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Chest physiotherapy is a set of techniques used to help the draining of the mucus from the lung in pathological
situations. The choice of the techniques, and their adjustment to the patients or to the pathologies, remains
as of today largely empirical. High Frequency Chest Wall Oscillation (HFCWO) is one of these techniques,
performed with a device that applies oscillating pressures on the chest. However, there is no clear understanding
of how HFCWO devices interact with the lung biomechanics. Hence, we study idealised HFCWO manipulations
applied to a mathematical and numerical model of the biomechanics of the lung. The lung is represented by a
fluid—structure interaction model based on an airway tree that is coupled to an homogeneous elastic medium.
We show that our model is driven by two dimensionless numbers that drive the effect of the idealised HFCWO
manipulation on the model of the lung. Our model allow to analyze the stress applied to an idealised mucus
by the air-mucus interaction and by the airway walls deformation. This stress behaves as a buffer and has
the effect of reducing the stress needed to overcome the idealised mucus yield stress. Moreover, our model
predicts the existence of an optimal range of the working frequencies of HFCWO. This range is in agreement
with the frequencies actually used by practitioners during HFCWO maneuvers. Finally, our model suggests
that analyzing the mouth airflow during HFCWO maneuvers could allow to estimate the compliance and the
hydrodynamic resistance of the lung of a patient.
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I. INTRODUCTION

The human bronchial tree is a tree structure formed of about
200 000 bifurcating airways, whose sizes are decreasing at
each bifurcation, resulting in a tree that is space-filling [37, 165,
60]. The largest bronchus is the trachea that opens to the oe-
sopharyngeal region and the smallest bronchi in the bronchial
tree are the terminal bronchioles that open to the acini, where
the exchange surface between alveolar air and blood is lo-
cated. Since the lung is connected to the ambiant air, it is
susceptible to be in contact with external particles, potentially
toxic or infectious. Hence, the wall of almost all the airways
of the bronchial tree [24] is covered with secretions —the pul-
monary mucus— that protect the lung. The mucus captures the
particles and is incessantly moved toward the oesopharyngeal
region by the mucociliary clearance, a mechanism that moves
the mucus thanks to cilia located on the bronchi walls.

Some pathologies are disrupting the mucociliary clearance
and/or the cough. The mucociliary clearance can be altered by
changes in the physical properties of the mucus [31} [36} 38]
(viscosity, yield stress), by changes in the mucus production,
as in cystic fibrosis [S7], or by perturbations of the cilia or of
the cilia movement, as in primary ciliary dyskinesia or dur-
ing bronchial inflammation in chronic obstructive pulmonary
disease (COPD) or asthma [45]]. Those diseases induce a stag-
nation of the mucus in the airways, increasing the risk of in-
fections, and reduce the bronchi lumen area, hence altering
the circulation of the air inside the bronchial tree. In such
pathologies, therapeutical techniques are needed to help the
patients to eliminate the excess of mucus and to recover, at
least partially, their breathing capacity.

Chest physiotherapy is a common therapy used to compen-
sate a defective mucociliary clearance or cough. It is based on
mechanical forces applied on the thorax, aiming at changing
the volume of the lung. This change of volume produces air-
flows that can potentially set the mucus in movement [36}, 138,
59160]. Chest physiotherapy can be performed manually by a
practitioner or by the patient herself/himself —autogenic drain-
ing [1]. The therapy can also be automated using specific me-
chanical devices. Many of these devices apply pressures in or
on the lung to help the draining of the mucus, such as the Posi-
tive Expiratory Pressure technique (PEP), the Intrapulmonary
Percussive Ventilation (IPV), the high frequency chest com-
pression (HFCC) or the High Frequency Chest Wall Oscilla-
tions (HFCWO) [9} 15,23} 129,147]. One of the challenge is to
use the device that is the best adapted to the pathology or to
the patient, and to determine its optimal functioning parame-
ters in a framework where the knowledge of the therapeutic
effects is mainly empirical and, hence, potentially controver-
sial [[12} 301 142 144,148 155]].

In this study, we will more particularly focus on HFCWO,
which seems to be both efficient and well accepted by patients
with specific pathologies [47]. We define here HFCWO as
the techniques that apply on the thorax [29] small mechanical
oscillations at relative high frequencies, i.e. a few Hertz to
about twenty Hertz. Actually, HFCC is sometimes considered
as part of HFCWO techniques although it applies an offset of
"high" positive pressure to the small pressure oscillations [41]].

In this work, we do not consider an offset of positive pressure,
hence not we do not consider HFCC.

This work aims at characterizing, in an idealised frame-
work, the biomechanics of the lung during HFCWO maneu-
vers. We develop a mathematical and numerical model of
the core biomechanical phenomena of the lung adapted to
HFCWO and inspired from [3,/51]]. The model is decomposed
into a model of the air fluid dynamics in the bronchial tree and
a model of the mechanics of the lung parenchyma. The model
of air flows the bronchial tree is the assembly of a cascade
of three models of airway trees: one for the upper conductive
tree, one for the lower conductive tree and one for the acini.
This decomposition allows to account, depending on the scale,
for the different geometries of the airways and for the differ-
ent regimes of air circulation. Also, adjusting the size of the
three levels allows to tune the bronchial tree model complex-
ity [7]. The model of the mechanics of the lung parenchyma
is based on linear elasticy. Then we apply to that model of the
lung idealised HFCWO maneuvers.

II. MODEL OF THE LUNG

We assume that the lung at functional residual capacity
fills a domain Q of the 3D space. We consider the lung as
two regions with different physics that are interacting to-
gether [3| 14} 8L [51]]. The first region, called the tree region,
corresponds to the airways and alveolar ducts. The second
region, called the tissue region, corresponds to the lung’s
parenchyma.

The tree region. Different frameworks have been used in the
literature to model the bronchial tree, from the most complex,
based on 3D geometries that are reconstructed from CT-scans
of the lung [26} 34,156, |61], to idealised tree geometries. Ide-
alised tree geometries allow to develop more tractable models.
They are either generated by algorithms that mimic the statis-
tics of the airways [6, 28| 162] or by using data-based mod-
els, with different levels of complexity, going from fractal-like
models (one or two parameters) [[19, 35} 137, 163} 66] to more
complex geometries where each level of bronchi is described
independently [32} 13839} 60].

Here, the airway tree is represented by three different mod-
elling levels, see Figure[T]

The upper conductive airways are modelled by rigid cylin-
ders assembled into a bifurcating tree that mimics the structure
of the bronchial airways. The size of the cylinders is decreas-
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ing at each bifurcation with a constant ratio i, = ()3 ~0.79
[37,166]]. The generation index of a cylinder in the tree corre-
sponds to the number of bifurcations between the root of the
tree and that cylinder. The root of the tree mimics the tra-
chea and corresponds to the first generation with index 0. In
this model, all the branches in the same generation have the
same geometrical properties, but their inner air fluid dynam-
ics can be different. The first level of the tree corresponds to
n+ 1 successive generations. The total number of terminal
branches is N = 2".
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Conductive tree — generations 0 to n.

First level of modeling.

The branches size is reduced by a factor /i, = 271/3 at each bifurcation.
The air flow and pressure are computed for each branch.

Conductive tree — generations n+1 to 16.

Second level of modeling.

The branches size is reduced by a factor &, = 271/3 at each bifurcation.
The air flow and pressure are assumed identical in all the branches of
the same generation.

Acini — generations 17 to 22.

Third level of modeling.

The branches size is reduced by a factor /. = 1 at each bifurcation.
The air flow and pressure are assumed identical in all the branches of
the same generation.

FIG. 1. The airway tree is modelled as a cascade of bifurcating cylinders representing the bronchi and the alveolar ducts. At each bifurcation,
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the size of the branches is decreasing by an homothetic factor, fixed to A, = (%) * ~ (.79 in the conductive tree (17 first generations) [37, [66]]
and to h,e = 1 in the acini (6 last generations) [61}165]. The number in the cylinders corresponds to the branches generation index, i.e. the
number of bifurcations on the path between the root of the tree and the branch studied. The first generation corresponds the root of the tree that
mimics the trachea, its index is 0. The airway tree model decomposes into three levels: the first level corresponds to the first n+ 1 generations

where the air flows and pressures are determined in each airway; the second level corresponds to the next 17 —

(n+1) generations where the

air flows and pressures are assumed identical in all the airways belonging to a same generation; the third level corresponds to the acini (last six
generations) where the air flows and pressures are also assumed identical in all the airways belonging to the same generation.

The number of generations for the first level is n 41 and it
can be lower than the approximate average of 17 generations
of the conductive airways [65]. Hence, the second modelling
level mimics the 17 — (n+ 1) generations of conductive air-
ways. This level corresponds to a set of subtrees, connected
by set of two at each terminal branches of the tree of the first
modelling level. The subtrees geometry is similar to the ge-
ometry of the tree of the first level. However, within one of
these subtrees, we assume that the air physics is identical in all
the airways with the same generation index. The total number
of terminal branches of the second modelling level is 2'°.

Finally, the third modelling level mimics the acini. An ac-
inus can be viewed as a 6 generations dichotomous subtree
with rigid cylindrical branches. In the acinus, we can con-
sider that the size of the branches remain the same at each
bifurcation, i.e. the size reduction ratio between two succes-
sive generations is A, = 1 [20]. The third modelling level
corresponds to two acinus models connected to each terminal
branches of the second modelling level.

Pressure—flow relationship. The air in the branches is con-
sidered as an incompressible Newtonian fluid with viscosity
1. We neglect the influence of the bifurcations on the air flow
and the pressure drop in the nasopharyngeal pathway [40].
The reference pressure is the atmospheric pressure.

The steady-state Poiseuille’s regime corresponds to a low
air flow, fully developed and axisymmetric, where the accel-
eration of the fluid is neglected. In this regime, the air flow f
in a cylindrical airway is related to the inlet pressure p;, and

the outlet pressure p,,; by

Pin — Pout = Rf
where R = 8’}1{ is the hydrodynamic resistance of the cylinder,
with r and / the respective radius and diameter of the cylin-
der. The radii and lengths of the branches in the generation
i follow a scaling laws r; = hZ"O and [; = h;;lo with ry and
lp the radius and length of generation 0. Consequently, the
Poiseuille hydrodynamic resistance also follows a scaling law
R; =R, /hi (i > 1), with Ry the resistance of the root of the
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tree. As h, = (3)°, R =2'Ry (i =0,...,n). However, the
Poiseuille regime does not account for the complex flow pat-
terns occurring in the large airways that affects the airflows
and pressures distribution in the tree [13]]. Hence, we use here
a "corrected" Poiseuille regime by multiplying the hydrody-
namic resistances of the airways in the first levels of the tree
(generations 0 to n) by an ad-hoc factor c. The factor ¢ will be
determined using a calibration process detailed in Appendix
B

From the pressure—flow relationships in each branch, we
can derive a global linear relationship for the whole tree.
We define the flows vector F = (f})j=1,..~, With f; the
air flow at the j-th terminal branch and the pressures vec-
tor P = (pj)j=1,..n, With p; the air pressure at the j-th
terminal branch. The linear relationship between the pres-
sures and flows vectors is based on the resistance matrix
R = (#ij)ij=1,..n of the airway tree [10} 18],

P=%F (1)
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FIG. 2. Example of the model for n = 2. In that case, the first modelling level is made of three generations and four terminal branches. All
the tree branches of a same generation i are identical and have the same hydrodynamic resistance R;. Each terminal branch is coupled to one
of the four subregions (A;);—1 23 4 of the 1D tissue region Q = [0,L] = U?’: 1Ai. The hydrodynamic resistance R, of each terminal branch is
replaced with a modified resistance R, which accounts for the hydrodynamic resistances of the subtrees connected to that terminal branch.
The resistance Ry > corresponds to the resistance of one of the two subtrees that are connected to each terminal branch. Each of these subtrees
is part of the generations 3 to 17. The resistance R, corresponds to the resistance of one of the 2'# acini connected to each terminal branch
of generation 2. The acini forms the last sixth generations of the tree. An oscillating pressure 7(¢) is applied at x = 0. The material is fixed
at x = L. The rate of volume change of a subdomain A; corresponds to the air flow going through the corresponding terminal branch. The
resistance matrix % and the associated equivalent hydrodynamic resistance R, corresponding to the pictured case are written on the right of

the figure.

The coefficients of the resistance matrix &% are sums of the
hydrodynamic resistances of the cylinders in the paths and the
subpaths linking the root of the tree and the terminal branches
of the tree. Moreover, the equivalent resistance R, of the
tree relates an identical pressure p applied at each terminal
branch with the total amount of airflow in the tree Fr (i.e. the
air flow in the first generation), p = R, Fr. The equivalent
resistance can be computed from the resistance matrix [39] Z
by Reg = (J'% 1)~ with J = (1,...,1)" € RY. An example
with n = 2 is given in Figure[2]

In order to account for the influence of the subtrees of
the second and third modelling levels, the resistances of
the terminal branches of the tree of the first modelling lev-
els are modified. Since the physics of air in the second
and third modelling levels are assumed identical per gen-
eration of subtrees, the pressures at the terminal branches
of a single subtree are all the same. Hence, each subtree
hydrodynamic response is determined based on its equiva-
lent hydrodynamic resistance only. The hydrodynamic re-
sistance of one subtree of the second modelling level is

i
Ry = h3 ):17 n—2 (2h3) (17— (n+ 1)) W and for the

i
third modelling level, it is R, = Ri6 Y, (2,%) . To each
terminal branch of the first modelling level of the tree are
connected two subtrees of the second modelling level and
217=(1+1) subtrees of the third modelling level. Finally, the
resistance R, of the terminal branches of the tree of the
first modelling level is replaced by the resistance R, that
accounts for the subtrees,

Rst,n Ra

2 + 217—(n+1)

R,=R,+ 2

Influence of the air on the tissue region. The domain Q
reflects the lung’s spatial occupation and is decomposed into
N = 2" regions (A;);=1. . Each A; is fed by a single terminal
branch of the tree, as schematized in Figure[2} We neglect the
volumetric influence of the bronchial tree in the A;’s, since it
represents a small fraction of the volume of the lung, about
10% [65]. We assume that the lung tissue behaves as an ho-
mogeneous elastic material [3, 51} 67] and we assume small
strains theory. This choice is well adapted to HFCWO, since
this technique applies small oscillating pressures only.

Lung’s tissue displacements at location x € Q and at time
t € R, are represented by the variable u(x,7) € R™. The gen-
eral displacements equations are

u
P 012

where p is the volumetric mass density of the material and
o (u) is the stress tensor. The boundary dQ of Q is decom-
posed into two regions: I'j represents the region where the
stress is applied and I'; represents the region where there is
no displacement. Hence, the boundary conditions on dQ and
the initial conditions in Q are

—div(o(u)) =0 3)

oc(u)n=r1(xt) xel
u(x,1) =0 xelr “)
u(x,0) =up(x) forxeQ

The quantity 7 is the pressure applied on the boundary and is
the source of the system dynamics. We assume the material to
be isotropic and to be linear elastic. The elastic stress 0. (u)
relates to the displacement u as 0. (1) = A tr(€(u))I+2u €(u)
, with  the identity matrix, €(u) = 5 (Vu+Vu') and A and pt
the Lamé parameters.



Model input parameters

Physical quantity

Tree root radius (trachea radius)

Tree root length (reduced trachea length)
Lung characteristic size (human, adult)
Lamé parameters of the tissue region (1D)
Lung density

Resistance matrix of the airway tree
Hydrodynamic resistance of the airway tree
Bronchi walls Young’s modulus

Mucus Young’s modulus

Idealized HFCWO frequency

Idealized HFCWO applied pressure

Parameter name Value

o 1 cm [65]]

Iy 6 cm [65] and Appendix@]

L 20 cm [65]

A+2u 2700 Pa [51], Appendix|F

p 100 kg.m =3 [51]

K74 cmH,0.L~Ls, see [10] [18] 39]
Reg 1.0 cmH,0.L~ 1 s[40], Appendix F
Ej, 6250 Pa [39], Appendix ]

Epn 1.0 Pa [31], AppendixE]

=1 range 1 — 18 Hz [47]
A 200 Pa (computed)

Characteristic quantities

Physical quantity Variable name Expression
Time T %
Velocity v %
Wave velocity c %
: AL
Displacement T =]
. . 1
Equivalent resistance of the tree Req T0T
Air pressure in the tree pL RegSLv
. . . a A
Effective air pressure in the tree @ Ttz PL
Tissue inertia - pv?
Dimensionless numbers
Name Variable name Expression
Euler number & %
Inverse of Cauchy number B=12 (%)2
. _ & pL
Lung Mechanics number Ln=% +20)

TABLE I. Input parameters, characteristic quantities and dimensionless numbers used in this work.

The air flowing out of the exchange surface goes through
the bronchial tree. Any change of the volume of the mate-
rial is counteracted by the resistance to the air flow induced
by the tree structure. This is reflected in the material stress—
strain relationship by a supplementary local stress, actually a
pressure, that depends on how the air is conveyed in the tree.
Each terminal branch i induces an homogeneous pressure p;
in its corresponding region A;. The pressures are determined
by the rate of volume change of the A; along time. In the case
of small deformations, this rate, which corresponds to the air

flow, can be approximated with [51]]

Fili] = /A —div(d)dx )

where i = % We denote .7 [u] = (Fi[ii]);,_; _y the vector of

air flows at the terminal branches. The pressure p; in one A;
depends on the air flows .% [¢] in all the terminal branches, see
equation (I). Hence, the pressure pyee(-# [u]) induced by the
air in the material is a piecewise function, pyee(-Z [1])(x) =
pi(:Fi]) = (#Z.Fu)), for x € A;. Hence, the inner stress ten-



sor induced by the tree iS Oree (1) = — piree (- [11])1. This stress
is not continuous at the boundaries of the A;.

Finally, the stress—strain relationship for the model of the
tissue region is

& (u, Z[i]) = ATe(e ()l +21(u) — puee(FL)T (6)

e (u) Otree (M)

The resulting stress—strain relationships in equation (6) is that
of a viscoelastic material, with a non-local viscous behavior.
Due to the discontinuity of Gy, the correct mathematical way
to express the system equations is the weak form, see details
in Appendix

We will consider the material to be able to deform only in
the direction x and to be rigid in the two other directions, with
a constant cross-section S; = L2. Under these conditions, the
equations become unidimensional in space on the domain Q =
[0,L]. We assume that the pressure 7 is applied at x = 0 and
that the material is fixed at x = L. From now on, the applied
pressure 7 is assumed sinusoidal in time, i.e. 7(t) =A sin(ZT”t)
with A the amplitude of the applied pressure and T its period.

III. RESULTS

Physical analysis. To reach a better understanding of the
equations and to determine the intrinsic parameters of the
problem, the equations are rewritten using a dimensionless
formulation. The space, the time and the amplitude of the
solution are adimensionalized with y =x/L, s =1t /T, u(x,t) =
Ya(y,s) = Ya(§, 1), pi(F[i]) = Ppi(F[F]), T(s) = 7(2) /A.
The quantities L represents the characteristic size of Q = [0, L]
and the space domain becomes Q = [0, 1]. The quantity 7T is
the system characteristic time, given by the period of the ap-
plied pressure 7(¢). The dimensionleji formulation is derived

in Appendix [B{ The quantity ¥ = A2 represents the char-
NAS

acteristic displacement of the structure and & = R.,~%~ the
characteristic pressure.  is decomposed into N subsets A;,
which are the transformations by the adimensionalization of
the corresponding A; in the original space. We define the
characteristic velocity v to cross the whole system in a time 7
asv=L/T.

With these new variables, the dimensionless energetic bal-
ance, computed in Appendix [E] is

kinetic energy

T o) [ (o) )

elastic energy

(7
B . il N . 0il, ~ i
:%’c(s)]ﬂ/[g]+£’ ;Pi(/ [g})t/i[g]
i=

input power . )
putp dissipated viscous power

The number % = (A +2u)/pv? is the inverse of the system
Cauchy number. It compares the elastic forces in the material
with the inertial forces. The number & = % is the Euler num-

ber of the system. The pressure p; = R.,S;v represents the

non-coupled characteristic pressure in the terminal branches
of the tree, i.e. in the absence of the coupling with the respi-
ratory zone. In comparison, the pressure &2 = (7Lf72u) pL rep-

resents the efficace characteristic pressure resulting from the
coupling. The Euler number of the system compares the pres-
sure forces induced by the viscous dissipation of the air flow
in the bronchial tree with the inertial forces in the material.

Finally, the system is characterized by the two dimension-
less numbers % and &. Their ratio £y = &/ is called
the Lung Mechanics number, it compares the elastic energy
to the dissipation. When .%); << 1, the system behaves as a
wave equation and the evolution of the system total energy de-
pends on the boundary condition in y = 0, and more precisely
on T(s). Additionally, if # >> 1, then the energy is mainly
stored as elastic energy and the wave propagates rapidly. The
material displacement is close to a Laplacian (or diffusive)
profile, i.e. linear in 1D. If # << 1, then the energy is mainly
stored as kinetic energy and the wave propagates slowly.

On the contrary, when .3, >> 1, then the system is quickly
damped. Hence, the kinetic energy, the elastic energy and the
airflows quickly drop to zero. Details about the influence of
the tree structure on the tissue region dynamics is given in

Appendix D]

Application to HFCWO. Approximated solutions of the
model equations are obtained using the finite elements method,
implemented in the open source software Octave [11] and
available in [5]. Our algorithm is validated by comparison
with unidimensional analytical solutions, see Appendix [C|
The physiological data used for the input parameters of the
model are given in Table ] The ventilation at rest in human
is thoroughly studied in the literature, hence it is used to cali-
brate and validate our model, see Appendix The calibration
consists in adjusting the hydrodynamic resistance correction
factor ¢ of the airways in the tree first level of modeling. As
detailed previously, this factor compensates for geometrical
and fluid dynamics features neglected in our model. The value
of ¢ is calibrated so that the equivalent hydrodynamic resis-
tance of our model of the bronchial tree is compatible with
the physiology. As no data is available for HFCWO in the lit-
erature, the calibration and validation in the case of HFCWO
is not possible. Hence, we use rest ventilation to calibrate and
validate our model and assume that the configuration remain
relevant for HFCWO. With a value ¢ = 20, the tree equivalent
hydrodynamic resistance is Rey ~ 1 ecmH,0.L~ s, in accor-
dance with the data for healthy adult lungs [40]. The model
is then validated by comparing its predictions at rest regime
for tidal volume, mouth airflows and acinar air pressures with
the physiological data available in the literature [65]. Once
calibrated and validated, our model is used to mimic HFCWO
manipulation.

The amplitude A and the period 7 of the boundary con-
dition at x = 0 are adjusted to mimic an idealised HFCWO
maneuver. We consider HFCWO to work as an applied sinu-
soidal pressure 7(¢) = Asin(27z/T), and we denote f = 1/T
the frequency. The typical frequencies used in HFCWO de-
vice are in the range 1 Hz to 20 Hz. To our knowledge, the
amplitude of the force felt by the lung due to the pressure on
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FIG. 3. Air properties in the first level model of the bronchial tree with 8 generations (n = 7): mean airflows (up) and mean absolute pressures
(down). The data are plotted for an idealized HFCWO frequency of 20 Hz at the beginning of a HFCWO cycle. This time corresponds to
a maximal time derivative of the sinusoidal pressure applied at the position x = O of the tissue (on the left). The rectangles represent the
cylindrical airways to scale: their widths correspond to the airways diameters and their lengths to the airways lengths. The blue arrows on
the upper plot represents the air flow orientation in the airways. The branches with generation index 7 account for the airways of the deeper
generations, as schematized in Figure[T] The air circulates between different parts of the tree, getting away from the parts that are connected
to the compressed regions of the tissue, where the air pressure is higher (left part of the tree in the example plotted). The air is either expelled
through the root of the tree (trachea) or sent to the parts of the tree connected to the regions of the tissue with lower pressures (right part of
the tree in the example plotted). The three black arrows in the upper plot indicate the terminal branches for which the pressure in the tissue
is positive although the tissue is expanding. This phenomena occurs at the propagation front of the wave, where the material is in transition
between expansion and compression.



the thorax is not documented yet. Since our model is linear
in A, we can easily determine the solution for any value of
A from a single computation once the other parameters, such
as the frequency, have been fixed. Our goal is to compare
the efficiency of the different frequencies by observing the
airflow induced by HFCWO. We consider that a HFCWO
device is more efficient if the airflow is larger. Notice that
due to the linearity of the equations relatively to the boundary
condition at x = 0, mixing the rest ventilation and HFCWO
would bring an amount of airflow that would be the sum of
the airflows induced by the ventilation and by the HFCWO
computed separately. Hence, in order to isolate the effects of
HFCWO in our simulations, we do not account here for the
lung’s ventilation.

Air-tissue interactions. The tissue and air mechanics are af-
fecting each other. When the tissue undergoes a compression,
the air is going from the tissue into the airway tree; when the
tissue undergoes an expansion, the air is going from the tree
into the tissue. The flow of air through the tree is conserved
and air is exchanged with ambient air through the first gener-
ation airway, which mimics the trachea, and with all the ter-
minal branches connected to the tissue. The flow of air dis-
tributes in the tree depending on the air pressures distribution,
which results from the hydrodynamic resistances of the path-
ways between the terminal branches and between the terminal
branches and the trachea. The air pressures at the end of the
terminal branches are felt by the tissue and, in turn, affect its
propension to compress or expand.

This behavior leads to complex flow patterns in the tree,
as shown in Figure [3] where the air flows and pressures in
the tree are represented at the beginning of a HFCWO cycle
(A =200 Pa, f =20 Hz). In this example, the deformation
wave induces the compression of the left part of the tissue,
where air is flowing from the tissue into the corresponding
terminal branches. Because the air is pushed into a resistive
tree, its pressure in this part of the tissue tends to be positive
and opposes to the compression of the tissue. The air flow
is then directed toward the trachea, where it reaches out to
ambient air, and towards other terminal branches, which are
connected to the tissue parts that are undergoing an expansion
and have lower pressures. If the low pressure in these regions
is negative, it opposes to the expansion of the tissue. Depend-
ing on the hydrodynamic resistance distribution and air flow
distribution, it is possible to have compression with negative
pressure or expansion with positive pressure. In these cases,
the air pressure does not oppose the tissue deformation but
instead favors it. Expansion with positive pressure occurs at
the propagation front of the wave, where the tissue is in transi-
tion between tissue expansion and compression. Compression
with negative pressure occurs at the propagation queue of the
wave, where the tissue is in transition between compression
and expansion. The patterns can be even more complex in
trees with asymmetrical bifurcations, where the air-tissue in-
teractions are affected by the specificity of the geometry of
the tree. Such an example, based on a tree with physiologi-
cal branches size and asymmetric bifurcations, is presented in
Appendix [I}

An optimal range of frequencies. HFCWO is known to help
move the mucus by affecting its rheology —out of the scope of
this study— and by applying stresses in the mucus, either by
the air-mucus interactions [[16, 36/ 38} 160] or by the mechan-
ical deformations induced by the oscillations of the airways
walls. The air volume V), exchanged with the ambiant air and
the airflows created by HFCWO are dependant on its working
frequency, whose recommended values are based on empiri-
cal knowledge. Hence, we study with our model the influence
of the HFCWO frequencies on the inhaled air volume and on
the tracheal airflow (flow in the first generation of the tree).
We assume that the amplitude of the applied pressure A at the
boundary x = 0 is fixed to A = 200 Pa and make the frequency
of HFCWO range between 1 Hz and 18 Hz.

The model predicts that V), decreases as the frequency in-
creases, with a decreasing slope, as shown in Figure [ (left).
Also, the average airflow increases for frequencies lower than
6.5 Hz and then decreases. Hence, the maximal airflow is
reached at an optimal frequency f, = 6.5 Hz, see Figure [
(right). As our model is linear in the amplitude of the ap-
plied pressure A, A affects only the amplitude of the volumes
and of the airflows, but not the location of the maximum. At
the optimal frequency, the two dimensionless numbers are of
the same order of magnitude with = 16.56 and & = 32.74.
The acceleration (1) has a low influence on the system rel-
atively to the elasticity (%) and to the dissipation (&’). The
value of the Lung Mechanics number %y = &/ % is 1.97 and
the dissipation affects slightly more the system than the elas-
ticity. In comparison, during rest ventilation % ~ 17000 and
& ~ 1000, see Appendix [F| and dissipation plays a smaller
role as %)y = 0.062. Hence at rest, a significant portion of the
elastic power developed during inspiration is stored and can
be recovered during expiration [65]. In comparison, during
HFCWO a larger fraction of the power put in the system is
lost to dissipation.

Near the optimal frequency f,, the airflow is actually on a
plateau. In the range of frequencies from 3 Hz to 15 Hz, the
amount of airflow remains within 1% of the maximum. By
maximizing the airflow in the tree, this range of frequencies
maximizes the global displacements of the material and the
air—-mucus interactions.

The optimal frequency f, = 6.5 Hz, which maximizes the
average air flow, corresponds to the fundamental frequency
of the system without the damping influence of the tree, i.e.

fi=4/ UHPZH) ﬁ = 6.5 Hz [54]. This result can be highlighted

using a parallel with damped oscillators with a single degree
of freedom. The displacement z(¢) of such oscillators follows
an equation of the form [21]] mZ — {z — kz(r) = asin(wt), with
m the mass of the oscillator, { the damping coefficient, k the
spring coefficient and asin(@t) an external oscillating force
of amplitude a and frequency w applied to the oscillator. In
this case, the amplitude of the velocity v = z of the oscilla-
tor is maximal when the frequency of the applied force equals
the velocity resonance frequency @,. The velocity resonance
frequency is independent of the damping and equal to the fun-
damental frequency of the oscillator [21], ®, = /k/m. In our
model, the airflow is directly related to the velocity of the ma-
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FIG. 4. Left: Volume of air (mL) ventilated at each cycle of the applied constraint versus the frequency of the applied pressure. Right:
Average total air flow in the tree (mouth airflow, mL/s) versus the frequency of the applied pressure. The long red long-dashed line represents
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frequencies for which the average total air flow is within a range of 1% of the maximum.

terial, since the flow of air getting out of a subregion A; of
the material is computed using an expression that is linear in
the velocity #(x,t) of the material, i.e. F;[i] = [, —div(i)dx.
Our analysis shows that the 7(¢) frequency f, that maximizes
the average airflow corresponds to the maximal velocity of the
material and is equal to its fundamental frequency f;. Hence,
the optimal frequency found by our analysis corresponds to
the velocity resonance frequency of our fluid-structure inter-
action model.

This result suggests that the knowledge of the lung’s char-
acteristics could allow to optimize the therapy by computing
the eigenfrequency of the material. Actually, velocity reso-
nance frequencies (i.e. eigenfrequencies) of the respiratory
system have been estimated in the literature to about 6 Hz
for healthy adults [43] and to about 18Hz for infants lungs
with respiratory distress syndrome [33]. Those estimations
are close to the optimal frequency f, = 6.5 Hz obtained in our
work by considering a characteristic length of L = 20 cm for
adult lungs. More particularly, if we assume approximately a
characteristic length of 7 cm for infants lungs, we obtain an
optimal frequency of f, = 18.5 Hz.

Hence, our model gives for the first time a physical esti-
mation of the optimal working range of HFCWO, which is in
agreement with the frequencies usually applied to the patient
during HFCWO maneuvers [47].

Influence of HFCWO on the mucus at the optimal fre-
quency. The mucus stands on the wall of the airways as a
thin layer of about 10 um [25]]. Mucus is a viscoelastic fluid
whose main property is to exhibit a yield stress that has to be
overcome for the mucus to flow. The order of magnitude of
the yield stress oy for an healthy mucus is typically 6y ~ 0.1
Pa [31} 136, 38]. During HFCWO manipulation, the mucus
is submitted to two types of stresses: one arising from the
air—mucus interactions and one from the oscillations of the
airways walls. These stresses add together and can either
overcome directly the mucus yield stress and make it flow, or
represent a buffer of stress, de facto reducing the quantity of

stress to apply to overcome the mucus yield stress.

Air-mucus interaction. The first stress is the one induced by
the air—mucus interaction [36) 38]. As the mucus layer is
in general thin relatively to the diameter of the airways, this
stress can be approximated by the wall shear stress induced by
the air flow in the airways [59, 60]. As the airflows induced
by HFCWO are small, we assume that the air fluid mechan-
ics follows the Poiseuille’s regime in the airways. Hence, the
wall shear stress 0, in an airway with radius r and an airflow
¢ is [59]

Ha®
w3

Oy =

with u, the air viscosity, g, = 1.8 1073 Pa.s. The wall shear
stress in the tree is maximal when the air flow in the tree is
maximal, typically for the optimal frequency uncovered pre-
viously.

Airways wall oscillations. The tissue oscillations regularly
compress and relax the airways, with the consequence of pe-
riodically affecting the geometry of the airways walls. The de-
tailed derivation of the estimation of the stress occurring in the
mucus is given in Appendix [} The airways deformations are
small and the time evolution of their radii is determined based
on the same model in [39]] that considers the airway walls as
springs. Then, we relate the radius of an airway r(z) to the
elastic properties of its wall and to the variations of the tissue
pressures p; and of the air pressure in the airways p,. Finally,
we assume that the Young’s modulus Ej of the walls of the
airways is the same for all the airways and that E, = 6250
Pa [39]. The pressure p, is taken as the mean air pressure in
the airway and is computed using the pressure—flow relation-
ships in the airways, see equation (I). The pressure p; is an
estimation of the mechanical pressure surrounding the airway.
In our model, the airways have no spatial occupation, hence
p; is estimated using the mean mechanical pressure over the
region 2 of the respiratory zone fed by the airway studied.
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generation are located at L/4 and 3L/4, and so on. With the value A = 200 Pa used in this work, the stress in the mucus represents between 10
and 17% of a typical yield stress of the healthy mucus [31]. As expected, the modulation of the amplitude A of the applied pressure allows to

tune the amount of stress in the mucus.

More precisely, if we consider all the paths from the terminal
branches to the root of the tree, the set 2 is the union of the
A;’s that are coupled to a terminal branch whose associated
path includes the airway studied. Finally,

o ATr(0()0.)) ds
Joldx

As our model is unidimensional in space, m = 1 and p,(r) =
Jo(A+21) % — pee(F i) dx/ [ 1 dx.

The way the radius evolves with time induces a tangential
strain on the interface between the mucus and the airway wall,
€9(ro,0,2) = r(lzigro Under the hypothesis that the pressure
difference felt by the airway is small relatively to Ej, the re-
sulting absolute stress in the mucus can then be estimated to,
see Appendix

pe(t)

®)

1ry E,

G(I)WZE%E|pa(t)_pt(t)| &)

with wp the thickness of the airway wall. As suggested in
[39,152], the thickness can be approximated by wy = %ro.

Stress in the mucus in the optimal configuration. At the op-
timal frequency, we computed the absolute stresses averaged
over one HFCWO cycle per unit of stress applied at the bound-
ary to estimate its order of magnitude in the different airways
of the tree, see Figure 5]

The wall shear stress induced by the air—-mucus interactions
does not vary much along the generations and between the
branches of the same generation. Actually, the wall shear
stress applied by the air on the mucus is directly related to the
size of the airways and to the amount of airflow in the airway.
If the airflows were distributed equally in all the branches of a

single generation, the shear stress should vary from one gen-
eration to the next with a factor 1/(2h3) = 1. Consequently,
in the hypothesis of a perfectly homogeneous distribution of
airflows in the tree, the shear stress would be the same in all
the generations of the tree, see [59,[60]]. This behavior corre-
sponds to Murray’s law, originally expressed in the frame of
cardiovascular fluid dynamics. Murray’s law determines the
vessels geometry that minimizes the cost for blood transport
and maintenance [46]].

However, our results indicate that there is a slight spread
of the wall shear stresses that grows with the generation in-
dex. This indicates that the difference of the airflows between
the terminal branches are small relatively to the characteris-
tic amplitude of the airflows in these branches. Nevertheless,
the airways that are closer to the boundary x = 0, where the
stress is applied, feel a stronger tissue pressure than the other
airways. Hence, they are submitted to larger stresses than the
airways near x = L.

The stress due to the vibrations of the walls is larger than
the stress induced by the air flow in the upper parts of the tree,
but becomes smaller deeper in the tree. This effect is related to
the air pressure in the airways. In the proximal part of the tree,
the air pressure is small and the airways mechanics is mainly
driven by the tissue pressure. Hence, we can deduce from
equation (9) that in the proximal airways, o() ~ %%’Z |p:(1)].
Since the amplitude of p; is directly related to the applied si-
nusoidal stress of amplitude A, we can derive an estimation of
the maximal possible mean stress over a cycle due to the wall
vibrations of about ¢ ~ %%—’Z % =0.025 Pa when A = 200 Pa.
Although this quantity overestimates the stress found in our
numerical simulations by a factor of about 2, it remains of
the same order of magnitude. The shift was expected, as this

approximation does not account for the real tissue pressure



which depends on the wave propagation and on the damping
by the tree. Nevertheless, this approximation is a good way to
get an estimation of the order of magnitude of the stress in the
upper airways. Deeper in the tree, the air pressure increases
and compensates more strongly the tissue pressures around
the airways. As a consequence, the amplitudes of the oscilla-
tions of the airways walls decrease with the generations.

In HFCWO, the two stresses add together. The idealised
HFCWO technique used in our model, with A = 200 Pa, ap-
plies to the mucus a stress of about a hundredth of pascal,
about ten percent of the yield stress necessary for an healthy
mucus to move, whose yield stress is evaluated to be about 0.1
Pa [31]]. Adjusting the amplitude A of our idealised HFCWO
technique allows to reach higher stress in a proportional way,
see Figure 5]

IV. DISCUSSION

We propose a mathematical and numerical model of the
physics of HFCWO that highlights the empirical choices
made for tuning HFCWO maneuvers. In our model, we ac-
count for the interaction between two core physical processes
involved in the lung’s biomechanics: the viscous dissipation
of air in the airways and the mechanics of the deformation
of the lung’s tissues. The tree structure affects the displace-
ment of the respiratory zone by applying damping pressures
in the material. Through the action of the air on the tree, a
deformation affects the whole material very quickly —actually
instantaneously in our model. The consequences predicted
by our model for this dynamics is the existence of a range
of frequencies for HFCWO that maximizes the airflow in
the tree. This range of predicted optimal frequencies corre-
sponds to the working frequencies empirically determined for
HFCWO [47, 148]. In that range, the model suggests that the
isolated action of a HFCWO therapy can submit an healthy
mucus standing on the wall of the airways to about ten percent
of the estimated yield stress that has to be overcome for the
mucus to flow. In our model, this percentage can easily be
tuned by adjusting the intensity of the applied pressure.

Also, the physical analysis of our model suggests several
interesting applications of the HFCWO technique. Actually,
the optimal frequency can be determined by searching for the
maximal airflow at mouth level. From that optimal frequency,
it is possible to reach estimations of the hydrodynamic resis-
tance and of the compliance of the patients lung, at least in
the frame of our model.

Operational hydrodynamic resistance of the airway tree.
We define the operational hydrodynamic resistance R, of the
airway tree according to a distribution of the air flows at the
terminal branches given by .Z [ii] and to the total air flow in
the root (mouth air flow) given by Fr = J'.%[ui],

Rop:/()Tﬁ[u}’%y[u]dt//(;TFTz(t)dt (10)

The operational resistance reflects the resistance of the regions
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of the airway tree where there is an actual air flow. More-
over, the influence of the regions is weighted according to
the relative amount of airflows that they receive. The regions
where no airflow occurs are not accounted for in that resis-
tance. Hence, R,, is in general an overestimation of the equiv-
alent hydrodynamic resistance of the whole tree. In the case
where the pressures at each terminal branches of the tree are
similar, then the operational resistance is close to the equiva-
lent hydrodynamic resistance R, of the tree.

Coming back to our model of the lung, if we consider the
balance of energy of the system of equations (3)), @), (3). (6)
over a cycle when the periodic regime is reached, then the
energy dissipated during one cycle is equal to the amount of
energy put in the system by the boundary x = 0. This balance
is detailed in[Gland can be summarized as

T T
/ () Fr (1) di = / FU2Fid (1)
0 0

The relationship (TT) allows to estimate the operational re-
sistance of a HFCWO maneuver if the applied signal 7(r)
is known, if the total air flow Fr(¢) through the tree (i.e.
the mouth airflow) is measured and if a periodic ventilation
regime has been reached:

Rop= _/OT r(t)FT(t)dt//OTFTz(t)dt (12)

We showed earlier that in our idealised HFCWO maneuvers,
the pressure jumps between the A; compartments are small
relatively to the pressure itself, indicating that the pressures at
the terminal branches are all similar in amplitude. Hence, the
operational resistance is a good approximation of the equiva-
lent resistance of the tree in the case of the idealised HFCWO
maneuvers. Our numerical simulations confirms that during
idealised HFCWO maneuvers, we have R,, >~ Rey.

Hence, the operational resistance might have interesting
applications for evaluating the actual resistance of the parts of
the lung accessible to air flow, for evaluating the performance
of a HFCWO maneuver and for estimating the equivalent hy-
drodynamic resistance of the lung using HFCWO.

Estimation of the compliance using the fundamental fre-
quency. We showed that the optimal frequency in term of
maximizing the mouth air flow is the fundamental frequency
of the material. This suggests that HFCWO could be used to
estimate the compliance of the lung of a patient by searching
for the device frequency that maximizes the air flow at mouth
level. Assuming this frequency is the fundamental frequency,
(A+2u) 1

p 4L
properties of the lung, represented here by (A +2u). From
(A +2u), we can estimate the lung compliance. In the case
of our unidimensional model, the compliance is related to the
elastic parameters by C ~V /(A +2u) with V = S;L = L? the
volume of our model of the lung. From the expression of the
fundamental frequency, we can then deduce that

we can derive from the formula f; = the elastic

V3

C~ 602 13)



with V the volume of the lung, p its density and f, ~ f; the
frequency that maximizes the air flow at mouth level. This
formula is derived from a unidimensional model and should
be considered with care and/or be validated with clinical data.
However, this demonstrates that HFCWO might be a potential
tool for estimating the lung’s compliance based on the analy-
sis of the air flows at mouth level.

Model hypotheses. Our model predictions have to be inter-
preted in the limitations of its hypotheses. Actually, it is based
on a set of simplification hypotheses for the geometry of the
lung, the mechanics of the tissues and the air fluid dynamics.

The predictions of our model are based on averaged biolog-
ical and mechanical parameters for a healthy individual and
on an idealized self-similar bronchial tree geometry. This al-
lows to work with a tractable model and to identify the role
of each biophysical phenomena on the dynamics of the sys-
tem. However, the input parameters of the model exhibit inter-
individual variations in the human population. The bronchial
tree geometry, the pulmonary resistance and the compliance
are affected by the environment, the life-history, the age, the
gender, etc. Accounting for this variability is possible with
our model but is out of the scope of this study, which aims at
analyzing the physics of the system. Nevertheless, the influ-
ence on our model predictions of inter-individual variability
could be analyzed in a future study using the same model. In-
deed, the first level model (generations O to n) can be built
using patient airways data, typically extracted from CT-scans
[61]. Then, patient compliance and hydrodynamic resistance
could be used instead of the mean values used in this study. To
highlight the capacity of our model to run with patient data,
a computation performed with Raabe et al. data [53] is pre-
sented in Appendix[I|

We assumed that the air flows in the airways according to a
"corrected" Poiseuille regime, i.e. by adding a corrective fac-
tor for the Poiseuille hydrodynamic resistances of the airways
in the first level model (generation O to n). This allows to ac-
count, in an approximated way, for the complex [2, |27, 58],
sometimes chaotic [14} 64], airflows in the upper airways (in-
ertia, turbulence, influence of the geometry of the bifurcation,
etc.). The factor has been calibrated to get an equivalent re-
sistance for the airway tree compatible with the physiology.
However, the flow patterns can be different depending on the
airway size and orientation. Hence, the use of a unique cor-
rective factor for all the airways and for both rest ventilation
and HFCWO cannot capture fully the complexity and variabil-
ity of the fluid dynamics. Hence, the local predictions of our
model should be considered as qualitative only. This might
impact, for example, the predictions of the mucus stress in-
duced by the wall oscillations, since the stress is computed
using the predicted air pressures in the airways. Nevertheless,
our approach allows to predict global behaviors and quanti-
ties that are coherent with the physiology, such as the optimal
range of frequency for HFCWO. This suggests that our model
accounts, at least qualitatively, for the main biomechanical
phenomena involved in HFCWO, including those arising from
fluid dynamics.

Another simplification was made concerning the physics
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of the system, for the sake of tractability. Actually, the di-
mensionless parameter & is built from the equivalent hydro-
dynamic resistance of the tree. Hence, it captures only the
mean influence of the dissipation of the energy by viscous ef-
fects in the tree. Thus, some changes in the tree configuration
can be missed as soon as the equivalent hydrodynamic resis-
tance is not affected by the geometrical change. To get a more
fine description of the dynamics linked to the viscous dissi-
pation in the tree, we can consider one dimensionless param-
eter per generation of the tree (symmetric branching) or per
branch of the tree (asymmetric branching). This improvement
would allow to catch any influence of local changes in the
tree, such as localized constrictions. However, this would lead
to a large number of dimensionless parameters, more than a
hundred thousand for a 17 generation tree, and would break
the tractability of the model and its potential applicability to
medicine.

Nevertheless, our model is able to successfully mimic the
rest ventilation and to capture the interactions between the
tissue mechanics and the air flow in the airways. The two
dimensionless parameters Z and & allow to highlight the rel-
ative influence of the elasticity and of the dissipation, depend-
ing on the physiological parameters and on how the idealised
lung is ventilated.

V. CONCLUSION

This work develops and analyzes a model of the lung that
accounts for the main biophysical characteristics of the lung.
The model is validated for rest ventilation by comparing its
predictions for tidal volumes, mouth arifiows and alveolar
pressures with data from the literature. The simulation of ide-
alized HFCWO manipulations within this model of the lung
brings estimations of the shear stress applied by the technique
to the mucus. We show that the stress that dominates in the
upper part of the tree is the stress due to the vibration of the
wall of the airways, while in the deep parts of the tree, the
dominating stress is due to the air-mucus interactions. We
show that the frequencies ranging from 3 Hz to 15 Hz max-
imize the airflow inside the tree and consequently maximize
the air—-mucus interactions. This range corresponds to the typ-
ical working frequencies empirically used during HFCWO.
Last but not least, in our model, the analysis of the mouth air
flow during idealized HFCWO allows to estimate the hydro-
dynamic resistance and the compliance of our model of the
lung. This suggests that HFCWO might be a powerful non
invasive tool for helping the diagnosis of lung pathologies in
the frame of personalized medicine.

Nevertheless, it is important to interpret our model predic-
tions in the limits of our model hypotheses. This work repre-
sents a first stepping stone toward the full understanding of the
biomechanisms and the potential of HFCWO. Further works
will aim to reach more detailed prediction by improving the
model realism, typically the geometry of the lung and the air
fluid mechanics in the airways.
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Appendices

Appendix A: Weak formulation and unidimensional case

The model of the lung developed in the previous section consists in the equation of the mechanics for the respiratory zone (3)),
its boundary and initial conditions (@), the viscoelastic stress—strain relationship for the model of the respiratory zone (6)), and the
matrix pressures—flows relationship at the terminal branches of the bronchial tree model (I)). The system is solved numerically
using its weak formulation and finite elements. The weak formulation and the finite elements method are convenient for dealing
with the divergence of piecewise constant functions, such as the pressures p;.

Weak formulation of the system of equations. The equation that drives the mechanics of the tissue region is

Pt —div(o(u, Z[]))) =0 xeQ
G( , T i) = ATr(e(u) +2ue(u) — puee(F[u])l x€Q
o(u, Fu])).n=1(x,t) xel (AD)
( Z) 0 xely
u(x,0) = up(x) forx € Q

The pressure pyee is not everywhere differentiable, hence a relevant mathematical way to express the equation (AT)) is by using
the weak formulation. For any proper smooth test function w : Q — R3 which cancels on I, the weak formulation of is
obtained by integrating on Q the inner product of the equation with the test function w and by applying the Stokes theorem. The
weak formulation of (3) is then

N
Jo (pg%w Ge(u) : VW) dx— Jp, T wdS— L pi(F[al) [, div () dx =0 on Q.

u(x,r =0) =up(x) forxe Q

u=u, andw=0 onl>, (A2)
N

(pi(F[i]))1<ion = — <Z<@ij/AvdiV(?9’;)dx>
j=1 J 1<i<N

Unidimensional case. In order to analyse the physics of the set of equations (AZ) in a tractable framework, we focus our study
on unidimensional cases and limit the spacial dimension to the axis x;. The unidimensional geometry can be viewed in the three
dimensional space as a cylinder that is the extrusion along the axis x| of a surface in the plane (0,x2,x3). In terms of mechanics,
we assume that the virtual displacement w; depends only on x; and that the displacements w, and w3 are zero. We assume
also that &1 («) is the single non zero term in the strain tensor. For the sake of simplicity, we drop most of the index 1 and use
respectively x, u, w and 7 instead of x1, u;, w; and 7;.

We assume that the extruded surface is a square with side length L and surface area S; = L?. Then, the rate of volume change
can be rewritten .%;[ii] = — |, a; dlv(%)dxldxzdm = —SL [a/ %(%)dx where the projection of A; on the axis x; is the segment

[x;,xj41]. For the sake of simplification, we will now identify the set A; with its projection on the x| axis, i.e. A; = [x,x;11].
Then, the tree pressure in the stress—strain relationship reformulates as

N
Yjit1 9 du
- L(Z%’/. 3x<8t)d >
i i 1<i<N
N
u u
=-S5 (Z%’j <at(xj+lvt) - at(xﬁt)))
1<i<N

where %, is the i, j component of the matrix Z.

The definition (6] of the elastic stress tensor in 1D is 0. (1) = (1 + 2/4)%
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Appendix B: Dimensionless formulation of the equations and physical analysis

The space, the time and the amplitude of the solution are adimensionalized as follows

y=x//TL

s=t

u(x,t) =Yi(y,s) = Ya(z, ) (B1)
pi(Z1i) = Zpi(Z %)

The quantities L and T represent respectively the characteristic length of the system and its characteristic time. The quantity
T represents the characteristic displacement of the structure and & the characteristic pressure. The space domain becomes
Q =[0,1]. Q is decomposed into N subsets A; = [;,%;. 1], which are the transformations by the adimensionalization of the
corresponding A; in the original space. The rate of volume change is now

. dil Yiv1 9 di dil dii
Z _ — (—— — | (% (%
‘/[85,] < /fi 8y(as)dy> L<icy <as (XI,S) Js ('lerlvs)) I<ien

We define the characteristic velocity v to cross the whole system in a time T asv=L/T.
The characteristic pressure &2 is obtained by

du 1 ou A —
at]) %J[at] P Prree(F [ED =Req

&

NS)
<
5]
<

W

[57]

SIY #
Ptree(y[ % Rf

N8
a

Fmee(j[jg])

where we recall that R., = 1/(J'2J) is the equivalent resistance of the tree, i.e. how it responds to an homogeneous distribution

of pressures in its terminal branches. Hence, we can now define & = R, %~ 5LY The quantity % represents a characteristic air
flow in the system.

The stress—strain relationship becomes,

s dil di ZL e dii R.;SLL L dil
~ o -1 o i L ~ o
G( ’J[as}) ay (7L+2,LL)T ptree(/[a ]) ay ()L +2.U)T ptfee(‘j [a ])
and consequently, o (u, % [1]) = )HZ“ )& (1, F [92]). We call the number %y = (Iieﬁitv) the Lung Mechanics number, it com-

pares the characteristic pressure in the terminal branches p; = R,,Srv induced by the viscous dissipation of the air flow in the
bronchial tree to the elastic response of the material, here represented by (A +2u).
At the boundary y = 0, &(i, [‘3"]) n=1 +A2L/.L)T 7(s), with A the characteristic amplitude of pressure applied on the boundary

and (s ) ( 5 the applied stress. In order to get a dimensionless stress at the boundary, we set the characteristic displacement to
T= 20 +2 i It is the result of the trade-off between the applied boundary stress and the elastic response of the material, scaled by

the size of the object. Typically, the applied stress T on the boundary is a sinusoidal signal with frequency f, t7(¢) = Asin(27ft),
hence unless stated differently, 7 = 1/ is the characteristic time of the system.

Substituting these dimensionless quantities in the weak formulation of the system brings a new dimensionless weak formula-
tion, for any smooth function w such as w(1) =0,

9% di . ([0 ow s
A aszw—l—<<@ay—5ptree (J [%]))dey_% /f"l T(s)wdy =0 (B2)
—_——

with Z the inverse of the Cauchy number of the system % = (1 +2u)/pv? that compares the elastic forces in the material
with the inertial forces. The number & = %y 98 is actually the Euler number of the system since it can be rewritten in the form
&= %. It compares the pressures forces induced by the viscous dissipation of the air flow in the bronchial tree with the inertial

forces in the material.

Appendix C: Numerical simulations, validation of the algorithm

Numerical simulations using finite elements for the space variable x are performed in Octave [11]. The time dynamics is
computed numerically with the Octave function odel5s. The code is available in [5]].
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FIG. 6. Propagation of wave deformation with (*-red) and without (o-black) the tree structure constraint at time s = % (a), s = % (b),s=1(c),
with 2 =1 and & = 1. The dash vertical lines show the boundaries of the (4;);<i<n-

We determined analytical solutions of the unidimensional equations in the case of specific oscillating boundary conditions.
Analytical solutions are determined by decomposing the solution on each A;. We assume that their form on each A; is the
product of a time-only-dependant function and of a space-only-dependant function. The analytical solutions on Q = Ufi 1A is
then obtained by assuming the continuity of the displacements and of the global stresses between two neighborhing A;.

Our algorithm, which is able to deal with any boundary conditions, is then validated by comparing its predictions to these
analytical solutions.

Appendix D: Effect of the tree structure on the propagation of the wave deformation

In the absence of the tree structure, i.e. with & = 0, the equation (B2)) is the linear elasticity equation for an isotropic and
homogeneous material written in a dimensionless and uni-dimensional formulation. When the tree is present, it applies uniform
pressures in the A;, hence we expect that the tree structure will affect the displacements derivatives on the boundaries of the
A;. Hence, we compare in this appendix the displacement of the material with or without the coupling with a tree structure
using numerical simulations. This analysis allows to check the influence of the tree on the eigenfrequencies of the system, most
particularly in term of resonance velocity.

The dimensionless domain is Q = [0, 1] and corresponds to a homogeneous material coupled with a three generations tree
structure, as shown in Figure E}

Boundary conditions. The material is fixed (zero displacement) on one boundary (y = 1) and stimulated by an oscillating

pressure on the other (y = 0). The pulsations w; = % and @, = % denote respectively the first and the second angular

eigenfrequencies of the system without the tree, with ¢ = /(A 4+ 21)/p, see [54]]. We set the Dirichlet condition #(1,s) = 0 and
the Neumann condition o (u).n(x,7) = 7(t) = Asin(@yt) rewritten in dimensionless formulation with s =¢/T and T = 27/ oy,
6 (i) (y,s).n=7(s) = ©(Ts)/A =sin(@,Ts) ony=0Vs € RT.

We chose the pulsation of the boundary condition to be @, in order to be able to observe more easily the traveling wave. As a
consequence, a convenient characteristic time for the simulation is the time that the deformation wave takes to propagate from
one boundary (y = 0) to the other (y = 1), whichis T = %’l‘

Initial conditions. A zero initial condition is imposed on the displacements and velocities, the material is initially at rest.

Values of the physiological and physical parameters.

The aspect ratio of the trachea is larger than that of the other airways. Since all the airways sizes are computed from the size of
the first generation, in order to compute satisfactory airway length, we have to use in our model a first generation airway that
corresponds to a reduced trachea. Hence, the size of the first generation airway is assumed of length /o = 6 cm and of radius
ro = 1 cm. The resistance matrix Z is then computed from these two values. In this section, we set the dimensionless parameters
to # =1and & = 1 (& = 0 for non-coupled case).

Wave propagation and dissipation. The black curves (*-curves) in figure [6] show the propagation of a wave in the absence of
the tree, namely considering & = 0 . As the characteristic time is 7 = %’1’ with @ = 77 the fundamental angular frequency [54],
the wave propagates through the material without any loss of energy and reaches the other boundary at time s = 1.

The red curves (o-curves) in figure[6]show the propagation of the wave coupled to the tree structure (& = 1). The wave is damped
by the air viscous dissipation occurring in the tree. Moreover, several areas of the domain are deformed before the arrival of the
deformation wave. Actually, since we use Poiseuille’s model for the air fluid mechanics in the tree, any change in pressures and
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airflows propagates instantaneously throughout the tree. Hence, all the material is instantaneously affected by the change of the
air properties in the A;.

Appendix E: Energy of the system

In equation (B2), each term plays a part on the shape of the solution and is weighted and compared with the other terms by the
value of its respective prefactor. The prefactors are either 1 or one of the two dimensionless parameters 2 or &. The equation
(B2) can be decomposed according to the physical role of its different terms:

1 525 ~ ~
[ 28w (22 opee (7| 2])) Dy 22 wi0)=0 (ED)
0o 0s? dy ds dy N/

~~~ W—’

boundary force

acceleration elasticity damping
Taking w in equation as the velocity of the material, i.e. w = %, we can determine the time variation of the energy of the system.
d (1 1 (da ? L Al . dil
CAz [ (ZLos)) dy+ 2= / 5)) dy| = »7 N E2
ds<2/o (as(ys)> ) < 0, )> y) T(s)5; (0 Z, il ] (E2)
%,_/ =
Total energy of the system input power viscous power dissipated
The total air flow through the tree is J’j[@} =YV, j[%] — gva"s (y,s)dy = a—‘;(O,s) - %(l,s) = %(O,s). Hence, the
input power can be rewritten A7 (s )a (0,5) = Bi(s)J' ¥ [a”]
Since the pressure j;(.% [‘3“]) in an A; is of the opposite sign than the corresponding flow %[ ‘:], then the term in & corre-

sponds to a damping of the tissue, as expected.

Appendix F: Model calibration and validation using rest ventilation

We use our model to mimic the ventilation of the human lung. However, several parameters need to be adjusted in order for our
model to give predictions compatible with the physiology. The ventilation at rest in human is thoroughly studied in the literature,
hence it is used to calibrate our model, see section[H Once calibrated, our model is used to mimic HFCWO manipulation.

In this subsection, we mimic the pulmonary ventilation at rest. We consider the domain Q = [0,L],L € R composed of an
homogeneous material that mimics the lung’s tissue. Here, we decompose the domain into 128 subdomains (A;);—o

are fed by a tree of eight generations. The deepest generations of the lung are mimicked using equivalent resistances added at
each terminal branches of the eight generations tree.

Our model of the bronchial tree is idealized and does not take into account the oesopharyngeal pathway, the detail of the
geometry of the bifurcation and the inertial effects of the air flow [49,150]]. As a consequence, the hydrodynamic resistance of the
tree and the resulting damping of the tissue deformation are underestimated if we base its computation on the geometry of our
idealized tree only. Hence, the hydrodynamic resistance of the idealized tree needs to be adjusted in order to get pressures and
airflows compatible with the physiological values. For that purpose, we introduced an ad-hoc corrective factor ¢ of 20 for the
hydrodynamic resistance of each branch of the tree of the first level of modelling. The equivalent resistance R,, of the tree with
the adjusted resistances is then equal to 1 cmH,O.L~!.s. This value is in accordance with the physiological data that estimates
healthy adults hydrodynamic resistance to range from 0.5 to 4 cmH20.L~!.s [40]. With this corrective factor, our model is then
validated by ensuring that its predictions for tidal volume, alveolar air pressures and mouth airflows at rest are compatible with
physiological data [65]].

Parameters values. Since the lung’s parenchyma is filled with 10% of tissue and 90% of air, the volumetric mass density
p of the material is set to 10% of the volumetric density of water, i.e. p = 100kg/m> [17, 51]. This value for the density
is probably not adapted to large volume variations of the lung, for which the air-tissue ratio could be significantly affected,
typically during forced expiratory/inspiratory maneuver. However, for normal ventilation and especially for HFCWO conditions,
we can reasonably assume that an air-tissue volume ratio of 90% is a good approximation.

We use the same Young’s modulus £ = 1256 Pa and Poisson’s ratio v = 0.4 as in [S1]. From these data, we can compute the

quantity A +2u used in our model using the equivalency between (E, V) and (A, 1) and the relationships A = % and
_ _E
M= 51y

The resistance matrix % is built using physiological data for trachea radius and length: ry =1 cm and Iy = 6 cm.
We set the length L to be compatible with the characteristic size of an adult lung, namely L = 20 cm.
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FIG. 7. Left: Pressure applied to mimic the action of the diaphragm (two respiratory cycles are shown). The signal is sinusoidal in time with
a period of 5 seconds and an amplitude A. Right: Mouth airflow and tidal volume during four respiratory cycles of 5 seconds each with the
adjusted hydrodynamic resistance. The airflow and tidal volume data are displayed after they have reached a stationary state (+ > 10s).

Finally, the amplitude of the boundary constraint A is set to 200 Pa. This value for A allows our model to predict values for
air flows and pressures in the airway tree that are fully compatible with the physiology.

Initial conditions. The initial condition (+ = O s) corresponds to the material being still, i.e. no initial displacement and no
initial velocity.

Boundary conditions. The Neumann condition at x = 0 is adjusted to mimic the pressure applied by the diaphragm to the

lung during rest ventilation, o (u).n = 4 (cos(wt) — 1), withA € R and @ = 2?”, or, in dimensionless formulation, at y = 0,

o(i).n =—AB(cos(2ms) —1). It mimicé a negative pressure that moves back and forth the material, see Figure [7| (left). The
angular frequency @ is chosen so that the duration of a ventilation cycle is of 7 = 5 seconds (2.5 seconds inspiration and
2.5 seconds expiration) mimicking an idealized symmetric ventilation at rest [65)]. Moreover, we assume a zero displacement
Dirichlet condition at y = 1.

The numerical computations are performed with the dimensionless system of equations and the dimensional quantities are
reconstructed from the dimensionless ones. Also, to go from computed 1D quantities to interpretable 3D quantities, we involve
a surface of the material, denoted Sy, in section|Al We focus our analysis on the variations of the mouth airflow .%,, along time
as this quantity is easily measurable in a clinical frame. The mouth airflow .%,, is computed as the sum of all the airflows in the
terminal branches of the tree,

” Y& - [di
P [at} —s51Y 7 [as] (F1)

At rest, a human ventilates around 6 to 8 L/min [22]] and a tidal volume of about 500mL per respiratory cycle. With the
adjusted resistance, our model predicts a tidal volume of around 553mL. These results are shown in figure /| (right).

The values of dimensionless parameters associated to this case are 8 = 16821 and & = 1043. The Euler number &, that
represents the damping is about 16 lower than the inverse Cauchy number 4 that represents the relative role of the elasticity.
This indicates that the system tends to dissipate slowly the elastic energy injected by the diaphragm. Also, both & and % are
larger than 1, indicating that the acceleration plays a small role on the dynamics.

Appendix G: Energy balance and operational resistance
We consider the dimensionless energy conservation in our model, see equation (E2)) in Appendix [E}] We recall that the total

. - < 9 = 9q 2; i i .
air flow through the tree is Fr(s) = J'F (9] = ¥ | #[%E] = — [, é)}aus (v,8)dy = 92(0,s) — 9%(1,5) = 9%(0,s). Hence, the
dimensionless energy balance is

d (1 ['(da g 11/ da 2 N .
T <2/0 (as(y,s)> dy—I—%g/O (8y( 7S)> dY> = BU(s)Fr(s) =& F %eqF G




21

1**generation 1*'generation

2"generation. 2"generation

I
0A1|A2|6A1'A2'

(a) Symmetrical 2 generations tree structure with R; = (b) Non-symmetrical two generations tree structure
2Ry. with Ry :R1/100 and R;» = 100R;.
Ry + Ry Ry Ro+ Ry Ry
N—— —
3R (1.02)Rg
X = 0 R =
Ry Ro+R; Ry  Ro+Rp
N—— ——
3Ry 201Ry
(c) Resistance matrix for a 2 gen- (d) Resistance matrix for a non-
erations tree structure with sym- symmetrical 2 generations tree
metric bifurcations. structure where Ry; = R;/100 and
Ri2 = 100R;.

FIG. 8. Two different tree structures with the same equivalent resistance and parameters % and &, but with different resistance matrices. On
the left is displayed a symmetrical tree structure (a) with the corresponding resistance matrix (c). On the right is displayed a non-symmetrical
tree structure (b) with the corresponding resistance matrix (d).

since j[%}’gzt} [—] =-YN pi(F [’9"])35,[%] Now, if we assume that the system is periodic with a period 1, then inte-
grating the previous equation over a cycle and going back to dimensional variables lead to
1 - Ly ' < 00 dii r
/ H(5)Fr(s) ds= M [ #1272 ds — / (1) di = / F(i) ZF[i] di (G2)
0 Req ds 8s 0

Hence, these relationships lead to define the operational hydrodynamic resistance of the airway tree

o _ o i} 2Tt
T R

(G3)

When the pressures are all identical in the terminal branches of the tree, then we have .7 [u ]I%J[ |dt ReqFTZ. In that case,
R,p = R.y. More generally, R, is the equivalent resistance of the parts of the tree where the air flows occur, weighted by the
relative values of the airflows. Hence, the value of R,, ranges from the value of the equivalent resistance of the most resistive
path between the root of the tree and the terminal branches, and the value of the equivalent resistance of the tree. In the quasi-
fractal model with n+ 1 generations, R,, ranges from Ry + R; + - - - + R, (hydrodynamic resistance of a path from generation 0

and n, all identical) and Ry = Y1 %’

Appendix H: Extension of the definition of the dimensionless parameter &
1. Numerical simulation

The dimensionless parameter & is not able to discriminate between all the trees, as two different trees can have the same
hydrodynamic resistance but not the same branches. To illustrate this phenomenon, we run two similar numerical simulations
with the same &, but with two different trees. We chose the resistance matrices Z so that they are different but with the same
equivalent resistance and consequently the same % and &. The configuration chosen is based on a symmetrical and a non-
symmetrical tree. We call Rj; and R, the hydrodynamic resistance of the two airways in the generation 2. The airway with
resistance Rj; feeds the set A; (i = 1,2). The non-symmetrical tree is related to the symmetric tree by a decrease by a factor
100 of the hydrodynamic resistance of one of the branch of generation 2 —R{; = R; /100~ and an increase by the same factor of
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FIG. 9. Displacements for a two generations symmetrical (black cross) and a two generations non-symmetrical (red circle) tree with the same
equivalent resistances and the same % and & at times s = % (a), s = % (b), s = % (©).

the hydrodynamic resistance of the other branch —R, = 100R;—, see Figure l 8l We keep ro =1 cm and [y = 6 cm to define the
hydrodynamic resistance Ry of the root branch. The values of the dimensionless parameters are %8 = 1 and & = 1. We use the
same boundary conditions as before and a zero initial condition on displacement and velocity.

The Figure [9] shows the material displacement for the two cases. Since A is connected to more resistive branch in the
asymmetric case, the displacements in A, are lower in the non-symmetrical case than in the symmetrical case. This example
shows that the local contribution of the resistance of each branch of the tree is not accounted for in the dimensionless formulation
based on & and #. This choice allows however to keep the physics of the system tractable and to connect more easily with
clinical measures which often reflect global behaviors of the pulmonary system.

2. Alternative definition of the dimensionless parameter &

The definitions of the dimensionless parameter & = quL in Table1s based on the equivalent hydrodynamic resistance of the

tree R, only. This approach is not able to distinguish the dynamlcs induced by two different trees with the same hydrodynamic
resistance. Hence, we propose in this appendix alternative definitions of the dimensionless parameters.

In the case of a symmetrical bifurcating tree, one dimensionless variable &; can be defined for each generation i of the tree.
In this case, all the branches belonging to the generation i have the same hydrodynamic resistance R;. The dimensionless weak
formulation is then

1925 i ow
nF . = H]
Jo 92" (%8 +é& T)a dy—%# / s)w dy 0 (HD)
=1 ()(chase)
with &' =Y &, Fr :Zf-vzl,% {%] and for i =0,...,n,
&:ﬂ*ﬁg

eq

Similarly, in the case of a bifurcating tree with non symmetric bifurcations, all the branches of the tree can be different and
one dimensionless number & can be defined for each branch. Hence, the number of dimensionless parameters & would equal
the number of branches in the tree, i.e. 2"T! — 1 if the tree has n+ 1 generations. The dimensionless number &, associated to a
branch b belonging to the generation i and with a hydrodynamic resistance R;, would then be

R
G=2""1Lg
Rey
It is important to adapt the number of dimensionless parameters to the problem in order to keep some tractability in the study.

Appendix I: Fluid dynamics in an airway tree based on the physiological data from Raabe et al.

Our model is able to account for more realistic geometries based on measured data, typically using direct measurements [S3]
or airways reconstructions from CT-scans [61]]. In this section, we propose an example using a tree of 4 generations for the tree
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FIG. 10. Air properties in the first level model of the bronchial tree with 4 generations (n = 3): mean airflows (up) and mean absolute pressures
(down). The sizes of the airways are based on the data measured by Raabe et al. [53]. The blue arrows on the left plots represents the air
flow orientation in the airways. The angles between the rectangles and the length of the arrows are chosen for visualization purpose only. The
data are plotted for an idealized HFCWO frequency of 20 Hz at the beginning of a HFCWO cycle. This time corresponds to a maximal time
derivative of the sinusoidal pressure applied at the position x = 0 of the tissue (on the left). The rectangles represent the cylindrical airways to
scale: their widths correspond to the airways diameters and their lengths to the airways lengths. The branches of the 4-th generation account
for the airways of the deeper generations, as schematized in Figure[T] The air circulates between different parts of the tree, getting away from
the parts that are connected to the compressed regions of the tissue where the air pressure is higher (left part of the tree in the example plotted).
The air is either expelled through the root of the tree (trachea) or sent to the parts of the tree connected to the regions of the tissue with less
stress (right part of the tree in the example plotted).

first level of modelling (n = 3) built from the data measured by Raabe et al. [53]]. The tree, the airflows and pressure in the
airways of the 4 first generations are represented in Figure[T0]at the beginning of a HFCWO cycle (A = 200 Pa, f =20 Hz). In
Figure[I0} the deformation wave propagates from the left (x = 0) to the right (x = L). The fluid-structure interaction and the tree
asymmetric bifurcations induces more complex airflows distributions than for the self-similar tree in Figure[5] The compression
of the tissue in the left part of the tree induces high air pressure in the terminal branches feeding these regions of the tissue. A
part of the airflow induced by the tissue deformation is going out of the tree through the generation 0 that mimics the trachea.
Another part of the airflow is going to terminal branches with lower pressures; as a result the tissue connected to these terminal
branches tends to expand. Hence, the tissue deformation is the result of the propagation of the deformation wave in the tissue
and of the distribution of the air flows in the tree.

Appendix J: Estimation of the stress in the mucus layer induced by the airway walls oscillations

The airway walls are oscillating due to the oscillation of their transmural pressure. In order to estimate the stress applied on
the mucus by the oscillations of the airway walls, we have first to determine the response of the airways radius to the changes
in transmural pressure. We assume that the airways wall behaves as a circular spring [39]. Then, we compute the stress in the
mucus assuming that the mucus remains solid and behaves as a linear elastic material. The hypotheses of linear elasticity are
justified by the small amplitudes of the oscillations applied by HFCWO.

1. Estimation of the evolution of the airways radii

As HFCWO devices apply small deformations to the lung, we model the walls of the airways in the same way as in [39]].
Hence, we assume that the airway wall reacts as a spring that remains circular. We consider an airway with a rest radius ro and
with a constant length /y. As in [39}52], we assume the airway wall to have a thickness wg = %ro, a Young’s modulus £, = 6250
Pa, a Poisson ratio v, = 0.5 (incompressible material) and a density p, = 1000 kg.m 3. We consider cylindrical coordinates
(r,0,z) adjusted to the cylindrical geometry of the airway: r corresponds to the radial position, 6 to the angular position and z to
the axial position. The corresponding basis vectors are denoted e,, eg and e,. Assuming that the cylindrical airway has a radius
r, we consider a part of its wall with an angular width of d0 located at the angular position 8. Applying the Newton’s second
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law to that segment leads to

d*r

rdOwolopy ——er(0) =t(r)loeq(0) —1(r)loeq(6 +dO)+rd0ly(pa(t) — p:(t))er(6) Jn

——— dt

mass . elastic force pressures forces
acceleration
where:
* The function r — #(r) is the lineic tension due to the elongation of the wall, 7(r) = — IE’; > Wo r;()ro , see more details in [39].
b

* The pressure in the tissue p;(¢) is computed using the trace of the stress tensor ¢ () in the respiratory zone, see equation

(@

_ [ %Tr(cr(u)(t,x)) dx
Jo1dx

pe(?)

with n the spatial dimension and Q the set defined as the union of the A; fed by the airway studied. For example, the tissue
pressure in the first generation airway is the mean of the tissue pressures computed on all the A; as this airway is feeding
all the tissue, i.e. Q = Q. With n = 1, we can rewrite the pressure in the tissue as

oA« du _ tree G\M X
AECELT; ST

* The air pressure in the airway p,(¢) results from the air fluid dynamics in the tree. It is approximated by the mean air
pressure in the airway, which is computed using the linear relationships between the air flows and pressures in the tree,
see equation (I). More precisely, we define the set I of the indexes of the airways that are on the path starting from the
root of the tree and ending at the airway studied. For i € I, we denote R; is the hydrodynamic resistance of the airway with
index i and ¢; the airflow in that same airway; the quantity R;¢; is the pressure drop in the airway i. Finally, denoting R,
the hydrodynamic resistance of the airway studied and ¢, the airflow in that same airway, we have

pa(t) = — (ZRNP:'(I)) + %(Pb(t)
iel

where the first term computes the pressure at the end of the airway studied and the second term is a correction to get the
pressure in the middle of that airway.

Using the relationship eg(0) —eg (0 +d6) = e,(0)d0, projecting the equation (J1)) on e, and simplifying, we obtain

dzr wo Eb r—ro

R U L0) (12)

Then, rewriting the equation (J2)) in a dimensionless form allows to compare the different influences of acceleration, elasticity
and pressures:

2 2\ 2= 2
prrg(1—vy) d°F I ro P(1—vp) .
—_— % =—Ix=-(F-1)+ ——"> s) — Pl
E,T? ds? X ;(r )+W0 Ep (Pa(s) = pr(s))
~—_———
N M

using s =1/T, F(s) = r(sT)/ro, P«(s) = p«(sT)/P with x = a or t. T is the characteristic time of the oscillations, i.e. their
period; at the optimal configuration (see figure ), 7 = 0.05 s. P is the order of magnitude of the pressure, typically the pressure

applied on the boundary, reflected by the variable A, hence we chose P = A = 200 Pa. Finally, we can estimate the dimensionless

2 2 2
 pprg(1=vy) g P(1-vy) . .
numbers N = eI and M = wo E, o at the optimal configuration,

N <Njy—iemn=5.110"* and M = 6.0 10>

Consequently, the acceleration is small relatively to the elastic term (N << 1) and we can assume at first approximation a static
equilibrium between the elastic forces and the pressure forces. Notice that N decreases when the generation index increases
since the radii of the airways are decreasing with the generation index. Hence, the approximation N << 1 is better for the small
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airways. The number M is also quite small relatively to 1, indicating that the displacements due to the pressures are also small,
in agreement with the linear elasticity approximation.

Solving the static equation leads to 7#(s) = (1 — M(p4(s) — p:(s))~'. Considering M << 1, we can go further in the approx-
imation, and 7(s) ~ 1 + M (p,(s) — p;(s)). Equivalently, using dimensional variables and replacing v, with 1/2, we can finally
reach an expression for r(z):

_ 7o - 3 10 palt) — pi(t)
r(r) = 1 — 3 ro palt)—pi(t) =70 (1+4W0 E,
4 w0 Eh
The determination of the evolution of the radius relatively to that of the transmural pressure p,(t) — p,(¢) allows to compute
in the next section the resulting stress in the mucus.

2. Estimation of the stress in the mucus layer

The way the radius evolves with time induces a tangential strain on the interface between the mucus and the airway wall,
g0(r°,0,2) = =10 Thig tangential strain propagates into the mucus at a characteristic velocity ¢ = \/E,,/p, Where E,, is the

o
Young’s modulus of the mucus and p,, its density. In an healthy mucus layer, E,, ~ 1 Pa and p,, ~ 1000 kg.m—> [31] and we
can estimate that ¢ ~ 3 cm.s~!. Since the typical thickness of the mucus layer is about 10 um [25], the wave propagates through

the depth of the mucus in less than 0.5 ms. Hence, the strain on the mucus wall represents well the strain inside the mucus layer
at the time scale of HFCWO. At the position (r, 0,z) the strain in the mucus layer is then &g(r, 0,z) = r(lii(:ro The mucus is an

incompressible material, hence the trace of the strain operator is zero and €g = —¢, since we assume & = 0. Finally, based on
these hypotheses and on the linear elasticity in cylindrical coordinates states that

& = (1 + Vm) ((1 - vm)dr - VmO'e) /Em
gg=(1+Vn)((1—vn)og—vo,)/En
Then, using & = —&g, we have 0, = T E'C &, with x = r or 0. Making the mucus Poisson’s ratio v,, going to 0.5 since the mucus
o . . mn . . . .
is incompressible, the norm of the stress 1n the thin layer of mucus on the wall of the airway can be estimated with

r(t)—ro -

The stress induced in the mucus by airways wall oscillations is then compared to the yield stress of the mucus, see main text.
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