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Chest physiotherapy is a set of techniques, mostly empirical, used to help the draining of the mucus
from the lung in pathological situations. The choice of the techniques, and their adjustment to the
patients or to the pathologies, remains as of today largely empirical. High Frequency Chest Wall
Oscillation (HFCWO) is one of these techniques, performed with a device that applies oscillating
pressures on the chest. However, there is no clear understanding of how HFCWO devices interact
with the lung biomechanics.
Hence, we study idealised HFCWO manipulations applied to a mathematical and numerical model

of the biomechanics of the lung. The lung is represented by an airway tree connected to an homo-
geneous elastic medium.
We highlight that the biophysics of the idealised HFCWO is driven by two dimensionless numbers.

We show that the stress applied to the mucus plays the role of a buffer for the mucus yield stress,
hence reducing the amount of stress needed to mobilize the mucus. The stress is the addition of two
stresses with different physical origin and of the same order of magnitude: a stress due to the airway
wall deformation and a stress due to the air–mucus interactions. Our model predicts the existence of
an optimal range of HFCWO working frequencies that is in agreement with the frequencies actually
used during HFCWO oscillations. Moreover, our model suggests that analyzing the mouth airflow
during HFCWO could allow to estimate the compliance and the hydrodynamic resistance of the
lung of a patient.

Lung ventilation transports the oxygen and the car-
bon dioxide within the bronchial tree, to or from the
respiratory zone, where the exchanges with blood occur.
The bronchial tree is a tree structure formed of bifur-
cating airways, whose sizes are decreasing at each bifur-
cation, resulting in a tree that is space-filling [25, 49].
The human bronchial tree consists in about 200 000 air-
ways. The largest bronchus is the trachea that opens to
the oesopharyngeal region and the smallest bronchi in
the bronchial tree are the terminal bronchioles that open
to the acini, where the exchange surface is located. A
path between the trachea and a single terminal bronchi-
ole meets on average 16 successive bifurcations [48]. Since
the lung, and more particularly the bronchial tree, is in
direct connection with the ambiant air, it is susceptible
to be in contact with external particles, potentially toxic
or infectious. Hence, the wall of almost all the airways
of the bronchial tree [15] is covered with secretions –the
pulmonary mucus– which protect the lung. The mucus
captures the particles and is incessantly moved toward
the oesopharyngeal region by the mucociliary clearance, a
mechanism that moves the mucus thanks to cilia located
on the bronchi walls. Once in the oesopharyngeal region,
the mucus is either swallowed or expelled by coughing.

Some pathologies are disrupting the mucociliary clear-
ance and/or the cough. The mucociliary clearance can
be altered by changes in the physical properties of the
mucus [20, 24, 26] (viscosity, yield stress), by changes
in the mucus production, as in cystic fibrosis [43], or by

∗ Corresponding author: benjamin.mauroy@univ-cotedazur.fr

perturbations of the cilia or of the cilia movement, as in
primary ciliary dyskinesia or during bronchial inflamma-
tion in chronic obstructive pulmonary disease (COPD)
or asthma [33]. Those diseases induce a stagnation of
the mucus in the airways, increasing the risk of infec-
tions, and reduce the bronchi lumen area, hence altering
the circulation of the air inside the bronchial tree. In
such pathologies, therapeutical techniques are needed to
help the patients to eliminate the excess of mucus and to
recover, at least partially, their breathing capacity.

Chest physiotherapy is a common therapy used to com-
pensate a defective mucociliary clearance or cough. It is
based on mechanical forces applied on the thorax, aim-
ing at changing the volume of the lung. This change
of volume produces airflows that can potentially set the
mucus in movement [24, 26, 44, 45]. Chest physiotherapy
can be performed manually by a practitioner or by the
patient herself/himself –autogenic draining [1]. The ther-
apy can also be automated using specific mechanical de-
vices. Many of these devices apply pressures in or on the
lung to help the draining of the mucus, such as the Posi-
tive Expiratory Pressure technique (PEP), the Intrapul-
monary Percussive Ventilation (IPV), the high frequency
chest compression (HFCC) or the High Frequency Chest
Wall Oscillations (HFCWO) [3, 7, 14, 18, 34]. One of the
challenge is to use the device that is the best adapted to
the pathology or to the patient, and to determine its op-
timal functioning parameters in a framework where the
knowledge of the therapeutic effects is mainly empirical
and, hence, potentially controversial [6, 19, 30, 32, 35, 41].

In this study, we will more particularly focus on
HFCWO, which seems to be both efficient and well ac-
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Conductive tree – generations 0 to n.
First level of modeling. 
The branches size is reduced by a factor hb = 2!"/$ at each bifurcation.
The air flow and pressure are computed for each branch.

Conductive tree – generations n+1 to 16.
Second level of modeling. 
The branches size is reduced by a factor hb = 2!"/$ at each bifurcation.
The air flow and pressure are assumed identical in all the branches of 
the same generation.

Acini – generations 17 to 22.
Third level of modeling.
The branches size is reduced by a factor hac = 1 at each bifurcation.
The air flow and pressure are assumed identical in all the branches of 
the same generation.

Figure 1. The airway tree is modelled as a cascade of bifurcating cylinders representing the bronchi and the alveolar ducts. At
each bifurcation, the size of the branches is decreasing by an homothetic factor, fixed to hb =

(
1
2

) 1
3 ' 0.79 in the conductive

tree (17 first generations) [25, 48] and to hac = 1 in the acini (6 last generations) [46, 49]. The number written in the cylinders
corresponds to the generation index of the branches, i.e. the number of bifurcations on the path between the root of the tree
and the branch studied. The first generation corresponds the root of the tree that mimics the trachea, its index is 0. The
airway tree model decomposes into three levels: the first level corresponds to the first n + 1 generations where the air flows
and pressures are determined in each airway; the second level corresponds to the next 17 − (n + 1) generations where the air
flows and pressures are assumed identical in all the airways belonging to a same generation; the third level corresponds to the
acini (last six generations) where the air flows and pressures are also assumed identical in all the airways belonging to the same
generation.

cepted by patients with specific pathologies [34]. We de-
fine here HFCWO as the techniques that apply on the
thorax [18] small mechanical oscillations at relative high
frequencies, i.e. a few Hertz to about twenty Hertz. Ac-
tually, HFCC is sometimes considered as part of HFCWO
techniques although it applies an offset of "high" positive
pressure to the small pressure oscillations [29]. In this
work, we do not consider an offset of positive pressure,
hence not we do not consider HFCC.

This work aims at characterizing, in an idealised frame-
work, the biomechanics of the lung during HFCWO ma-
neuvers. We develop a mathematical and numerical
model of the core biomechanical phenomena of the lung
adapted to HFCWO and inspired from [2, 38]. Then we
apply to that model of the lung idealised HFCWO ma-
neuvers. Our model predicts the existence of optimal ide-
alised HFCWO operating parameters and allow to eval-
uate the resulting stresses applied to the mucus in the
airways. Moreover, we show that the idealised HFCWO
maneuvers allow to determine the resistance and compli-
ance of the model of the lung.

I. MODEL OF THE LUNG

We assume that the lung at functional residual
capacity fills a domain Ω of the 3D space. We consider
the lung as two regions with different physics that are

interacting together [2, 38]. The first region, called the
tree region, corresponds to the airways and alveolar
ducts. The second region, called the tissue region,
corresponds to the lung’s parenchyma.

The tree region. Different frameworks have been used
in the literature to model the bronchial tree, from the
most complex, based on 3D geometries that are recon-
structed from CT-scans of the lung [42, 46], to idealised
tree geometries. Idealised tree geometries allow to de-
velop more tractable models. They are either gener-
ated by algorithms that mimic the statistics of the air-
ways [17, 47] or by using data-based models, with differ-
ent levels of complexity, going from fractal-like models
(one or two parameters) [23, 25, 48] to more complex
geometries where each level of bronchi is described inde-
pendently [21, 26, 27, 45].

Here, the airway tree is represented by three different
modelling levels, see Figure 1.

The upper conductive airways are modelled by rigid
cylinders assembled into a bifurcating tree that mimics
the structure of the bronchial airways. The size of the
cylinders is decreasing at each bifurcation with a con-
stant ratio hb. We use the value of hb from Weibel’s
model, hb =

(
1
2

) 1
3 ' 0.79 [25, 48]. The generation index

of a cylinder in the tree corresponds to the number of bi-
furcations between the root of the tree and that cylinder.
The root of the tree mimics the trachea and corresponds
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to the first generation with index 0. In this model, all
the branches in the same generation have the same ge-
ometrical properties, but their inner air fluid dynamics
can be different. The first level of the tree corresponds
to n + 1 successive generations. The total number of
terminal branches is N = 2n.

The number of generations for the first level is n + 1
and it can be lower than the approximate average of 17
generations of the conductive airways [49]. Hence, the
second modelling level mimics the 17−(n+1) generations
of conductive airways. This level corresponds to a set
of subtrees, connected by set of two at each terminal
branches of the tree of the first modelling level. The
subtrees geometry is similar to the geometry of the tree of
the first level. However, within one of these subtrees, we
assume that the air physics is identical in all the airways
with the same generation index. The total number of
terminal branches of the second modelling level is 216.

Finally, the third modelling level mimics the acini.
An acinus can be viewed as a 6 generations dichotomous
subtree with rigid cylindrical branches. In the acinus,
we can consider that the size of the branches remain the
same at each bifurcation, i.e. the size reduction ratio
between two successive generations is hac = 1 [11]. The
third modelling level corresponds to two acinus models
connected to each terminal branches of the second
modelling level.

Pressure–flow relationship. The air in the branches is
considered as an incompressible Newtonian fluid with vis-
cosity η. We neglect the influence of the bifurcations on
the air flow and the pressure drop in the nasopharyngeal
pathway [28]. The reference pressure is the atmospheric
pressure.

We assume that the air flows according to the steady-
state Poiseuille’s regime, i.e. the flow is low, fully devel-
oped and axisymmetric, and the acceleration of the fluid
is neglected. Hence, the air flow f in a cylindrical airway
is related to the inlet pressure pin and the outlet pressure
pout by

pin − pout = Rf

where R = 8ηl
πr4 is the hydrodynamic resistance of the

cylinder, with r and l the respective radius and diameter
of the cylinder. The radii and lengths of the branches in
the generation i follow a scaling laws ri = hibr0 and li =
hibl0 with r0 and l0 the radius and length of generation 0.
Consequently, the hydrodynamic resistance also follows a
scaling law Ri = Ri−1/h

3
b (i > 1), with R0 the resistance

of the root of the tree. As hb =
(

1
2

) 1
3 , Ri = 2iR0 (i =

0, . . . , n).
From the pressure–flow relationships in each branch,

we can derive a global linear relationship for the whole
tree. We define the flows vector F = (fj)j=1,...,N , with fj
the air flow at the j-th terminal branch and the pressures
vector P = (pj)j=1,...,N , with pj the air pressure at the
j-th terminal branch. The linear relationship between

the pressures and flows vectors is based on the resistance
matrix R = (Rij)ij=1,...,N of the airway tree [4, 10],

P = RF (1)

The coefficients of the resistance matrixR are sums of the
hydrodynamic resistances of the cylinders in the paths
and the subpaths linking the root of the tree and the
terminal branches of the tree. Moreover, the equivalent
resistance Req of the tree relates an identical pressure p
applied at each terminal branch with the total amount
of airflow in the tree FT (i.e. the air flow in the first
generation), p = ReqFT . The equivalent resistance can
be computed from the resistance matrix R by Req =
(tJR−1J)−1 with J =t (1, . . . , 1) ∈ RN [27]. An example
with n = 2 is given in Figure 2.

In order to account for influence of the subtrees of the
second and third modelling levels, the hydrodynamic re-
sistances of the terminal branches of the tree of the first
modelling levels are modified. Since the physics of air
in the second and third modelling levels are assumed
identical per generation of subtrees, the pressures at the
terminal branches of a single subtree are all the same.
Hence, each subtree hydrodynamic response is deter-
mined based on its equivalent hydrodynamic resistance
only. The hydrodynamic resistance of one subtree of the

second modelling level is Rst,n = Rn

h3
b

∑17−n−2
i=0

(
1

2h3
b

)i
=

(17 − (n + 1))Rn

h3
b
and for the third modelling level, it is

Ra = R16

∑5
i=0

(
1

2h3
ac

)i
. To each terminal branch of the

first modelling level of the tree are connected two subtrees
of the second modelling level and 217−(n+1) subtrees of
the third modelling level. Finally, the resistance Rn+1 of
the terminal branches of the tree of the first modelling
level is replaced by the resistance R̃n+1 that accounts for
the subtrees,

R̃n = Rn +
Rst,n

2
+

Ra
217−(n+1)

(2)

Feeding the tissue region with air. The domain Ω
reflects the lung’s spatial occupation and is decomposed
into N = 2n regions (Ai)i=1..N . Each Ai is fed by a sin-
gle terminal branch of the tree, as schematized in Figure
2. We neglect the volumetric influence of the bronchial
tree in the Ai’s, since it represents a small fraction of
the volume of the lung, about 10% [49]. We assume that
the lung tissue behaves as an homogeneous elastic mate-
rial [2, 38, 50] and we assume small strains theory. This
choice is well adapted to HFCWO, since this technique
applies small oscillating pressures only.

Lung’s tissue displacements at location x ∈ Ω and at
time t ∈ R+ are represented by the variable u(x, t) ∈ Rm.
The general displacements equations are

ρ
∂2u

∂t2
− div(σ(u)) = 0 (3)
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𝜏(𝑡)

Generation 2
Airways resistance: 

<latexit sha1_base64="dFDTKyxUBnThlnZ2JBrOnJDI75M="></latexit>

R̃2 = R2 +
Rst,2

2
+

Ra

214

Generation 0 
Airway resistance: <latexit sha1_base64="zs9eOOxGB0I5tk8cOA467FWmliY="></latexit>

R0

Generation 1 
Airways resistance: <latexit sha1_base64="6OpsQCR888LZbwA9R9EUAuB1r4M=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002V99AG1lGQ6rYNpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzM7NL+QXC0vLK6trxfWNRhplCeN1FgVR0vK9lAci5HUpZMBbccK9oR/wpn9zquLNW56kIgov5SjmnaE3CEVfME8SdXHedbvFklN29LKngWtACWbVouILrtBDBIYMQ3CEkIQDeEjpacOFg5i4DsbEJYSEjnPco0DajLI4ZXjE3tB3QLu2YUPaK89UqxmdEtCbkNLGDmkiyksIq9NsHc+0s2J/8x5rT3W3Ef194zUkVuKa2L90k8z/6lQtEn0c6xoE1RRrRlXHjEumu6Jubn+pSpJDTJzCPYonhJlWTvpsa02qa1e99XT8TWcqVu2Zyc3wrm5JA3Z/jnMaNPbK7mF5/+ygVDkxo85jC9vYpXkeoYIqaqiT9wCPeMKzVbVCK7PuPlOtnNFs4tuyHj4AtgyQAw==</latexit>

R1

<latexit sha1_base64="sggZ+CriqqkCmlaaUvml8aJGef8="></latexit>

R =

0

BB@

R0 +R1 + R̃2 R0 +R1 R0 R0

R0 +R1 R0 +R1 + R̃2 R0 R0

R0 R0 R0 +R1 + R̃2 R0 +R1

R0 R0 R0 +R1 R0 +R1 + R̃2

1

CCA

Resistance matrix:

Req =
1

tJRJ
= R0 +

R1

2
+

R̃2

4

<latexit sha1_base64="knD2rLW1JyxY/277y6tJ0p0AIZk="></latexit>

Equivalent resistance:
<latexit sha1_base64="Sa0rZIzW54wKdjlGB4XB/KIuIFE="></latexit>

J =

0

BB@

1
1
1
1

1

CCAwith

Figure 2. Example of the model for n = 2. In that case, the first modelling level is made of three generations and four terminal
branches. All the tree branches of the same generation are identical and have the same hydrodynamic resistance. Each terminal
branch is coupled to one of the four subregions (Ai)i=1,2,3,4 of the 1D tissue region Ω = [0, L] = ∪Ni=1Ai. An oscillating pressure
τ(t) is applied at x = 0. The material is fixed at x = L. The rate of volume change of a subdomain Ai corresponds to the air
flow going through the corresponding terminal branch. The resistance matrix R and the associated equivalent hydrodynamic
resistance Req corresponding to that case are written on the right of the figure.

where ρ is the volumetric mass density of the material
and σ(u) is the stress tensor. The boundary ∂Ω of Ω is
decomposed into two regions: Γ1 represents the region
where the stress is applied and Γ2 represents the region
where there is no displacement. Hence, the boundary
conditions on ∂Ω and the initial conditions in Ω are σ(u).n = τ(x, t) x ∈ Γ1

u(x, t) = 0 x ∈ Γ2

u(x, 0) = u0(x) for x ∈ Ω
(4)

The quantity τ is the pressure applied on the bound-
ary and is the source of the system dynamics. We as-
sume the material to be isotropic and to be linear elastic.
The elastic stress σe(u) relates to the displacement u as
σe(u) = λ tr (ε(u)) I+2µ ε(u) , with I the identity matrix,
ε(u) = 1

2 (∇u+t ∇u) and λ and µ the Lamé parameters.
The air flowing out of the exchange surface goes

through the bronchial tree. Any change of the volume
of the material is counteracted by the resistance to the
air flow induced by the tree structure. This is reflected
in the material stress–strain relationship by a supplemen-
tary local stress, actually a pressure, that depends on how
the air is conveyed in the tree. Each terminal branch i
induces an homogeneous pressure pi in its correspond-
ing region Ai. The pressures are determined by the rate
of volume change of the Ai along time. In the case of
small deformations, this rate, which corresponds to the
air flow, can be approximated with [38]

Fi[u̇] =

∫
Ai

−div(u̇)dx (5)

where u̇ = ∂u
∂t . We denote F [u̇] = (Fi[u̇])i=1,...,N the

vector of air flows at the terminal branches. The pres-
sure pi in one Ai depends on the air flows F [u̇] in all
the terminal branches, see equation (1). Hence, the pres-
sure ptree(F [u̇]) induced by the air in the material is a

piecewise function, ptree(F [u̇])(x) = pi(F [u̇]) = (RF [u̇])i
for x ∈ Ai. Hence, the inner stress tensor induced by
the tree is σtree(u̇) = −ptree(F [u̇])I. This stress is not
continuous at the boundaries of the Ai.

Finally, the stress–strain relationship for the model of
the tissue region is

σ(u,F [u̇]) = λTr(ε(u))I + 2µε(u)︸ ︷︷ ︸
σe(u)

− ptree(F [u̇])I︸ ︷︷ ︸
σtree(u̇)

(6)

The resulting stress–strain relationships in equation (6)
is that of a viscoelastic material, with a non-local viscous
behavior. Due to the discontinuity of σtree, the correct
mathematical way to express the system equations is the
weak form, see details in Appendix A.

We will consider the material to be able to deform
only in the direction x and to be rigid in the two other
directions, with a constant cross-section SL = L2. Under
these conditions, the equations become unidimensional
in space on the domain Ω = [0, L]. We assume that the
pressure τ is applied at x = 0 and that the material is
fixed at x = L. From now on, the applied pressure τ is
assumed sinusoidal in time, i.e. τ(t) = A sin( 2π

T t) with A
the amplitude of the applied pressure and T its period.

II. RESULTS

Physical analysis. To reach a better understanding
of the equations and to determine the intrinsic parame-
ters of the problem, we use a dimensionless formulation
of the system. The space, the time and the amplitude of
the solution are adimensionalized with y = x/L, s = t/T ,
u(x, t) = Υũ(y, s) = Υũ( xL ,

t
T ), pi(F [u̇]) = P p̃i(F̃ [∂ũ∂s ]),

τ̃(s) = τ(t)/A. The quantities L represents the charac-
teristic size of Ω = [0, L] and the space domain becomes
Ω̃ = [0, 1]. The quantity T is the system characteristic
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time, given by the period of the applied pressure τ(t).
The dimensionless formulation is derived in Appendix B.
The quantity Υ = AL

(λ+2µ) represents the characteristic
displacement of the structure and P = Req

SLΥ
T the char-

acteristic pressure. Ω̃ is decomposed into N subsets Ãi,
which are the transformations by the adimensionalization
of the corresponding Ai in the original space. We define
the characteristic velocity v to cross the whole system in
a time T as v = L/T .

With these new variables, the dimensionless energetic
balance, computed in Appendix E, is

d

ds

kinetic energy︷ ︸︸ ︷(
1

2

∫ 1

0

(
∂ũ

∂s
(y, s)

)2

dy +

elastic energy︷ ︸︸ ︷
B 1

2

∫ 1

0

(
∂ũ

∂y
(y, s)

)2

dy

)

= Bτ̃(s)tJF̃ [
∂ũ

∂s
]︸ ︷︷ ︸

input power

+ E
N∑
i=1

p̃i(F̃ [
∂ũ

∂s
])F̃i[

∂ũ

∂s
]︸ ︷︷ ︸

dissipated viscous power
(7)

The number B = (λ+2µ)/ρv2 is the inverse of the system
Cauchy number. It compares the elastic forces in the ma-
terial with the inertial forces. The number E = pL

ρv2 is the
Euler number of the system. The pressure pL = ReqSLv
represents the non-coupled characteristic pressure in the
terminal branches of the tree, i.e. in the absence of the
coupling with the respiratory zone. In comparison, the
pressure P = A

(λ+2µ)pL represents the efficace charac-
teristic pressure resulting from the coupling. The Euler
number of the system compares the pressure forces in-
duced by the viscous dissipation of the air flow in the
bronchial tree with the inertial forces in the material.

Finally, the system is characterized by the two dimen-
sionless numbers B and E . Their ratio LM = E/B is
called the Lung Mechanics number, it compares the elas-
tic energy to the dissipation. When LM << 1, the sys-
tem behaves as a wave equation and the evolution of
the system total energy depends on the boundary condi-
tion in y = 0, and more precisely on τ̃(s). Additionally,
if B >> 1, then the energy is mainly stored as elastic
energy and the wave propagates rapidly. The material
displacement is close to a Laplacian (or diffusive) profile,
i.e. linear in 1D. If B << 1, then the energy is mainly
stored as kinetic energy and the wave propagates slowly.

On the contrary, when LM >> 1, then the system is
quickly damped. Hence, the kinetic energy, the elastic
energy and the airflows quickly drop to zero. Details
about the influence of the tree structure on the tissue
region dynamics is given in Appendix D.

Application to HFCWO. Approximated solutions of
the model equations are obtained using the finite ele-
ments method, implemented in the open source software
Octave [5]. Our algorithm is validated by comparison
with unidimensional analytical solutions, see Appendix
C. The physiological data used for the input parameters

of the model are given in Table I. The ventilation at rest
in human is thoroughly studied in the literature, hence
it is used to calibrate our model, see Appendix F. Sev-
eral parameters are adjusted according to the ventilation
regime at rest, in order for our model to give predic-
tions compatible with the physiology. In particular, to
compensate for geometrical and fluid dynamics features
neglected in our model, the hydrodynamic resistance of
the tree has to be rescaled to reach physiological pressure
drops and flows. Once calibrated, our model is used to
mimic HFCWO manipulation.

The amplitude A and the period T of the boundary
condition at x = 0 are adjusted to mimic an idealised
HFCWO maneuver. We consider HFCWO to work
as an applied sinusoidal pressure τ(t) = A sin(2πt/T ),
and we denote f = 1/T the frequency. The typical
frequencies used in HFCWO device are in the range 1
Hz to 20 Hz. To our knowledge, the amplitude of the
force felt by the lung due to the pressure on the thorax
is not documented yet. Since our model is linear in A,
we can easily determine the solution for any value of A
from a single computation once the other parameters,
such as the frequency, have been fixed. Our goal is
to compare the efficiency of the different frequencies
by observing the airflow induced by HFCWO. We
consider that a HFCWO device is more efficient if the
airflow is larger. Notice that due to the linearity of
the equations relatively to the boundary condition at
x = 0, mixing the rest ventilation and HFCWO would
bring an amount of airflow that would be the sum of the
airflows induced by the ventilation and by the HFCWO
computed separately. Hence, in order to isolate the
effects of HFCWO in our simulations, we do not account
here for the lung’s ventilation.

An optimal range of frequencies. HFCWO is
known to help move the mucus by affecting its rheol-
ogy –out of the scope of this study– and by applying
stresses in the mucus, either by the air–mucus interac-
tions [8, 24, 26, 45] or by the mechanical deformations
induced by the oscillations of the airways walls. The air
volume Vp exchanged with the ambiant air and the air-
flows created by HFCWO are dependant on its working
frequency, whose recommended values are based on em-
pirical knowledge. Hence, we study with our model the
influence of the HFCWO frequencies on the inhaled air
volume and on the tracheal airflow (flow in the first gen-
eration of the tree). We assume that the amplitude of
the applied pressure A at the boundary x = 0 is fixed to
A = 200 Pa and make the frequency of HFCWO range
between 1 Hz and 18 Hz.

The model predicts that Vp decreases as the frequency
increases, with a decreasing slope, as shown in Figure 3
(left). Also, the average airflow increases for frequencies
lower than 6.5 Hz and then decreases. Hence, the maxi-
mal airflow is reached at an optimal frequency fo = 6.5
Hz, see Figure 3 (right). As our model is linear in the
amplitude of the applied pressure A, A affects only the
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Model input parameters

Physical quantity Parameter name Value

Tree root radius (trachea radius) r0 1 cm [49]

Tree root length (reduced trachea length) l0 6 cm [49] and Appendix D

Lung characteristic size (human, adult) L 20 cm [49]

Lamé parameters of the tissue region (1D) λ+ 2µ 2700 Pa [38], Appendix F

Lung density ρ 100 kg.m−3 [38]

Resistance matrix of the airway tree R cmH2O.L−1.s, see [4, 10, 27]

Hydrodynamic resistance of the airway tree Req 1.0 cmH2O.L−1.s[28], Appendix F

Bronchi walls Young’s modulus Eb 6250 Pa [27], Appendix I

Mucus Young’s modulus Em 1.0 Pa [20], Appendix I

Idealized HFCWO frequency f = 1/T range 1 – 18 Hz [34]

Idealized HFCWO applied pressure A 200 Pa (computed)

Characteristic quantities

Physical quantity Variable name Expression

Time T 1
f

Velocity v L
T

Wave velocity c
√

(λ+2µ)
ρ

Displacement Υ AL
(λ+2µ)

Equivalent resistance of the tree Req
1

tJRJ

Air pressure in the tree pL ReqSLv

Effective air pressure in the tree P A
(λ+2µ)

pL

Tissue inertia – ρv2

Dimensionless numbers

Name Variable name Expression

Euler number E pL
ρv2

Inverse of Cauchy number B = 1
C

(
c
v

)2
Lung Mechanics number LM pL

(λ+2µ)

Table I. Input parameters, characteristic quantities and dimensionless numbers used in this work. All the characteristic
quantities and dimensionless numbers are defined with the input parameters of the model. Notice that E = LMB.
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Figure 3. Left: Volume of air (mL) ventilated at each cycle of the applied constraint versus the frequency of the applied
pressure. Right: Mean air flow versus the frequency of the applied pressure with a maximum of mean flow for ' 6.5 Hz (long
red-dashed line) and a range of frequencies for a mean flow within a range of 1% of the maximum (small red-dashed line).
In the maximal flow configuration, the two dimensionless numbers are of the same order of magnitude with B = 16.56 and
E = 32.74.

amplitude of the volumes and of the airflows, but not the
location of the maximum. At the optimal frequency, the
two dimensionless numbers are of the same order of mag-
nitude with B = 16.56 and E = 32.74. The acceleration
(1) has a low influence on the system relatively to the
elasticity (B) and to the dissipation (E). The value of
the Lung Mechanics number LM = E/B is 1.97 and the
dissipation affects slightly more the system than the elas-
ticity. In comparison, during rest ventilation B ' 17 000
and E ' 1 000, see Appendix F, and dissipation plays a
smaller role as LM = 0.062. Hence at rest, a significant
portion of the elastic power developed during inspiration
is stored and can be recovered during expiration [49].
In comparison, during HFCWO a larger fraction of the
power put in the system is lost to dissipation.

Near the optimal frequency fo, the airflow is actually
on a plateau. In the range of frequencies from 3 Hz to
15 Hz, the amount of airflow remains within 1% of the
maximum. By maximizing the airflow in the tree, this
range of frequencies maximizes the global displacements
of the material and the air–mucus interactions.

The optimal frequency fo = 6.5 Hz, which maximizes
the average air flow, corresponds to the fundamental fre-
quency of the system without the damping influence of
the tree, i.e. f1 =

√
(λ+2µ)

ρ
1

4L = 6.5 Hz [40]. Since the
maximum of airflow in our model is related to the max-
imum velocity of the material, Fi[u̇] =

∫
Ai
−div(u̇)dx,

this suggests that our system behaves similarly as a
damped oscillator for which the velocity resonance oc-
curs at the resonance frequency [12].

This result suggests that the knowledge of the lung’s
characteristics could allow to optimize the therapy by
computing the eigenfrequency of the material. Actually,
velocity resonance frequencies (i.e. eigenfrequencies) of
the respiratory system have been estimated in the liter-
ature to about 6 Hz for healthy adults [31] and to about
18Hz for infants lungs with respiratory distress syndrome

[22]. Those estimations are close to the optimal frequency
fo = 6.5 Hz obtained in our work by considering a char-
acteristic length of L = 20 cm for adult lungs. More
particularly, if we assume approximately a characteristic
length of 7 cm for infants lungs, we obtain an optimal
frequency of fo = 18.5 Hz.

Hence, our model gives for the first time a physical
estimation of the optimal working range of HFCWO,
which is in agreement with the frequencies usually
applied to the patient during HFCWO maneuvers [34].

Influence of HFCWO on the mucus at the opti-
mal frequency. The mucus stands on the wall of the
airways as a thin layer of about 10 µm [16]. Mucus is
a viscoelastic fluid whose main property is to exhibit a
yield stress that has to be overcome for the mucus to
flow. The order of magnitude of the yield stress σ0 for
an healthy mucus is typically σ0 ' 0.1 Pa [20, 24, 26].
During HFCWO manipulation, the mucus is submitted
to two types of stresses: one arising from the air–mucus
interactions and one from the oscillations of the airways
walls. These stresses add together and can either over-
come directly the mucus yield stress and make it flow, or
represent a buffer of stress, de facto reducing the quan-
tity of stress to apply to overcome the mucus yield stress.

Air–mucus interaction. The first stress is the one induced
by the air–mucus interaction [24, 26]. As the mucus layer
is in general thin relatively to the diameter of the airways,
this stress can be approximated by the wall shear stress
induced by the air flow in the airways [44, 45]. As the
airflows induced by HFCWO are small, we assume that
the air fluid mechanics follows the Poiseuille’s regime in
the airways. Hence, the wall shear stress σa in an airway
with radius r and an airflow φ is [44]

σa =
µaφ

πr3
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0 L  Distance of the 
airways from

Figure 4. Mean of the absolute wall shear stress (cold-colored crosses) and of the stress due to airways wall oscillations (hot-
colored circles). The mean is computed over the duration of one HFCWO cycle at the optimal frequency f = 6.5 Hz, for all
the bronchi of an eight generations tree. The color reflects the location of the corresponding airway in [0, L], i.e. the mean
position of the Ai’s fed by the airway. For example, the root of the tree is feeding all the Ai and its mean position is L/2; the
two branches of the second generation are located at L/4 and 3L/4, and so on.

with µa the air viscosity, µa = 1.8 10−5 Pa.s. The wall
shear stress in the tree is maximal when the air flow in
the tree is maximal, typically for the optimal frequency
uncovered previously.

Airways wall oscillations. The tissue oscillations regu-
larly compress and relax the airways, with the conse-
quence of periodically affecting the geometry of the air-
ways walls. The detailed derivation of the estimation of
the stress occurring in the mucus is given in Appendix I.
To evaluate the resulting stress applied to the mucus, we
assume as a first approximation that a deformed airway
remains a cylinder with the same length, that only its ra-
dius is affected and that no strain occurs along the axis of
the airway. With these hypotheses, the displacements of
the wall of an airway with rest radius r0 induce a change
of the perimeter of their section from the rest length,
2πr0, to the deformed length, 2πr(t) with t → r(t) rep-
resenting the radius of the airway as a function of the
time. The airways deformations are small and, for de-
termining the radius evolution with time, we can use the
same model as in [27] that considers the airway walls as
springs. We can then relate the time evolution of the
radius of an airway to the elastic properties of its wall
and to the variations of the pressures in the tissue pt and
of the pressure of the air in the airways pa. In this first
approximation model, we assume that the Young’s mod-
ulus Eb of the walls of the airways is the same for all
the airways and that Eb = 6250 Pa [27]. The pressure
pa is taken as the mean air pressure in the airway and
is computed using the pressure–flow relationships in the
airways, see equation (1). The pressure pt is an estima-
tion of the mechanical pressure surrounding the airway.
In our model, the airways have no spatial occupation,
hence pt is estimated using the mean mechanical pressure
over the region Q of the respiratory zone fed by the air-

way studied. More precisely, if we consider all the paths
from the terminal branches to the root of the tree, the
set Q is the union of the Ai’s that are coupled to a ter-
minal branch whose associated path includes the airway
studied. Finally,

pt(t) =

∫
Q

1
mTr(σ(u)(t, x)) dx∫

Q 1 dx
(8)

As our model is unidimensional in space, m = 1 and
pt(t) =

∫
Q(λ+ 2µ)dudx − ptree(F [u̇]) dx/

∫
Q 1 dx.

The way the radius evolves with time induces a tan-
gential strain on the interface between the mucus and the
airway wall, εθ(r0, θ, z) = r(t)−r0

r0
. Under the hypothesis

that the pressure difference felt by the airway is small rel-
atively to Eb, the resulting absolute stress in the mucus
can then be estimated to, see Appendix I,

σ(t) ' 1

2

r0

w0

Em
Eb
|pa(t)− pt(t)| (9)

with w0 the thickness of the airway wall. As suggested in
[27, 39], the thickness can be approximated by w0 = 2

5r0.

Stress in the mucus in the optimal configuration. At the
optimal frequency, we computed the absolute stresses av-
eraged over one HFCWO cycle per unit of stress applied
at the boundary to estimate its order of magnitude in the
different airways of the tree, see Figure 4.

The wall shear stress induced by the air–mucus inter-
actions does not vary much along the generations and
between the branches of the same generation. Actually,
the wall shear stress applied by the air on the mucus
is directly related to the size of the airways and to the
amount of airflow in the airway. If the airflows were dis-
tributed equally in all the branches of a single generation,
the shear stress should vary from one generation to the
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next with a factor 1/(2h3
b). In our case, hb = (1/2)

1
3 and

1/(2h3
b) = 1. Consequently, in the hypothesis of a per-

fectly homogeneous distribution of airflows in the tree,
the shear stress would be the same in all the generations
of the tree, see [44, 45]. Our results indicate that there is
a slight spread of the wall shear stresses that grows with
the generation index. This indicates that the difference of
the airflows between the terminal branches are small rel-
atively to the characteristic amplitude of the airflows in
these branches. Nevertheless, the airways that are closer
to the boundary x = 0, where the stress is applied, feel a
stronger tissue pressure than the other airways. Hence,
they are submitted to larger stresses than the airways
near x = L.

The stress due to the vibrations of the walls is larger
than the stress induced by the air flow in the upper parts
of the tree, but becomes smaller deeper in the tree. This
effect is related to the air pressure in the airways. In
the proximal part of the tree, the air pressure is small
and the airways mechanics is mainly driven by the tissue
pressure. Hence, we can deduce from equation (9) that
in the proximal airways, σ(t) ' 5

4
Em

Eb
|pt(t)|. Since the

amplitude of pt is directly related to the applied sinu-
soidal stress of amplitude A, we can derive an estimation
of the maximal possible mean stress over a cycle due to
the wall vibrations of about σ ' 5

4
Em

Eb

2A
π = 0.025 Pa

when A = 200 Pa. Although this quantity overestimates
the stress found in our numerical simulations by a factor
of about 2, it remains of the same order of magnitude.
The shift was expected, as this approximation does not
account for the real tissue pressure which depends on
the wave propagation and on the damping by the tree.
Nevertheless, this approximation is a good way to get
an estimation of the order of magnitude of the stress
in the upper airways. Deeper in the tree, the air pres-
sure increases and compensates more strongly the tissue
pressures around the airways. As a consequence, the am-
plitudes of the oscillations of the airways walls decrease
with the generations.

In HFCWO, the two stresses add together. The
idealised HFCWO technic used in our model, with
A = 200 Pa, applies to the the mucus a stress of about a
hundredth of pascal, about ten percent of the yield stress
necessary for an healthy mucus to move, whose yield
stress is evaluated to be about 0.1 Pa [20]. Adjusting
the amplitude A of our idealised HFCWO technic allows
to reach higher stress in a proportional way, see Figure 4.

III. DISCUSSION

We propose a mathematical and numerical model of
the physics of HFCWO that highlights the empirical
choices made for tuning HFCWO maneuvers. In our
model, we account for the interaction between two core
physical processes involved in the lung’s biomechanics:
the viscous dissipation of air in the airways and the me-

chanics of the deformation of the lung’s tissues. The tree
structure affects the displacement of the respiratory zone
by applying damping pressures in the material. Through
the action of the air on the tree, a deformation in the
material propagates its influence very quickly –actually
instantaneously in our model– everywhere in the material
once it has been stimulated. The consequences predicted
by our model for this dynamics is the existence of a range
of frequencies for HFCWO that maximizes the airflow
in the tree. This range of predicted optimal frequencies
corresponds to the working frequencies empirically de-
termined for HFCWO [34, 35]. In that range, the model
suggests that the isolated action of a HFCWO therapy
can submit an healthy mucus standing on the wall of the
airways to about ten percent of the estimated yield stress
that has to be overcome for the mucus to flow. In our
model, this percentage can easily be tuned by adjusting
the intensity of the applied pressure.

Also, the physical analysis of our model suggests sev-
eral interesting applications of the HFCWO technique.
Actually, the optimal frequency can be determined by
searching for the maximal airflow at mouth level. From
that optimal frequency, it is possible to reach estimations
of the hydrodynamic resistance and of the compliance of
the patients lung, at least in the frame of our model.

Operational hydrodynamic resistance of the air-
way tree. We define the operational hydrodynamic re-
sistance Rop of the airway tree according to a distribution
of the air flows at the terminal branches given by F [u̇]
and to the total air flow in the root (mouth air flow) given
by FT = tJF [u̇],

Rop =

∫ T

0

tF [u̇]RF [u̇]dt

/∫ T

0

F 2
T (t)dt (10)

The operational resistance reflects the resistance of the
regions of the airway tree where there is an actual air
flow. Moreover, the influence of the regions is weighted
according to the relative amount of airflows that they
receive. The regions where no airflow occurs are not ac-
counted for in that resistance. Hence, Rop is in general
an overestimation of the equivalent hydrodynamic resis-
tance of the whole tree. In the case where the pressures
at each terminal branches of the tree are similar, then
the operational resistance is close to the equivalent hy-
drodynamic resistance Req of the tree.

Coming back to our model of the lung, if we consider
the balance of energy of the system of equations (??)
over a cycle when the periodic regime is reached, then the
energy dissipated during one cycle is equal to the amount
of energy put in the system by the boundary x = 0. This
balance is detailed in G and can be summarized as∫ T

0

τ(t)FT (t) dt =

∫ T

0

tF [u̇]RF [u̇] dt (11)

The relationship (11) allows to estimate the operational
resistance of a HFCWO maneuver if the applied signal



10

τ(t) is known, if the total air flow FT (t) through the tree
(i.e. the mouth airflow) is measured and if a periodic
ventilation regime has been reached:

Rop =

∫ T

0

τ(t)FT (t)dt

/∫ T

0

F 2
T (t)dt (12)

We showed earlier that in our idealised HFCWO ma-
neuvers, the pressure jumps between the Ai compart-
ments are small relatively to the pressure itself, indicat-
ing that the pressures at the terminal branches are all
similar in amplitude. Hence, the operational resistance
is a good approximation of the equivalent resistance of
the tree in the case of the idealised HFCWO maneuvers.
Our numerical simulations confirms that during idealised
HFCWO maneuvers, we have Rop ' Req.

Hence, the operational resistance might have inter-
esting applications for evaluating the actual resistance
of the parts of the lung accessible to air flow, for
evaluating the performance of a HFCWO maneuver and
for estimating the equivalent hydrodynamic resistance
of the lung using HFCWO.

Estimation of the compliance using the funda-
mental frequency. We showed that the optimal fre-
quency in term of maximizing the mouth air flow is the
fundamental frequency of the material. This suggests
that HFCWO could be used to estimate the compliance
of the lung of a patient by searching for the device fre-
quency that maximizes the air flow at mouth level. As-
suming this frequency is the fundamental frequency, we
can derive from the formula f1 =

√
(λ+2µ)

ρ
1

4L the elas-
tic properties of the lung, represented here by (λ + 2µ).
From (λ+ 2µ), we can estimate the lung compliance. In
the case of our unidimensional model, the compliance is
related to the elastic parameters by C ' V/(λ+2µ) with
V = SLL = L3 the volume of our model of the lung.
From the expression of the fundamental frequency, we
can then deduce that

C ' V
1
3

16ρf2
o

(13)

with V the volume of the lung, ρ its density and fo ' f1

the frequency that maximizes the air flow at mouth
level. This formula is derived from a unidimensional
model and should be considered with care and/or be
validated with clinical data. However, this demonstrates
that HFCWO might be a potential tool for estimating
the lung’s compliance based on the analysis of the air
flows at mouth level.

Model limitations. However, our model predictions
have to be interpreted in the limitations of its hypothe-
ses. Actually, it is based on a set of simplification hy-
potheses for the geometry of the lung, the mechanics of
the tissues and the air fluid dynamics. Typically, to get
correct flows and pressures when mimicking rest venti-
lation, a corrective factor for the resistance was needed.

Hence, our model can only represent the lung behavior in
a qualitative way. Moreover, the predictions of our model
are based on averaged biological and mechanical param-
eters for an healthy individual. However, those variables
are submitted to inter-individual variations, typically for
the pulmonary resistance or the compliance, they are af-
fected by the age, the gender, etc. Such variability should
be accounted for in future works.

In addition, a simplification was made concerning the
physics of the system, for the sake of tractability. Ac-
tually, the dimensionless parameter E is built from the
equivalent hydrodynamic resistance of the tree. Hence,
it captures only the mean influence of the dissipation
of the energy by viscous effects in the tree. Thus, some
changes in the tree configuration can be missed as soon as
the equivalent hydrodynamic resistance is not affected by
the geometrical change. To get a more fine description of
the dynamics linked to the viscous dissipation in the tree,
we can consider one dimensionless parameter per gener-
ation of the tree (symmetric branching) or per branch
of the tree (asymmetric branching). This improvement
would allow to catch any influence of local changes in
the tree, such as localized constrictions. However, this
would lead to a large number of dimensionless parame-
ters, more than a hundred thousand for a 17th generation
tree, and would break the tractability of the model and
its potential applicability to medicine.

Nevertheless, our model is able to successfully mimic
the rest ventilation and to capture the interactions
between the tissue mechanics and the air flow in the
airways. The two dimensionless parameters B and E
allow to highlight the relative influence of the elasticity
and of the dissipation, depending on the physiological
parameters and on how the idealised lung is ventilated.

IV. CONCLUSION

This work develops, analyses and validates a model of
the lung that accounts for the main biophysical charac-
teristics of the lung. The simulation of idealized HFCWO
manipulations within our model of the lung brings esti-
mations of the shear stress applied by the technique to
the mucus. We show that the stress that dominates in
the upper part of the tree is the stress due to the vibra-
tion of the wall of the airways, while in the deep parts of
the tree, the dominating stress is due to the air–mucus
interactions. We show that the frequencies ranging from
3 Hz to 15 Hz maximize the airflow inside the tree and
consequently maximize the air–mucus interactions. This
range corresponds to the typical working frequencies em-
pirically used during HFCWO. Last but not least, in our
model, the analysis of the mouth air flow during idealized
HFCWO allows to estimate the hydrodynamic resistance
and the compliance of our model of the lung. This sug-
gests that HFCWO might be a powerful non invasive tool
for helping the diagnosis of lung pathologies in the frame
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of personalized medicine.
Nevertheless, it is important to interpret our model

predictions in the limits of our model hypotheses. This
work represents a first stepping stone toward the full un-
derstanding of the biomechanisms and the potential of
HFCWO. Further works will aim to reach more detailed
prediction by improving the model realism, typically the
geometry of the lung and the air fluid mechanics in the
airways.
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Appendices

Appendix A: Weak formulation and unidimensional case

1. Weak formulation of the system of equations

The model of the lung developed in the previous section consists in the equation of the mechanics for the respiratory
zone (3), its boundary and initial conditions (4), the viscoelastic stress–strain relationship for the model of the
respiratory zone (6), and the matrix pressures–flows relationship at the terminal branches of the bronchial tree model
(1). The system is solved numerically using its weak formulation and finite elements. The weak formulation and the
finite elements method are convenient for dealing with the divergence of piecewise constant functions, such as the
pressures pi.

Weak formulation of the system of equations. The equation that drives the mechanics of the tissue region is

ρ∂
2u
∂t2 − div(σ(u,F [u̇]))) = 0 x ∈ Ω

σ(u,F [u̇]) = λTr(ε(u))I + 2µε(u)− ptree(F [u̇])I x ∈ Ω

σ(u,F [u̇])).n = τ(x, t) x ∈ Γ1

u(x, t) = 0 x ∈ Γ2

u(x, 0) = u0(x) for x ∈ Ω

(A1)

The pressure ptree is not everywhere differentiable, hence a relevant mathematical way to express the equation (A1)
is by using the weak formulation. For any proper smooth test function w : Ω → R3 which cancels on Γ2, the weak
formulation of (A1) is obtained by integrating on Ω the inner product of the equation with the test function w and
by applying the Stokes theorem. The weak formulation of (3) is then

∫
Ω

(
ρ∂

2u
∂t2 w + σe(u) : ∇w

)
dx−

∫
Γ1
τ. w dS −

N∑
i=1

pi(F [u̇])
∫
Ai

div (w) dx = 0 on Ω

u(x, t = 0) = u0(x) for x ∈ Ω

u = ub and w = 0 on Γ2

(pi(F [u̇]))1≤i≤N = −

 N∑
j=1

Rij
∫
Aj

div(∂u∂t )dx


1≤i≤N

(A2)

Unidimensional case. In order to analyse the physics of the set of equations (A2) in a tractable framework, we
focus our study on unidimensional cases and limit the spacial dimension to the axis x1. The unidimensional geometry
can be viewed in the three dimensional space as a cylinder that is the extrusion along the axis x1 of a surface in the
plane (0, x2, x3). In terms of mechanics, we assume that the virtual displacement w1 depends only on x1 and that the
displacements w2 and w3 are zero. We assume also that ε11(u) is the single non zero term in the strain tensor. For
the sake of simplicity, we drop most of the index 1 and use respectively x, u, w and τ instead of x1, u1, w1 and τ1.

We assume that the extruded surface is a square with side length L and surface area SL = L2. Then, the rate of
volume change can be rewritten Fj [u̇] = −

∫
Aj

div(∂u
∂t )dx1dx2dx3 = −SL

∫ bj

aj

∂
∂x (∂u

∂t )dx where the projection of Aj on
the axis x1 is the segment [xj , xj+1]. For the sake of simplification, we will now identify the set Aj with its projection
on the x1 axis, i.e. Aj = [xj , xj+1]. Then, the tree pressure in the stress–strain relationship reformulates as

ptree(F [u̇]) = (pi(F [u̇]))1≤i≤N

= −SL

 N∑
j=1

Rij
∫ xj+1

xj

∂

∂x
(
∂u

∂t
)dx


1≤i≤N

= −SL

 N∑
j=1

Rij
(
∂u

∂t
(xj+1, t)−

∂u

∂t
(xj , t)

)
1≤i≤N

where Rij is the i, j component of the matrix R.
The definition (6) of the elastic stress tensor in 1D is σe(u) = (λ+ 2µ)∂u∂x .
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Appendix B: Dimensionless formulation of the equations and physical analysis

The space, the time and the amplitude of the solution are adimensionalized as follows

y = x/L

s = t/T

u(x, t) = Υũ(y, s) = Υũ( xL ,
t
T )

pi(F [u̇]) = P p̃i(F̃ [∂ũ∂s ])

(B1)

The quantities L and T represent respectively the characteristic length of the system and its characteristic time. The
quantity Υ represents the characteristic displacement of the structure and P the characteristic pressure. The space
domain becomes Ω̃ = [0, 1]. Ω̃ is decomposed into N subsets Ãi = [x̃i, x̃i+1], which are the transformations by the
adimensionalization of the corresponding Ai in the original space. The rate of volume change is now

F̃ [
∂ũ

∂s
] =

(
−
∫ x̃i+1

x̃i

∂

∂y
(
∂ũ

∂s
)dy

)
1≤i≤N

=

(
∂ũ

∂s
(x̃i, s)−

∂ũ

∂s
(x̃i+1, s)

)
1≤i≤N

We define the characteristic velocity v to cross the whole system in a time T as v = L/T .
The characteristic pressure P is obtained by

ptree(F [
∂u

∂t
]) = RF [

∂u

∂t
] = P p̃tree(F̃ [

∂ũ

∂s
]) = Req

SLΥ

T︸ ︷︷ ︸
P

R
Req
F̃ [
∂ũ

∂s
]︸ ︷︷ ︸

p̃tree(F̃ [ ∂ũ
∂s ])

where we recall that Req = 1/(tJRJ) is the equivalent resistance of the tree, i.e. how it responds to an homogeneous
distribution of pressures in its terminal branches. Hence, we can now define P = Req

SLΥ
T . The quantity SLΥ

T
represents a characteristic air flow in the system.

The stress–strain relationship becomes,

σ̃(ũ, F̃ [
∂ũ

∂s
]) =

∂ũ

∂y
− PL

(λ+ 2µ)Υ
p̃tree(F̃ [

∂ũ

∂s
]) =

∂ũ

∂y
− ReqSLL

(λ+ 2µ)T
p̃tree(F̃ [

∂ũ

∂s
])

and consequently, σ(u,F [u̇]) = Υ(λ+2µ)
L σ̃(ũ, F̃ [∂ũ∂s ]). We call the number LM =

ReqSLv
(λ+2µ) the Lung Mechanics number,

it compares the characteristic pressure in the terminal branches pL = ReqSLv induced by the viscous dissipation of
the air flow in the bronchial tree to the the elastic response of the material, here represented by (λ+ 2µ).

At the boundary y = 0, σ̃(ũ, F̃ [∂ũ∂s ]).n = AL
(λ+2µ)Υ τ̃(s), with A the characteristic amplitude of pressure applied on

the boundary and τ̃(s) = τ(Ts)
A the applied stress. In order to get a dimensionless stress at the boundary, we set the

characteristic displacement to Υ = AL
(λ+2µ) . It is the result of the trade-off between the applied boundary stress and

the elastic response of the material, scaled by the size of the object. Typically, the applied stress τ on the boundary is
a sinusoidal signal with frequency f , τ(t) = A sin(2πft), hence unless stated differently, T = 1/f is the characteristic
time of the system.

Substituting these dimensionless quantities in the weak formulation of the system brings a new dimensionless weak
formulation, for any smooth function w such as w(1) = 0,∫ 1

0

∂2ũ

∂s2
w +

(
B∂ũ
∂y
− E p̃tree

(
F̃
[
∂ũ

∂s

]))
∂w

∂y
dy − B

∫
Γ̃1

τ̃(s)w dy︸ ︷︷ ︸
=τ̃(s)w(0) (1D case)

= 0 (B2)

with B the inverse of the Cauchy number of the system B = (λ + 2µ)/ρv2 that compares the elastic forces in the
material with the inertial forces. The number E = LMB is actually the Euler number of the system since it can be
rewritten in the form E = pL

ρv2 . It compares the pressures forces induced by the viscous dissipation of the air flow in
the bronchial tree with the inertial forces in the material.

Appendix C: Numerical simulations, validation of the algorithm

Numerical simulations using finite elements for the space variable x are performed in Octave [5]. The time dynamics
is computed numerically with the Octave function ode15s.
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Figure 5. Propagation of wave deformation with (*-red) and without (o-black) the tree structure constraint at time s = 1
3
(a),

s = 2
3
(b), s = 1 (c), with B = 1 and E = 1. The dash vertical lines show the boundaries of the (Ai)1≤i≤N .

We determined analytical solutions of the unidimensional equations in the case of specific oscillating boundary
conditions. Analytical solutions are determined by decomposing the solution on each Ai. We assume that their form
on each Ai is the product of a time-only-dependant function and of a space-only-dependant function. The analytical
solutions on Ω = ∪Ni=1Ai is then obtained by assuming the continuity of the displacements and of the global stresses
between two neighborhing Ai.

Our algorithm, which is able to deal with any boundary conditions, is then validated by comparing its predictions
to these analytical solutions.

Appendix D: Effect of the tree structure on the propagation of the wave deformation

In the absence of the tree structure, i.e. with E = 0, the equation (B2) is the linear elasticity equation for an
isotropic and homogeneous material written in a dimensionless and uni-dimensional formulation. When the tree is
present, it applies uniform pressures in the Ai, hence we expect that the tree structure will affect the displacements
derivatives on the boundaries of the Ai. Hence, we compare in this appendix the displacement of the material with
or without the coupling with a tree structure using numerical simulations. This analysis allows to check the influence
of the tree on the eigenfrequencies of the system, most particularly in term of resonance velocity.

The dimensionless domain is Ω̃ = [0, 1] and corresponds to a homogeneous material coupled with a three generations
tree structure, as shown in Figure 2.

Boundary conditions. The material is fixed (zero displacement) on one boundary (y = 1) and stimulated by an
oscillating pressure on the other (y = 0). The pulsations ω1 = πc

2L and ω2 = 3πc
2L denote respectively the first and

the second angular eigenfrequencies of the system without the tree, with c =
√

(λ+ 2µ)/ρ, see [40]. We set the
Dirichlet condition ũ(1, s) = 0 and the Neumann condition σ(u).n(x, t) = τ(t) = A sin(ω2t) rewritten in dimensionless
formulation with s = t/T and T = 2π/ω1, σ̃(ũ)(y, s).n = τ̃(s) = τ(Ts)/A = sin(ω2Ts) on y = 0 ∀s ∈ R+.

We chose the pulsation of the boundary condition to be ω2 in order to be able to observe more easily the traveling
wave. As a consequence, a convenient characteristic time for the simulation is the time that the deformation wave
takes to propagate from one boundary (y = 0) to the other (y = 1), which is T = 2π

ω1
.

Initial conditions. A zero initial condition is imposed on the displacements and velocities, the material is initially
at rest.

Values of the physiological and physical parameters.
The aspect ratio of the trachea is larger than that of the other airways. Since all the airways sizes are computed
from the size of the first generation, in order to compute satisfactory airway length, we have to use in our
model a first generation airway that corresponds to a reduced trachea. Hence, the size of the first generation
airway is assumed of length l0 = 6 cm and of radius r0 = 1 cm. The resistance matrix R is then computed from
these two values. In this section, we set the dimensionless parameters to B = 1 and E = 1 (E = 0 for non-coupled case).

Wave propagation and dissipation. The black curves (*-curves) in figure 5 show the propagation of a wave in the
absence of the tree, namely considering E = 0 . As the characteristic time is T = 2π

ω1
with ω1 = πc

2L the fundamental
angular frequency [40], the wave propagates through the material without any loss of energy and reaches the other
boundary at time s = 1.
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The red curves (o-curves) in figure 5 show the propagation of the wave coupled to the tree structure (E = 1). The wave
is damped by the air viscous dissipation occurring in the tree. Moreover, several areas of the domain are deformed
before the arrival of the deformation wave. Actually, since we use Poiseuille’s model for the air fluid mechanics in the
tree, any change in pressures and airflows propagates instantaneously throughout the tree. Hence, all the material is
instantaneously affected by the change of the air properties in the Ai.

Appendix E: Energy of the system

In equation (B2), each term plays a part on the shape of the solution and is weighted and compared with the other
terms by the value of its respective prefactor. The prefactors are either 1 or one of the two dimensionless parameters
B or E . The equation (B2) can be decomposed according to the physical role of its different terms:∫ 1

0

∂2ũ

∂s2︸︷︷︸
acceleration

w +

(
B∂ũ
∂y︸ ︷︷ ︸

elasticity

− E p̃tree

(
F̃
[
∂ũ

∂s

])
︸ ︷︷ ︸

damping

)
∂w

∂y
dy − B τ̃(s)︸ ︷︷ ︸

boundary force

w(0) = 0 (E1)

Taking w in equation as the velocity of the material, i.e. w = ∂ũ
∂s , we can determine the time variation of the energy

of the system.

d

ds

(
1

2

∫ 1

0

(
∂ũ

∂s
(y, s)

)2

dy + B 1

2

∫ 1

0

(
∂ũ

∂y
(y, s)

)2

dy

)
︸ ︷︷ ︸

Total energy of the system

= Bτ̃(s)
∂ũ

∂s
(0, s)︸ ︷︷ ︸

input power

+ E
N∑
i=1

p̃i(F̃ [
∂ũ

∂s
])F̃i[

∂ũ

∂s
]︸ ︷︷ ︸

viscous power dissipated

(E2)

The total air flow through the tree is tJF̃ [∂ũ∂s ] =
∑N
i=1 F̃i[

∂ũ
∂s ] = −

∫ 1

0
∂2ũ
∂y∂s (y, s)dy = ∂ũ

∂s (0, s) − ∂ũ
∂s (1, s) = ∂ũ

∂s (0, s).
Hence, the input power can be rewritten Bτ̃(s)∂ũ∂s (0, s) = Bτ̃(s)tJF̃ [∂ũ∂s ].

Since the pressure p̃i(F̃ [∂ũ∂s ]) in an Ai is of the opposite sign than the corresponding flow Fi[∂ũ∂s ], then the term in
E corresponds to a damping of the tissue, as expected.

Appendix F: Model calibration using rest ventilation

We use our model to mimic the ventilation of the human lung. However, several parameters need to be adjusted in
order for our model to give predictions compatible with the physiology. The ventilation at rest in human is thoroughly
studied in the literature, hence it is used to calibrate our model, see section F. Once calibrated, our model is used to
mimic HFCWO manipulation.

In this subsection, we mimic the pulmonary ventilation at rest. We consider the domain Ω = [0, L], L ∈ R composed
of an homogeneous material that mimics the lung’s tissue. Here, we decompose the domain into 128 subdomains
(Ai)i=0,...,127 which are fed by a tree of eight generations. The deepest generations of the lung are mimicked using
equivalent resistances added at each terminal branches of the eight generations tree.

Our model of the bronchial tree is idealized and does not take into account the oesopharyngeal pathway, the
detail of the geometry of the bifurcation and the inertial effects of the air flow [36, 37]. As a consequence, the
hydrodynamic resistance of the tree and the resulting damping of the tissue deformation are underestimated if we
base its computation on the geometry of our idealized tree only. Hence, the hydrodynamic resistance of the idealized
tree needs to be adjusted in order to get pressures and airflows compatible with the physiological values. For that
purpose, we introduced an artificial factor of 20 for the hydrodynamic resistance of each branch of the tree that allows
to reach satisfactory orders of magnitudes for both pressures and airflows. The equivalent resistance Req of the tree
with the adjusted resistance is then compatible with the physiological data, that estimates the lung’s hydrodynamic
resistance to range from 0.5 to 4 cmH2O.L−1.s in the case of healthy adults [28]).

Parameters values. Since the lung’s parenchyma is filled with 10% of tissue and 90% of air, the volumetric mass
density ρ of the material is set to 10% of the volumetric density of water, i.e. ρ = 100kg/m3 [9, 38]. This value
for the density is probably not adapted to large volume variations of the lung, for which the air–tissue ratio could
be significantly affected, typically during forced expiratory/inspiratory maneuver. However, for normal ventilation
and especially for HFCWO conditions, we can reasonably assume that an air–tissue volume ratio of 90% is a good
approximation.
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Figure 6. Left: Pressure applied to mimic the action of the diaphragm (two respiratory cycles are shown). The signal is
sinusoidal in time with a period of 5 seconds and an amplitude A. Right: Mouth airflow and tidal volume during four
respiratory cycles of 5 seconds each with the adjusted hydrodynamic resistance. The airflow and tidal volume data are displayed
after they have reached a stationary state (t ≥ 10s).

We use the same Young’s modulus E = 1256 Pa and Poisson’s ratio ν = 0.4 as in [38]. From these data, we can
compute the quantity λ+ 2µ used in our model using the equivalency between (E, ν) and (λ, µ) and the relationships
λ = Eν

(1−2ν)(1+ν) and µ = E
2(1+ν) .

The resistance matrix R is built using physiological data for trachea radius and length: r0 = 1 cm and l0 = 6 cm.
We set the length L to be compatible with the characteristic size of an adult lung, namely L = 20 cm.
Finally, the amplitude of the boundary constraint A is set to 200 Pa. This value for A allows our model to predict

values for air flows and pressures in the airway tree that are fully compatible with the physiology.

Initial conditions. The initial condition (t = 0 s) corresponds to the material being still, i.e. no initial displacement
and no initial velocity.

Boundary conditions. The Neumann condition at x = 0 is adjusted to mimic the pressure applied by the diaphragm
to the lung during rest ventilation, σ(u).n = A

2 (cos(ωt)−1), with A ∈ R and ω = 2π
5 , or, in dimensionless formulation,

at y = 0, σ(ũ).n = −B(cos(2πs) − 1). It mimics a negative pressure that moves back and forth the material, see
Figure 6 (left). The angular frequency ω is chosen so that the duration of a ventilation cycle is of T = 5 seconds (2.5
seconds inspiration and 2.5 seconds expiration) mimicking an idealized symmetric ventilation at rest [49]. Moreover,
we assume a zero displacement Dirichlet condition at y = 1.

The numerical computations are performed with the dimensionless system of equations and the dimensional quan-
tities are reconstructed from the dimensionless ones. Also, to go from computed 1D quantities to interpretable 3D
quantities, we involve a surface of the material, denoted SL in section A1. We focus our analysis on the variations of
the mouth airflow Fm along time as this quantity is easily measurable in a clinical frame. The mouth airflow Fm is
computed as the sum of all the airflows in the terminal branches of the tree,

Fm
[
∂u

∂t

]
= SL

Υ

T

N∑
i=1

F̃i
[
∂ũ

∂s

]
(F1)

At rest, a human ventilates around 6 to 8 L/min [13] and a tidal volume of about 500mL per respiratory cycle.
With the adjusted resistance, our model predicts a tidal volume of around 553mL. These results are shown in figure
6 (right).

The values of dimensionless parameters associated to this case are B = 16821 and E = 1043. The Euler number E ,
that represents the damping is about 16 lower than the inverse Cauchy number B that represents the relative role of
the elasticity. This indicates that the system tends to dissipate slowly the elastic energy injected by the diaphragm.
Also, both E and B are larger than 1, indicating that the acceleration plays a small role on the dynamics.

Appendix G: Energy balance and operational resistance

We consider the dimensionless energy conservation in our model, see equation (E2) in Appendix E. We recall that the
total air flow through the tree is F̃T (s) =t JF̃ [∂ũ∂s ] =

∑N
i=1 F̃i[

∂ũ
∂s ] = −

∫ 1

0
∂2ũ
∂y∂s (y, s)dy = ∂ũ

∂s (0, s)− ∂ũ
∂s (1, s) = ∂ũ

∂s (0, s).



18

(a) Symmetrical 2 generations tree structure
with R1 = 2R0.

(b) Non-symmetrical two generations tree
structure with R11 = R1/100 and R12 =
100R1.

R =


R0 +R1︸ ︷︷ ︸

3R0

R0

R0 R0 +R1︸ ︷︷ ︸
3R0


(c) Resistance matrix for a 2
generations tree structure with
symmetric bifurcations.

R =


R0 +R11︸ ︷︷ ︸
(1.02)R0

R0

R0 R0 +R12︸ ︷︷ ︸
201R0


(d) Resistance matrix for a non-
symmetrical 2 generations tree
structure where R11 = R1/100 and
R12 = 100R1.

Figure 7. Two different tree structures with the same equivalent resistance and parameters B and E , but with different resistance
matrices. On the left is displayed a symmetrical tree structure (a) with the corresponding resistance matrix (c). On the right
is displayed a non-symmetrical tree structure (b) with the corresponding resistance matrix (d).

Hence, the dimensionless energy balance is

d

ds

(
1

2

∫ 1

0

(
∂ũ

∂s
(y, s)

)2

dy + B 1

2

∫ 1

0

(
∂ũ

∂y
(y, s)

)2

dy

)
= Bτ̃(s)F̃T (s)− E tF̃

R
Req

F̃ (G1)

since tF̃ [∂ũ∂s ] RReq
F̃ [∂ũ∂s ] = −

∑N
i=1 p̃i(F̃ [∂ũ∂s ])F̃i[∂ũ∂s ]. Now, if we assume that the system is periodic with a period 1,

then integrating the previous equation over a cycle and going back to dimensional variables lead to∫ 1

0

τ̃(s)F̃T (s) ds =
LM
Req

∫ 1

0

tF̃ [
∂ũ

∂s
]RF̃ [

∂ũ

∂s
] ds →

∫ T

0

τ(t)FT (t) dt =

∫ T

0

tF [u̇]RF [u̇] dt (G2)

Hence, these relationships lead to define the operational hydrodynamic resistance of the airway tree

Rop =

∫ T
0
tF [u̇]RF [u̇]dt∫ T
0
F 2
T (t)dt

(G3)

When the pressures are all identical in the terminal branches of the tree, then we have tF [u̇]RF [u̇]dt = ReqF
2
T . In

that case, Rop = Req. More generally, Rop is the equivalent resistance of the parts of the tree where the air flows
occur, weighted by the relative values of the airflows. Hence, the value of Rop ranges from the value of the equivalent
resistance of the most resistive path between the root of the tree and the terminal branches, and the value of the
equivalent resistance of the tree. In the quasi-fractal model with n+1 generations, Rop ranges from R0 +R1 + · · ·+Rn
(hydrodynamic resistance of a path from generation 0 and n, all identical) and Req =

∑n
i=0

Ri

2i .

Appendix H: Extension of the definition of the dimensionless parameter E

1. Numerical simulation

The dimensionless parameter E is not able to discriminate between all the trees, as two different trees can have
the same hydrodynamic resistance but not the same branches. To illustrate this phenomenon, we run two similar
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Figure 8. Displacements for a two generations symmetrical (black cross) and a two generations non-symmetrical (red circle)
tree with the same equivalent resistances and the same B and E at times s = 1

3
(a), s = 1

2
(b), s = 2

3
(c).

numerical simulations with the same E , but with two different trees. We chose the resistance matrices R so that they
are different but with the same equivalent resistance and consequently the same B and E . The configuration chosen
is based on a symmetrical and a non-symmetrical tree. We call R11 and R12 the hydrodynamic resistance of the two
airways in the generation 2. The airway with resistance R1i feeds the set Ai (i = 1, 2). The non-symmetrical tree is
related to the symmetric tree by a decrease by a factor 100 of the hydrodynamic resistance of one of the branch of
generation 2 –R11 = R1/100– and an increase by the same factor of the hydrodynamic resistance of the other branch
–R12 = 100R1–, see Figure 7. We keep r0 = 1 cm and l0 = 6 cm to define the hydrodynamic resistance R0 of the
root branch. The values of the dimensionless parameters are B = 1 and E = 1. We use the same boundary conditions
as before and a zero initial condition on displacement and velocity.

The Figure 8 shows the material displacement for the two cases. Since A2 is connected to more resistive branch in
the asymmetric case, the displacements in A2 are lower in the non-symmetrical case than in the symmetrical case.
This example shows that the local contribution of the resistance of each branch of the tree is not accounted for in the
dimensionless formulation based on E and B. This choice allows however to keep the physics of the system tractable
and to connect more easily with clinical measures which often reflect global behaviors of the pulmonary system.

2. Alternative definition of the dimensionless parameter E

The definitions of the dimensionless parameter E =
ReqSL

ρv in Table I is based on the equivalent hydrodynamic
resistance of the tree Req only. This approach is not able to distinguish the dynamics induced by two different
trees with the same hydrodynamic resistance. Hence, we propose in this appendix alternative definitions of the
dimensionless parameters.

In the case of a symmetrical bifurcating tree, one dimensionless variable Ei can be defined for each generation i of
the tree. In this case, all the branches belonging to the generation i have the same hydrodynamic resistance Ri. The
dimensionless weak formulation is then∫ 1

0

∂2ũ

∂s2
w +

(
B∂ũ
∂y

+ En F̃T
)
∂w

∂y
dy − B

∫
Γ̃1

τ̃(s)w dy︸ ︷︷ ︸
=τ̃(s)w(0) (1D case)

= 0 (H1)

with En =
∑n
i=0 Ei, F̃T =

∑N
i=1 F̃i

[
∂ũ
∂s

]
and for i = 0, . . . , n,

Ei = 2n−i
Ri
Req
E

.
Similarly, in the case of a bifurcating tree with non symmetric bifurcations, all the branches of the tree can be

different and one dimensionless number E can be defined for each branch. Hence, the number of dimensionless
parameters E would equal the number of branches in the tree, i.e. 2n+1 − 1 if the tree has n + 1 generations. The
dimensionless number Eb associated to a branch b belonging to the generation i and with a hydrodynamic resistance
Rb would then be

Eb = 2n−i
Rb
Req
E
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It is important to adapt the number of dimensionless parameters to the problem in order to keep some tractability
in the study.

Appendix I: Estimation of the stress in the mucus layer induced by the airway walls oscillations

The airway walls are oscillating due to the oscillation of their transmural pressure. In order to estimate the stress
applied on the mucus by the oscillations of the airway walls, we have first to determine the response of the airways
radius to the changes in transmural pressure. We assume that the airways wall behaves as a circular spring [27]. Then,
we compute the stress in the mucus assuming that the mucus remains solid and behaves as a linear elastic material.
The hypotheses of linear elasticity are justified by the small amplitudes of the oscillations applied by HFCWO.

1. Estimation of the evolution of the airways radii

As HFCWO devices apply small deformations to the lung, we model the walls of the airways in the same way as in
[27]. Hence, we assume that the airway wall reacts as a spring that remains circular. We consider an airway with a
rest radius r0 and with a constant length l0. As in [27, 39], we assume the airway wall to have a thickness w0 = 2

5r0,
a Young’s modulus Eb = 6250 Pa, a Poisson ratio νb = 0.5 (incompressible material) and a density ρb = 1000 kg.m−3.
We consider cylindrical coordinates (r, θ, z) adjusted to the cylindrical geometry of the airway: r corresponds to the
radial position, θ to the angular position and z to the axial position. The corresponding basis vectors are denoted er,
eθ and ez. Assuming that the cylindrical airway has a radius r, we consider a part of its wall with an angular width
of dθ located at the angular position θ. Applying the Newton’s second law to that segment leads to

r dθ w0 l0 ρb︸ ︷︷ ︸
mass

d2r

dt2
er(θ)︸ ︷︷ ︸

acceleration

= t(r) l0 eθ(θ)− t(r) l0 eθ(θ + dθ)︸ ︷︷ ︸
elastic force

+ r dθ l0 (pa(t)− pt(t)) er(θ)︸ ︷︷ ︸
pressures forces

(I1)

where:

• The function r → t(r) is the lineic tension due to the elongation of the wall, t(r) = − Eb

1−ν2
b
w0

r−r0
r0

, see more
details in [27].

• The pressure in the tissue pt(t) is computed using the trace of the stress tensor σ(u) in the respiratory zone, see
equation (6),

pt(t) =

∫
Q

1
nTr(σ(u)(t, x)) dx∫

Q 1 dx

with n the spatial dimension and Q the set defined as the union of the Ai fed by the airway studied. For
example, the tissue pressure in the first generation airway is the mean of the tissue pressures computed on all
the Ai as this airway is feeding all the tissue, i.e. Q = Ω. With n = 1, we can rewrite the pressure in the tissue
as

pt(t) =

∫
Q(λ+ 2µ)dudx − ptree(F [u̇]) dx∫

Q 1 dx

• The air pressure in the airway pa(t) results from the air fluid dynamics in the tree. It is approximated by the
mean air pressure in the airway, which is computed using the linear relationships between the air flows and
pressures in the tree, see equation (1). More precisely, we define the set I of the indexes of the airways that are
on the path starting from the root of the tree and ending at the airway studied. For i ∈ I, we denote Ri is the
hydrodynamic resistance of the airway with index i and φi the airflow in that same airway; the quantity Riφi is
the pressure drop in the airway i. Finally, denoting Rb the hydrodynamic resistance of the airway studied and
φb the airflow in that same airway, we have

pa(t) = −

(∑
i∈I

Riφi(t)

)
+
Rb
2
φb(t)

where the first term computes the pressure at the end of the airway studied and the second term is a correction
to get the pressure in the middle of that airway.
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Using the relationship eθ(θ)− eθ(θ + dθ) = er(θ)dθ, projecting the equation (I1) on er and simplifying, we obtain

w0ρb
d2r

dt2
= −w0

r0

Eb
1− ν2

b

r − r0

r
+ (pa(t)− pt(t)) (I2)

Then, rewriting the equation (I2) in a dimensionless form allows to compare the different influences of acceleration,
elasticity and pressures:

ρbr
2
0(1− ν2

b )

EbT 2︸ ︷︷ ︸
N

d2r̃

ds2
= −1× 1

r̃
(r̃ − 1) +

r0

w0

P (1− ν2
b )

Eb︸ ︷︷ ︸
M

(p̃a(s)− p̃t(s))

using s = t/T , r̃(s) = r(sT )/r0, p̃∗(s) = p∗(sT )/P with ∗ = a or t. T is the characteristic time of the oscillations,
i.e. their period; at the optimal configuration (see figure 3), T = 0.05 s. P is the order of magnitude of the pressure,
typically the pressure applied on the boundary, reflected by the variable A, hence we chose P = A = 200 Pa. Finally,
we can estimate the dimensionless numbers N =

ρbr
2
0(1−ν2

b )
EbT 2 and M = r0

w0

P (1−ν2
b )

Eb
at the optimal configuration,

N ≤ N|r0=1cm = 5.1 10−4 and M = 6.0 10−2

Consequently, the acceleration is small relatively to the elastic term (N << 1) and we can assume at first approx-
imation a static equilibrium between the elastic forces and the pressure forces. Notice that N decreases when the
generation index increases since the radii of the airways are decreasing with the generation index. Hence, the approx-
imation N << 1 is better for the small airways. The number M is also quite small relatively to 1, indicating that the
displacements due to the pressures are also small, in agreement with the linear elasticity approximation.

Solving the static equation leads to r̃(s) = (1 −M(p̃a(s) − p̃t(s))−1. Considering M << 1, we can go further in
the approximation, and r̃(s) ' 1 +M(p̃a(s)− p̃t(s)). Equivalently, using dimensional variables and replacing νb with
1/2, we can finally reach an expression for r(t):

r(t) =
r0

1− 3
4
r0
w0

pa(t)−pt(t)
Eb

' r0

(
1 +

3

4

r0

w0

pa(t)− pt(t)
Eb

)
The determination of the evolution of the radius relatively to that of the transmural pressure pa(t) − pt(t) allows

to compute in the next section the resulting stress in the mucus.

2. Estimation of the stress in the mucus layer

The way the radius evolves with time induces a tangential strain on the interface between the mucus and the airway
wall, εθ(r0, θ, z) = r(t)−r0

r0
. This tangential strain propagates into the mucus at a characteristic velocity c =

√
Em/ρm

where Em is the Young’s modulus of the mucus and ρm its density. In an healthy mucus layer, Em ' 1 Pa and
ρm ' 1000 kg.m−3 [20] and we can estimate that c ' 3 cm.s−1. Since the typical thickness of the mucus layer is about
10 µm [16], the wave propagates through the depth of the mucus in less than 0.5 ms. Hence, the strain on the mucus
wall represents well the strain inside the mucus layer at the time scale of HFCWO. At the position (r, θ, z) the strain
in the mucus layer is then εθ(r, θ, z) = r(t)−r0

r0
. The mucus is an incompressible material, hence the trace of the strain

operator is zero and εθ = −εr since we assume εz = 0. Finally, based on these hypotheses and on the linear elasticity
in cylindrical coordinates states that

εr = (1 + νm) ((1− νm)σr − νmσθ) /Em
εθ = (1 + νm) ((1− νm)σθ − νσr) /Em

Then, using εr = −εθ, we have σ∗ = Em

1+νm
ε∗ with ∗ = r or θ. Making the mucus Poisson’s ratio νm going to 0.5

since the mucus is incompressible, the norm of the stress in the thin layer of mucus on the wall of the airway can be
estimated with

σ(t) =
2

3
Em

∣∣∣∣r(t)− r0

r0

∣∣∣∣ ' 1

2

r0

w0

Em
Eb
|pa(t)− pt(t)|

The stress induced in the mucus by airways wall oscillations is then compared to the yield stress of the mucus, see
main text.
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