ob6.
successfuimaneuvers per sessiorhis sample sizeemainsrathersmallfor an analysis of the
W-S variability of FVC. Pooling many individual samples is not a solution because the
distribution we are curious about will be drowned largeamount of BS variability. One
solution that was devised for the present study capitalizes on the idea that different individuals
with the same respiratory capacity drem the viewpoint of volumetric spirometry, like

clones A sample oFFVC measures from many individuals witie same respiratory capacity

is essentially equivalent to a sampld=8»C measures from many sessions run by one and the
same individual. We will see thtte capacitycloningtechniquemakes it possible to unveil
some highly consistent patternsFdfC readly interpretable as resulting from the interplay of
the subjectdos effort and capacity.

5. Results

We will examinefirst the skewness of the \§ distribution ofFVC (Sub-section 5.1) andhen
the correlatiorinking the means and standard deviations of sassamples oFVC (Sub-
section 5.2).

5.1. Skewness ithe WS Distribution of FVC scores

One simple way to estimate the skewness of th® Wstribution ofFVCis to compute the
skewnessgoefficient for each single sessi@nd to then examine the distribution of that
statisticaaosssessions. Since on average 6.5 maneuvers were performed per session in the
NHANES survey and 99% ddll sessions contained more than three maneuvers, it was
possible to estimate sample skewness in two comfortably large samples of independent
sessions. The skewness statistiscomputed for 1,302 and 1,430 sessions with male and
femaleadults, respectively.

Figure 2 plots the distribution of that sample statistic, confirming that the NHANES data
contains many more negativetkewed than positivelgkewed samples ¢iVC scores. The
ratio is 3/1 in males and 4/1 in females, the mediarevalisample skewness bein@ 73 and
10.79, respectively.

7
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1,302 male adults 1,430 female adults
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Session sample skewness Session sample skewness

Figure 2. Distribution of the skewness coefficient over all sessions, separately for male and
female adults.

Finer evdence iggivenin Figure 3 whichplotsthe mean value of the sessiorwkess
statistic separately for each of the 18 age grewmpdablefor each gendethus providing 36
statistically independent estimations. The negative skeghypothesis is massively
corroborated, all group averages of the gkesestatistic falling vell below zero, in the range
from1 0.50 toi 0.74 for males and froiin0.61 and 0.83 for females.

Males Females

0.0 0.0

-0.2 -0.2
Mean 04 Mean 0-4
within- within-
session session
skew o6 skew 06

-0.8 -0.8

1.0 -1.0

6 8 10 12 14 16 18 20 22 24 26 6 8 10 12 14 16 18 20 22 24 26
Age (years) Age (years)

Figure 3. Mean sessionskewnesssomputed for each age group within each gender. Error
bars represent 95% confidence limits of the means.

ThusFigures2 and 3 providestrong evidencéhat spirometry sessiom® producenegatively
skewed samples &1VC. We may nowask abouthe relation between skewness and effért.
fact familiar topractitionergs that wilingness to spend a physical efftike thatrequiredin
aspirometrytestis not guaranteedometesteescceptingesswhole heartedly than others
the maximal effort instruction®.g.,NHANES, 201J). One simplestatisticto characterize the
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general level of effort spentin a sessionisthedisnce fr om t h ¢ VGLsi onds

the sessiondBVChi ghest wvalue

Males Females
0.0 0.0
-0.2 f -0.2
-0.4 . Mean -0.4 }
Mean i % skewness %
skewness 06 % * ‘ ion 0.6 +
of session -0.8 } orsession g g % %
sample * sample * *
-1.0 f FVi -1.0
of FVC ' orFve
-1.2 % 1.2 +
-1.4 -1.4 +
-1.6 -1.6
-350 -300 -250 -200 -150 -100 -50 0 -350 -300 -250 -200 -150 -100 -50 0
Session effort estimated as FVC, .4 — FVC,, (ml) Session effort estimated as FVC, .y - FVC,,, (ml)

Figure 4. Session skewness 6VC as a function of session effortgomputedasFVCmed
FVCmax. Each data point corresponds to one specific effort group where that difference,
represented on thehorizontal axis, falls within an interval of 25 ml (e.g., from 100 to 125 ml).
Error bars represent 95% confidence limits.

Figure4 shows the redtion betweerthe mean skewness of session samplé&s/afandthe
session effort. On its horizontal axis the figure distinguishes narraw ®inson the
continuum ofFVCneds FVGCmax defining nonoverlapping effort groups each including many
subjectgonaverage 239 and 2&ubjectdor males and females, respectiyelyhe figure
eloquentlyconfirms thatthe skewness of the session sampldsu increases monotonically
with thegeneral level of effort during theession.

The results illustrated thus far Figures 24 all restontheblind computation of session
skewnesshowever smallhe sample oFVC measuresWe now turn to an alternative,
complementary datprocessing approa@imedto visualizethe WS distribution ofFVC.

To begin with, let us caiderthe overalldistributionof the 17,000measures ofVC gathered
in all maneuverperformed byall adultsof both gendergFigure 5.

7,980 maneuvers by 1,305 males 9,086 maneuvers by 1,447 females
aged 18-25 years aged 18-25 years

1000 1400
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1000
N 600 200
N 600

400
400

200
200
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1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
FVC (ml) FVC (ml)

Figure 5. Distribution of raw FVC from all maneuversof all male and femaleadults.

For both genderde distributon of FVCis bell shapegdwith somenegativeskew(o 16.103
in males and 0.485 in females



Note thatf Figure 5 desvisualizeFVC distributiors, theofferedpicture is corrupted b
great deal oB-S variability, al subjectsbeing pooledogether Obviouslywe want to
disentanglehe WS variability of FVC from the B-S variability of TLC.

Figure 6isolatesthe B-S variability by showing thelistribution ofFVCnax, the estimate of
TLC, over alladults ofour data setf TLCis an anthropometric parametaretty muchike
body weight or standing heighihenthedistribution of FVCnaxacross subjectshouldbe
GaussianThisindeedappeargo be the case ithedata

1,305 males aged 18-25 years 1,447 females aged 18-25 years
160 250
140
200
120
100 150
N 80 N
60 100
40
50
20
0 0
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Session's maximum of FVC (ml) Session's maximum of FVC (ml)

Figure 6. Distribution of FVCmax, the estimator of TLC, in adults of both genderswith fitted
Gaussiars of parameters 1 = 5,050 ml ang = 740 mifor males, and p = 3,650 ml ang =
570 mifor females

Let us nowinquire irto theW-S distribution ofFVC. To rid the FVC measures of thB-S
variability,t h e s e s s i owa$ subtrattetkom alluhemeasursof FVC gathered in
thatsession thusadjustingthe origin of the continuum ¢fVC measuremerdo thatevery
sessiorsampleof FVC now hasits maximumatO ml. The resulis arecalibrated=VC score
which measureshedistance tdhepersonal capacitymit of the subjectvho producedthe
score Theadvantage ofherecalibrations thatthe measureannow be pooledrom many
different subjectsvith no more interference froB-S vairability. Its distributionin adults of
both genders is visualizéd Figure?.

7,980 measures from 1,305 males 9,086 measures from 1,447 females
aged 18-25 years aged 18-25 years
3000 3500
2500 3000
2500
2000
2000
N 1500 N
1500
1000
1000
500 500
0 0
-1 000 -900 -800 -700 -600 -500 -400 -300 -200 -100 O -1000-900 -800 -700 -600 -500 -400 -300 -200 -100 O
Distance to FVC,,, (ml) Distance to FVC,,, (ml)

Figure 7. Distributi on of recalibrated FVC in male and femaleadults. All measures
from all maneuversof the data setare pooled The dashed lineshows the median
recalibrated score
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The pictures markedly different from that shown Figure5. We now facea very strong
clusteringof FVC measures against the@spectivaupper bound& Computedoverthe 17,000
maneuvers obur adult data sethe skewness coefficiens nowi 5.02 in males ant4.28 in
females’

Figure 7 makes it quitéisible that he shape of th&V-S distibution of respiratory
performancesis qualitativelydifferent from that othe B-S distributionof respiratory
capacitiegFigure 6). While thelatteris nearlyGaussianthe W-S distribution ofrecalibrated
FVCis morotonically increasingvith positive acceleration throughouéminiscent of an
exponential distribution.

However dissimilar theishapesthe W-S distribution of Figure ‘and the BS distribution of
Figure 6can be compared terms of theitotal range & variation.It is interesting to atice
thatthe total range afecalibrated=VC, on the order ol liter, amounts taboutone fourth of
thetotal rangeof FVCnax from 3to 7 liters in male adultandfrom 2to 6 liters in female
adults as thisobservéion explainsthe failure of Figuré to unveil the true shape of the \§
distribution.Taken in the absolutéhetotal amount of WS variabilityof recalibrated=VCis
impressivelysmall the medianof Figure 7hardlyexceedindlO0 ml 05ml and116mlin
male and female adulteespetively), aresulc o mpat i bl e with Beckl|l ake
report of a range of 9200 ml for thestandard deviatioof FVC across maneuvershis

result meanshat about 50% of thEVC measures recorded irtypical spirometry session fall
at a distance of 100 ml or less from the sessionmanx.

5.2 The MS Correlation on FVC for Capacity Groups of Different Homogeneities

Figure 8, where each data point corresponds to one individual testee, shows scatter plots of
thesessiorstandard deviatious. the session meane¥C. The degree of homogeneity with
regard to the estimated respiratory capacity of the group of subjects whose means and
standard deviatianare plotted is made to increase systematically from panahts.gPanel

A starts with a tolerance interval BV Cnax S0 large (4,000 + 4,000 ml) as to include all

3,517 males aged 35 years of the data set, and sorttean correlation between means and
standard deviations (calléde MS correlation henceforth$ visualizedfor atotally

heterogeneous capacity group. At the other extr@®aeel F shows the relationship for one
relatively small bufailyh o mogeneous @i ®ugenpdsed ob Iymdavisiuals

with FVCnax Vvalues in the narrow range of 80+ 125 ml (or 4,000 ml £ 3%).

8 A demonstration that gnmonotonic increase of Figuréssnot an artefact of thecalibrationtechnique is
provided in Annex 1.
® These intriguingly high values of skewness are discusst final section
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3,517 male subjects with FVC,,,, = 4,000 £ 4,000 ml
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Figure 8. An exampleof the gradual emergence o& negativeMS correlation on FVC asthe
B-S heterogeneity of respiratory capacitiess gradually reducedfrom FVCmax = 4,000+ 4,000
ml to FVCmax = 4,000i 125 ml.

As thetolerance interval foFVCnaxis halved again and again, thus reducing the amount of
B-S noisethe expectedegativeMS correlation gradually emerges. While at fiosily
statistical noise is visiblg = .02 in Panel A), the pattern takes shape progrelgsiendng up
with anr of i .83 for the group of quastlonesof Panel F.

The resulishown inFigure 8is just one examplél'he method waepeatedverthe whole
continuum ofrespiratorycapacitiesyielding thelarge sed of resultsvisualizedin Figure 9
Thex coodinateof eachdata point give the central valuef FVCnaxfor the capacity group
whose degreef homogeneitys specified in parameteandthey coordinategives the

correspondingalueof r.

12



Male subjects

0.0 A
A o
A
0.2 o . © o A +/-4000 ml
Correlation * . .
between 0.4 . . A +/-2000 ml
SD and mean 0 o5 © o < +/-1000 ml
of FVC 06 Gt 60 o ¢ +/-500 ml
) .. ) o +/-250 ml
-0.8 A . +/-125ml
-1.0
0 2000 4000 6 000 8000
Central value of FVC,,, capacity class (ml)
Female subjects
0.0
A A
O
0.2 < . A +/-4000 ml
Correlation . o A
between (.4 i . A +/-2000 ml
SD and mean o ¢ ¢ +/-1000 ml
of VC ¢ ° 0o %o o + +/-500 ml
. e e o +/-250 ml
-0.8 . - +/-125ml
-1.0
0 2000 4000 6 000 8 000

Central value of FVC,,, capacity class (ml)

Figure 9. The MS correlation on FVC in groups of systematically varied homogeneities with
regard to the criterion of FVCmax. Capacity groups including fewer than 50 subjects were left
aside

The data from males and females show the same, highly consistent gattéirming

beyond doubt that thraore homogeneous, capacity wise, a group of subjects, the more
strongly negative the MS correlation. Notice tRajure 9 reports the result for 33

independent groups with individual capacities in the range + 125 ml, each composed of about
200 subjects (@average 179 for males, 264 for females). Since a sample of 200 sessions run
by 200 spirometry clones is pretty much equivalent, statistically, to a sample of 200
consecutive sessions run by the same subject (ahdeursefree of the complications of

serial measurement), it is most instructive to see that for these Highipgeneous groups all

our estimates ahe MS correlation ofRVCfall in the rangdrom 1.6 toi .8. Such correlation
strengthsare impressivéearingin mindthatthere still remained certain amount of &

variability amongyuastcloneswith FVCnax valueswithin aninterval of + 125 ml.
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The tolerance interval uséd constitue thegroups of quastlonesof Figure 9being a
absolute value rather than a percentage, obvidhslyigherthe level ofFVCnax themore
homogenous the groughe same interval af 125 mlrepresents 9% at the extreme left of
the figure butonly £ 2% at the extreme right. Thigrovides us with a possibility to check the
internal consistency of thaata Notice thatin Figure 9the strengthof the negative correlation
tends to increase from left to riglaind that thigrendis replicatecht every level of group
homogeneityOne may speculatéat the correlation would have been still stronggin
perfectclones or with many sessions witthe sameestee

Male subjects Female subjects
0.2 0.0
-0.1
0.0 — 0.2
-0.3
-0.2
Mean MS Mean MS 0.4
correlation 04 correlation 05
on FVC ’ '
on FVC 06
-0.6 07
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-0.9
-1.0 -1.0
0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000
Tolerance on FVCmax (+/- ml) Tolerance on FVCmax (+/- ml)
Male subjects Female subjects
0.1 0.0
0.0 —s 01
-0.1
-0.2
-0.2
Mean slope 0.3 Mean slope 3
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fit for SD vs. 04 fitfor sDvs. -0.4
-0.5 mean of FVC
mean 05
of FVC -0.6
0.7 -0.6
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Figure 10. Strength of theM S correlation and slope of the best linear filas functions of the
homogeneity of thecapacity group.

Figure 10summarizes the resuly showing how not just the strengihthe MS correlation,
guantified by the statistic, but also theteepnessf the fitted linear relationship increase
with more and more homogeneous capacity groups.

Thusthe NHANES llldatacontainstrong converging evidentieat there exista strong
negative correlatiorgcross sessionbetweerthe first and second moments of theSAV
distribution ofFVC, whose detection demantiet the considerable amount®{S variability
be eliminated
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6. Conclusions and Perspectives

The above reported ststical resultsseem quitevorthy of consideration given both their high
degree of internal consistency and sieeand technical quality of theHNANES 11l data. We
may conclude with a fairly high degree of confidence thpsession sampt ofFVC
measures indeed exhibit a strong amount of negative, skesely dependent upon the
estimatest r engt h of tahddhat®?)ahert is iadedd steoigfnegatives
correlationbetween the firsind the second moments of thistributionof session samples of
FVC. Thes empiricalfindingsmay beof interest to medicaksearchers specializimgthe
optimization of standards and in the statistics of spiromAtrgthernotableresult of this
researchs theempirical demonstratioaf the workability ofwhatwascalledabovethe
&loningdmethod t o t hi s wranadvet methedwhichnoightlbeeudedukto
statisticianf spirometry

In this sectiorwe will zoom out to sesomeinterestingoridgeslinking spirometry testingo
other fieldsof scientificinquiry andto discuss some gera implications of this work

6.1. From RespiratoryPerformance to Huma@QuantitativePerformance in General

The present study, focused ome specifianeasuref spirometryis part of a wider reseeh
project aimedatdeveloping a generainderstading of quantitativehuman performancge
wheredata fromseveraldifferentfieldsincludingexperimental psychology, athletics, and
gamingare analyzedThe projeciarosefrom the realization thatreimpressivelyjarge
equivalence class is captureddprdty strict definition of quantitative performance

Definition. A performance score smeasure subjemito a deliberate minimization or
maximization effort exerted by a human agent against the resistance of a limit, -eolower
upper bound, respective{guiard, 202).

Spirometry testingignambiguouslyalls in thatequivalence classo explicitly ask testee®
exhalemaximized volumes and flows of airis to ask them for respiratory performandes

fact countlessnstances of performance measurentamtbe foundin every field ofscience
andengineeringandevery sector of social lifand so pirometry testings just an instance
amongt many Theparticularcaseof spirometry however,s of very specialinterestasin

that casehe measurement performanceand the estimation of the capacity of performance
happens téakeon exceptionallysimpleguises.

The conjunction of four conspicuoteaturesof spirometry in particular volumetric
spirometryy makesthis measurement situatiamiquely suitablgo the study of human
performance.

Oneisthathet e st ee 6 s e f fdonensionalShers is moicanftict betweemtiee
requirement tgointly maximizea volumeanda flow of air, meaning thathe subjects canif
they willd investuponeachmaneuvethe totality of their available effort resour€ounter
examplesare countlessThusin manypsychology experimentsapticipantsare askd to
minimizea time measurandan error measureoncurrentlybeing thus confrontedith a
conflict that forcegshemto shargher effort resourcen various proportionbetween the
speed and the accuracy fro(forman & Bobrow, 1975)asituationwhich complicateso a
serious exterthe analysis of the interplay of effort and capa@i@yiard, 2@0, Section R
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Second, lieupper limitof performances identified physically, the capacity of performance
TLC amountinditerally to the inner volume of a containén. contrast, irmostperformance
measurement situations therformanceapacityconcep is justa metaphortherealnature of
the personal limitemainingelusive.

Third, theupperlimit TLC which constrains the respiratory performarfd£C is fixed at the
time scale of a test sessj@mdstrictly impassableOnecounterexample amongst amyis
theresponse timef psychology experiments measuralwayssubjected to a minimization
effort. Response timean take arbitrarily low valuesaiid even occasionally turn negajive
because it ifower bounded byustthe inflation ofinaccuracyLuce, 1986; Pachella, 1973;
Wickelgren, 1977)Here and in many other casée tapacitylimit is softandnegotiable
quiteunlike that constraininghe measures of spirometry

Fourth,spirometry testings, from the point of view oftatisticalsampling exceptionally
simple, each individudesteebeingasked to produce just onesession just one sample of
FVC measuresThusthe problem of the WS distribution ofFVCinvolves a single level of
statistical aggregation

For these reasoriisis easier irspirometrythan anywhere elge identify the basic shapef
within-individual distributiors of performancescoresand toinvestigate the causal
relationship linking that shape toeinterplayof arandomlyvariableextremization effort and
afixed capadiy limit. In other wordsspirometry testingappears to qualify aa enlightening
paradigm for thgyeneralktudy ofquantitativehumanperformanceTheabovereported
theoretical and empiricaésultsaboutthe simple case @pirometryhave a potentiabt
contributeto our generalunderstanding ahe mechanisms at work in performance testing
situations, in spirometry and beyond

The model of spirometry has been helpful to this writer irrdg@gaminationcurrertly in
progressof speeded aimed movement, focusedr@nparallel distributions of movement time
and errod both performance scores subjected to a minimization éff&¢analyzing several
data sets in light of the present conceptual framevam#t,considering the speed and the
accuracy dimensioria paralle] hewasable to show that the above results holdokmth the
time and the error scomhenevethe experimental conditions allow the participants to
allocateenougheffort resource tone minimization effort at the expense of the other.

6.2 Skewedistribution of FVC What Do We Mean?

To characterizethe shapes ajur distributions abovere used theonventionahotion of
skewnessnd the received formula fas calculationdesigned st¢hat regativeskewobtains
when the left tail of a distributiors ielongated relative to the rightowever, there is
somethingawkward to the statement thaslaape like that of Figure Where the skewness
statistic reaches thather unusualalue ofi5,i s 0 s Rreprabl@n is thathefrequency
curvein questim increasesmonotonically throughound thusexhibits no tail whatsoever on
its righthand side

10 Guiard, Y. (in preparationMonotonic distributions of movement time and error in speeded aimed movement
tasks.
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An analogymayhelp clarify the concerr©One might sensiblgevise some skewness index
guantify the differenceoften substantial (Govind, 198®gtweerthe left and right claws of
an Americarlobster That indexwould capture a localiolation of symmetry inthe context of
a globally symmetricainorphology However it would make little sensetty to quantify the
degree otkewness between theo b s ftoet andl tibecause the idea of a deviation from
symmetry is irrelevanfor lack of any detectable symmetry alahgrostrecaudal axisOur
within-session distribution akcalibrated=VC measuresaisesa similarproblem.As
explained in Section 2Zhis distributionmust havea rostrecaudal organizatianf it may well
show an evanescent tail on its {eéind side because on this side the measures are free,
whenever the effort falters, to extend to arbitrarily low valiteaust havean abruptfront on
its right-hand sidevhere liesan attractive upper lim{iGuiard et al., 203;1Guiard & Rioul,
2015).And, as we have seemgtcommon sense argumemascorroborated by the quasi
exponential shape found with a propeatjjustedmeasuref respiratoy performance

Then, @anwe say that we have foundstongly skewed shape, meaningtieong departure
from thefamiliar bell shapeof statistical handbook# in the situation of intereshe bell
shapewvasimplausiblein the first plac@ It seemanorereasonable to accept the view that the
conwex, increasing curve of Figure Verifiedby this writer oma variety ofdatasets(Guiard,
2020) describes theypical shape of a performandéstribution and that that shape has a
rostrecaudal morphologyBut atthis pointsome fafreachingand somewhainsettling
statistical issuearise

The standardizegracticeof spirometry consisting of summarizing each samplE\GE
scores by its maximurmas beenvorking apparentiyto the satisfaction ajenerations of
practitionersandwe have seen thatig easy to justifyationally. Notice, howeverthatthis
practiceis hard to reconcilevith theusualrecommendatianfrom statistics textboak In the
face of a measure that varies unpredictably across measuseomeins suppose to
summarizeo n eemricalsamplewith three sample statistics. At the very leastshould
summarizehelocation of thesample of measures the measurement continulny means
of somecentrattrend indicatotike anarithmetic mearmr a median.It is recommended to
alsomeasure h e s asprgadoresdalsewith astandard deviatioar aninter-quartile
interval,andits skewnessvith some parametric or non parametridex.Such
recommendations rest on thendamental assumptiarf conventional statisticshatif the
measured value %ot strictly deterministic, it certainlyisraandom vari abl e whos
expected valushouldbe situateddomewherén the bulkof a bell shape.

The fact isspirometry seriously departs from tlsghemaTo begin with practitionersof
spirometrydo not caret allabout the central trend of their sansplleut why should they?
There is reason, botheoretical and empiricalo suspecthatsuch a trendloesnot existin a
performance distributiopressurized by a strong upward or downward effather than an
averagetheytakethdar samplemaximato serveas thé& locationsummary Notice that ly
definition an extremum cannot be representative of a sample &f gattgheir optionseems
quitesound as=VCnaxis the best possible estimatoridfC. Secondtheway practitioners
handlethe spread or scalssue known in the spirometry literature as the problainthe
repeatabilityof measureds againoriginal. Standard®f spirometryrecommendo measure
the distance from the best to the second best meaftespiratory performangg&rahamet
al. 2019, Table ¥, and it is a variant of thatptionthat wasactuallyused inFigure 4, where
the spread was measured by the differdfM€mea FVCmax Obviouslythe established
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practiceof spirometrytakes us awafrom theconventional vievthatthelocation andspread
of a distributionarebestquantifiedby itsfirst raw moment, or mean, and gscondcentral
momenf or variance

Thus there igension betwenthe standadizedpracticeof spirometry testingndthecommon
understandingf statistical theoryand this tension ia souce ofintellectualdiscomfort

betrayedn the spirometry literaturby someconspicuousymptomsFor example, it is

interestingto naticethatarticlesoffering refererce valuesfor spirometrytypically omit to

recallthat ther basicdataareindividual maxima,ratherthan averageshis is the casenatably

in Harkinson etal. (1999), Stanojevic et ali2008, Quanjeret al.(2012, Rochat et al.

(2013, ard Coates et al2016. Anotherillustration isthis curiousquote fromBland and

Altman (1996, two renowned speciats of medical statisticéi L e tsuppose that the child

has a fAtrueod average Vv al whehiowhatwe raallylvanpto ssi bl e
know when we make a measurement. Repeated measurements on the same subject will vary
around the true valugecause of measurement error. The standard deviation of repeated
measurements on the same subject will enable us to meassizetbéthe measurement

err or 0 Ibthis qudtesirbrd g short note aimeccommunicatesomerudiments of

statistical tleoryto a readership of nespecialiststhechoice of spirometry as an illustration
examplewas ratheunfortunateastheir statementss faras spirometry is concerneatejust

false!?

In facttheoriginal statistical practice of spirometdjscredly conceas a profoundchallenge

for statistics and probability theorWhen it comes tthe measures aipirometry andmore
generallyto the measurewhich, beingdeliberately extremizeby a humaragentfall in the
specialclassof performance scorésthe classiconceptof a random variabllses much of

its relevance. The weknown law of errors, which says that the probabiigglines ashe
measuraleviates more and mqr&hether upward or downwarfiipm the expected value,

thus yielding the familiar bell shape, does not seem to apply well in these carftexts
measuremenPerformance measureanchored at a more or less solid extremum rather than
centered abouw probabilistic expectationpok quastdeterministic in essengcasrecently

noted by this writer, who proposed explicit distributional criteria to distinguish them from the
familiar random variables of probability theory (Guiard, 2020).

6.3 MSCorrelation inPerformance Measument A General Accounin Perspective

The correltion we found between the mean dahdstandard deviatioof FVC across

samples gathered in homogeneous groups of -gl@ses is reminiscent dfiat know to
characterize withirsubject distributions afesponse timéRT) in psychology experiments.
That @rrelation has beesastimatedby Wagenmakers and Brown (200 en independent
data sets frorexperimentsith a broad diversity of memory, perception, categorization, and
problemsolving tasksThese authors fourttiat nearly three quarters aif participants had a
correlation of at least .8andthey offered aconvincingdemonstrationhata strongpositive

1 Thatmeasurersvant to know thexpectedralue of their measures true in generabut notin spirometry

The sameeservatiorholds forthe assertion that the obsery&dS variability of the measures takes its source in
measurement err@rin spirometry measurermant error(2-3 ml, seeHankinson et al 1999)is a very minor
concernbeingmore than amrderof magni tude smaller than.the fluctuatd.i
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MS correlationis indeedarobust andyeneralaw of RT, just like theold law of practice
(Heathcote et al., 2000).

In ourFVC datathe strengthof the correlationis of similar magnitude butthesign is

opposite From the momenit is realizedthatRTis an instance o4 forcefullyminimized
measurandFVC an instance o& forcefullymaximizedneasurgsuch a symmetry opens an
intriguing perspectiveThe possibility ariseef Wa ge n ma k er s a n dRTaBdthe wn 6 s |
abovereported patterns of spirometigtabeing twospecial instances af more generdaw
of human gantitative performancesk performergo orient theireffort downward,asin time
minimizationtasks, the mean and tretandard deviatioof performancevill correlate
positively, ask them to orient theaffort upward asin the maximizationtaskof spirometry
the two statisticsvill correlatenegativdy. Thus, ficingataskdemanthg the extremization of
some quantitative scqreot onlycan we safely predithatthe first and second moments of
distributionwill correlate across withimdividual sampleswe cantell the sign of that
correlationby just consideringhe direction otherequiredeffort.

Wagenmakers and Brow@007) showedhatther positivecorrelationon RT canbe
satisfactorilyexplainedby classic models of mathematical cognitive psycholfgdydoes not
seem too risky to say that the sophisticatethanismsef these modelgould be hard to
trangose from the context ominimizedRT to that ofmaximizedFVC. In contrastthe simple
idea of a ceiling effect proposathoveto explainthe negativecorrelationobservedn
maximizedFVCis readilytransposable to the caseappositive correlatiomn minimizedRT,
the ceiling effechavingjust to takehe symmetricaform of afloor effect Any variationin

t he p e rnfinonizaan effors (or, equivalentlyany reduction oftask difficulty) will
tend tomovethe mearandthe standard deviatioof minimizedRTin the same directiorror
examplewith a strongeeffort meanRT will move down but so will the standard deviation
sincethemeasuresvill tend toaccumulate more compacilyst above the lower limit below
whichthe probability of errors likely to explode(Pachella, 1973; Wickelgren, 197%) this
account thecorrelationtakes oppate signs simply becausene capacity limitis located on
opposite sides of the distribution.

Thisreversibleceiling/floor effectexplainingsimultaneouslyin parsimonious termsyo
empirical findings so far belieddo beunrelated theopening perspectiveeemsworthy of a
carefulexploration Preliminary evidence gathered by this writesing a variety of
performancelata fromdifferent fields includingexperimental psychology (Guiard, 2020)
athletics and gamingloes suggeshat the account holds general
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Appendix1

It was shown in Figure that the distribution ofecalibrated=VC, the measure dhe distance
from the FVC scoreto its session maximuriVCnax takesthe shape of a monotonically
increasingandpositively acceleratedurve To controlthat this result is not just an artefact of
our alignment method, aslhmples oFVC measures wersubsequentlglignedby their
respectives e s s minimagokviouslynot constrained by any lower bourite result is
shown inthe lower panel oFigure AlL. Notice that Im size (50ml) as well aghe ranges
shown on the vertical and horizontal ages the samm all four panels
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aged 18-25 years aged 18-25 years
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Figure A1. Distribution of the distance separating FVC scores from their respectives e s si on 6 s
maxima (above) and minina (below) for all maneuvers performed by all male and female
adults of the data set Dashed lines represent medians.

The median oFVCis twice as far from the session minimum (205.5 ml in males, 210 ml in
females) as it is from the session maximufri8and-105 ml).The total range of variation of
FVCi FVGCninis nearlytwice as large athat of FVC1 FVCnax While recalibratinghe FVC
scores by the respective sessianinima rather than maximaesultsby constructionn a
positively, rather than negeely skewed distributionghe key difference is that we obtain
distinctly twotailed distributions with a conspicuousnodeat about 200 ml above zero
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